JP2018057322A - Pertussis model animal and its creation method, as well as method using pertussis model animal - Google Patents
Pertussis model animal and its creation method, as well as method using pertussis model animal Download PDFInfo
- Publication number
- JP2018057322A JP2018057322A JP2016197288A JP2016197288A JP2018057322A JP 2018057322 A JP2018057322 A JP 2018057322A JP 2016197288 A JP2016197288 A JP 2016197288A JP 2016197288 A JP2016197288 A JP 2016197288A JP 2018057322 A JP2018057322 A JP 2018057322A
- Authority
- JP
- Japan
- Prior art keywords
- pertussis
- cough
- mice
- c57bl
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 201000005702 Pertussis Diseases 0.000 title claims abstract description 150
- 238000000034 method Methods 0.000 title claims description 58
- 241001465754 Metazoa Species 0.000 title abstract description 59
- 206010011224 Cough Diseases 0.000 claims abstract description 154
- 238000004519 manufacturing process Methods 0.000 claims abstract description 40
- 238000011156 evaluation Methods 0.000 claims abstract description 39
- 208000015181 infectious disease Diseases 0.000 claims abstract description 33
- 241000588832 Bordetella pertussis Species 0.000 claims description 112
- 210000004027 cell Anatomy 0.000 claims description 68
- 238000012360 testing method Methods 0.000 claims description 67
- 241000699670 Mus sp. Species 0.000 claims description 64
- 229940066827 pertussis vaccine Drugs 0.000 claims description 58
- 239000000126 substance Substances 0.000 claims description 53
- 238000011081 inoculation Methods 0.000 claims description 45
- 108090000623 proteins and genes Proteins 0.000 claims description 34
- 241000699666 Mus <mouse, genus> Species 0.000 claims description 30
- 101710194807 Protective antigen Proteins 0.000 claims description 24
- 230000001580 bacterial effect Effects 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 18
- 230000001939 inductive effect Effects 0.000 claims description 17
- 239000002904 solvent Substances 0.000 claims description 17
- 238000011740 C57BL/6 mouse Methods 0.000 claims description 13
- 230000002163 immunogen Effects 0.000 claims description 11
- 239000003937 drug carrier Substances 0.000 claims description 6
- 210000003850 cellular structure Anatomy 0.000 claims description 4
- 238000009472 formulation Methods 0.000 claims description 4
- 230000000813 microbial effect Effects 0.000 claims description 4
- 238000010172 mouse model Methods 0.000 claims description 4
- 239000004615 ingredient Substances 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229960005486 vaccine Drugs 0.000 abstract description 44
- 238000010171 animal model Methods 0.000 abstract description 11
- 239000000825 pharmaceutical preparation Substances 0.000 abstract description 7
- 229940127557 pharmaceutical product Drugs 0.000 abstract description 7
- 238000012216 screening Methods 0.000 abstract description 7
- 238000011160 research Methods 0.000 abstract description 5
- 230000007246 mechanism Effects 0.000 abstract description 4
- 230000001629 suppression Effects 0.000 abstract description 3
- 239000000411 inducer Substances 0.000 abstract description 2
- 238000005352 clarification Methods 0.000 abstract 1
- 108010081690 Pertussis Toxin Proteins 0.000 description 50
- 239000000243 solution Substances 0.000 description 45
- 210000002345 respiratory system Anatomy 0.000 description 21
- 230000002950 deficient Effects 0.000 description 20
- 210000004072 lung Anatomy 0.000 description 19
- 101710154643 Filamentous hemagglutinin Proteins 0.000 description 15
- 241000894006 Bacteria Species 0.000 description 14
- 208000015842 craniosynostosis 2 Diseases 0.000 description 13
- 239000000047 product Substances 0.000 description 12
- 238000012224 gene deletion Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 239000000427 antigen Substances 0.000 description 10
- 108091007433 antigens Proteins 0.000 description 10
- 102000036639 antigens Human genes 0.000 description 10
- 241000700605 Viruses Species 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 206010002091 Anaesthesia Diseases 0.000 description 7
- 230000037005 anaesthesia Effects 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- 230000036039 immunity Effects 0.000 description 7
- 230000003053 immunization Effects 0.000 description 7
- 238000002649 immunization Methods 0.000 description 7
- 239000013642 negative control Substances 0.000 description 7
- 238000011746 C57BL/6J (JAX™ mouse strain) Methods 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 6
- 206010059866 Drug resistance Diseases 0.000 description 6
- 241000991587 Enterovirus C Species 0.000 description 6
- 241000274177 Juniperus sabina Species 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229960003983 diphtheria toxoid Drugs 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 229960000814 tetanus toxoid Drugs 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 239000002671 adjuvant Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 210000003928 nasal cavity Anatomy 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 241000282520 Papio Species 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000013641 positive control Substances 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000002255 vaccination Methods 0.000 description 4
- 239000011534 wash buffer Substances 0.000 description 4
- 241000725101 Clea Species 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 101710116435 Outer membrane protein Proteins 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 206010043376 Tetanus Diseases 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 235000011130 ammonium sulphate Nutrition 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 206010013023 diphtheria Diseases 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 238000013227 male C57BL/6J mice Methods 0.000 description 3
- -1 pili Proteins 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 208000034309 Bacterial disease carrier Diseases 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241001504519 Papio ursinus Species 0.000 description 2
- 108010067902 Peptide Library Proteins 0.000 description 2
- 208000000474 Poliomyelitis Diseases 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 229940124832 acellular pertussis vaccine Drugs 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 229940001442 combination vaccine Drugs 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 108010083528 Adenylate Cyclase Toxin Proteins 0.000 description 1
- AXTCFXUJNPBCDB-UHFFFAOYSA-N Agarol Chemical compound CC(C)C1CC(=O)C2=COC3=C2C1CCC3O AXTCFXUJNPBCDB-UHFFFAOYSA-N 0.000 description 1
- VIULXZNWHKRQPB-KSQLKPTDSA-N Agarol Natural products O=C1c2c3[C@@H]([C@@H](C(C)C)C1)C[C@H](C)[C@H](O)c3oc2 VIULXZNWHKRQPB-KSQLKPTDSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 241000917014 Bordetella pertussis 18323 Species 0.000 description 1
- 239000012617 Butyl Sepharose™ 4 Fast Flow Substances 0.000 description 1
- 201000006082 Chickenpox Diseases 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 108010028921 Lipopeptides Proteins 0.000 description 1
- 241000712079 Measles morbillivirus Species 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 241000609499 Palicourea Species 0.000 description 1
- 241000282516 Papio anubis Species 0.000 description 1
- 206010034038 Parotitis Diseases 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 241000711798 Rabies lyssavirus Species 0.000 description 1
- 206010057190 Respiratory tract infections Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000710799 Rubella virus Species 0.000 description 1
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 1
- 206010040893 Skin necrosis Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 206010046306 Upper respiratory tract infection Diseases 0.000 description 1
- 206010046980 Varicella Diseases 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000006161 blood agar Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 229940030156 cell vaccine Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 210000004081 cilia Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229940028617 conventional vaccine Drugs 0.000 description 1
- 230000002920 convulsive effect Effects 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 239000003221 ear drop Substances 0.000 description 1
- 229940047652 ear drops Drugs 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 239000003885 eye ointment Substances 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000007852 inverse PCR Methods 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 206010024378 leukocytosis Diseases 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 230000001314 paroxysmal effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940021222 peritoneal dialysis isotonic solution Drugs 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 238000011197 physicochemical method Methods 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 208000020029 respiratory tract infectious disease Diseases 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 239000006208 topical dosage form Substances 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000001296 transplacental effect Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
本発明は、百日咳モデル動物およびその作製方法、百日咳モデル動物を用いた百日咳の予防または治療に用いられる医薬品の評価方法、咳発作誘発因子の特定方法、ならびに医薬品の製造方法に関するものである。 The present invention relates to a pertussis model animal and a production method thereof, a method for evaluating a pharmaceutical used for prevention or treatment of pertussis using a pertussis model animal, a method for identifying a cough seizure inducing factor, and a method for producing a pharmaceutical.
百日咳は主として小児および10代の青少年に発生する伝染性の強い疾患で,百日咳菌(Bordetella pertussis)に起因する。症状は初め非特異的上気道感染様で,次に通常は長く高調の鶏鳴様吸気(笛声)で終わる発作性または痙攣性の咳が発現する。
百日咳菌感染により引き起こされる咳発作の発症メカニズムおよびその誘発因子は未だに解明されていない。その理由の一つに、現在まで百日咳菌感染における咳発作を忠実に再現する有用な動物モデルは開発されていない事が挙げられる。
これまで、マウスやラットといった小型で扱い易いげっ歯類を用いた感染モデルが報告されている。マウスでは百日咳菌経鼻投与による上下気道組織への菌体の定着や百日咳毒素が原因の白血球増多性を引き起こすが、肝心な発作性の咳嗽は生じないことが報告されている(非特許文献1、非特許文献2)。
ラットは唯一、咳発作が報告されている小動物である(非特許文献3、非特許文献4)。これらの報告において用いられた実験系では、百日咳菌を封じ込めたアガロール粒子を作製し、これを外科的に露出させたラット気管支あるいは肺に直接投与したことが報告されている。非特許文献4では、投与9日後から咳発作が観察されている。またこの実験系で観察される咳発作は百日咳ワクチンで抑制される事があわせて報告されている(非特許文献5)。
しかし、上記実験系では気道等での菌体の定着を観察していないうえに、百日咳菌感染群の咳発作の回数が対照群に比べて有意ではなく、咳発作の回数を評価の対象とする感染モデルとしては十分ではない。また感染手法が非常に煩雑であるため他のグループからの追試報告はなく、汎用的で簡便な方法とは言い難いという問題がある。
ブタは類縁菌である気管支敗血症菌の自然宿主であるが、近年、百日咳菌経鼻投与により百日咳様症状を示す事が報告されているが、発作性の咳嗽は認められない(非特許文献6)。
現在、百日咳菌感染による咳発作を再現する動物モデルとしてヒヒ (Papio anubis)が注目されている。百日咳菌を経気道投与することで、感染3日後から激しい咳発作が生じる(非特許文献7)。また現行の百日咳ワクチン接種により咳発作の発症は抑制されることが報告されている(非特許文献8)。しかし、ヒヒ百日咳モデルは実験動物として凡用性は非常に低く、倫理的障害を考え合わせると容易に使用できる動物モデルではないという問題がある。
Pertussis is a highly contagious disease that occurs mainly in children and teenagers and is caused by Bordetella pertussis. Symptoms initially appear to be nonspecific upper respiratory tract infections, followed by paroxysmal or convulsive cough, usually ending with a long, harmonic squeal-like inspiration (flute).
The onset mechanism of cough attacks caused by Bordetella pertussis infection and its inducing factors have not yet been elucidated. One reason for this is that until now, no useful animal model has been developed that faithfully reproduces cough attacks in B. pertussis infection.
So far, infection models using small and easy-to-handle rodents such as mice and rats have been reported. In mice, pertussis nasal administration causes colonization of the upper and lower respiratory tract tissues and leukocytosis caused by pertussis toxin, but it has been reported that an important paroxysmal cough does not occur (Non-patent Document) 1, Non-Patent Document 2).
Rats are the only small animals that have been reported to have cough attacks (Non-patent Documents 3 and 4). In the experimental system used in these reports, it was reported that agarol particles containing Bordetella pertussis were prepared and administered directly to the rat bronchus or lung exposed surgically. In Non-Patent Document 4, a cough attack is observed from 9 days after administration. It has also been reported that cough attacks observed in this experimental system are suppressed by pertussis vaccine (Non-patent Document 5).
However, in the above experimental system, colonization in the respiratory tract etc. has not been observed, and the number of cough attacks in the pertussis infection group is not significant compared to the control group, and the number of cough attacks is the subject of the evaluation. It is not enough as an infection model. Moreover, since the infection method is very complicated, there is no follow-up report from other groups, and there is a problem that it is difficult to say that it is a general-purpose and simple method.
Although swine is a natural host of a related bacterium, bronchial septic bacteria, it has recently been reported that pertussis-like symptoms have been reported by nasal administration of Bordetella pertussis, but paroxysmal cough is not observed (Non-patent Document 6). ).
Currently, baboons (Papio anubis) are attracting attention as an animal model that reproduces cough attacks caused by pertussis infection. By administering pertussis pertussis, a severe cough attack occurs 3 days after infection (Non-patent Document 7). Moreover, it has been reported that the onset of cough attacks is suppressed by the current pertussis vaccination (Non-patent Document 8). However, the baboon pertussis model has a very low universality as an experimental animal, and there is a problem that it is not an animal model that can be easily used in consideration of ethical disorders.
百日咳は、母親からの免疫(経胎盤移行抗体)が期待できないため、乳児期早期から罹患し、1歳以下の乳児、ことに生後6カ月以下ではそれ以上の乳児に比べ死に至る危険性も高い。百日咳ワクチンを含むDPT 三種混合ワクチン(ジフテリア・百日咳・破傷風)またはDPT-IPV四種混合ワクチン(ジフテリア・百日咳・破傷風・不活化ポリオ)の接種が我が国を含めて世界各国で実施されており、その普及とともに各国で百日咳の発生数は激減している。しかしながら、百日咳菌に対する終生免疫は獲得できないため、百日咳ワクチン接種の普及率が低下すれば、感染率が増加する。百日咳ワクチン接種の普及率を維持するためには、現在においても、安全で高力価な百日咳ワクチンの開発は重要な課題である。
現在の日本国内における、百日咳ワクチンの力価試験には1947年にKendrickにより開発されたIntracerebral challenge test (脳内攻撃試験)が採用されている(非特許文献9)。百日咳ワクチンの有効性評価にマウス脳内攻撃試験を用いることは、自然感染と感染経路が異なるものの、STANDFASTらによって実施された大規模な野外実験の結果、脳内攻撃試験で算出された全菌体百日咳ワクチンの力価と百日咳菌自然感染に対するワクチンの効果とが平行することが示されている(非特許文献10)。このように脳内攻撃試験は、全菌体百日咳ワクチンの免疫効果を定量的に扱えることから広く普及し、現在に至っている。しかし近年、脳内攻撃試験は自然感染の状態を再現していない、現行の無細胞百日咳ワクチンの力価試験に適していないなど、当該試験についての是非が論じられている(非特許文献11、非特許文献12、非特許文献13、非特許文献14)。実際、2000年にNIBSCのワーキンググループにおいて無細胞百日咳ワクチン効力試験モデルについて議論が行われているものの、未だ脳内攻撃試験の代替となりうる試験法は確立されていない。
前述のように議論される背景には、ワクチン評価に適切な百日咳動物モデルが確立されていない事が理由の一つとして挙げられる。最近、ヒヒを用いた百日咳ワクチンの評価を行った研究成果が報告された(非特許文献7)ことは、先述べた通りである。この研究成果では、百日咳菌経気道投与ヒヒにおいて、無細胞百日咳ワクチン免疫群では上気道における菌体の排除こそはできないものの、咳発作は抑制される事が示されている。このことから、ヒヒ百日咳モデルは新たな動物モデルとして注目されている。しかし、先に述べたようにヒヒを百日咳ワクチン評価系として用いるには、実験動物として凡用性の低さや倫理的な問題、また費用面を考えると現実的ではない。
Whooping cough is not expected to receive immunity from the mother (transplacental transfer antibody), so it is affected early in infancy and has a higher risk of dying than infants under 1 year of age, especially those under 6 months of age. . DPT triple vaccine including pertussis vaccine (diphtheria, pertussis, tetanus) or DPT-IPV quadruple vaccine (diphtheria, pertussis, tetanus, inactivated polio) has been carried out around the world including Japan. With the spread, the number of whooping coughs has been drastically decreasing in each country. However, since lifelong immunity against Bordetella pertussis cannot be obtained, the infection rate will increase if the prevalence of pertussis vaccination decreases. In order to maintain the prevalence of pertussis vaccination, the development of a safe and high-titer pertussis vaccine is still an important issue.
The Intracerebral challenge test developed by Kendrick in 1947 is used for the pertussis vaccine titer test in Japan at present (Non-patent Document 9). The use of the mouse brain attack test to evaluate the effectiveness of pertussis vaccine is different from the natural infection and the route of infection, but as a result of a large-scale field experiment conducted by STANDFAST et al. It has been shown that the titer of body pertussis vaccine is parallel to the effect of vaccine against natural infection of Bordetella pertussis (Non-patent Document 10). Thus, the intracerebral challenge test has become widespread because it can quantitatively handle the immune effect of the whole cell pertussis vaccine, and has reached the present day. However, in recent years, the brain attack test does not reproduce the state of natural infection, and is not suitable for the titer test of the current acellular pertussis vaccine, and the pros and cons of this test have been discussed (Non-Patent Document 11, Non-patent document 12, Non-patent document 13, Non-patent document 14). In fact, although the NIBSC working group discussed the acellular pertussis vaccine efficacy test model in 2000, a test method that could replace the intracerebral challenge test has not yet been established.
One of the reasons for the background discussed above is that a pertussis animal model suitable for vaccine evaluation has not been established. As described above, research results of recent evaluation of pertussis vaccine using baboons have been reported (Non-patent Document 7). This research result shows that cough attacks are suppressed in baboons administered with pertussis pertussis, although the cell-free pertussis vaccine immunization group cannot eliminate cells in the upper respiratory tract. For this reason, the baboon pertussis model has attracted attention as a new animal model. However, as described above, using baboons as a pertussis vaccine evaluation system is not practical in view of low universality, ethical problems, and cost as an experimental animal.
百日咳菌感染により、ヒトでみられる顕著な咳発作を呈し、安価で利便性が高く、咳発作誘発因子の特定や医薬品の評価や製造にも用いることができる百日咳動物モデルの開発が望まれていた。 The development of a pertussis animal model that exhibits remarkable cough attacks seen in humans due to pertussis infection, is inexpensive and highly convenient, and can be used for identification of cough attack-inducing factors, as well as evaluation and production of pharmaceuticals. It was.
本発明者らは、鋭意研究の結果、顕著な咳発作を呈するマウスの百日咳モデル動物の開発に成功した。また、本発明の百日咳モデル動物の咳発作は、現行の百日咳ワクチンを含むDPT-IPVワクチンにより抑制される事を確認したことから、本発明により、新たな百日咳ワクチンなどの医薬品の有効性評価試験方法や、咳発作誘発因子の特定方法、当該評価方法を用いた医薬品の製造方法を提供することができる。
すなわち、本発明は、以下の通りである。
[1]
C57BL/6マウスに、百日咳菌Bp 18323株を含む菌液、もしくは百日咳菌Bp 18323株を含む菌体破砕液を接種する工程を含む、百日咳モデルマウスの作製方法。
[2]
前記C57BL/6マウスが、成熟マウスである、[1]に記載の方法。
[3]
前記菌液に0.5×108cfu/ml以上、好ましくは1×108cfu/ml以上、更に好ましくは2×108cfu/ml以下の百日咳菌Bp 18323株が含まれる、もしくは前記菌体破砕液に0.8 mg/ml以上、好ましくは1.0 mg/ml以上、さらに好ましくは1.2 mg/ml以下の菌体成分が含まれる、[1]に記載の方法。
[4]
被験物質の評価方法であって、
(1)C57BL/6マウスに被験物質を投与する工程、
(2)被験物質を投与したマウス、および被験物質を投与しないC57BL/6マウスに、百日咳菌Bp 18323株、もしくは百日咳菌Bp 18323株の菌体破砕液を接種する工程、
(3)前記被験物質を投与したマウスにおける咳発作回数を、前記被験物質を投与しないマウスおよび/または百日咳菌もしくは百日咳菌体破砕液を接種しないマウスにおける咳発作回数と比較する工程、および、
(4)前記(3)の工程により得られた結果に基づいて、被験物質の百日咳菌感染による咳発作の抑制作用における有効性を判定する工程、
を含む評価方法。
[5]
前記被験物質が百日咳ワクチンである、[4]に記載の方法。
[6]
百日咳菌Bp 18323株に感染したC57BL/6マウス、あるいは百日咳菌Bp 18323株の菌体破砕液を接種したC57BL/6マウスであって、咳発作を呈することを特徴とする、百日咳モデルマウス。
[7]
百日咳菌の咳発作誘発因子の特定方法であって、
(1)百日咳菌Bp 18323株の1つの機能もしくは構造的因子をコードする遺伝子を欠損または発現を抑制するよう改変した百日咳菌Bp 18323株を作製する工程
(2)前記(1)の工程により得られた改変した百日咳菌Bp 18323株またはその菌体破砕液をC57BL/6マウスに投与する工程
(3)前記(2)のマウスにおける咳発作回数を、溶媒接種群および/または[6]に記載の百日咳モデルマウスにおける咳発作回数と比較する工程、および、
(4)前記(3)の工程により得られた結果に基づいて、百日咳菌の咳発作誘発因子を特定する工程、
を含む特定方法。
[8]
百日咳ワクチンの製造方法であって、
(1)百日咳菌の防御抗原を製造する工程
(2)百日咳菌Bp 18323株、もしくは百日咳菌Bp 18323株の菌体破砕液を接種したC57BL/6マウスを用いて前記百日咳菌の防御抗原の効力を測定する工程、および
(3)前記百日咳菌の防御抗原を製薬学的に許容される担体および/または他の免疫原性成分と混合し、単位用量製剤に製剤化する工程、
を含む、製造方法。
As a result of intensive studies, the present inventors have succeeded in developing a mouse pertussis model animal exhibiting a remarkable cough attack. Moreover, since it was confirmed that the cough attack of the pertussis model animal of the present invention is suppressed by the DPT-IPV vaccine including the current pertussis vaccine, the present invention is used to evaluate the effectiveness of new drugs such as a pertussis vaccine. The present invention can provide a method, a method for identifying a cough attack inducing factor, and a method for producing a pharmaceutical using the evaluation method.
That is, the present invention is as follows.
[1]
A method for producing a pertussis model mouse comprising inoculating a C57BL / 6 mouse with a bacterial solution containing B. pertussis Bp 18323 or a cell disruption solution containing B. pertussis Bp 18323.
[2]
The method according to [1], wherein the C57BL / 6 mouse is a mature mouse.
[3]
The bacterial solution contains B. pertussis Bp 18323 strain of 0.5 × 10 8 cfu / ml or more, preferably 1 × 10 8 cfu / ml or more, more preferably 2 × 10 8 cfu / ml or less, or disrupting the cells The method according to [1], wherein the liquid contains a bacterial cell component of 0.8 mg / ml or more, preferably 1.0 mg / ml or more, more preferably 1.2 mg / ml or less.
[4]
A test substance evaluation method comprising:
(1) A step of administering a test substance to C57BL / 6 mice,
(2) inoculating mice that have been administered a test substance and C57BL / 6 mice that have not been administered a test substance with a cell disruption solution of B. pertussis Bp 18323 or B. pertussis Bp 18323;
(3) comparing the number of cough attacks in mice administered with the test substance with the number of cough attacks in mice not administered with the test substance and / or mice not inoculated with Bordetella pertussis or Bordetella pertussis, and
(4) Based on the result obtained by the step (3), a step of determining the effectiveness of the test substance in inhibiting cough attacks caused by B. pertussis infection,
Evaluation method including
[5]
The method according to [4], wherein the test substance is a pertussis vaccine.
[6]
A pertussis model mouse, which is a C57BL / 6 mouse infected with Bordetella pertussis Bp 18323 or a C57BL / 6 mouse inoculated with a cell disruption solution of Bordetella pertussis Bp 18323, which exhibits a cough attack.
[7]
A method for identifying a cough attack-inducing factor of Bordetella pertussis,
(1) Step of producing Bordetella pertussis Bp 18323 in which a gene encoding one function or structural factor of Bordetella pertussis Bp 18323 is deleted or modified to suppress expression (2) Obtained by the step (1) above The modified pertussis Bp 18323 strain or the cell disruption solution thereof is administered to C57BL / 6 mice (3) The number of cough attacks in the mice described in (2) above is described in the solvent inoculation group and / or [6] Comparing the number of cough attacks in pertussis model mice, and
(4) A step of identifying a pertussis-inducing factor of Bordetella pertussis based on the result obtained by the step (3),
Specific methods including:
[8]
A method for producing a pertussis vaccine,
(1) Step of producing pertussis protective antigen (2) Efficacy of pertussis protective antigen using C57BL / 6 mice inoculated with B. pertussis Bp 18323 strain or B. pertussis Bp 18323 strain And (3) mixing the pertussis protective antigen with a pharmaceutically acceptable carrier and / or other immunogenic ingredients and formulating into a unit dose formulation,
Manufacturing method.
本発明の百日咳モデル動物は、安価で利便性の高いマウスを用い、百日咳菌感染によりヒトと同様に顕著な咳発作を呈するから、本発明の動物モデルは、咳発作メカニズムの解明や咳発作の誘発因子同定、百日咳に対する医薬品のスクリーニング評価に有用である。また、本発明の評価方法は、従来のワクチン等の有効性評価試験に比べ、評価可能なワクチンの対象が拡大するとともに、感染拡大の抑制に直接関係する咳発作回数に基づく評価が可能となる。 The pertussis model animal of the present invention uses a mouse that is inexpensive and highly convenient, and exhibits a cough attack similar to that of humans due to pertussis infection. Therefore, the animal model of the present invention is capable of elucidating the cough attack mechanism and cough attack. It is useful for identifying inducers and screening evaluation of drugs for pertussis. In addition, the evaluation method of the present invention enables an evaluation based on the number of cough attacks directly related to the suppression of the spread of infection, as well as the range of vaccines that can be evaluated, compared to the efficacy evaluation tests of conventional vaccines and the like. .
(百日咳モデル動物)
本発明の百日咳モデル動物は、百日咳菌もしくは百日咳菌体破砕液の接種により顕著な咳発作を生じるマウスである。
「咳発作」とは、連続する咳が反復して生じることを意味する。
本発明の百日咳モデル動物は、接種後一定期間経過後に咳発作が生じる。好ましくは、接種後5日以上経過後に咳発作が生じ、約1週間以上咳発作が継続する。
「顕著な咳発作」とは、百日咳菌もしくは百日咳菌体破砕液の接種後一定期間の合計咳発作回数が、百日咳菌もしくは百日咳菌体破砕液を接種しない動物群(ネガティブコントロール群)に比較して、有意に増加することを意味する。好ましくは、接種後6〜14日間の一定期間の合計咳発作回数が、ネガティブコントロール群に比較して、有意に増加することを意味する。
本発明の百日咳モデル動物の咳発作は、有効量の百日咳ワクチンの投与により有意に抑制される。好ましくは、百日咳ワクチン投与群の百日咳菌接種後一定期間、より好ましくは6〜14日間の合計咳発作回数が、百日咳ワクチン非投与群と比較して、有意に少ないことを意味する。
(Pertussis model animal)
The pertussis model animal of the present invention is a mouse that produces a significant cough attack by inoculation with pertussis or pertussis disruption fluid.
“Cough attack” means that successive coughs occur repeatedly.
The pertussis model animal of the present invention develops a cough attack after a lapse of a certain period after inoculation. Preferably, the cough attack occurs 5 days or more after the inoculation, and the cough attack continues for about 1 week or more.
“Significant cough attacks” means that the total number of cough attacks in a certain period after inoculation with pertussis or pertussis bacteria is compared to the group of animals not inoculated with pertussis or pertussis bacteria (negative control group). Means a significant increase. Preferably, it means that the total number of cough attacks in a certain period of 6 to 14 days after inoculation is significantly increased compared to the negative control group.
The cough attack of the pertussis model animal of the present invention is significantly suppressed by administration of an effective amount of a pertussis vaccine. Preferably, it means that the total number of cough attacks for a certain period of time after inoculation of pertussis bacteria in the pertussis vaccine administration group, more preferably 6 to 14 days, is significantly smaller than that in the pertussis vaccine non-administration group.
(百日咳モデル動物の作製方法)
本発明の百日咳モデル動物の作製方法を以下に示す。
1.動物種
本発明に用いることができる動物は、市販あるいは研究機関から入手可能なC57BL/6系統のマウスである。C57BL/6系統のマウスには、さらにC57BL/6JとC57BL/6Nの亜系統があり、同様に用いることができる。
入手可能なC57BL/6亜系統の主な種類と入手先は以下の通りである。
C57BL/6J:Jackson Laboratory
C57BL/6JMs:国立遺伝学研究所
C57BL/6JJcl:日本クレア
C57BL/6JNrs:放射線医学総合研究所
C57BL/6JJmsSlc:日本エスエルシー
C57BL/6NJcl:日本クレア
C57BL/6NCrlCrlj:日本チャールス・リバー
C57BL/6NCrl:日本チャールス・リバー
C57BL/6NCrSlc:日本エスエルシー
C57BL/6NSea:九動
C57BL/6JBomTac:Taconic Farms
C57BL/6JEiJ:Jackson Laboratory
C57BL/6JOlaHsd:Harlan
C57BL/6JRccHsd:Harlan
C57BL/6JSca:Scanbur A-S
C57BL/6NTac:Taconic Farms
C57BL/6NJ:Jackson Laboratory
C57BL/5NHsd:Harlan
C57BL/6NCrSim:Simonsen Laboratories
C57BL/6By:Jackson Laboratory
C57BL/6ByJ:Jackson Laboratory
好ましくは、C57BL/6Jマウスである。
本発明に用いることができるC57BL/6マウスは、体重10〜30gの成熟マウスであり、好ましくは百日咳菌もしくは百日咳菌体破砕液接種時点で7〜10週齢の雄マウスである。
2.百日咳菌
本発明に用いることができる百日咳菌は、WHOの参照株である18323株(以下、Bp 18323株と記載する)が好ましい。また、百日咳菌の菌体を破砕した、百日咳菌体破砕液も用いることができる。
3.百日咳菌もしくは百日咳菌体破砕液の接種方法
本発明において、百日咳菌を含む菌液、または百日咳菌体破砕液を動物に接種するには、噴霧による暴露や局所投与により行われるがこれに限定されるものではない。噴霧による暴露は、例えば、気密容器に動物を入れ、百日咳菌を含む菌液、または百日咳菌体破砕液をスプレー、ミストまたはエアロゾル等により気密容器内に充填し、感染に必要な時間暴露する方法が挙げられる。局所投与する場合は、百日咳菌を含む菌液、または百日咳菌体破砕液を、経鼻投与、経気道投与、または皮下投与することにより行うことができるが、これに限定されるものではない。経鼻もしくは経気道投与は、好ましくはマウスの鼻腔または気道内に菌液を噴霧するか、一定量を注射針から滴下して接種する。好ましくは経鼻投与である。
具体的には、百日咳菌の感染に十分な濃度、例えば、局所投与の場合、麻酔下で、0.5×108cfu/ml以上、好ましくは1×108cfu/ml以上、さらに好ましくは0.5〜2×108cfu/mlの百日咳菌を含む菌液を作製し、接種する。噴霧の場合には、0.5×1010cfu/ml以上、好ましくは1〜2×1010cfu/mlの菌液を用いる。あるいは、百日咳菌体破砕液を用いるときは、局所投与の場合、麻酔下で、好ましくは0.8 mg/ml以上、より好ましくは1.0 mg/ml以上、さらに好ましくは0.8〜1.2 mg/mlの百日咳菌体破砕液を作製し、3〜7日間、好ましくは5日間連続接種する。噴霧の場合には、局所投与の濃度の2〜10倍程度の濃度の百日咳菌体破砕液を用い、5〜10日間暴露することにより接種する。
4.咳の評価
接種後、マウスを個別あるいは数匹毎に観察用のケージに入れ、通常の方法で飼育し、観察手順に従い咳発作を観察する。観察用のケージには、録音または動画の撮影機材を設置し、観察計画に基づき、ケージ内の音を一定時間録音または録画し、咳の回数をカウントする。観察用のケージには、咳以外の音を拾わないように、ケージの底に防音シートを設けても良い。
具体的な手順を以下に示すが、これに限定されるものではない。
(1)観察手順
観察用ケージのそばに、マイクロホンおよび/またはビデオカメラを設置し、ケージ内のマウスの様子を1日一匹ずつ一定時間記録する。あるいは、マイクロホンおよび/またはビデオカメラを設置したケージに、観察時間毎に観察するマウスを移動したり、ケージを観察時間毎に記録装置のそばに移動してもよい。
撮影後、録音または動画を再生し、咳音および/またはマウス動作を観察し、咳発作の回数を計測する。
(2)観察計画
観察期間中は、測定開始する時間を決め、毎日同じ時間に記録を開始し、一定時間、好ましくは5分間記録する。具体的には、観察は、接種後4〜6日目から咳発作がなくなるまで、または14日目まで行う。
(Method for producing pertussis model animal)
A method for producing a pertussis model animal of the present invention is described below.
1. Animal species Animals that can be used in the present invention are C57BL / 6 strain mice commercially available or available from research institutions. The C57BL / 6 mouse has a further subline of C57BL / 6J and C57BL / 6N, which can be used in the same manner.
The main types and sources of C57BL / 6 substrains available are as follows.
C57BL / 6J: Jackson Laboratory
C57BL / 6JMs: National Institute of Genetics
C57BL / 6JJcl: Clea Japan
C57BL / 6JNrs: National Institute of Radiological Sciences
C57BL / 6JJmsSlc: Nippon SLC
C57BL / 6NJcl: Japan Clare
C57BL / 6NCrlCrlj: Nihon Charles River
C57BL / 6NCrl: Japan Charles River
C57BL / 6NCrSlc: Nippon SLC
C57BL / 6NSea: Kudou
C57BL / 6JBomTac: Taconic Farms
C57BL / 6JEiJ: Jackson Laboratory
C57BL / 6JOlaHsd: Harlan
C57BL / 6JRccHsd: Harlan
C57BL / 6JSca: Scanbur AS
C57BL / 6NTac: Taconic Farms
C57BL / 6NJ: Jackson Laboratory
C57BL / 5NHsd: Harlan
C57BL / 6NCrSim: Simonsen Laboratories
C57BL / 6By: Jackson Laboratory
C57BL / 6ByJ: Jackson Laboratory
C57BL / 6J mice are preferable.
The C57BL / 6 mouse that can be used in the present invention is a mature mouse having a body weight of 10 to 30 g, and preferably a male mouse 7 to 10 weeks old at the time of inoculation with Bordetella pertussis or Bordetella pertussis.
2. Bordetella pertussis The B. pertussis that can be used in the present invention is preferably the WHO reference strain 18323 (hereinafter referred to as Bp 18323 strain). In addition, a pertussis cell disruption solution obtained by disrupting pertussis cells can also be used.
3. Inoculation method of Bordetella pertussis or Bordetella pertussis In the present invention, inoculation of animals with Bordetella pertussis or Bordetella pertussis is performed by spray exposure or local administration, but is not limited thereto. It is not something. Exposure by spraying is, for example, a method in which an animal is placed in an airtight container, a bacterial solution containing Bordetella pertussis, or a pertussis cell disruption liquid is filled in the airtight container by spraying, mist, aerosol, etc. and exposed for the time required for infection Is mentioned. In the case of local administration, it can be carried out by nasal administration, respiratory tract administration, or subcutaneous administration of a bacterial solution containing B. pertussis or a B. pertussis cell disruption solution, but is not limited thereto. For nasal or respiratory tract administration, the inoculum is preferably inoculated by spraying a bacterial solution into the nasal cavity or respiratory tract of a mouse or by dropping a predetermined amount from a syringe needle. Nasal administration is preferred.
Specifically, a concentration sufficient for infection with Bordetella pertussis, for example, in the case of local administration, under anesthesia, 0.5 × 10 8 cfu / ml or more, preferably 1 × 10 8 cfu / ml or more, more preferably 0.5 to A bacterial solution containing 2 × 10 8 cfu / ml Bordetella pertussis is prepared and inoculated. In the case of spraying, a bacterial solution of 0.5 × 10 10 cfu / ml or more, preferably 1-2 × 10 10 cfu / ml is used. Alternatively, when using a pertussis disruption solution, when administered locally, under anesthesia, preferably 0.8 mg / ml or more, more preferably 1.0 mg / ml or more, and further preferably 0.8 to 1.2 mg / ml. A body crush solution is prepared and inoculated continuously for 3 to 7 days, preferably 5 days. In the case of spraying, inoculation is carried out by using a pertussis cell disruption solution having a concentration of about 2 to 10 times the concentration of local administration and exposing for 5 to 10 days.
4). Evaluation of cough After inoculation, each mouse or several mice are placed in an observation cage, reared in the usual manner, and cough attacks are observed according to the observation procedure. Recording or video shooting equipment will be installed in the observation cage, and the sound in the cage will be recorded or recorded for a certain period of time based on the observation plan, and the number of coughs will be counted. In the observation cage, a soundproof sheet may be provided on the bottom of the cage so as not to pick up sounds other than cough.
Specific procedures are shown below, but are not limited thereto.
(1) Observation procedure A microphone and / or video camera is installed beside the observation cage, and the state of the mouse in the cage is recorded for a certain period of time, one mouse per day. Or you may move the mouse | mouth observed for every observation time to the cage which installed the microphone and / or the video camera, or may move a cage by the recording apparatus for every observation time.
After shooting, play a recording or video, observe cough sounds and / or mouse movements, and count the number of cough attacks.
(2) Observation plan During the observation period, the measurement start time is determined, recording is started at the same time every day, and recording is performed for a fixed time, preferably 5 minutes. Specifically, the observation is performed from the 4th to 6th day after the inoculation until the cough attack disappears or until the 14th day.
本発明は、さらに百日咳モデル動物を用いる、百日咳の予防または治療に用いられる医薬品を評価またはスクリーニングするための方法を提供する。
本発明方法により評価可能な医薬品は、百日咳ワクチンなどの生物由来製剤のほか、様々な物質にも適用することができる。
本発明の医薬品の評価方法を以下に示す。
(百日咳モデル動物を用いた評価方法)
(1)被験物質を投与した百日咳モデル動物を作製する工程
前出の(百日咳モデル動物の作製方法)に従い、百日咳モデル動物を作製し、被験物質を投与する。あるいは、予め被験物質を投与した動物に、(百日咳モデル動物の作製方法)に従い、百日咳菌もしくは百日咳菌体破砕液を接種し、被験物質を投与した百日咳モデル動物を作製する。
被験物質としては、あらゆる公知物質または新規物質を用いることができる。例えば、核酸、糖質、脂質、蛋白質、抗体、ワクチン、ペプチド、有機低分子化合物、有機高分子化合物、コンビナトリアルケミストリー技術を用いて作製された化合物ライブラリー、固相合成やファージディスプレイ法により作製されたランダムペプチドライブラリー、あるいは微生物、動植物、海洋生物等由来の天然成分などがあげられる。
被験物質の投与量は、用いる被験物質の性質等に応じ、適宜決定される。
被験物質の投与時期は、被験物質の性質等に応じ、百日咳菌もしくは百日咳菌体破砕液の接種前または接種後に投与される。被験物質が、生体の免疫に作用するものである場合には、所望の免疫作用が発現される時間を考慮して、百日咳菌もしくは百日咳菌体破砕液の接種に先立って、投与することができる。
被験物質の投与回数についても、被験物質の性質、予定される用法等に応じ適宜決定される。
被験物質の投与経路については、被験物質の効果が最も発揮される方法、あるいは予定される投与方法に応じ、適宜選択される。投与方法は、被験物質の性質を考慮し、全身投与または局所投与が選択される。
対照として、被験物質のかわりに、被験物質投与の際に用いた溶媒などを投与し、被験物質を投与しない百日咳モデル動物を同様に作製する。
(2)被験物質を投与した百日咳モデル動物における咳発作回数を、被験物質を投与しない百日咳モデル動物(対照群)および/またはネガティブコントロール群における咳発作回数と比較する工程
被験物質の投与あるいは百日咳菌もしくは百日咳菌体破砕液を接種後(百日咳モデル動物の作製方法)の4.咳の評価に従って、一定期間咳発作を観察し、被験物質を投与した百日咳モデル動物における咳発作回数を対照群および/またはネガティブコントロール群と比較し、被験物質の投与により有意に咳発作回数が減少しているかを判定する。
(3)比較工程により得られた結果に基づいて、被験物質の有効性を判定する工程
比較工程(2)により、対照群と比較して有意に被験物質投与群の咳発作が減少している場合に、当該被験物質は、百日咳菌もしくは百日咳菌体破砕液の接種による咳発作を有意に抑制する効果を有すると評価することができるため、当該被験物質を百日咳治療または予防のための医薬品候補物質として選択することができる。
The present invention further provides a method for evaluating or screening a pharmaceutical used for prevention or treatment of pertussis using a pertussis model animal.
The pharmaceutical products that can be evaluated by the method of the present invention can be applied to various substances in addition to biological preparations such as pertussis vaccine.
The method for evaluating the pharmaceutical product of the present invention is shown below.
(Evaluation method using pertussis model animals)
(1) Step of producing a pertussis model animal to which a test substance is administered According to the above-mentioned (Method for producing a pertussis model animal), a pertussis model animal is prepared and a test substance is administered. Alternatively, a pertussis model animal to which a test substance is administered is prepared by inoculating an animal to which a test substance has been administered in advance with a pertussis or pertussis cell disruption solution in accordance with (Pertussis model animal production method).
Any known substance or new substance can be used as the test substance. For example, nucleic acids, carbohydrates, lipids, proteins, antibodies, vaccines, peptides, low molecular organic compounds, organic high molecular compounds, compound libraries prepared using combinatorial chemistry technology, solid phase synthesis and phage display methods. Random peptide libraries, or natural components derived from microorganisms, animals and plants, marine organisms, and the like.
The dose of the test substance is appropriately determined according to the properties of the test substance used.
The test substance is administered before or after inoculation with Bordetella pertussis or Bordetella pertussis according to the nature of the test substance. In the case where the test substance acts on the immunity of the living body, it can be administered prior to inoculation with pertussis or pertussis cell lysate in consideration of the time for the desired immunity to be manifested. .
The number of administrations of the test substance is also appropriately determined according to the nature of the test substance, the expected usage, and the like.
The route of administration of the test substance is appropriately selected according to the method in which the test substance is most effective or the planned administration method. As the administration method, systemic administration or local administration is selected in consideration of the properties of the test substance.
As a control, a pertussis model animal not administered with the test substance is prepared in the same manner by administering the solvent or the like used in the test substance administration instead of the test substance.
(2) A step of comparing the number of cough attacks in a pertussis model animal administered with a test substance with the number of cough attacks in a pertussis model animal (control group) and / or a negative control group not administered with a test substance Or after inoculating pertussis bacterial disruption solution (method for producing pertussis model animal). According to cough evaluation, cough attacks were observed for a certain period of time, and the number of cough attacks in the pertussis model animals administered with the test substance was compared with the control group and / or negative control group. Determine whether you are doing.
(3) The step of judging the effectiveness of the test substance based on the result obtained in the comparison step The cough attack in the test substance administration group is significantly reduced compared to the control group by the comparison step (2) In this case, since the test substance can be evaluated as having an effect of significantly suppressing cough attacks caused by inoculation with pertussis or pertussis bacterial crush, the test substance is a drug candidate for treatment or prevention of pertussis. It can be selected as a substance.
本発明の百日咳モデル動物を用いた評価方法は、百日咳ワクチンの評価に用いることができる。以下に具体的に説明する。
(百日咳ワクチンの評価方法)
(1)百日咳ワクチンを投与した動物を作製する工程
本発明の評価方法により評価可能な百日咳ワクチンは、単一の百日咳ワクチン、または百日咳ワクチンを含む混合ワクチンがあげられる。百日咳ワクチンは、全菌体ワクチン、あるいは無細胞ワクチン(acellular vaccine)であってもよく、ワクチン成分として、百日咳毒素(pertussis toxin, PT)および繊維状赤血球凝集素(filamentous hemagglutinin, FHA)の他、繊毛、外膜たん白(69KD抗原)などを含んでいても良い。
ここで、百日咳ワクチンを含む混合ワクチンは、百日咳菌以外のウイルスまたは菌に対する免疫原性成分を含む。具体的には、ジフテリアトキソイドおよび破傷風トキソイドを含むDPT、あるいは、ジフテリアトキソイド、破傷風トキソイドおよび不活化セービン株ポリオウイルスを含むDPT-IPVなどが挙げられる。
本発明の評価方法で用いられる百日咳ワクチンの投与量は百日咳ワクチンの力価に応じて決定され、高用量群または低用量群などの複数の用量群を設定し、各群ごとに投与してもよい。
本発明の評価方法で用いられる百日咳ワクチンの投与時期は、百日咳ワクチンによる免疫獲得に必要な期間を考慮して決定することができる。通常、百日咳菌もしくは百日咳菌体破砕液接種の3-4週間前、好ましくは4週間前である。
本発明の評価方法で用いられる百日咳ワクチンの投与回数は、好ましくは百日咳菌感染までの間に1〜2回である。
投与方法は、ワクチン投与により免疫が獲得できる方法であれば、全身投与でも局所投与でもよく、通常、予定されるワクチンの用法に応じて決定される。局所投与の場合、腹腔内投与が好ましい。
百日咳ワクチンによる免疫獲得に必要な期間経過後、百日咳ワクチンを投与した動物群および百日咳ワクチンを投与しない群(対照群)に百日咳菌もしくは百日咳菌体破砕液を接種し、(百日咳モデル動物の作製方法)の4.咳の評価に従って、咳発作を観察する。
(2)百日咳ワクチンを投与した百日咳モデル動物における咳発作回数を、対照群および/またはネガティブコントロール群における咳発作回数と比較する工程
ワクチンを投与した百日咳菌接種動物における咳発作を対照群等と比較し、有意に咳発作回数が減少しているかを判定する。
(3)比較工程により得られた結果に基づいて、百日咳ワクチンの有効性を判定する工程
比較工程(2)により、対照群と比較して有意に被験物質投与群の咳発作回数が減少している場合に、当該百日咳ワクチンは、充分な力価を有すると評価することができる。
The evaluation method using a pertussis model animal of the present invention can be used for evaluation of a pertussis vaccine. This will be specifically described below.
(Pertussis vaccine evaluation method)
(1) Step of producing an animal administered with a pertussis vaccine Examples of a pertussis vaccine that can be evaluated by the evaluation method of the present invention include a single pertussis vaccine or a mixed vaccine including a pertussis vaccine. Pertussis vaccine may be whole cell vaccine or acellular vaccine. In addition to pertussis toxin (PT) and filamentous hemagglutinin (FHA) as vaccine components, It may contain cilia, outer membrane protein (69KD antigen) and the like.
Here, the combination vaccine containing a pertussis vaccine contains immunogenic components against viruses or bacteria other than Bordetella pertussis. Specific examples include DPT containing diphtheria toxoid and tetanus toxoid, or DPT-IPV containing diphtheria toxoid, tetanus toxoid and inactivated Sabin strain poliovirus.
The dose of the pertussis vaccine used in the evaluation method of the present invention is determined according to the titer of the pertussis vaccine, and a plurality of dose groups such as a high dose group or a low dose group can be set and administered for each group. Good.
The timing of administration of the pertussis vaccine used in the evaluation method of the present invention can be determined in consideration of the period necessary for acquiring immunity with the pertussis vaccine. Usually, it is 3 to 4 weeks before inoculation with Bordetella pertussis or Bordetella pertussis cell suspension, preferably 4 weeks before.
The frequency of administration of the pertussis vaccine used in the evaluation method of the present invention is preferably 1 to 2 times until the infection with Bordetella pertussis.
The administration method may be systemic administration or local administration as long as immunity can be obtained by vaccine administration, and is usually determined according to the intended usage of the vaccine. In the case of local administration, intraperitoneal administration is preferred.
After the period necessary for obtaining immunity with pertussis vaccine, inoculate pertussis or pertussis cell suspension into the group that received pertussis vaccine and the group that did not receive pertussis vaccine (control group). 4) Observe cough attacks according to cough assessment.
(2) Step of comparing the number of cough attacks in pertussis model animals administered with pertussis vaccine with the number of cough attacks in control group and / or negative control group Comparison of cough attacks in pertussis vaccinated animals administered with vaccine with control group, etc. And determine if the number of cough attacks has decreased significantly.
(3) The step of judging the effectiveness of pertussis vaccine based on the results obtained in the comparison step. The comparison step (2) significantly reduced the number of cough attacks in the test substance administration group compared to the control group. The pertussis vaccine can be evaluated as having sufficient titer.
本発明は、さらに百日咳菌の咳発作誘発因子の特定方法に関する。
本発明の百日咳菌の咳発作誘発因子の特定方法は、百日咳菌Bp 18323株の特定の機能もしくは構造的因子をコードする遺伝子を欠損、またはその発現を抑制するよう改変し、改変した百日咳菌Bp 18323株を用いてC57BL/6系統のマウスに感染させ、(百日咳モデル動物を用いた評価方法)に従い咳発作回数を評価し、どの遺伝子が咳発作の発現に影響を及ぼすのかを検討する。本発明の特定方法により、百日咳菌による咳発作を誘発する因子を特定することができる。
以下に、具体的に説明する。
(百日咳菌の咳発作誘発因子の特定方法)
(1)百日咳菌Bp 18323株の1つの機能もしくは構造的因子をコードする遺伝子を欠損または発現を抑制するよう改変した百日咳菌Bp 18323株を作製する工程
ここで、機能もしくは構造的因子とは、PT、FHA、易熱性皮膚壊死毒素、アデニル酸シクラーゼ、線毛、外膜たん白(69KD抗原)などが挙げられる。
機能もしくは構造的因子をコードする遺伝子を欠損または発現を抑制するよう改変した百日咳菌Bp 18323株は、例えば、EP 0,322,115、US 275,376や特許第2655583号に記載の方法など、公知の方法を用いて作製することができる。
具体的には、百日咳菌の機能もしくは構造的因子をコードする遺伝子を破壊したり、除去したりすることにより完全なmRNAを産生不能にする。機能もしくは構造的因子をコードする遺伝子を欠損させる具体的な手段としては、対象の遺伝子(ゲノムDNA)を常法に従って単離し、例えば、(1)そのコード領域(cds)やプロモーター領域に他のDNA断片(例えば、薬剤耐性遺伝子やレポーター遺伝子等)を挿入することによりcdsもしくはプロモーターの機能を破壊する方法、(2)当該遺伝子の全部または一部を切り出して該遺伝子を欠失させる (例えば、薬剤耐性遺伝子やレポーター遺伝子等で置換する)方法、(3)cds内に終止コドンを挿入して完全な蛋白質の翻訳を不能にする方法、(4)転写領域内部へ遺伝子の転写を終結させるDNA配列 (ターミネーター配列)を挿入して、完全なmRNAの合成を不能にする方法、あるいは(5)cds内の酵素活性に関わるアミノ酸を任意のアミノ酸に置換し、酵素活性を不活化する方法などによって、結果的に遺伝子を不活性化するように構築したDNA配列を有するDNA鎖 (以下、ターゲッティングベクターと略記する)を、相同組換えにより百日咳菌の当該機能を担う遺伝子座に組み込ませる方法などが用いられ得る。好ましくは、薬剤耐性遺伝子をcds内に挿入して対象の遺伝子を破壊する方法、または対象遺伝子の全部もしくは一部を薬剤耐性遺伝子で置換除去する方法が挙げられる。特に好ましくは、対象遺伝子の大部分を除去し、薬剤耐性遺伝子で置換する方法が挙げられる。
薬剤耐性遺伝子としては、カナマイシン耐性遺伝子、ストレプトマイシン耐性遺伝子、スペクチノマイシン耐性遺伝子、ゲンタマイシン耐性遺伝子、クロラムフェニコール耐性遺伝子、エリスロマイシン耐性遺伝子などを用いることができる。これらの遺伝子は、上記プラスミドから適当な制限酵素により切り出すこともできるし、あるいは上記プラスミドを鋳型として、これらの遺伝子の上下流域の配列をプライマーに用い、PCR法により増幅してもよい。
(2)前記(1)の工程により得られた改変した百日咳菌Bp 18323株またはその菌体破砕液をC57BL/6マウスに投与する工程
前出の(百日咳モデル動物の作製方法)にしたがって、改変した百日咳菌Bp 18323株またはその菌体破砕液をC57BL/6マウスに投与する(改変群)。
対照として、改変した百日咳菌Bp 18323株またはその菌体破砕液のかわりに、それに用いた溶媒のみをC57BL/6マウスに投与する(溶媒接種群)。必要に応じ、改変しない百日咳菌Bp 18323株またはその菌体破砕液をC57BL/6マウスに投与する(ポジティブコントロール群)。
(3)前記(2)のマウスにおける咳発作回数を比較する工程
前出の(百日咳モデル動物を用いた評価方法)にしたがって、改変群、溶媒接種群、必要に応じポジティブコントロール群の咳発作回数を比較する。
(4)百日咳菌の咳発作誘発因子を特定する工程
咳発作回数に関し、溶媒投与群と比較し有意な差が見られなかった改変群、もしくはポジティブコントロール群と比較して有意に少なかった改変群の機能もしくは構造的因子が、咳発作の誘発因子であると特定できる。百日咳菌経鼻投与工程に限り、マウス気道への百日咳菌の定着菌数がポジティブコントロール群と比較して大きな差がない場合のみを適応改変群とする。
The present invention further relates to a method for identifying a cough attack-inducing factor of Bordetella pertussis.
The method for identifying a pertussis-inducing factor of Bordetella pertussis according to the present invention is a modified Bordetella pertussis Bp modified by deleting a gene encoding a specific function or structural factor of Bordetella pertussis Bp 18323 or suppressing its expression. 18323 strain is used to infect mice of C57BL / 6 strain, and the number of cough attacks is evaluated according to (Evaluation method using pertussis model animals), and which gene affects the expression of cough attacks is examined. By the identification method of the present invention, a factor that induces cough attacks by Bordetella pertussis can be identified.
This will be specifically described below.
(Method of identifying the cough attack inducing factor of Bordetella pertussis)
(1) Step of producing Bordetella pertussis Bp 18323 in which a gene encoding one function or structural factor of Bordetella pertussis Bp 18323 is deleted or modified so as to suppress its expression Here, the function or structural factor is: PT, FHA, heat-labile skin necrosis toxin, adenylate cyclase, pili, outer membrane protein (69KD antigen) and the like.
Bordetella pertussis Bp 18323, which has a gene encoding a functional or structural factor deleted or modified to suppress expression, can be obtained using known methods such as those described in EP 0,322,115, US 275,376 and Japanese Patent No. 265583. Can be produced.
Specifically, complete mRNA cannot be produced by disrupting or removing the gene encoding the function or structural factor of Bordetella pertussis. As a specific means for deleting a gene encoding a function or structural factor, a target gene (genomic DNA) is isolated according to a conventional method, for example, (1) other coding region (cds) or promoter region A method of destroying the function of cds or promoter by inserting a DNA fragment (e.g., drug resistance gene or reporter gene), (2) excising all or part of the gene and deleting the gene (e.g., (Replace with a drug resistance gene or reporter gene), (3) Insert a stop codon in cds to disable complete protein translation, (4) DNA that terminates gene transcription into the transcription region Inserting a sequence (terminator sequence) to disable complete mRNA synthesis, or (5) Replacing amino acids involved in enzyme activity in cds with any amino acid to inactivate enzyme activity As a result, a DNA strand having a DNA sequence constructed so as to inactivate the gene (hereinafter abbreviated as a targeting vector) is incorporated into the locus responsible for the function of Bordetella pertussis by homologous recombination. Etc. can be used. Preferably, a method of destroying a target gene by inserting a drug resistance gene into cds or a method of replacing or removing all or a part of the target gene with a drug resistance gene can be mentioned. Particularly preferred is a method in which most of the target gene is removed and replaced with a drug resistance gene.
As the drug resistance gene, a kanamycin resistance gene, streptomycin resistance gene, spectinomycin resistance gene, gentamicin resistance gene, chloramphenicol resistance gene, erythromycin resistance gene and the like can be used. These genes can be excised from the plasmid with an appropriate restriction enzyme, or can be amplified by PCR using the plasmid as a template and the upstream and downstream regions of these genes as primers.
(2) A step of administering the modified B. pertussis Bp 18323 strain obtained by the step (1) above or a cell disruption solution thereof to a C57BL / 6 mouse, modified according to the above (Method for producing a pertussis model animal). The B. pertussis Bp 18323 strain or the microbial cell disruption solution thereof is administered to C57BL / 6 mice (modified group).
As a control, instead of the modified B. pertussis Bp 18323 strain or its cell disruption solution, only the solvent used therefor is administered to C57BL / 6 mice (solvent inoculation group). If necessary, C57BL / 6 mice are administered pertussis Bp 18323 strain or its disruption solution without modification (positive control group).
(3) Step of comparing the number of cough attacks in the mouse of (2) According to the above (evaluation method using a pertussis model animal), the number of cough attacks in the modified group, the solvent-inoculated group and, if necessary, the positive control group Compare
(4) Step of identifying a pertussis-inducing factor of Bordetella pertussis Modified group in which no significant difference was found compared to the solvent-administered group regarding the number of cough attacks, or a modified group significantly less than the positive control group Can be identified as a cough-inducing factor. Only in the case of the pertussis nasal administration process, only when the number of B. pertussis colonies in the mouse respiratory tract is not significantly different from that in the positive control group, the adaptive modification group is used.
本発明の別の態様は、本発明の百日咳モデル動物を用いた百日咳の予防または治療用医薬品の製造方法に関するものである。
本発明の製造方法により得られる医薬品は、百日咳モデル動物を用いスクリーニングする工程により選択された、公知物質または新規物質を有効成分として含有する医薬品である。
以下に、具体的に説明する。
(医薬品の製造方法)
(1)百日咳モデル動物を用い化合物をスクリーニングする工程
前出の(百日咳モデル動物を用いた評価方法)に従い、咳発作を有意に抑制する化合物を選択する。スクリーニングに供される化合物としては、例えば、核酸、糖質、脂質、蛋白質、抗体、ワクチン、ペプチド、有機低分子化合物、有機高分子化合物、コンビナトリアルケミストリー技術を用いて作製された化合物ライブラリー、固相合成やファージディスプレイ法により作製されたランダムペプチドライブラリー、あるいは微生物、動植物、海洋生物等由来の天然成分などがあげられる。
(2)上記(1)により得られた化合物に製薬学的に許容される担体を加える工程
「製薬学的に許容される担体」としては特に制限されることなく、公知の製剤学的方法に用いられる物質の中から適宜選択することができる。例えば、滅菌水や生理食塩水、植物油、溶剤、基剤、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、芳香剤、賦形剤、ベヒクル、防腐剤、結合剤、希釈剤、等張化剤、無痛化剤、増量剤、崩壊剤、緩衝剤、コーティング剤、滑沢剤、着色剤、甘味剤、粘稠剤、矯味矯臭剤、溶解補助剤あるいはその他の添加剤等が挙げられるが、これらに制限されない。
本発明の製造方法により得られる医薬品は、例えば、特に、局所、経口、静脈内、腹腔内、筋肉内、皮下、鼻腔内または皮内経路により投与することができる。
経口投与の剤型としては、散剤、細粒剤、顆粒、錠剤、カプセル剤が好ましく、常法により製造することができる。局所投与の剤型としては、注射剤、軟膏剤、クリーム剤、ローション剤、眼軟膏剤、点眼剤、点耳剤、うがい薬、およびエアロゾルの形態としてもよく、例えば、保存剤、薬剤浸透を促進する溶剤、および軟膏およびクリームでの軟化剤を含む適当な慣用的添加物を含んでよい。
本発明の製造方法により得られる医薬品の投与量は、投与対象者の年齢、体重など種々の条件に応じて適宜選択することができるが、活性成分の1日投与量が、0.001mg/kgないし1g/kg、好ましくは0.1mg/kgないし100mg/kgの範囲で用いられる。
Another aspect of the present invention relates to a method for producing a drug for preventing or treating pertussis using the pertussis model animal of the present invention.
The pharmaceutical obtained by the production method of the present invention is a pharmaceutical containing as an active ingredient a known substance or a novel substance selected by a screening process using a pertussis model animal.
This will be specifically described below.
(Pharmaceutical production method)
(1) Step of screening a compound using a pertussis model animal According to the above-mentioned (evaluation method using a pertussis model animal), a compound that significantly suppresses cough attacks is selected. Examples of compounds used for screening include nucleic acid, carbohydrates, lipids, proteins, antibodies, vaccines, peptides, low molecular organic compounds, organic high molecular compounds, compound libraries prepared using combinatorial chemistry techniques, and solid libraries. Examples include random peptide libraries prepared by phase synthesis and phage display methods, or natural components derived from microorganisms, animals and plants, marine organisms, and the like.
(2) A step of adding a pharmaceutically acceptable carrier to the compound obtained in (1) above. The “pharmaceutically acceptable carrier” is not particularly limited, and may be a known pharmaceutical method. It can select suitably from the substances used. For example, sterile water and physiological saline, vegetable oil, solvent, base, emulsifier, suspension, surfactant, stabilizer, flavoring agent, fragrance, excipient, vehicle, preservative, binder, diluent, Examples include isotonic agents, soothing agents, extenders, disintegrating agents, buffering agents, coating agents, lubricants, coloring agents, sweeteners, thickeners, flavoring agents, solubilizing agents or other additives. However, it is not limited to these.
The medicament obtained by the production method of the present invention can be administered by, for example, a topical, oral, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route.
As the dosage form for oral administration, powders, fine granules, granules, tablets and capsules are preferable, and they can be produced by a conventional method. Topical dosage forms may be in the form of injections, ointments, creams, lotions, eye ointments, eye drops, ear drops, mouthwashes, and aerosols, for example, preservatives, drug penetration Suitable conventional additives may be included, including accelerating solvents and softeners in ointments and creams.
The dosage of the pharmaceutical product obtained by the production method of the present invention can be appropriately selected according to various conditions such as age and weight of the subject of administration, but the daily dosage of the active ingredient is 0.001 mg / kg to It is used in the range of 1 g / kg, preferably 0.1 mg / kg to 100 mg / kg.
本発明の更なる態様は、百日咳ワクチンの製造方法に関するものである。
本発明の製造方法により得られる百日咳ワクチンは、百日咳菌の防御抗原のみを含む百日咳単独ワクチン、百日咳菌の防御抗原のほかに、他の免疫原性成分等を含む混合ワクチンが含まれる。
以下に具体的に説明する。
(百日咳ワクチンの製造方法)
(1)百日咳菌の防御抗原を製造する工程
百日咳菌の防御抗原は、公知の方法、例えばWO 2008/044611の実施例5に記載の方法により製造することができる。具体的には、百日咳菌の防御抗原は、例えば、百日咳菌I相菌(東浜株)の培養液を硫安分画法・蔗糖密度勾配遠心分画法などの物理化学的方法で感染防御抗原画分を抽出・分離・精製したのち、残存する毒性をホルマリンで減毒することによって得ることもできる。
百日咳菌の防御抗原には、PT、FHA、外膜たん白(69KD抗原)、線毛(FB抗原、凝集原(FGG)とも呼ばれる)が含まれる。百日咳菌の防御抗原としては、必ずしも上記各抗原の全てを含んでいる必要はなく、これらの抗原のうち1種以上、好ましくは2種以上、より好ましくは3種以上を含んでいてもよい。
(2)百日咳菌の防御抗原の効力を測定する工程
上記(1)の工程により得られた百日咳菌の防御抗原を前出の(百日咳ワクチンの評価方法)に準じて、百日咳菌Bp 18323株、もしくは百日咳菌Bp 18323株の菌体破砕液を接種したマウスを用いて百日咳菌の防御抗原の効力を測定する。
具体的には、以下の工程を含む。
i)C57BL/6マウスに百日咳菌の防御抗原を投与する工程
iia)前記百日咳菌の防御抗原を投与したマウス、および前記百日咳菌の防御抗原を投与しないC57BL/6マウスに、百日咳菌Bp 18323株、もしくは百日咳菌Bp 18323株の菌体破砕液を接種する工程、あるいは、
iib)前記百日咳菌の防御抗原を投与したマウス、および標準品や参照品となる百日咳ワクチンを投与したC57BL/6マウスに、百日咳菌Bp 18323株、もしくは百日咳菌Bp 18323株の菌体破砕液を接種する工程
iiia)前記百日咳菌の防御抗原を投与したマウスにおける咳発作回数を、前記百日咳菌の防御抗原を投与しないマウス(対照群)および/またはネガティブコントロール群における咳発作回数と比較する工程、あるいは、
iiib)前記百日咳菌の防御抗原を投与したマウスにおける咳発作回数を、標準品や参照品となる百日咳ワクチンを投与したマウスにおける咳発作回数と比較する工程、および、
iv)前記iiia)またはiiib)の工程により得られた結果に基づいて、前記百日咳菌の防御抗原の効果を評価する工程。
ここで、標準品となる百日咳ワクチンとしては、国際標準品または国内標準品を用いることができる。国際標準品とは国際単位(IU/mL)が定められたものをいい、国内標準品は対応する国際標準品がある場合は、それの区分に一致させたもの、対応する国際品のない場合は独立の国内単位を定めたものである。参照品としては、既にワクチンの効力が明らかとなっているワクチンを用いることができ、既に市販されている百日咳ワクチンが挙げられる。
(3)単位用量製剤に製剤化する工程
上記(2)の工程により測定された、所定の効力を有する百日咳菌の防御抗原に、適宜製薬学的に許容される担体および/または所望により他の免疫原性成分等と混合し、単位用量製剤を製造する。あるいは、単位用量製剤に製剤化してから上記(2)の工程を行っても良い。
製薬学的に許容される担体は、(医薬品の製造方法)の(2)に記載の通りである。
他の免疫原性成分としては、百日咳菌以外の免疫原性成分が挙げられる。そのような免疫原性成分としては、例えば、百日咳菌以外のウイルスまたは菌に対する免疫原性成分が挙げられる。免疫原性成分としては、例えば、トキソイド、弱毒化ウイルス、不活化ウイルス、タンパク質、ペプチド、ポリサッカライド、リポポリサッカライド、リポペプチド、またはこれらの組み合わせなどが挙げられる。百日咳菌以外のウイルスまたは菌としては、例えば、ポリオウイルス、ジフテリア菌、破傷風菌、インフルエンザウイルス、麻疹ウイルス、耳下腺炎ウイルス、風疹ウイルス、ヘルペスウイルス、水疱瘡ウイルス、狂犬病ウイルス、ヒト免疫不全ウイルス、肝炎ウイルス、肺炎双球菌、髄膜炎菌、チフス菌、インフルエンザb菌などが挙げられる。好ましくは、不活化セービン株ポリオウイルス、ジフテリアトキソイド、または破傷風トキソイドである。
本発明の製造方法により得られるワクチンとしては、百日咳菌の防御抗原の他に、ジフテリアトキソイドおよび破傷風トキソイドを含むDPT、あるいは、百日咳菌の防御抗原に、ジフテリアトキソイド、破傷風トキソイドおよび不活化セービン株ポリオウイルスを含むDPT-IPVなどの2価以上の混合ワクチンが好ましい。
本発明の製造方法により得られる百日咳ワクチンは、1つの製剤中に1回分の投与量を含有する製剤であり、アンプルやシリンジなどが典型的な形態である。
本発明の製造方法により得られる百日咳ワクチンは、常套手段に従って、注射剤として製剤化することができる。注射剤は、自体公知の方法に従って、例えば、上記物質を通常注射剤に用いられる無菌の水性もしくは油性液に溶解、懸濁または乳化することによって調製する。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液などが用いられる。調製された注射液は、通常、適当なアンプル、シリンジなどに充填される。
本発明の製造方法により得られる百日咳ワクチンは、必要に応じて、保存剤、抗酸化剤、キレート剤などの製剤添加剤を含有していてもよい。保存剤としては、例えば、チメロサール、2−フェノキシエタノールなどが挙げられる。キレート剤としては、エチレンジアミン四酢酸、グリコールエーテルジアミン四酢酸などが挙げられる。
本発明の製造方法により得られる百日咳ワクチンは、さらにアジュバントを含有していてもよい。アジュバント化剤としては、例えば、水酸化アルミニウム、リン酸アルミニウム、塩化アルミニウムなどが挙げられる。
本発明の製造方法により得られる百日咳ワクチンは、例えば、皮下注射もしくは筋肉注射によって、好ましくは皮下注射によって、非経口的に投与することができる。
本発明の製造方法により得られる百日咳ワクチンの1回投与量は、投与対象者の年齢、体重など種々の条件に応じて適宜選択することができる。通常、単位製剤中の百日咳菌の防御抗原は4国際単位以上含む。他の免疫原性成分を含む混合ワクチンの単位製剤中には、ジフテリアトキソイドを約15Lf、破傷風トキソイドを約2.5Lf、不活化セービンI型ポリオウイルスをD抗原として約2〜4単位(好ましくは約3単位)、不活化セービンII型ポリオウイルスをD抗原として約80〜120単位(好ましくは約100単位)、不活化セービンIII型ポリオウイルスをD抗原として約80〜120単位(好ましくは約100単位)含有していてもよい。
本発明の製造方法により得られる百日咳ワクチンの投与回数は、例えば、初回免疫として、3〜8週の間隔で、2〜3回投与してもよい。初回免疫として本発明の百日咳ワクチンを2回投与した場合には、さらに3〜8週の間隔で1回投与するのが好ましい。追加免疫として、初回免疫後6ヶ月以上の間隔をおいて(例えば、初回免疫終了後12ヶ月から18ヶ月までの間に)、さらに1回投与してもよい。
A further aspect of the present invention relates to a method for producing a pertussis vaccine.
The pertussis vaccine obtained by the production method of the present invention includes a pertussis alone vaccine containing only a pertussis protective antigen, and a combination vaccine containing other immunogenic components in addition to a pertussis protective antigen.
This will be specifically described below.
(Method for producing pertussis vaccine)
(1) Step of producing a pertussis protective antigen A pertussis protective antigen can be produced by a known method, for example, the method described in Example 5 of WO 2008/044611. Specifically, the protective antigen of Bordetella pertussis can be obtained by, for example, infecting the culture of Bordetella pertussis I (Higashihama strain) with a physicochemical method such as ammonium sulfate fractionation or sucrose density gradient centrifugation. It can also be obtained by extracting, separating and purifying the fraction and then reducing the remaining toxicity with formalin.
Protective antigens of Bordetella pertussis include PT, FHA, outer membrane protein (69 KD antigen), and pili (FB antigen, also called agglutinogen (FGG)). The pertussis protective antigen does not necessarily need to include all of the antigens described above, and may include one or more, preferably two or more, more preferably three or more of these antigens.
(2) Step of measuring efficacy of pertussis protective antigen According to the above-mentioned (pertussis vaccine evaluation method), the B. pertussis Bp 18323 strain is obtained according to the above-mentioned (pertussis vaccine evaluation method). Alternatively, the efficacy of the pertussis protective antigen is measured using mice inoculated with a cell disruption solution of B. pertussis Bp 18323 strain.
Specifically, the following steps are included.
i) Step of administering Bordetella pertussis protective antigen to C57BL / 6 mice ia) Bordetella pertussis Bp 18323 strain to mice administered with Bordetella pertussis protective antigen and C57BL / 6 mice not administered with Bordetella pertussis protective antigen Or inoculating a cell disruption solution of B. pertussis Bp 18323 strain, or
ii) Bacterium pertussis Bp 18323 or B. pertussis Bp 18323 strain was applied to mice administered the pertussis protective antigen and C57BL / 6 mice administered pertussis vaccine as a standard or reference product. Inoculating step iii) comparing the number of cough attacks in mice administered with the pertussis protective antigen to the number of cough attacks in mice not administered with the pertussis protective antigen (control group) and / or negative control group, Or
iii) comparing the number of cough attacks in mice administered with the pertussis protective antigen to the number of cough attacks in mice administered with a standard or reference pertussis vaccine, and
iv) A step of evaluating the effect of the pertussis protective antigen based on the result obtained by the step iii) or iiib).
Here, as a pertussis vaccine as a standard product, an international standard product or a domestic standard product can be used. International standard products are those with international units (IU / mL). Domestic standard products, if there are corresponding international standard products, match those categories, or there is no corresponding international product. Defines independent national units. As the reference product, a vaccine whose vaccine efficacy is already known can be used, and a pertussis vaccine already on the market can be mentioned.
(3) Step of formulating into a unit dose preparation The pertussis protective antigen having a predetermined efficacy measured by the step (2) above may be appropriately pharmaceutically acceptable carrier and / or other if desired Mix with immunogenic ingredients, etc. to produce unit dose formulations. Alternatively, the above step (2) may be carried out after making a unit dose preparation.
The pharmaceutically acceptable carrier is as described in (2) of (Method for producing pharmaceutical product).
Other immunogenic components include immunogenic components other than Bordetella pertussis. Examples of such immunogenic components include immunogenic components against viruses or bacteria other than Bordetella pertussis. Examples of immunogenic components include toxoids, attenuated viruses, inactivated viruses, proteins, peptides, polysaccharides, lipopolysaccharides, lipopeptides, or combinations thereof. Examples of viruses or bacteria other than Bordetella pertussis include, for example, poliovirus, diphtheria, tetanus, influenza virus, measles virus, parotitis virus, rubella virus, herpes virus, chicken pox virus, rabies virus, human immunodeficiency virus, Examples include hepatitis virus, pneumococcus, meningococcus, Salmonella typhi, and influenza b. Preferably, it is an inactivated Sabin strain poliovirus, diphtheria toxoid, or tetanus toxoid.
The vaccine obtained by the production method of the present invention includes DPT containing diphtheria toxoid and tetanus toxoid in addition to pertussis protective antigen, or diphtheria toxoid, tetanus toxoid and inactivated sabin strain polio A bivalent or higher mixed vaccine such as DPT-IPV containing virus is preferred.
The pertussis vaccine obtained by the production method of the present invention is a preparation containing a single dose in one preparation, and ampoules and syringes are typical forms.
The pertussis vaccine obtained by the production method of the present invention can be formulated as an injection according to conventional means. The injection is prepared according to a method known per se, for example, by dissolving, suspending or emulsifying the above substance in a sterile aqueous or oily liquid usually used for injection. As the aqueous liquid for injection, for example, isotonic solutions containing physiological saline, glucose and other adjuvants are used. The prepared injection solution is usually filled in an appropriate ampoule, syringe or the like.
The pertussis vaccine obtained by the production method of the present invention may contain formulation additives such as preservatives, antioxidants, and chelating agents, if necessary. Examples of preservatives include thimerosal and 2-phenoxyethanol. Examples of chelating agents include ethylenediaminetetraacetic acid and glycol ether diaminetetraacetic acid.
The pertussis vaccine obtained by the production method of the present invention may further contain an adjuvant. Examples of the adjuvant include aluminum hydroxide, aluminum phosphate, and aluminum chloride.
The pertussis vaccine obtained by the production method of the present invention can be administered parenterally, for example, by subcutaneous injection or intramuscular injection, preferably by subcutaneous injection.
The single dose of pertussis vaccine obtained by the production method of the present invention can be appropriately selected according to various conditions such as the age and weight of the administration subject. Usually, pertussis protective antigens in unit dosage form contain 4 international units or more. In unit preparations of mixed vaccines containing other immunogenic components, diphtheria toxoid is about 15 Lf, tetanus toxoid is about 2.5 Lf, inactivated Sabin type I poliovirus is about 2 to 4 units (preferably about 3 units), about 80-120 units (preferably about 100 units) with inactivated Sabin type II poliovirus as D antigen, and about 80-120 units (preferably about 100 units) with inactivated Sabin type III poliovirus as D antigen ) May be contained.
For example, the pertussis vaccine obtained by the production method of the present invention may be administered 2 to 3 times at intervals of 3 to 8 weeks as the first immunization. When the pertussis vaccine of the present invention is administered twice as the initial immunization, it is preferable to administer it once more at an interval of 3 to 8 weeks. As booster immunization, it may be administered once more at an interval of 6 months or more after the first immunization (for example, between 12 and 18 months after the end of the first immunization).
以下、本発明を実施例により具体的に説明するが、これは一例であり、本発明はこれらの具体例に限定されるものではない。
実施例1(C57BL/6Jマウスを用いた百日咳モデル動物の作製)
(1)百日咳菌感染モデル動物の作製
7週齢の雄のC57BL/6Jマウス(入手先:日本クレア株式会社、9匹数/群)に、0.5〜2×108cfu/mlの百日咳菌(Bp 18323株、入手先:大阪大学)を含む菌液(組成:Stainer-Scholte(SS)液体培地〔Stainer, D. W., Scholte, M. J., J. Gen. Microbiol., 63, 211-220(1971)〕)を調製し、麻酔下で、注射針を用いてマウスの鼻腔内に50μl接種した。対照群(5匹数/群)として、百日咳菌を含まない溶媒(組成:SS液体培地、量50μl)を、麻酔下で、同様に接種した。
接種後、マウスを個別に観察用ケージに入れ、通常の飼育下で飼育した。
(2)咳発作の観察
観察手順に従いケージ内のマウスの様子を1日一匹当たり5分間撮影した。撮影した動画の再生によりマウスの動作および咳発作の音から咳発作症状を判別し、咳発作の回数を計測した。
咳発作は、感染後6日目から生じた。接種時を0日として経過日数と咳発作の回数をグラフ化した(図1のA)。実施例1の(1)で得られた感染動物の感染後6〜14日における45分間の咳発作の回数は、非感染動物と比較して有意に増加した(図1のB)。
<観察手順>
観察用ケージのそばに、マイクロホン接続ビデオカメラを設置し、ケージ内のマウスの様子を1日当たり5分間/匹記録する。観察は、接種後6日目から14日目まで行う。
撮影後、動画編集ソフトウェア(製品名:Adobe Premiere Pro、入手先:Adobe)で再生し、咳音とマウス動作を見て咳発作の回数を計測する。
(3)菌体定着確認試験
百日咳菌経鼻接種後6日目から14日目までの観察期間中、百日咳菌接種群の気道および肺へ菌体がどの程度定着しているかを確認するために定着菌体数確認試験を行った。
気道および肺への定着菌体数確認試験は、以下の手順で行った。
百日咳菌経鼻接種マウスより気道および肺を摘出後、各組織を均質化する。均質化液を任意の希釈倍率に希釈後、Bordet-Gengou血液寒天培地(極東製薬工業株式会社製)に播種し、37度で3-4日間培養する。形成されたコロニー数をカウントし、各組織に定着した菌体数を算出する。
結果を図1のCおよびDに示す。この結果から、気道および肺において十分な定着菌体数が確認できた。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this is an example and this invention is not limited to these specific examples.
Example 1 (Preparation of a pertussis model animal using C57BL / 6J mice)
(1) Production of pertussis infection model animals
7-week-old male C57BL / 6J mice (source: Claire Japan, 9 / group), 0.5-2 × 10 8 cfu / ml of Bordetella pertussis (Bp 18323 strain, source: Osaka University) (Composition: Stainer-Scholte (SS) liquid medium [Stainer, DW, Scholte, MJ, J. Gen. Microbiol., 63, 211-220 (1971)]) prepared and injected under anesthesia 50 μl was inoculated into the nasal cavity of mice using a needle. As a control group (5 animals / group), a solvent that did not contain Bordetella pertussis (composition: SS liquid medium, amount 50 μl) was similarly inoculated under anesthesia.
After inoculation, the mice were individually placed in observation cages and raised under normal breeding conditions.
(2) Observation of cough attack According to the observation procedure, the state of the mouse in the cage was photographed for 5 minutes per animal per day. The cough attack symptoms were discriminated from the movement of the mouse and the sound of the cough attack by playing the captured video, and the number of cough attacks was counted.
A cough attack occurred on day 6 after infection. The elapsed days and the number of cough attacks were graphed with 0 days at the time of inoculation (A in FIG. 1). The number of 45-minute cough attacks in 6 to 14 days after infection of the infected animals obtained in Example 1 (1) was significantly increased compared to non-infected animals (B in FIG. 1).
<Observation procedure>
A microphone-connected video camera is set up near the observation cage, and the state of the mouse in the cage is recorded for 5 minutes per day. Observations are made from the 6th day to the 14th day after inoculation.
After shooting, play with video editing software (product name: Adobe Premiere Pro, source: Adobe), and measure the number of cough attacks by watching cough and mouse movements.
(3) Bacterial colonization confirmation test During the observation period from day 6 to day 14 after nasal inoculation with Bordetella pertussis, in order to confirm the extent of bacterial colonization in the airways and lungs of the B. pertussis vaccination group A fixed cell count confirmation test was performed.
The test for confirming the number of colonized cells in the respiratory tract and lungs was performed according to the following procedure.
After removing the airways and lungs from mice nasally inoculated with Bordetella pertussis, each tissue is homogenized. After diluting the homogenized solution to an arbitrary dilution ratio, it is inoculated on Bordet-Gengou blood agar medium (manufactured by Kyokuto Pharmaceutical Co., Ltd.) and cultured at 37 degrees for 3-4 days. The number of colonies formed is counted, and the number of cells colonized in each tissue is calculated.
The results are shown in FIG. From this result, a sufficient number of colonized cells could be confirmed in the respiratory tract and lungs.
比較例(各種条件により作製した百日咳菌経鼻接種による百日咳モデル動物の咳発作)
(1)種々の百日咳菌感染C57BL/6Jマウスの作製および咳発作評価
種々の百日咳菌株(BP140, BP141, BP142, BP144)(入手先:国立感染症研究所)およびTohama I株(入手先:大阪大学)を用い、実施例1と同様に百日咳菌感染C57BL/6マウスを作製し、一定時間の咳発作の回数をカウントした(図2のA)後、咳発作回数を解析し、菌株毎の比較を行った(図2のB)。また、気道およびへ肺の定着菌体数確認試験(図2のCおよびD)を行った。
その結果、臨床分離株を感染させたマウスは、気道および肺において、いずれの臨床分離株も充分な菌数が定着していた。一方、咳発作の回数は非感染群と比較し有意な臨床分離株もみられたが、いずれもBp 18323株感染群より少なかった。Tohama I株感染C57BL/6マウスでは咳発作が認められなかった。
(2)百日咳菌Bp 18323株感染Balb/cマウスの作製および咳発作評価
7週齢のBalb/cマウス(入手先:日本エスエルシー、匹数:3匹/群)を用い実施例1と同様にBp 18323株を接種し、Bp 18323株感染Balb/cマウスを作製し、咳発作を観察(図3のA)し、実施例1において作製したBp 18323株感染C57BL/6マウスの咳発作と比較した(図3のB)。また、気道および肺への定着菌体数確認試験(図3のCおよびD)を行った。
その結果、Bp 18323株はBalb/cマウスの肺および気道に、充分な菌数が定着しているにもかかわらず、咳発作の回数は非感染群と比較し有意ではなかった。
(3)百日咳菌Bp 18323 PT遺伝子欠損変異株感染C57BL/6Jマウスの作製および咳発作評価
Bp 18323株を基に作製したBp 18323 PT遺伝子欠損変異株を用い、実施例1と同様に百日咳菌感染C57BL/6マウスを作製し、一定時間の咳発作の回数をカウントした(図4のA)後、咳発作回数を解析し、菌株毎の比較を行った(図4のB)。また、気道およびへ肺の定着菌体数確認試験(図4のCおよびD)を行った。
その結果、咳発作の回数はBp 18323株感染群と比較し、Bp 18323 PT遺伝子欠損変異株感染群では有意に減少した。一方、Bp 18323 PT遺伝子欠損変異株を感染させたマウスは、気道および肺において、充分な菌数が定着していたものの、百日咳菌Bp 18323と比較すると各組織への定着菌体数は有意に減少していた。
<Bp 18323 PT遺伝子欠損変異株作製方法>
Bp 18323遺伝子欠損変異株をNisikawa S et al, Microbiol Immunol 60 : 93-105, 2016に記載の方法を改変して作製した。以下使用したプライマーの入手先はInvitrogenである。S1からS5までのPT遺伝子オペロンの5'末端および3'-末端から約1000bpまでの領域(PT-UおよびPT-D)を、Bp 18323株のゲノムDNAをテンプレートとしてプライマーPT-U-F(gatccgagctctcccaacccgtcgtggtgcagaa;配列番号:1)とPT-U-R(ttagcttccttagctagtgcaacgccatcccgtc;配列番号:2)、およびPT-D-F(cgcgccatttaaatggcgtcgatatgctgagcc;配列番号:3)とPT-D-R(ttagcttccttagctagtgcaacgcatcccgtc;配列番号:4)を用いてPCRにて増幅させる。クロラムフェニコール耐性遺伝子(CmR)を、pKK232-8 DNA(入手先:大阪大学)をテンプレートとしてプライマーCmR-F(agctaaggaagctaaaatggag;配列番号:5)とCmR-R(catttaaatggcgcgcctt;配列番号:6)を用いてPCRにて増幅させる。pABB-CRS2-Gm(入手先:大阪大学)をテンプレートとしてプライマーpABB-CRS2-GmR-inverse-S(gggaattccacaaattgttatccg;配列番号:7)とpABB-CRS2-GmR- inverse-AS(gggagagctcggatccacta;配列番号:8)を用いてインバースPCR後、DpnI酵素処理したものをバックボーンベクターpABB-CRS2-GmRとする。PT-U、PT-DおよびCmRフラグメントをIn-Fusion HD cloning kit (入手先:Clontech Laboratories)を用いてバックボーンベクターpABB-CRS2-GmRに挿入結合させる。このベクターをΔPT-pABB-CRS2-GmRとする。ΔPT-pABB-CRS2-GmRを形質転換したE. coli DH5α λpir(入手先:大阪大学)とHB101/pRK2013プラスミド伝達ヘルパー株(入手先:大阪大学)を用いた三親接合伝達法を用いて Bp 18323株へのΔPT-pABB-CRS2-GmRのプラスミド挿入を行うことで、相同組換えによりPT遺伝子がCmRと置換されたBp 18323 PT遺伝子欠損変異株を作出する。
(4)結果の考察
これらの結果から、百日咳菌感染マウスの咳発作の程度は、百日咳菌の種類とマウスの系統の組合せによりばらつきがあり、Bp 18323株とC57BL/6マウスの組合せが、もっとも顕著に咳発作を呈することがわかった。また、Bp 18323 PT遺伝子欠損変異株感染群ではBp 18323株感染群と比較して、気道および肺への定着菌体数は減少していたが、咳発作の回数はさらに顕著に減少した。このことから、PTは百日咳モデルマウスの咳発作発症に関与している可能性が示唆された。
Comparative example (cough attack of pertussis model animals by nasal inoculation with Bordetella pertussis prepared under various conditions)
(1) Production of C57BL / 6J mice infected with various Bordetella pertussis and cough attack evaluation Various Bordetella pertussis strains (BP140, BP141, BP142, BP144) (obtained from National Institute of Infectious Diseases) and Tohama I strain (obtained from Osaka) University) and pertussis-infected C57BL / 6 mice were prepared in the same manner as in Example 1, and the number of cough attacks for a certain period of time was counted (A in FIG. 2). A comparison was made (FIG. 2B). In addition, a test for confirming the number of colonized cells in the airways and the lungs (C and D in FIG. 2) was performed.
As a result, the mice infected with the clinical isolates had a sufficient number of bacteria in any of the clinical isolates in the respiratory tract and lungs. On the other hand, the number of cough attacks was significant in some clinical isolates compared with the non-infected group, but all were less than the Bp 18323 infected group. No cough attack was observed in C57BL / 6 mice infected with Tohama I strain.
(2) Preparation of Balb / c mice infected with Bordetella pertussis Bp 18323 and evaluation of cough attacks
Bp 18323 strain was inoculated in the same manner as in Example 1 using 7-week-old Balb / c mice (source: Nippon SLC, number of mice: 3 / group) to prepare Bp 18323 strain-infected Balb / c mice. The cough attack was observed (A in FIG. 3) and compared with the cough attack in the Bp 18323 strain-infected C57BL / 6 mouse prepared in Example 1 (B in FIG. 3). Further, a test for confirming the number of colonized cells in the respiratory tract and lungs (C and D in FIG. 3) was conducted.
As a result, the number of cough attacks in the Bp 18323 strain was not significant compared with that in the non-infected group even though sufficient numbers of bacteria were established in the lungs and airways of Balb / c mice.
(3) Preparation of C57BL / 6J mice infected with Bordetella pertussis Bp 18323 PT gene deletion mutant and evaluation of cough attack
Using a Bp 18323 PT gene deficient mutant prepared based on the Bp 18323 strain, pertussis-infected C57BL / 6 mice were prepared in the same manner as in Example 1, and the number of cough attacks during a certain period of time was counted (A in FIG. 4). ) Thereafter, the number of cough attacks was analyzed, and comparison was made for each strain (B in FIG. 4). In addition, a test for confirming the number of colonized cells in the respiratory tract and lungs (C and D in FIG. 4) was performed.
As a result, the number of cough attacks was significantly decreased in the Bp 18323 PT-deficient mutant-infected group compared to the Bp 18323 strain-infected group. On the other hand, mice infected with the Bp 18323 PT gene-deficient mutant had established a sufficient number of bacteria in the respiratory tract and lung, but the number of colonized cells in each tissue was significantly higher than that of B. pertussis Bp 18323. It was decreasing.
<Bp 18323 PT gene deletion mutant production method>
A Bp 18323 gene-deficient mutant was prepared by modifying the method described in Nisikawa S et al, Microbiol Immunol 60: 93-105, 2016. The source of the primers used below is Invitrogen. A region (PT-U and PT-D) from the 5 ′ end and the 3 ′ end of the PT gene operon from S1 to S5 (PT-U and PT-D), and a primer PT-UF (gatccgagctctcccaacccgtcgtggtgcagaa; SEQ ID NO: 1) and PT-UR (ttagcttccttagctagtgcaacgccatcccgtc; SEQ ID NO: 2), PT-DF (cgcgccatttaaatggcgtcgatatgctgagcc; SEQ ID NO: 3) and PT-DR (ttagcttccttagctagtgcaacgcatcccgtc; SEQ ID NO: 4) . Chloramphenicol resistance gene (CmR), pKK232-8 DNA (Osaka University) as a template Primer CmR-F (agctaaggaagctaaaatggag; SEQ ID NO: 5) and CmR-R (catttaaatggcgcgcctt; SEQ ID NO: 6) Amplify by PCR. pABB-CRS2-Gm (Osaka University) as a template, primers pABB-CRS2-GmR-inverse-S (gggaattccacaaattgttatccg; SEQ ID NO: 7) and pABB-CRS2-GmR-inverse-AS (gggagagctcggatccacta; SEQ ID NO: 8 ) Is used as a backbone vector pABB-CRS2-GmR after inverse PCR using DpnI enzyme treatment. The PT-U, PT-D and CmR fragments are inserted and bound to the backbone vector pABB-CRS2-GmR using In-Fusion HD cloning kit (available from Clontech Laboratories). This vector is designated as ΔPT-pABB-CRS2-GmR. Using a triple parental junction transfer method using E. coli DH5α λpir (Osaka University) transformed with ΔPT-pABB-CRS2-GmR and HB101 / pRK2013 plasmid transfer helper strain (Osaka University) By inserting a plasmid of ΔPT-pABB-CRS2-GmR into the 18323 strain, a Bp 18323 PT gene-deficient mutant in which the PT gene is replaced with CmR by homologous recombination is created.
(4) Discussion of the results From these results, the degree of cough attack in B. pertussis-infected mice varies depending on the combination of B. pertussis and mouse strain, and the combination of Bp 18323 strain and C57BL / 6 mice is the most A significant cough attack was found. In addition, the number of colonized cells in the respiratory tract and lungs decreased in the Bp 18323 PT gene-deficient mutant-infected group compared to the Bp 18323-infected group, but the number of cough attacks decreased more remarkably. This suggests that PT may be involved in the development of cough attacks in pertussis model mice.
実施例2(百日咳モデル動物を用いた咳発作誘発因子の特定)
(1)百日咳菌体破砕液の作製
Bp 18323株(入手先:大阪大学)並びに、Bp 18323株を基に作製したBp 18323株 PT遺伝子欠損変異株およびBp 18323株 FHA遺伝子欠損変異株を使用する。SS液体培地で液体培養したBp 18323株(病原性モード, Bvg+)、Bp 18323株 PT遺伝子欠損変異株およびBp 18323株 FHA遺伝子欠損変異株のそれぞれの菌液を作製する。ネガティブコントロール群として40 mM MgSO4を含むSS液体培地で液体培養したBp 18323株(非病原性モード, Bvg-)の菌液を使用する。Bvg+で培養した百日咳菌はPTおよびFHAを産生するが、Bvg-で培養した百日咳菌ではそれら因子は産生されない。各種菌液を遠心(8,000×g)後、上澄み液を除去し、137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, and 1.5 mM KH2PO4バッファー, pH 7.4 (D-PBS (-))にて沈殿菌体を懸濁し、超音波破砕器にて百日咳菌体を破砕する。各種菌体破砕液を遠心(8,000×g)後、上澄み液を回収し0.22μmフィルターにて菌体を完全に除去する。これを百日咳菌体破砕液とする。
<Bp 18323 FHA遺伝子欠損変異株作製方法>
Bp 18323株 FHA遺伝子欠損変異株は比較例(3)の<Bp 18323 PT遺伝子欠損変異株作製方法>に準じて作製した。以下使用したプライマーの入手先はInvitrogenである。FHA遺伝子の5'末端および3'-末端から約1000bpまでの領域(FHA-UおよびFHA-D)を、Bp 18323株のゲノムDNAをテンプレートとしてプライマーFHA-U-F(gatccgagctctcccaagaacggcacctggac;配列番号:9)とFHA-U-R(ttagcttccttagctaaataggtagtcgcggcc;配列番号:10)、およびFHA-D-F(cgcgccatttaaatgattccgaccagcgaagtg;配列番号:11)とFHA-D-R(atttgtggaattccctcagcttctgcagcagg;配列番号:12)を用いてPCRにて増幅させ、FHA-UおよびFHA-Dフラグメントを調製する。比較例(3)と同様の手法でCmRフラグメントおよびバックボーンベクターpABB-CRS2-GmRを調製する。FHA-U、FHA-DおよびCmRフラグメントをIn-Fusion HD cloning kit (入手先:Clontech Laboratories)を用いてバックボーンベクターpABB-CRS2-GmRに挿入結合させる。このベクターをΔFHA-pABB-CRS2-GmRとする。ΔFHA-pABB-CRS2-GmRを形質転換したE. coli DH5α λpir(入手先:大阪大学)とHB101/pRK2013プラスミド伝達ヘルパー株(入手先:大阪大学)を用いた三親接合伝達法を用いて Bp 18323株へのΔFHA-pABB-CRS2-GmRのプラスミド挿入を行うことで、相同組換えによりFHA遺伝子がCmRと置換されたBp 18323 FHA遺伝子欠損変異株を作出する。
(2)精製PTの作製
Skelton SK et al, J. Clin. Microbiol 28:1062-1065,1990に記載の方法に従いPTを精製した。具体的にはCL液体培地(Imaizumi A et al, Infect. Immun 41:1138-1143, 1983)で液体培養(37度、48時間)したBp18323株の培養液を遠心(12,000×g)後、上澄み液を回収し硫酸アンモニウムを終濃度で1 Mとなるように添加する。butyl-Sepharose 4 Fast Flow(入手先:Amersham)を1 M硫酸アンモニウム溶液で平衡化し、回収した上澄み液を添加する。10 mMリン酸ナトリウム-3 M塩化ナトリウム(pH 7.4)溶液でカラムを洗浄後、5 mMリン酸ナトリウム-50 mM塩化ナトリウム溶液(pH 7.4)で吸着画分を溶出回収する。Fetuin-Agarose (入手先:Sigma)を10 mMリン酸ナトリウム-0.15 M塩化ナトリウム(pH 7.4)溶液で平衡化し、回収した溶出画分を添加し、50 mMトリス塩酸-1 M塩化ナトリウム(pH 7.4)溶液でカラムを洗浄した後、50 mMトリス塩酸-4 M塩化マグネシウム(pH 7.4)溶液で吸着画分を溶出回収する。溶出画分をD-PBS(-)で透析後、限界濾過サイズが3.0 kDaのビバスビンターボ15 (入手先:ザルトリウス) を用いて遠心濃縮した。
(3)百日咳菌体破砕液経鼻接種動物の作製
7週齢の雄のC57BL/6Jマウス(入手先:日本クレア株式会社、3匹数/群)に、1.0mg/mlの各種菌体破砕液(組成:D-PBS (-))を、麻酔下で、注射針を用いてマウスの鼻腔内に50μl投与した。対照群(3匹数/群)として、百日咳菌体成分を含まない溶媒(組成:D-PBS (-)、量50μl)を、麻酔下で、同様に投与した(図5のAおよびB)。
7週齢の雄のC57BL/6Jマウス(入手先:日本クレア株式会社、5匹数/群)に、1.0mg/mlの各種菌体破砕液(組成:D-PBS (-))、精製PT(200ng、組成:D-PBS(-))、または1.0mg/mlの百日咳菌PT遺伝子欠損菌体破砕液(組成:D-PBS -))+精製PT(200ng、組成:D-PBS (-))を、麻酔下で、注射針を用いてマウスの鼻腔内に50μl投与した。対照群(5匹数/群)として、百日咳菌体成分を含まない溶媒(組成:D-PBS(-)、量50μl)を、麻酔下で、同様に投与した(図5のCおよびD)。
接種後、マウスを個別に観察用ケージに入れ、通常の飼育下で飼育した。
(4)咳発作の観察
実施例1の(2)に従い、Bp 18323株(Bvg+)菌体破砕液接種群、Bp 18323株(Bvg-)菌体破砕液接種群、Bp 18323 FHA遺伝子欠損変異株菌体破砕液接種群、Bp 18323 PT遺伝子欠損変異株菌体破砕液接種群、および溶媒接種群について、一定時間の咳発作の回数をカウントした(図5のA)。上記検体経鼻接種後6〜14日目の咳発作の回数を、Bp 18323株(Bvg+)菌体破砕液接種群と溶媒接種群または、各種菌体破砕液接種群で比較した(図5のB)。
その結果、Bp 18323株(Bvg+)菌体破砕液接種群は溶媒接種群と比較して咳発作回数が有意に増加した(図5のB)。Bp 18323株(Bvg-)菌体破砕液接種群では、Bp 18323株(Bvg+)菌体破砕液接種群と比較し咳発作回数が有意に減少した(図5のB)。またBp 18323株(Bvg+)菌体破砕液接種群と比較し、Bp 18323 FHA遺伝子欠損変異株菌体破砕液接種群では咳発作回数に有意な差が認められなかったのに対し、Bp 18323 PT遺伝子欠損変異株菌体破砕液接種群では咳発作回数が有意に減少した(図5のB)。
実施例1の(2)に従い、百日咳菌18323株(Bvg+)菌体破砕液接種群、Bp 18323 PT遺伝子欠損変異株菌体破砕液接種群、精製PT接種群、Bp 18323 PT遺伝子欠損変異株菌体破砕液+精製PT接種群および溶媒接種群について、一定時間の咳発作の回数をカウントした(図5のC)。上記検体経鼻接種後6〜14日目の咳発作の回数を、溶媒接種群、精製PT接種群、Bp 18323 PT遺伝子欠損変異株菌体破砕液+精製PT接種群および、その他菌体破砕液接種群で比較した(図5のD)。
その結果、溶媒接種群と比較し、精製PT接種群およびBp 18323 PT遺伝子欠損変異株菌体破砕液+精製PT接種群では咳回数咳発作回数が有意に増加した(図5のD)。
(5)結果の考察
これまで百日咳感染症におけるPTの役割、つまりPTと病態の関係は不明なままであったが、本発明の咳発作誘発因子の特定方法により咳発作とPTの関係が明らかとなり、PTは咳発作を引き起こすために重要な因子の一つであることが示された。また精製PTの経鼻接種群において百日咳モデルマウスの咳発作の回数は溶媒群と比較して有意に増加したものの、精製PTのみでは誘発が不十分であることが示唆された。Bp 18323 PT遺伝子欠損変異株菌体破砕液+精製PT接種群において咳発作が十分に誘導されたことを考え合わせると、菌体成分による宿主組織への炎症などを含む刺激反応が咳発作誘発に重要である可能性が考えられる。
Example 2 (Identification of Cough Attack Inducing Factor Using Pertussis Model Animal)
(1) Preparation of pertussis cell disruption solution
Bp 18323 strain (Osaka University) and Bp 18323 strain PT gene-deficient mutant and Bp 18323 FHA gene-deficient mutant prepared based on Bp 18323 strain are used. Bp 18323 strain (pathogenic mode, Bvg + ), Bp 18323 strain PT gene-deficient mutant strain, and Bp 18323 strain FHA gene-deficient mutant strains cultured in SS liquid medium are prepared. As a negative control group, a bacterial solution of Bp 18323 strain (non-pathogenic mode, Bvg − ) cultured in an SS liquid medium containing 40 mM MgSO 4 is used. Bordetella pertussis cultured in Bvg + produces PT and FHA, but those factors are not produced in Bordetella pertussis cultured in Bvg − . After centrifuging various bacterial solutions (8,000 × g), the supernatant was removed, and 137 mM NaCl, 2.7 mM KCl, 8.1 mM Na 2 HPO 4 , and 1.5 mM KH 2 PO 4 buffer, pH 7.4 (D-PBS (- )), The precipitated cells are suspended, and pertussis cells are crushed with an ultrasonic crusher. After centrifugation (8,000 × g) of various cell disruptions, the supernatant is recovered and the cells are completely removed with a 0.22 μm filter. This is designated as pertussis cell disruption solution.
<Bp 18323 FHA gene deletion mutant production method>
The Bp 18323 strain FHA gene-deficient mutant was prepared according to the <Method for preparing Bp 18323 PT gene-deficient mutant> in Comparative Example (3). The source of the primers used below is Invitrogen. The region (FHA-U and FHA-D) from the 5 ′ end and the 3 ′ end of the FHA gene to about 1000 bp, the primer FHA-UF (gatccgagctctcccaagaacggcacctggac; SEQ ID NO: 9) using the genomic DNA of the Bp 18323 strain as a template FHA-UR (ttagcttccttagctaaataggtagtcgcggcc; SEQ ID NO: 10), and FHA-DF (cgcgccatttaaatgattccgaccagcgaagtg; SEQ ID NO: 11) and FHA-DR (atttgtggaattccctcagcttctgcagcagg; SEQ ID NO: 12) were amplified by PCR using HA and F. -D fragment is prepared. A CmR fragment and a backbone vector pABB-CRS2-GmR are prepared in the same manner as in Comparative Example (3). FHA-U, FHA-D and CmR fragments are inserted and bound to the backbone vector pABB-CRS2-GmR using In-Fusion HD cloning kit (available from Clontech Laboratories). This vector is designated as ΔFHA-pABB-CRS2-GmR. Bp using a three-parental junction transfer method using E. coli DH5α λpir (Osaka University) transformed with ΔFHA-pABB-CRS2-GmR and HB101 / pRK2013 plasmid transfer helper strain (Osaka University) By inserting a plasmid of ΔFHA-pABB-CRS2-GmR into the 18323 strain, a Bp 18323 FHA gene-deficient mutant in which the FHA gene is replaced with CmR by homologous recombination is created.
(2) Preparation of purified PT
PT was purified according to the method described in Skelton SK et al, J. Clin. Microbiol 28: 1062-1065,1990. Specifically, the culture solution of Bp18323 strain cultured in liquid culture (37 degrees, 48 hours) in CL liquid medium (Imaizumi A et al, Infect. Immun 41: 1138-1143, 1983) was centrifuged (12,000 × g) and the supernatant Collect the solution and add ammonium sulfate to a final concentration of 1 M. Equilibrate butyl-Sepharose 4 Fast Flow (source: Amersham) with 1 M ammonium sulfate solution and add the collected supernatant. After washing the column with 10 mM sodium phosphate-3 M sodium chloride (pH 7.4) solution, the adsorbed fraction is eluted and collected with 5 mM sodium phosphate-50 mM sodium chloride solution (pH 7.4). Fetuin-Agarose (source: Sigma) was equilibrated with 10 mM sodium phosphate-0.15 M sodium chloride (pH 7.4) solution, and the recovered elution fraction was added, and 50 mM Tris-HCl-1 M sodium chloride (pH 7.4) was added. ) After washing the column with the solution, the adsorbed fraction is eluted and collected with a 50 mM Tris-HCl-4 M magnesium chloride (pH 7.4) solution. The elution fraction was dialyzed against D-PBS (−) and then concentrated by centrifugation using Vivasvin Turbo 15 (source: Sartorius) having a ultrafiltration size of 3.0 kDa.
(3) Production of pertussis inoculated animal
7-week-old male C57BL / 6J mice (source: Claire Japan, 3 / group) were anesthetized with 1.0 mg / ml of various cell disruptions (composition: D-PBS (-)). Below, 50 μl was administered into the nasal cavity of mice using an injection needle. As a control group (3 animals / group), a solvent containing no pertussis bacterial component (composition: D-PBS (−), amount 50 μl) was similarly administered under anesthesia (A and B in FIG. 5). .
7-week-old male C57BL / 6J mice (source: CLEA Japan, 5 / group), 1.0 mg / ml of various cell disruptions (composition: D-PBS (-)), purified PT (200 ng, composition: D-PBS (-)), or 1.0 mg / ml Bordetella pertussis PT gene-deficient cell disruption solution (composition: D-PBS-)) + purified PT (200 ng, composition: D-PBS (-) )) Was administered into the nasal cavity of mice using an injection needle under anesthesia. As a control group (5 animals / group), a solvent (composition: D-PBS (−), amount 50 μl) containing no pertussis cell component was similarly administered under anesthesia (C and D in FIG. 5). .
After inoculation, the mice were individually placed in observation cages and raised under normal breeding conditions.
(4) Observation of cough attack According to (2) of Example 1, Bp 18323 strain (Bvg + ) cell disruption fluid inoculation group, Bp 18323 strain (Bvg − ) cell disruption fluid inoculation group, Bp 18323 FHA gene deletion mutation The number of cough attacks for a certain period of time was counted for the strain disruption group inoculation group, the Bp 18323 PT gene-deficient mutant strain disruption group inoculation group, and the solvent inoculation group (A in FIG. 5). The number of cough attacks 6 to 14 days after the nasal inoculation of the sample was compared between the Bp 18323 strain (Bvg + ) bacterial cell disruption group and the solvent inoculation group or various bacterial cell disruption group inoculation groups (FIG. 5). B).
As a result, the number of cough attacks increased significantly in the Bp 18323 strain (Bvg + ) cell disruption group-inoculated group compared with the solvent-inoculated group (B in FIG. 5). In the group inoculated with Bp 18323 strain (Bvg − ), the number of cough attacks was significantly reduced as compared to the group inoculated with Bp 18323 strain (Bvg + ) (B in FIG. 5). Compared with the Bp 18323 strain (Bvg + ) cell disruption group inoculation group, the Bp 18323 FHA gene-deficient mutant cell disruption group inoculation group showed no significant difference in the number of cough attacks. In the group inoculated with PT gene-deficient mutant cells, the number of cough attacks was significantly reduced (B in FIG. 5).
According to Example 1 (2), Bordetella pertussis 18323 (Bvg + ) cell disruption group, Bp 18323 PT gene deletion mutant cell disruption group, purified PT inoculation group, Bp 18323 PT gene deletion mutant The number of cough attacks for a certain period of time was counted for the microbial cell disruption solution + purified PT inoculated group and the solvent inoculated group (C in FIG. 5). The number of cough attacks 6 to 14 days after the nasal inoculation of the above specimens was determined by solvent inoculation group, purified PT inoculation group, Bp 18323 PT gene-deficient mutant cell disruption solution + purified PT inoculation group, and other cell disruption solutions. Comparison was made in the inoculated group (D in FIG. 5).
As a result, compared with the solvent-inoculated group, the number of coughing episodes significantly increased in the purified PT-inoculated group and the Bp 18323 PT gene-deficient mutant cell disruption solution + purified PT-inoculated group (D in FIG. 5).
(5) Discussion of results Until now, the role of PT in pertussis infection, that is, the relationship between PT and disease state, remains unclear, but the relationship between cough attack and PT has been clarified by the method for identifying cough seizure-inducing factors of the present invention. PT was shown to be an important factor in causing cough attacks. In addition, the number of cough attacks in pertussis model mice in the nasal inoculation group of purified PT was significantly increased compared to that in the solvent group, but it was suggested that the induction was insufficient with purified PT alone. Bp 18323 Considering that cough attacks were sufficiently induced in the PT gene-deficient mutant cell disruption fluid + purified PT inoculation group, stimulation reactions including inflammation of the host tissue by the bacterial cell components inducing cough attacks It may be important.
実施例3(DTP-IPVワクチンの評価)
ワクチン投与群として、DTP-IPVワクチン(製品名:テトラビック、入手先:一般財団法人阪大微生物病研究会)用量:0.16IU/mL〜1IU/mLを、3週齢のC57BL/6Jマウス(入手先:日本クレア株式会社、5匹数/群)に腹腔内投与した。投与3週間後に同用量のDTP-IPVワクチンを腹腔内投与した。
対照として、同様に3週齢のC57BL/6Jマウス(日本クレア株式会社、4匹数/群)に、アルミニウムアジュバント(製品名:Imject(登録商標) Alum、入手先:Thermo scientific)用量 100μlを腹腔内投与した(非ワクチン投与群)。投与3週間後に同用量のアルミニウムアジュバントを腹腔内投与した。
ワクチン最終投与から7日目に、実施例1の(1)に従い、Bp 18323株(0.5〜2×108cfu/ml)を含む菌液(組成:SS液体培地)をワクチン投与群および非ワクチン投与群4〜5匹/群のマウス鼻腔内に50μl接種し、百日咳モデル動物を作製した。非感染群は、溶媒(組成:SS液体培地)を鼻腔内に50μl接種した。
(1)咳発作の観察
実施例1の(2)に従い、ワクチン投与群、非ワクチン投与群および非感染群について、一定時間の咳発作の回数をカウントした(図6のA)。
百日咳菌経鼻接種後6〜14日目の咳発作の回数を、非感染群、非ワクチン投与群、ワクチン投与群で比較した(図6のB)。
その結果、DTP-IPVワクチンは、Bp 18323株に感染したC57BL/6マウスに生じる咳発作を有意に抑制した。またこの抑制は、接種したDTP-IPVワクチンの用量依存的であった。
(2)感染防御確認試験
DPT-IPVワクチン投与により、気道および肺において百日咳菌の感染がどの程度防御されたのかを確認するために、実施例1の(2)の方法に従い、ワクチン投与群について、感染後14日目に、気道および肺における定着菌体数を測定した(図6のCおよびD)。
その結果、ワクチン投与群は百日咳菌の肺への定着菌体数は有意に減少した。気道への定着菌体数に有意差はなかった。
(3)抗体価の測定
ワクチン投与群について、ワクチン最終投与後7日目の血清中のマウスの抗PT抗体(抗PT-IgG抗体)価を下記の方法で測定した(図6のE)。
96wellプレートにPT(1.0μg/ml)を添加し、4度で18時間以上反応させた。洗浄バッファー(組成:D-PBS (-)-0.05% Tween20)にて96wellプレートを洗浄後、ブロッキングバッファー(組成:D-PBS (-)-0.5% BSA)を各wellに添加し、37度で1時間反応させた。96wellプレートを洗浄バッファーにて洗浄後、任意の希釈倍率(100、1,000、10,000、100,000倍希釈)に希釈した免疫前のマウス抗血清および、DPT-IPV免疫マウス抗血清を各wellに添加し、37度で1時間反応させた。96wellプレートを洗浄バッファーにて洗浄後、5,000倍希釈した抗マウスIgG-HRP(入手先:Cappel) を各wellに添加し、37度で1時間反応させた。96wellプレートを洗浄バッファーにて洗浄後、TMB (3,39, 5, 59- tetramethylbenzidine) ペルオキシダーゼ酵素基質(入手先:和光純薬工業株式会社)含有溶液を各wellに添加し、室温で30分間反応させた。1.0 N H2SO4を各wellに添加し、反応を停止させた後、96wellプレートをMulti-Detection Microplate Reader (入手先:DSファーマバイオメディカル株式会社) を用いて 450 nm波長の吸光度を測定し、DPT-IPV免疫マウス抗血清中の抗PT-IgG抗体価を算出した。
その結果、ワクチン最終投与後7日目の血清中には、百日咳ワクチンの主成分であるPTに対する充分な抗体が存在していた。
(4)結果の考察
これらの結果から、マウスにおいて百日咳菌の気道への定着を抑制する効果を有さなくても、感染拡大の大きな要因である、咳発作を顕著に抑制できる物質が、ヒトの百日咳感染予防に有用であることが確認された。また、実施例2の(4)の記述と考え合わせると、百日咳ワクチン投与によりマウス体内で産生された抗PT-IgG抗体が、経鼻接種した百日咳菌が産生するPTと結合し、毒性機能阻害することで咳発作を抑制する可能性が示唆される。
Example 3 (Evaluation of DTP-IPV vaccine)
As a vaccine administration group, DTP-IPV vaccine (product name: Tetrabic, source: Osaka University Microbial Disease Research Society) dose: 0.16 IU / mL to 1 IU / mL, 3 weeks old C57BL / 6J mice ( Obtained from: Japan Claire Co., Ltd., 5 mice / group). Three weeks after administration, the same dose of DTP-IPV vaccine was intraperitoneally administered.
As a control, similarly to 3-week-old C57BL / 6J mice (CLEA Japan, number / group), aluminum adjuvant (product name: Imject (registered trademark) Alum, source: Thermo scientific) dose of 100 μl peritoneally It was administered internally (non-vaccine group). Three weeks after administration, the same dose of aluminum adjuvant was intraperitoneally administered.
On the seventh day after the final administration of the vaccine, according to (1) of Example 1, the bacterial solution (composition: SS liquid medium) containing the Bp 18323 strain (0.5-2 × 10 8 cfu / ml) was administered to the vaccine administration group and the non-vaccine Pertussis model animals were prepared by inoculating 50 μl of mice in the nasal cavity of 4 to 5 animals / group. In the non-infected group, 50 μl of a solvent (composition: SS liquid medium) was inoculated intranasally.
(1) Observation of Cough Attacks According to (2) of Example 1, the number of cough attacks for a certain period of time was counted for the vaccine administration group, the non-vaccine administration group, and the non-infection group (A in FIG. 6).
The number of cough attacks 6 to 14 days after nasal inoculation with Bordetella pertussis was compared between the non-infected group, the non-vaccine-administered group, and the vaccine-administered group (B in FIG. 6).
As a result, the DTP-IPV vaccine significantly suppressed cough attacks occurring in C57BL / 6 mice infected with the Bp 18323 strain. This suppression was also dose-dependent for the inoculated DTP-IPV vaccine.
(2) Infection protection confirmation test
In order to confirm the extent to which pertussis infection was protected in the respiratory tract and lungs by DPT-IPV vaccine administration, according to the method of Example 1 (2), the vaccine administration group was examined on the 14th day after infection. The number of colonized cells in the airways and lungs was measured (C and D in FIG. 6).
As a result, the number of colonized bacteria of Bordetella pertussis in the vaccine administration group significantly decreased. There was no significant difference in the number of colonized cells in the respiratory tract.
(3) Measurement of antibody titer In the vaccine administration group, the anti-PT antibody (anti-PT-IgG antibody) titer of the mouse in the serum on the seventh day after the final administration of the vaccine was measured by the following method (E in Fig. 6).
PT (1.0 μg / ml) was added to a 96-well plate and reacted at 4 degrees for 18 hours or longer. After washing the 96-well plate with a washing buffer (composition: D-PBS (-)-0.05% Tween20), blocking buffer (composition: D-PBS (-)-0.5% BSA) was added to each well at 37 degrees. The reaction was carried out for 1 hour. After washing the 96 well plate with washing buffer, add mouse antiserum before immunization diluted to any dilution ratio (100, 1,000, 10,000, 100,000 times dilution) and DPT-IPV immunized mouse antiserum to each well, The reaction was carried out at 37 degrees for 1 hour. After washing the 96-well plate with a washing buffer, anti-mouse IgG-HRP (source: Cappel) diluted 5,000 times was added to each well and reacted at 37 degrees for 1 hour. After washing the 96-well plate with washing buffer, add a solution containing TMB (3,39, 5, 59-tetramethylbenzidine) peroxidase enzyme substrate (source: Wako Pure Chemical Industries, Ltd.) to each well and react at room temperature for 30 minutes I let you. 1.0 NH 2 SO 4 was added to each well to stop the reaction, and then the absorbance at 450 nm wavelength was measured using a 96-well plate using Multi-Detection Microplate Reader (Source: DS Pharma Biomedical Co., Ltd.) Anti-PT-IgG antibody titers in DPT-IPV immunized mouse antiserum were calculated.
As a result, sufficient antibodies against PT, the main component of pertussis vaccine, were present in the serum on the seventh day after the final vaccine administration.
(4) Discussion of the results From these results, a substance capable of remarkably suppressing cough attacks, which is a major factor in the spread of infection, even if it does not have the effect of suppressing colonization of Bordetella pertussis in mice, is a human. It has been confirmed that it is useful in preventing pertussis infection. In addition, when combined with the description in Example 2 (4), anti-PT-IgG antibody produced in the mouse body by pertussis vaccine administration binds to PT produced by nasal inoculated Bordetella pertussis and inhibits toxic function. This suggests the possibility of suppressing cough attacks.
本発明の百日咳モデル動物は、安価で利便性が高く、ヒトにおける百日咳菌感染でみられる顕著な咳発作を呈するため、咳発作メカニズムの解明や咳発作の誘発因子特定、百日咳に対する医薬品のスクリーニング評価に有用である。本発明の評価方法は、様々な被験物質を評価することができ、医薬品開発に有用である。 The pertussis model animal of the present invention is inexpensive and highly convenient, and exhibits a remarkable cough attack as seen in pertussis infection in humans. Therefore, elucidation of the cough attack mechanism, identification of the cough attack inducing factor, and screening evaluation of drugs for pertussis Useful for. The evaluation method of the present invention can evaluate various test substances and is useful for drug development.
Claims (8)
(1)C57BL/6マウスに被験物質を投与する工程、
(2)被験物質を投与したマウス、および被験物質を投与しないC57BL/6マウスに、百日咳菌Bp 18323株、もしくは百日咳菌Bp 18323株の菌体破砕液を接種する工程、
(3)前記被験物質を投与したマウスにおける咳発作回数を、前記被験物質を投与しないマウスおよび/または百日咳菌もしくは百日咳菌体破砕液を接種しないマウスにおける咳発作回数と比較する工程、および、
(4)前記(3)の工程により得られた結果に基づいて、被験物質の百日咳菌感染による咳発作の抑制作用における有効性を判定する工程、
を含む評価方法。 A test substance evaluation method comprising:
(1) A step of administering a test substance to C57BL / 6 mice,
(2) inoculating mice that have been administered a test substance and C57BL / 6 mice that have not been administered a test substance with a cell disruption solution of B. pertussis Bp 18323 or B. pertussis Bp 18323;
(3) comparing the number of cough attacks in mice administered with the test substance with the number of cough attacks in mice not administered with the test substance and / or mice not inoculated with Bordetella pertussis or Bordetella pertussis, and
(4) Based on the result obtained by the step (3), a step of determining the effectiveness of the test substance in inhibiting cough attacks caused by B. pertussis infection,
Evaluation method including
(1)百日咳菌Bp 18323株の1つの機能もしくは構造的因子をコードする遺伝子を欠損または発現を抑制するよう改変した百日咳菌Bp 18323株を作製する工程
(2)前記(1)の工程により得られた改変した百日咳菌Bp 18323株またはその菌体破砕液をC57BL/6マウスに投与する工程
(3)前記(2)のマウスにおける咳発作回数を、溶媒接種群および/または請求項6に記載の百日咳モデルマウスにおける咳発作回数と比較する工程、および、
(4)前記(3)の工程により得られた結果に基づいて、百日咳菌の咳発作誘発因子を特定する工程、
を含む特定方法。 A method for identifying a cough attack-inducing factor of Bordetella pertussis,
(1) Step of producing Bordetella pertussis Bp 18323 in which a gene encoding one function or structural factor of Bordetella pertussis Bp 18323 is deleted or modified to suppress expression (2) Obtained by the step (1) above 7. The step of administering the modified B. pertussis Bp 18323 strain or the microbial cell disruption solution thereof to C57BL / 6 mice (3) The number of cough attacks in the mice of (2) above is determined according to the solvent inoculation group and / or claim 6. Comparing the number of cough attacks in pertussis model mice, and
(4) A step of identifying a pertussis-inducing factor of Bordetella pertussis based on the result obtained by the step (3),
Specific methods including:
(1)百日咳菌の防御抗原を製造する工程
(2)百日咳菌Bp 18323株、もしくは百日咳菌Bp 18323株の菌体破砕液を接種したC57BL/6マウスを用いて前記百日咳菌の防御抗原の効力を測定する工程、および
(3)前記百日咳菌の防御抗原を製薬学的に許容される担体および/または他の免疫原性成分と混合し、単位用量製剤に製剤化する工程、
を含む、製造方法。
A method for producing a pertussis vaccine,
(1) Step of producing pertussis protective antigen (2) Efficacy of pertussis protective antigen using C57BL / 6 mice inoculated with B. pertussis Bp 18323 strain or B. pertussis Bp 18323 strain And (3) mixing the pertussis protective antigen with a pharmaceutically acceptable carrier and / or other immunogenic ingredients and formulating into a unit dose formulation,
Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016197288A JP6867623B2 (en) | 2016-10-05 | 2016-10-05 | Whooping cough model animal and its preparation method, and method using whooping cough model animal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016197288A JP6867623B2 (en) | 2016-10-05 | 2016-10-05 | Whooping cough model animal and its preparation method, and method using whooping cough model animal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018057322A true JP2018057322A (en) | 2018-04-12 |
JP6867623B2 JP6867623B2 (en) | 2021-04-28 |
Family
ID=61907505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016197288A Active JP6867623B2 (en) | 2016-10-05 | 2016-10-05 | Whooping cough model animal and its preparation method, and method using whooping cough model animal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6867623B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112889745A (en) * | 2021-01-13 | 2021-06-04 | 澎立生物医药技术(上海)有限公司 | Preparation method of animal model for bronchial allergic cough |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014155294A1 (en) * | 2013-03-27 | 2014-10-02 | Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet) | Vaccines for the prevention of infections with bordetella |
-
2016
- 2016-10-05 JP JP2016197288A patent/JP6867623B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014155294A1 (en) * | 2013-03-27 | 2014-10-02 | Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet) | Vaccines for the prevention of infections with bordetella |
Non-Patent Citations (2)
Title |
---|
INFECT.IMMUN.,2012,VOL.80,NO.4,P.1530-1536, JPN6020038184, ISSN: 0004362294 * |
化学療法の領域,SEPT.2016,VOL.32,NO.10,P.1893-1901, JPN6020038185, ISSN: 0004362295 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112889745A (en) * | 2021-01-13 | 2021-06-04 | 澎立生物医药技术(上海)有限公司 | Preparation method of animal model for bronchial allergic cough |
CN112889745B (en) * | 2021-01-13 | 2021-09-21 | 澎立生物医药技术(上海)有限公司 | Preparation method of animal model for bronchial allergic cough |
Also Published As
Publication number | Publication date |
---|---|
JP6867623B2 (en) | 2021-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ghunaim et al. | Advances in vaccination against avian pathogenic Escherichia coli respiratory disease: potentials and limitations | |
JP5245092B2 (en) | Live attenuated Bordetella strain as a single dose vaccine against pertussis | |
Conlan et al. | Differential ability of novel attenuated targeted deletion mutants of Francisella tularensis subspecies tularensis strain SCHU S4 to protect mice against aerosol challenge with virulent bacteria: effects of host background and route of immunization | |
CN109069535B (en) | Mutant bordetella strains and methods of use thereof | |
US20080254062A1 (en) | Use of an avirulent bordetella mutant as a live vaccine vector | |
US11446372B2 (en) | Bordetella strains expressing serotype 3 fimbriae | |
Lafontaine et al. | The autotransporter protein BatA is a protective antigen against lethal aerosol infection with Burkholderia mallei and Burkholderia pseudomallei | |
KR20160095185A (en) | Mycoplasma bovis vaccine | |
Sun | Plague vaccines: status and future | |
US20100209451A1 (en) | Compositions and Methods Related to Adenovirus Based Delivery of Antigens | |
Baker et al. | Intradermal vaccination with a Pseudomonas aeruginosa vaccine adjuvanted with a mutant bacterial ADP-ribosylating enterotoxin protects against acute pneumonia | |
AU2013351213A1 (en) | Vaccine to protect a ruminant against pneumonia caused by Pasteurella multocida | |
Zhang et al. | Salmonella Typhimurium strain expressing OprF‐OprI protects mice against fatal infection by Pseudomonas aeruginosa | |
JP6867623B2 (en) | Whooping cough model animal and its preparation method, and method using whooping cough model animal | |
WO2020049133A1 (en) | Adenylate cyclase catalytic domain deficient bordetella strains | |
JP5398527B2 (en) | Parapertussis whole cell vaccine composition | |
JP6401148B2 (en) | Antigens and antigen combinations | |
Hur et al. | Immunologic study and optimization of Salmonella delivery strains expressing adhesin and toxin antigens for protection against progressive atrophic rhinitis in a murine model | |
WO2011005587A1 (en) | Vaccine compositions and methods of use to protect against infectious disease | |
US20140023684A1 (en) | Vaccine Against Pasteurellaceae | |
Janeway Jr et al. | Manipulating the immune response to fight infection | |
JPH07505629A (en) | Pasteurella haemolytica type A-1 bacterin-toxoid vaccine | |
WO2019079716A1 (en) | Brucella canis vaccine for dogs | |
Kang et al. | Intranasal inoculation of recombinant DNA vaccine ABA392 against haemorrhagic septicaemia disease | |
Gavitt | An Analysis of the Role of Antibody in the Response to Mycoplasma Pneumoniae Infection in Vaccinated Mice |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210316 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210331 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6867623 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |