JP2018056531A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2018056531A
JP2018056531A JP2016194761A JP2016194761A JP2018056531A JP 2018056531 A JP2018056531 A JP 2018056531A JP 2016194761 A JP2016194761 A JP 2016194761A JP 2016194761 A JP2016194761 A JP 2016194761A JP 2018056531 A JP2018056531 A JP 2018056531A
Authority
JP
Japan
Prior art keywords
region
crystal defect
semiconductor region
semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016194761A
Other languages
Japanese (ja)
Other versions
JP6726406B2 (en
Inventor
克行 鳥居
Katsuyuki Torii
克行 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2016194761A priority Critical patent/JP6726406B2/en
Publication of JP2018056531A publication Critical patent/JP2018056531A/en
Application granted granted Critical
Publication of JP6726406B2 publication Critical patent/JP6726406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device including an insulated gate bipolar transistor which inhibits current concentration caused by local breakdown.SOLUTION: A semiconductor device comprises a crystal defect region in a drift region 10; and in working power-supply voltage, the crystal defect region 100 lies below an end of a depletion layer extending from an interface between the drift region 10 and a base region 20 into the drift region 10; and in power-supply voltage to cause breakdown, a lower limit of the crystal defect region 100 lies above an end of the depletion layer extending from the interface between the drift region 10 and the base region 20 into the drift region 10.SELECTED DRAWING: Figure 1

Description

本発明は、絶縁ゲート型バイポーラトランジスタを有する半導体装置に関する。   The present invention relates to a semiconductor device having an insulated gate bipolar transistor.

モータの駆動回路等の大電流のスイッチング動作を行うスイッチング素子(パワー半導体素子)として、絶縁ゲート型バイポーラトランジスタ(IGBT)が使用されている。IGBTは、ドリフト領域の伝導度変調を利用してオン電圧を低下させることができる。しかし、IGBTのオフ時に、ドリフト領域内に残存する正孔(残存キャリア)によるテール電流が流れてしまい、IGBTのターンオフ損失を増加させてしまう。そこで、IGBTのコレクタ・エミッタ間に所定の電位を与えた時、空乏層が伸びていない空乏層の端よりも外側の半導体領域の部分(例えば、ドリフト領域とバッファ層との界面)のドリフト領域内に、結晶欠陥を形成することが開示されている(例えば、特許文献1参照。)。結晶欠陥領域を設けた半導体装置によれば、結晶欠陥の領域内に残存キャリアの少なくとも一部が捕獲されるため、正孔のライフタイムを下げることができ、半導体装置のオフ時に生じるテール電流を短くすることができる。その結果、IGBTのターンオフ損失を低減することができる。 An insulated gate bipolar transistor (IGBT) is used as a switching element (power semiconductor element) that performs a switching operation of a large current such as a motor drive circuit. The IGBT can reduce the on-voltage using the conductivity modulation of the drift region. However, when the IGBT is turned off, a tail current due to holes (residual carriers) remaining in the drift region flows, and the turn-off loss of the IGBT is increased. Therefore, when a predetermined potential is applied between the collector and the emitter of the IGBT, the drift region of the semiconductor region portion (for example, the interface between the drift region and the buffer layer) outside the end of the depletion layer where the depletion layer does not extend. It is disclosed that a crystal defect is formed inside (see, for example, Patent Document 1). According to the semiconductor device provided with the crystal defect region, since at least a part of the remaining carriers are captured in the crystal defect region, the lifetime of the holes can be lowered, and the tail current generated when the semiconductor device is turned off can be reduced. Can be shortened. As a result, the IGBT turn-off loss can be reduced.

特開平9−121052号公報JP 9-121052 A

しかしながら、半導体装置の供給電源に使用する電圧よりも高い急峻なブレークダウン電圧以上が印加されると、ドリフト領域内の空乏層の延びが面内で不均一となり易く、局所的なブレークダウンが生じることがある。その結果、電流集中による焼損が生じることがある。
そこで、本発明は、局所的なブレークダウンによって電流集中することを抑制した絶縁ゲート型バイポーラトランジスタを含む半導体装置を提供することを目的とする。
However, if a breakdown voltage higher than a steep breakdown voltage higher than the voltage used for the power supply of the semiconductor device is applied, the extension of the depletion layer in the drift region is likely to be non-uniform in the plane, causing local breakdown. Sometimes. As a result, burning due to current concentration may occur.
Therefore, an object of the present invention is to provide a semiconductor device including an insulated gate bipolar transistor that suppresses current concentration due to local breakdown.

本発明の一態様によれば、第1導電型の第1半導体領域と、第1半導体領域の上に配置された第2導電型の第2半導体領域と、第2半導体領域の上に配置された第1導電型の第3半導体領域と、第3半導体領域上から第2半導体領域上に延伸して配置された制御電極と、第1半導体領域の下方に配置された第4半導体領域と、第1半導体領域と第4半導体領域との間に配置され、第1半導体領域よりも不純物濃度が高い第1導電型の第5半導体領域と、第1半導体領域内に結晶欠陥領域を備え、使用する電源電圧において、第1半導体領域と第2半導体領域との界面から第1半導体領域に広がる空乏層の端部よりも下側に、結晶欠陥領域があって、ブレークダウンが生じる電源電圧において、第1半導体領域と第2半導体領域との界面から第1半導体領域に広がる空乏層の端部よりも上側に結晶欠陥領域の下限がある半導体装置が提供される。   According to one aspect of the present invention, the first conductive type first semiconductor region, the second conductive type second semiconductor region disposed on the first semiconductor region, and the second semiconductor region are disposed. A third semiconductor region of the first conductivity type, a control electrode disposed extending from the third semiconductor region to the second semiconductor region, a fourth semiconductor region disposed below the first semiconductor region, A fifth semiconductor region of a first conductivity type disposed between the first semiconductor region and the fourth semiconductor region and having an impurity concentration higher than that of the first semiconductor region; a crystal defect region in the first semiconductor region; In the power supply voltage where the crystal defect region exists below the edge of the depletion layer extending from the interface between the first semiconductor region and the second semiconductor region to the first semiconductor region and breakdown occurs, First from the interface between the first semiconductor region and the second semiconductor region There is provided a semiconductor device having a lower limit of a crystal defect region above an end portion of a depletion layer extending in a semiconductor region.

本発明によれば、局所的なブレークダウンによって電流集中することを抑制した絶縁ゲート型バイポーラトランジスタを含む半導体装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor device containing the insulated gate bipolar transistor which suppressed current concentration by local breakdown can be provided.

本発明の実施形態に係る半導体装置の構造を示す模式的な断面図である。It is a typical sectional view showing the structure of the semiconductor device concerning the embodiment of the present invention. 本発明の実施形態に係る半導体装置の結晶欠陥領域における深さ方向に対する結晶欠陥数を示す模式的な図である。It is a schematic diagram showing the number of crystal defects in the depth direction in the crystal defect region of the semiconductor device according to the embodiment of the present invention. 本発明の実施形態に係る半導体装置の結晶欠陥領域の変形例における深さ方向に対する結晶欠陥数を示す模式的な図である。It is a schematic diagram showing the number of crystal defects in the depth direction in a modification of the crystal defect region of the semiconductor device according to the embodiment of the present invention. 本発明の実施形態に係る半導体装置の結晶欠陥領域の別の変形例における深さ方向に対する結晶欠陥数を示す模式的な図である。It is a schematic diagram showing the number of crystal defects in the depth direction in another modification of the crystal defect region of the semiconductor device according to the embodiment of the present invention.

次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各部の長さの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the lengths of the respective parts, and the like are different from the actual ones. Therefore, specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

また、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものでない。この発明の実施形態は、特許請求の範囲において、種々の変更を加えることができる。   Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the shape, structure, arrangement, etc. of components. It is not specified to the following. The embodiment of the present invention can be variously modified within the scope of the claims.

本発明の実施形態に係る半導体装置は、図1に示すように、第1導電型の第1半導体領域(ドリフト領域10)と、第1半導体領域の上に配置された第2導電型の第2半導体領域(ベース領域20)と、第2半導体領域の上に配置された第1導電型の第3半導体領域(エミッタ領域30)とを備える。第3半導体領域の上面から延伸して第3半導体領域及び第2半導体領域を貫通して第1半導体領域まで達する溝が形成され、溝の内壁に内壁絶縁膜40が配置されている。
第1導電型と第2導電型とは互いに反対導電型である。即ち、第1導電型がn型であれば、第2導電型はp型であり、第1導電型がp型であれば、第2導電型はn型である。以下では、第1導電型がn型、第2導電型がp型の場合を例示的に説明する。
As shown in FIG. 1, the semiconductor device according to the embodiment of the present invention includes a first conductivity type first semiconductor region (drift region 10) and a second conductivity type second semiconductor disposed on the first semiconductor region. 2 semiconductor regions (base region 20) and a first conductivity type third semiconductor region (emitter region 30) disposed on the second semiconductor region. A groove extending from the upper surface of the third semiconductor region and extending through the third semiconductor region and the second semiconductor region to reach the first semiconductor region is formed, and an inner wall insulating film 40 is disposed on the inner wall of the groove.
The first conductivity type and the second conductivity type are opposite to each other. That is, if the first conductivity type is n-type, the second conductivity type is p-type. If the first conductivity type is p-type, the second conductivity type is n-type. Hereinafter, a case where the first conductivity type is n-type and the second conductivity type is p-type will be described as an example.

ドリフト領域10は、p型のコレクタ領域60の一方の主面上に配置されている。なお、ドリフト領域10とコレクタ領域60間に、ドリフト領域10よりも不純物濃度の高いn型のフィールドストップ領域65が配置されている。フィールドストップ領域65によって、半導体装置のオン状態でコレクタ領域60からドリフト領域10に達する正孔の量を制限される。また、半導体装置のオフ状態でドリフト領域10の上面から延伸する空乏層の端がコレクタ領域60に達することが抑制される。コレクタ領域60の他方の主面上には、コレクタ領域60と電気的に接続するコレクタ電極80が配置されている。 Drift region 10 is arranged on one main surface of p-type collector region 60. An n-type field stop region 65 having an impurity concentration higher than that of the drift region 10 is arranged between the drift region 10 and the collector region 60. The field stop region 65 limits the amount of holes reaching the drift region 10 from the collector region 60 in the on state of the semiconductor device. Further, the end of the depletion layer extending from the upper surface of the drift region 10 in the off state of the semiconductor device is suppressed from reaching the collector region 60. A collector electrode 80 electrically connected to the collector region 60 is disposed on the other main surface of the collector region 60.

図1に示した半導体装置は、ベース領域20の側面に対向して溝の側面の内壁絶縁膜40の上に配置された制御電極(ゲート電極50)を備えた、トレンチゲート型のIGBTである。
図1に示すように、ゲート電極50とエミッタ電極90との間に層間絶縁膜70が設けられている。 そして、内壁絶縁膜40を挟んでベース領域20と対向する領域に、ゲート電極50が配置されている。ベース領域20の上部には選択的にエミッタ領域30が配置されている。エミッタ電極90は層間絶縁膜70上に配置され、エミッタ電極90がエミッタ領域30又はベース領域20とエミッタ領域30の両方に接続する。層間絶縁膜70によって、ゲート電極50とエミッタ電極90とは電気的に絶縁されている。
図1に示した半導体装置では、内壁絶縁膜40を介してゲート電極50と対向するベース領域20の表面が、チャネルの形成されるチャネル領域である。つまり、内壁絶縁膜40のゲート電極50とベース領域20間の領域が、ゲート絶縁膜として機能する。エミッタ領域30からドリフト領域10まで溝に沿ってベース領域20にチャネルが形成されるように、ゲート電極50は少なくともベース領域20に対向して配置される。さらに、ゲート電極50の溝のコーナー側の端(溝の側面側の端)はベース領域20とドリフト領域10との界面が溝の側面と交わる位置よりも低い位置、つまりドリフト領域10上まで延伸している事が望ましい。これにより、エミッタ領域30からドリフト領域10まで溝に沿って、ベース領域20にチャネルが確実に形成され、半導体装置を確実にオンさせることができる。
The semiconductor device shown in FIG. 1 is a trench gate type IGBT having a control electrode (gate electrode 50) disposed on the inner wall insulating film 40 on the side surface of the groove facing the side surface of the base region 20. .
As shown in FIG. 1, an interlayer insulating film 70 is provided between the gate electrode 50 and the emitter electrode 90. A gate electrode 50 is disposed in a region facing the base region 20 with the inner wall insulating film 40 interposed therebetween. An emitter region 30 is selectively disposed on the base region 20. The emitter electrode 90 is disposed on the interlayer insulating film 70, and the emitter electrode 90 is connected to the emitter region 30 or both the base region 20 and the emitter region 30. The gate electrode 50 and the emitter electrode 90 are electrically insulated by the interlayer insulating film 70.
In the semiconductor device shown in FIG. 1, the surface of the base region 20 facing the gate electrode 50 with the inner wall insulating film 40 interposed therebetween is a channel region where a channel is formed. That is, the region between the gate electrode 50 and the base region 20 of the inner wall insulating film 40 functions as a gate insulating film. The gate electrode 50 is disposed so as to face at least the base region 20 so that a channel is formed in the base region 20 along the groove from the emitter region 30 to the drift region 10. Furthermore, the end of the gate electrode 50 on the corner side (end on the side surface side of the groove) extends to a position lower than the position where the interface between the base region 20 and the drift region 10 intersects the side surface of the groove, that is, above the drift region 10. It is desirable that Thus, a channel is reliably formed in the base region 20 along the groove from the emitter region 30 to the drift region 10, and the semiconductor device can be reliably turned on.

図1に示すように、素子内のライフタイムが短くするためにネオン、プロトン、ヘリウム等の軽イオンをドリフト領域10内に照射することによって、ライフタイム制御部となる結晶欠陥領域100を設けている。結晶欠陥領域100はドリフト領域10内に形成されており、結晶欠陥領域100の深さ方向の上限と下限はドリフト領域10内にある。これにより、結晶欠陥領域100の下には結晶欠陥の無いドリフト領域10の領域が存在する。図2に示すように、結晶欠陥領域100において、コレクタ領域60に近い程、結晶欠陥数が増加している。そして、結晶欠陥領域100の深さ方向の上限はIGBTの実動作時の空乏層の端の位置(h1)よりも外側(半導体装置の深さ方向に見て下側)にあり、結晶欠陥領域100の深さ方向の下限はIGBTのブレークダウン時の空乏層の端の位置(h2)よりも内側(半導体装置の深さ方向に見て上側)にある。つまり、半導体装置の深さ方向に見て、結晶欠陥領域100はIGBTの実動作時の空乏層の端の位置(h1)とIGBTのブレークダウン時の空乏層の端の位置(h2)との間にある。 As shown in FIG. 1, a crystal defect region 100 serving as a lifetime control unit is provided by irradiating light ions such as neon, proton, and helium into the drift region 10 in order to shorten the lifetime in the device. Yes. The crystal defect region 100 is formed in the drift region 10, and the upper limit and the lower limit in the depth direction of the crystal defect region 100 are in the drift region 10. Thereby, a region of the drift region 10 having no crystal defect exists under the crystal defect region 100. As shown in FIG. 2, in the crystal defect region 100, the closer to the collector region 60, the greater the number of crystal defects. The upper limit in the depth direction of the crystal defect region 100 is on the outer side (lower side in the depth direction of the semiconductor device) than the end position (h1) of the depletion layer during actual operation of the IGBT. The lower limit in the depth direction of 100 is on the inner side (upper side in the depth direction of the semiconductor device) than the end position (h2) of the depletion layer at the time of breakdown of the IGBT. In other words, when viewed in the depth direction of the semiconductor device, the crystal defect region 100 has a depletion layer end position (h1) during actual IGBT operation and a depletion layer end position (h2) during IGBT breakdown. between.

ここで、図1に示した半導体装置の動作について説明する。エミッタ電極90とコレクタ電極80との間に所定のコレクタ電圧を印加し、エミッタ電極90とゲート電極50との間に所定のゲート電圧を印加する。例えば、コレクタ電圧は300V〜1600V程度、ゲート電圧は10V〜20V程度である。このようにして半導体装置をオン状態にすると、チャネル領域がp型からn型に反転してチャネルが形成される。形成されたチャネルを通過して、エミッタ電極90から電子がドリフト領域10に注入される。コレクタ領域60とドリフト領域10との間が順バイアスされ、コレクタ電極80からコレクタ領域60を経由して正孔(ホール)がドリフト領域10、ベース領域20の順に移動する。更に半導体装置に流れる電流を増やしていくと、コレクタ領域60からの正孔が増加し、ベース領域20の下方に正孔が蓄積される。その結果、伝導度変調によってオン電圧が低下する。 Here, the operation of the semiconductor device illustrated in FIG. 1 will be described. A predetermined collector voltage is applied between the emitter electrode 90 and the collector electrode 80, and a predetermined gate voltage is applied between the emitter electrode 90 and the gate electrode 50. For example, the collector voltage is about 300V to 1600V, and the gate voltage is about 10V to 20V. When the semiconductor device is turned on in this manner, the channel region is inverted from the p-type to the n-type to form a channel. Electrons are injected from the emitter electrode 90 into the drift region 10 through the formed channel. A forward bias is applied between the collector region 60 and the drift region 10, and holes move from the collector electrode 80 through the collector region 60 in the order of the drift region 10 and the base region 20. When the current flowing through the semiconductor device is further increased, holes from the collector region 60 are increased, and holes are accumulated below the base region 20. As a result, the ON voltage decreases due to conductivity modulation.

半導体装置をオン状態からオフ状態にする場合には、ゲート電圧をしきい値電圧よりも低く制御する。例えば、ゲート電圧を、エミッタ電圧と同じ電位又は負電位となるようにする。これにより、ベース領域20のチャネルが消滅して、エミッタ電極90からドリフト領域10への電子の注入が停止する。コレクタ電極80の電位がエミッタ電極90よりも高いので、ベース領域20とドリフト領域10との界面から空乏層が広がっていくと共に、ドリフト領域10に蓄積された正孔の一部はエミッタ電極90に抜けていき、正孔の一部は空乏層の端よりも外側のドリフト領域10内へと移動する。半導体装置がオフからオンになった時にドリフト領域10内に留まっていた正孔が残存キャリアとなる。   When the semiconductor device is changed from the on state to the off state, the gate voltage is controlled to be lower than the threshold voltage. For example, the gate voltage is set to the same potential as the emitter voltage or a negative potential. As a result, the channel of the base region 20 disappears, and the injection of electrons from the emitter electrode 90 to the drift region 10 stops. Since the potential of the collector electrode 80 is higher than that of the emitter electrode 90, the depletion layer spreads from the interface between the base region 20 and the drift region 10, and some of the holes accumulated in the drift region 10 are transferred to the emitter electrode 90. As a result, some of the holes move into the drift region 10 outside the edge of the depletion layer. Holes remaining in the drift region 10 when the semiconductor device is turned on from off become residual carriers.

ここで、図1で示す半導体装置は、ドリフト領域10内に結晶欠陥領域100を有する。結晶欠陥領域100を有するドリフト領域10の領域は、結晶欠陥領域100を有さないドリフト領域の領域10の領域よりも漏れ電流が大きくなる。空乏層の端がドリフト領域10内の結晶欠陥領域100に達すると、結晶欠陥領域100を有するドリフト領域10の領域は、キャリアの動きが活発となり、空間電荷が歪められて、空乏層の伸びは緩やかになる。ブレークダウンが生じる空乏層の端よりも内側のドリフト領域10内(つまり、図2の深さh2よりも上側)に結晶欠陥領域100を設けることにより、局所なブレークダウンが抑制され、電流集中によって半導体装置が焼損することも抑制される。   Here, the semiconductor device shown in FIG. 1 has a crystal defect region 100 in the drift region 10. The region of the drift region 10 having the crystal defect region 100 has a leakage current larger than that of the region 10 of the drift region not having the crystal defect region 100. When the end of the depletion layer reaches the crystal defect region 100 in the drift region 10, the carrier region in the drift region 10 having the crystal defect region 100 becomes active, the space charge is distorted, and the extension of the depletion layer is Be gentle. By providing the crystal defect region 100 in the drift region 10 inside the end of the depletion layer where breakdown occurs (that is, above the depth h2 in FIG. 2), local breakdown is suppressed, and current concentration The semiconductor device is also prevented from burning out.

なお、図1において、結晶欠陥領域100の上限とドリフト領域10とベース領域20との界面までの距離(d1)よりも、結晶欠陥領域100の下限とドリフト領域10とフィールドストップ領域65との界面までの距離(d2)が短いことが望ましい。これにより、半導体装置の厚みを大きくすることなく、本発明の効果をより効果的に得ることができる。 In FIG. 1, the lower limit of the crystal defect region 100 and the interface between the drift region 10 and the field stop region 65 are larger than the upper limit of the crystal defect region 100 and the distance (d1) to the interface between the drift region 10 and the base region 20. It is desirable that the distance (d2) is short. Thereby, the effect of the present invention can be obtained more effectively without increasing the thickness of the semiconductor device.

また、結晶欠陥領域100内の空乏層の伸びはその近傍の結晶欠陥領域100を設けていない領域よりも空乏層の延びが緩やかとなる。ドリフト領域10内に結晶欠陥領域100を設けた場合、結晶欠陥領域100を通過した空乏層の端の深さと結晶欠陥領域100を通過していない空乏層の端の深さに大きな差が生じ、半導体装置内に局所的なブレークダウンが生じる場合がある。特に結晶欠陥領域100の下限がフィールドストップ領域65に達するように形成された場合、局所的なブレークダウンが生じやすい。
そこで、図1の半導体装置によると、結晶欠陥領域100の下限よりも下側に結晶欠陥領域100を設けていないドリフト領域10の領域を設けている。これにより、空乏層の端が結晶欠陥領域100の下限を超えて結晶欠陥領域100を設けていないドリフト領域10の領域内を通過するような電圧が印加されたとしても、結晶欠陥領域100を通過せずに延びた空乏層の端の深さと結晶欠陥領域100を通過して延びた空乏層の端の深さとの差を少なくし、空乏層の延びを比較的均一化することができる。その結果、局所的なブレークダウンを抑制することができる。
Further, the depletion layer in the crystal defect region 100 extends more slowly than the region in which the crystal defect region 100 in the vicinity thereof is not provided. When the crystal defect region 100 is provided in the drift region 10, a large difference occurs between the depth of the end of the depletion layer that has passed through the crystal defect region 100 and the depth of the end of the depletion layer that has not passed through the crystal defect region 100, Local breakdown may occur in the semiconductor device. Particularly, when the lower limit of the crystal defect region 100 is formed to reach the field stop region 65, local breakdown is likely to occur.
Therefore, according to the semiconductor device of FIG. 1, the region of the drift region 10 where the crystal defect region 100 is not provided is provided below the lower limit of the crystal defect region 100. As a result, even if a voltage is applied so that the end of the depletion layer exceeds the lower limit of the crystal defect region 100 and passes through the region of the drift region 10 where the crystal defect region 100 is not provided, it passes through the crystal defect region 100. Thus, the difference between the end depth of the depletion layer that extends without passing through and the end depth of the depletion layer that extends through the crystal defect region 100 can be reduced, and the extension of the depletion layer can be made relatively uniform. As a result, local breakdown can be suppressed.

(その他の実施形態)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

図1の半導体装置では、図2で示すように結晶欠陥領域100内の結晶欠陥数を深さ方向に徐々に増加するように設けた例で説明したが、結晶欠陥領域100内の結晶欠陥数を深さ方向に階段状に増加するように形成しても良い。この場合であっても本発明の効果を得られることは明らかである。
また、図1の半導体装置では、図2で示すように結晶欠陥領域100内の結晶欠陥数を深さ方向に徐々に増加するように設けた例で説明したが、深さ方向に複数の結晶欠陥数の多い領域(山の領域)が存在し、その間に挟まれるように結晶欠陥数の少ない領域(谷の領域)があるように形成しても良い。この場合であっても本発明の効果を得られることは明らかである。
また、図1の半導体装置では、図2で示すように結晶欠陥領域100の上面はIGBTの実動作時の空乏層の端よりも外側にあり、IGBTの実動作時の空乏層の端の位置(h1)よりも下側にある例で説明したが、結晶欠陥領域100の上面はIGBTの実動作時の空乏層の端の位置(h1)と同じであることが望ましい。ただし、図3で示すように結晶欠陥領域100の上面はIGBTの実動作時の空乏層の端よりも内側のドリフト領域10内にあり、IGBTの実動作時の空乏層の端の位置(h1)よりも上側にあっても良い。この場合であっても本発明の効果を得られることは明らかである。
また、図1の半導体装置では、結晶欠陥領域100は深さ方向に1つ設ける例で説明したが、図4で示すように、深さ方向に複数の結晶欠陥領域100を設けても良い。この際、コレクタ領域60に近い結晶欠陥領域100ほど結晶欠陥数の最大値を多くするように設けても良い。この場合であっても本発明の効果を得られることは明らかである。
また、結晶欠陥領域100の形成方法を深さ方向で変更しても良い。例えば、結晶欠陥領域100の上方の領域は金又は白金をドリフト領域10内に打ちこむことで形成し、結晶欠陥領域100の下方の領域はイオン照射をドリフト領域10内に打ちこむことで形成しても良い。この場合であっても本発明の効果を得られることは明らかである。
また、図1の半導体装置では、トレンチゲート型のIGBTに適応する例を示したが、周知のプレーナゲート型のIGBTに適応しても良い。この場合であっても本発明の効果を得られることは明らかである。
In the semiconductor device of FIG. 1, the example in which the number of crystal defects in the crystal defect region 100 is provided so as to gradually increase in the depth direction as shown in FIG. May be formed so as to increase stepwise in the depth direction. Even in this case, it is clear that the effect of the present invention can be obtained.
In the semiconductor device of FIG. 1, the example in which the number of crystal defects in the crystal defect region 100 is gradually increased in the depth direction as shown in FIG. 2 has been described. A region having a large number of defects (mountain region) may exist, and a region having a small number of crystal defects (valley region) may be formed so as to be sandwiched therebetween. Even in this case, it is clear that the effect of the present invention can be obtained.
In the semiconductor device of FIG. 1, as shown in FIG. 2, the upper surface of the crystal defect region 100 is outside the end of the depletion layer during actual operation of the IGBT, and the position of the end of the depletion layer during actual operation of the IGBT. As described in the example below (h1), it is desirable that the upper surface of the crystal defect region 100 is the same as the end position (h1) of the depletion layer during the actual operation of the IGBT. However, as shown in FIG. 3, the upper surface of the crystal defect region 100 is in the drift region 10 inside the end of the depletion layer during actual operation of the IGBT, and the position (h1) of the end of the depletion layer during actual operation of the IGBT ). Even in this case, it is clear that the effect of the present invention can be obtained.
In the semiconductor device of FIG. 1, the example in which one crystal defect region 100 is provided in the depth direction has been described, but a plurality of crystal defect regions 100 may be provided in the depth direction as shown in FIG. At this time, the crystal defect region 100 closer to the collector region 60 may be provided so as to increase the maximum value of the number of crystal defects. Even in this case, it is clear that the effect of the present invention can be obtained.
Further, the formation method of the crystal defect region 100 may be changed in the depth direction. For example, the region above the crystal defect region 100 may be formed by implanting gold or platinum into the drift region 10, and the region below the crystal defect region 100 may be formed by implanting ion irradiation into the drift region 10. good. Even in this case, it is clear that the effect of the present invention can be obtained.
In the semiconductor device of FIG. 1, an example of being applicable to a trench gate type IGBT has been shown, but may be applied to a well-known planar gate type IGBT. Even in this case, it is clear that the effect of the present invention can be obtained.

なお、半導体装置がnチャネル型である場合を例示的に説明したが、半導体装置がpチャネル型であっても本発明の効果を得られることは明らかである。   Note that although the case where the semiconductor device is an n-channel type has been described as an example, it is apparent that the effects of the present invention can be obtained even if the semiconductor device is a p-channel type.

このように、本発明はここでは記載していない様々な実施形態等を含むことはもちろんである。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

10…ドリフト領域
20…ベース領域
30…エミッタ領域
40…内壁絶縁膜
50…ゲート電極
60…コレクタ領域
65…フィールドストップ領域
70…層間絶縁膜
100…結晶欠陥領域
DESCRIPTION OF SYMBOLS 10 ... Drift region 20 ... Base region 30 ... Emitter region 40 ... Inner wall insulating film 50 ... Gate electrode 60 ... Collector region 65 ... Field stop region 70 ... Interlayer insulating film 100 ... Crystal defect region

Claims (6)

第1導電型の第1半導体領域と、
前記第1半導体領域の上に配置された第2導電型の第2半導体領域と、
前記第2半導体領域の上に配置された第1導電型の第3半導体領域と、
前記第3半導体領域上から前記第2半導体領域上に延伸して配置された制御電極と、
前記第1半導体領域の下方に配置された第4半導体領域と、
前記第1半導体領域と前記第4半導体領域との間に配置され、前記第1半導体領域よりも不純物濃度が高い第1導電型の第5半導体領域と、
前記第1半導体領域内に結晶欠陥領域を備え、
使用する電源電圧において、前記第1半導体領域と前記第2半導体領域との界面から前記第1半導体領域に広がる空乏層の端部よりも下側に、前記結晶欠陥領域があって、
ブレークダウンが生じる電源電圧において、前記第1半導体領域と前記第2半導体領域との界面から前記第1半導体領域に広がる空乏層の端部よりも上側に前記結晶欠陥領域の下限がある事を特徴とする半導体装置。
A first semiconductor region of a first conductivity type;
A second semiconductor region of a second conductivity type disposed on the first semiconductor region;
A third semiconductor region of a first conductivity type disposed on the second semiconductor region;
A control electrode disposed extending from the third semiconductor region to the second semiconductor region;
A fourth semiconductor region disposed below the first semiconductor region;
A fifth semiconductor region of a first conductivity type disposed between the first semiconductor region and the fourth semiconductor region and having an impurity concentration higher than that of the first semiconductor region;
A crystal defect region in the first semiconductor region;
In the power supply voltage to be used, the crystal defect region is below the end of the depletion layer extending from the interface between the first semiconductor region and the second semiconductor region to the first semiconductor region,
In the power supply voltage at which breakdown occurs, the lower limit of the crystal defect region is above the end of the depletion layer extending from the interface between the first semiconductor region and the second semiconductor region to the first semiconductor region. A semiconductor device.
前記結晶欠陥領域の上限が使用する電源電圧において、前記第1半導体領域と第2半導体領域との接合部から前記第1半導体領域に広がる空乏層の端部よりも内側に結晶欠陥領域の上限があることを特徴とする請求項1に記載の半導体装置。
In the power supply voltage used by the upper limit of the crystal defect region, the upper limit of the crystal defect region is located inside the end of the depletion layer extending from the junction between the first semiconductor region and the second semiconductor region to the first semiconductor region. The semiconductor device according to claim 1, wherein the semiconductor device is provided.
前記結晶欠陥領域の上限と前記第1半導体領域と前記第2半導体領域との界面までの距離よりも、前記結晶欠陥領域の下限と前記第1半導体領域と前記第5半導体領域との界面までの距離が短いことを特徴とする請求項1又は2に記載の半導体装置。
The lower limit of the crystal defect region and the interface between the first semiconductor region and the fifth semiconductor region are larger than the upper limit of the crystal defect region and the distance to the interface between the first semiconductor region and the second semiconductor region. The semiconductor device according to claim 1, wherein the distance is short.
前記結晶欠陥領域は下方に向かって結晶欠陥が増加していることを特徴とする請求項1〜3いずれか1項に記載の半導体装置。
The semiconductor device according to claim 1, wherein crystal defects increase in the crystal defect region downward.
前記結晶欠陥領域の上限から下限の範囲において、前記第1半導体領域の厚み方向に、複数離間して配置された結晶欠陥領域が設けられていることを特徴とする請求項1〜4いずれか1項に記載の半導体装置。
5. A plurality of crystal defect regions that are spaced apart from each other in the thickness direction of the first semiconductor region are provided in a range from an upper limit to a lower limit of the crystal defect region. The semiconductor device according to item.
前記結晶欠陥領域の上限から下限の範囲において、前記結晶欠陥領域が複数設けられており、
上側の前記結晶欠陥領域は、金又は白金を導入することで生じた結晶欠陥領域であって、
下側の前記結晶欠陥領域は、イオン照射によって生じた結晶欠陥領域であることを請求項1〜4いずれか1項に記載の半導体装置。
In the range from the upper limit to the lower limit of the crystal defect region, a plurality of the crystal defect regions are provided,
The crystal defect region on the upper side is a crystal defect region generated by introducing gold or platinum,
The semiconductor device according to claim 1, wherein the lower crystal defect region is a crystal defect region caused by ion irradiation.
JP2016194761A 2016-09-30 2016-09-30 Semiconductor device Active JP6726406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016194761A JP6726406B2 (en) 2016-09-30 2016-09-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016194761A JP6726406B2 (en) 2016-09-30 2016-09-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2018056531A true JP2018056531A (en) 2018-04-05
JP6726406B2 JP6726406B2 (en) 2020-07-22

Family

ID=61837047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016194761A Active JP6726406B2 (en) 2016-09-30 2016-09-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6726406B2 (en)

Also Published As

Publication number Publication date
JP6726406B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP6181597B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5216801B2 (en) Semiconductor device
CN107710409B (en) Semiconductor device with a plurality of semiconductor chips
US9082648B2 (en) Vertical insulated-gate turn-off device having a planar gate
US9000479B2 (en) Semiconductor device
JP2015118991A (en) Semiconductor device
US8912632B2 (en) Semiconductor device
JP7003688B2 (en) Semiconductor devices and their manufacturing methods
JP2008181975A (en) Semiconductor device and manufacturing method thereof
JP6606007B2 (en) Switching element
KR102246570B1 (en) Power semiconductor devices
JP2015179720A (en) semiconductor device
JP2020031155A (en) Semiconductor device
JP2008244466A (en) Semiconductor device
WO2020075248A1 (en) Semiconductor device, and manufacturing method for same
JP2014154739A (en) Semiconductor device
JP2013145903A (en) Semiconductor device
JP2015181178A (en) semiconductor device
JP2008263217A (en) Semiconductor device
JP2018006420A (en) Semiconductor device
KR20190124894A (en) Semiconductor device and method manufacturing the same
JP6726406B2 (en) Semiconductor device
WO2018049641A1 (en) Single event burnout resistance-improved trench gate mos device
WO2019049251A1 (en) Semiconductor device
JP6889829B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200611

R150 Certificate of patent or registration of utility model

Ref document number: 6726406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250