JP2018056225A - Light receiving element - Google Patents

Light receiving element Download PDF

Info

Publication number
JP2018056225A
JP2018056225A JP2016188004A JP2016188004A JP2018056225A JP 2018056225 A JP2018056225 A JP 2018056225A JP 2016188004 A JP2016188004 A JP 2016188004A JP 2016188004 A JP2016188004 A JP 2016188004A JP 2018056225 A JP2018056225 A JP 2018056225A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor layer
light receiving
receiving element
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016188004A
Other languages
Japanese (ja)
Other versions
JP6876290B2 (en
Inventor
陽 吉川
Akira Yoshikawa
陽 吉川
朋浩 森下
Tomohiro Morishita
朋浩 森下
素顕 岩谷
Motoaki Iwatani
素顕 岩谷
俊紀 奥村
Toshiki Okumura
俊紀 奥村
彩希 牛田
Saki Ushida
彩希 牛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Meijo University
Original Assignee
Asahi Kasei Corp
Meijo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Meijo University filed Critical Asahi Kasei Corp
Priority to JP2016188004A priority Critical patent/JP6876290B2/en
Publication of JP2018056225A publication Critical patent/JP2018056225A/en
Application granted granted Critical
Publication of JP6876290B2 publication Critical patent/JP6876290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light receiving element having an extremely low current value in a dark state and also having good light receiving sensitivity when light is incident.SOLUTION: A light receiving element 1 of the present invention includes a substrate 2, a first nitride semiconductor layer 3 formed on the substrate 2, and a second nitride semiconductor layer 4 formed on the first nitride semiconductor layer 3. The first nitride semiconductor layer 3 comprises a nitride semiconductor containing at least one of Al, In and Ga. The second nitride semiconductor layer 4 comprises a nitride semiconductor containing at least one of Al, In and Ga, has a lattice constant smaller than that of the first nitride semiconductor layer 3, and includes a recessed portion 41 on a surface 40 on a side opposite to the first nitride semiconductor layer 3.SELECTED DRAWING: Figure 1

Description

本発明は受光素子に関する。   The present invention relates to a light receiving element.

受光素子の一例として、GaN/AlGaNヘテロ構造を用いたp型ゲート光FETからなる紫外線受光素子が知られている(例えば、特許文献1参照)。   As an example of the light receiving element, an ultraviolet light receiving element including a p-type gate optical FET using a GaN / AlGaN heterostructure is known (see, for example, Patent Document 1).

国際公開第2007/135739号パンフレットInternational Publication No. 2007/135739 Pamphlet

上述の受光素子では、二次元電子ガス層を空乏化するp型GaN系半導体層が、受光面(光入射面)の最表面に存在する。この層の存在により、暗状態(受光すべき光が入射されない状態)での電流値を極めて低くすることはできるが、光入射時(受光すべき光が入射されている時)に、この層により入射光の一部が吸収されることで受光感度が低下するという問題点がある。
本発明の課題は、暗状態での電流値が極めて低く、光入射時の受光感度も良好な受光素子を提供することである。
In the light receiving element described above, a p-type GaN-based semiconductor layer that depletes the two-dimensional electron gas layer is present on the outermost surface of the light receiving surface (light incident surface). Due to the presence of this layer, the current value in the dark state (the state in which light to be received is not incident) can be made extremely low, but this layer is present when light is incident (when the light to be received is incident). As a result, a part of the incident light is absorbed, so that the light receiving sensitivity is lowered.
An object of the present invention is to provide a light receiving element having a very low current value in a dark state and good light receiving sensitivity at the time of light incidence.

上記課題を解決するために、本発明の一態様である受光素子は、基板と、基板上に形成された第一窒化物半導体層と、第一窒化物半導体層上に形成された第二窒化物半導体層と、を有する。第一窒化物半導体層は、Al、In及びGaのうち少なくとも一つを含む窒化物半導体からなる。第二窒化物半導体層は、Al、In及びGaのうち少なくとも一つを含む窒化物半導体からなり、第一窒化物半導体層よりも格子定数が小さく、第一窒化物半導体層とは反対側の面に凹部を有する。凹部は第二窒化物半導体層の上面に一つだけ形成されていてもよいし、複数形成されていてもよい。   In order to solve the above problems, a light-receiving element that is one embodiment of the present invention includes a substrate, a first nitride semiconductor layer formed over the substrate, and a second nitride formed over the first nitride semiconductor layer. A semiconductor layer. The first nitride semiconductor layer is made of a nitride semiconductor containing at least one of Al, In, and Ga. The second nitride semiconductor layer is made of a nitride semiconductor containing at least one of Al, In, and Ga, has a lattice constant smaller than that of the first nitride semiconductor layer, and is opposite to the first nitride semiconductor layer. The surface has a recess. Only one recess may be formed on the upper surface of the second nitride semiconductor layer, or a plurality of recesses may be formed.

本発明の一態様によれば、暗状態での電流値が極めて低く、光入射時の受光感度も良好な受光素子が提供できる。   According to one embodiment of the present invention, a light-receiving element having a very low current value in a dark state and excellent light-receiving sensitivity at the time of light incidence can be provided.

実施形態の受光素子を示す断面図である。It is sectional drawing which shows the light receiving element of embodiment.

〔一態様の受光素子〕
本発明の一態様である受光素子(以下、「一態様の受光素子」と称する。)では、第一窒化物半導体層がチャネル層、第二窒化物半導体層がバリア層として機能し、チャネル層とバリア層との界面に二次元電子ガス(2DEG)層が存在する。そして、第二窒化物半導体層が第一窒化物半導体層とは反対側の面(第二窒化物半導体層の上面)に凹部を有することで、これらの層の界面の凹部直下の部分が空乏層となり、凹部を挟んだ両側の部分がソース・ドレイン領域となる。
[Light receiving element of one aspect]
In the light receiving element which is one embodiment of the present invention (hereinafter referred to as “one light receiving element”), the first nitride semiconductor layer functions as a channel layer, and the second nitride semiconductor layer functions as a barrier layer. There is a two-dimensional electron gas (2DEG) layer at the interface between the barrier layer and the barrier layer. The second nitride semiconductor layer has a recess on the surface opposite to the first nitride semiconductor layer (the upper surface of the second nitride semiconductor layer), so that the portion immediately below the recess at the interface between these layers is depleted. Layers on both sides of the recess become source / drain regions.

よって、暗状態では、2DEG層が空乏層によって電気的に切断されるため、ソース・ドレイン間には極僅かの電流しか流れない。つまり、この受光素子を、第二窒化物半導体層の上面を受光面として使用した場合、凹部を有さない点のみが異なる受光素子と比較して、暗状態での電流値を極めて低くできる。また、光入射時の受光感度は、凹部を有さない点のみが異なる受光素子と同等の値が得られる。また、凹部の底面上に光を吸収する層を設けないことで、光入射時の受光感度を高くすることができる。   Therefore, in the dark state, since the 2DEG layer is electrically disconnected by the depletion layer, only a very small current flows between the source and the drain. That is, when this light receiving element is used with the upper surface of the second nitride semiconductor layer as the light receiving surface, the current value in the dark state can be made extremely low as compared with a light receiving element that is different only in that there is no recess. Further, the light receiving sensitivity at the time of light incidence can be equivalent to that of a light receiving element that differs only in that it does not have a recess. Further, by not providing a layer that absorbs light on the bottom surface of the recess, the light receiving sensitivity at the time of light incidence can be increased.

<好ましい態様1>
一態様の受光素子は、第二窒化物半導体層の上記凹部以外の位置での厚さ(T1)に対する上記凹部の底面位置での厚さ(T2)の比(T2/T1)が0.05以上0.4以下であることが好ましい。
膜厚比(T2/T1)が0.05以上0.4以下の範囲にある受光素子は、後述の実施例での記載の通り、膜厚比(T2/T1)がこの範囲外にある受光素子よりも、暗状態での電流値が極めて低いことと光入射時の受光感度が高いことの両立という点で優れている。
<Preferred embodiment 1>
In the light receiving element of one embodiment, the ratio (T2 / T1) of the thickness (T2) at the bottom surface position of the recess to the thickness (T1) of the second nitride semiconductor layer at a position other than the recess is 0.05. It is preferable that it is 0.4 or more.
A light receiving element having a film thickness ratio (T2 / T1) in the range of 0.05 or more and 0.4 or less is light receiving in which the film thickness ratio (T2 / T1) is out of this range, as described in Examples below. The device is superior to the device in that both the current value in the dark state is extremely low and the light receiving sensitivity at the time of light incidence is high.

<好ましい態様2>
一態様の受光素子は、第一窒化物半導体層と第二窒化物半導体層の界面のうち、上記凹部の直下を除く部分に、電子濃度が1×108cm-2以上の二次元電子ガス層(電子走行層)が存在することが好ましい。これにより、光入射時にソース・ドレイン間に大量の電流が流れるため、光入射時の受光感度が高くなる。
<好ましい態様3>
一態様の受光素子は、上記界面のうち、上記凹部の直下の部分に電子濃度が1×107cm−2以下の空乏層が存在することが好ましい。これにより、暗状態の電流値を極めて低くできる。
<Preferred embodiment 2>
In one embodiment, a light receiving element has a two-dimensional electron gas having an electron concentration of 1 × 10 8 cm −2 or more at a portion of the interface between the first nitride semiconductor layer and the second nitride semiconductor layer except for the portion immediately below the recess. A layer (electron transit layer) is preferably present. As a result, a large amount of current flows between the source and the drain when light is incident, so that the light receiving sensitivity when light is incident is increased.
<Preferred embodiment 3>
In the light receiving element of one embodiment, it is preferable that a depletion layer having an electron concentration of 1 × 10 7 cm −2 or less exists in a portion immediately below the recess in the interface. Thereby, the current value in the dark state can be extremely reduced.

<好ましい態様4:第一窒化物半導体層および第二窒化物半導体層について>
一態様の受光素子を構成する第一窒化物半導体層の材料としては、Al及びGaのうち少なくとも一つの元素を含むものであれば特に限定されないが、一例としては、AlN、GaN、AlGaN等が挙げられる。
一態様の受光素子を構成する第二窒化物半導体層の材料としては、Al、In及びGaのうち少なくとも一つの元素を含む窒化物半導体層であれば特に限定されないが、一例としては、AlN、GaN、AlGaN等が挙げられる。
<Preferred Aspect 4: Regarding First Nitride Semiconductor Layer and Second Nitride Semiconductor Layer>
The material of the first nitride semiconductor layer constituting the light receiving element of one embodiment is not particularly limited as long as it contains at least one element of Al and Ga, but examples include AlN, GaN, AlGaN, and the like. Can be mentioned.
The material of the second nitride semiconductor layer constituting the light receiving element of one embodiment is not particularly limited as long as it is a nitride semiconductor layer containing at least one element of Al, In, and Ga. As an example, AlN, Examples thereof include GaN and AlGaN.

一態様の受光素子は、第一窒化物半導体層がAlXGa(1-X)N(0≦X<1)からなる層であり、第二窒化物半導体層がAlYGa(1-Y)N(0≦X<Y≦1)からなる層であることが好ましい。これにより、第一窒化物半導体層と第二窒化物半導体層との界面に存在する二次元電子層のガス濃度を高くすることができる。この界面に高濃度の二次元電子ガスが存在することで、光入射時にソース・ドレイン間に大量の電流が流れるため、光入射時の受光感度が高くなる。
なお、結晶性を担保する観点から、第一窒化物半導体層はアンドープ(例えば、不純物の濃度が1×1016cm-3未満)のAlXGa(1-X)N(0≦X<1)からなる層であることが好ましく、第二窒化物半導体層はアンドープのAlYGa(1-Y)N(0≦X<Y≦1)からなる層であることが好ましい。
In the light receiving element of one embodiment, the first nitride semiconductor layer is a layer made of Al x Ga (1-X) N (0 ≦ X <1), and the second nitride semiconductor layer is Al Y Ga (1-Y ) A layer composed of N (0 ≦ X <Y ≦ 1) is preferable. Thereby, the gas concentration of the two-dimensional electron layer existing at the interface between the first nitride semiconductor layer and the second nitride semiconductor layer can be increased. Due to the presence of a high-concentration two-dimensional electron gas at this interface, a large amount of current flows between the source and the drain when light is incident, so that the light receiving sensitivity when light is incident is increased.
From the viewpoint of ensuring crystallinity, the first nitride semiconductor layer is undoped (for example, the impurity concentration is less than 1 × 10 16 cm −3 ) Al X Ga (1-X) N (0 ≦ X <1 The second nitride semiconductor layer is preferably a layer made of undoped Al Y Ga (1-Y) N (0 ≦ X <Y ≦ 1).

<好ましい態様5>
一態様の受光素子は、第一窒化物半導体層がAlXGa(1-X)N(0.3≦X≦0.6)からなる層であり、第二窒化物半導体層がAlYGa(1-Y)N(0.6<Y≦0.9)からなる層であることが好ましい。これにより、第一窒化物半導体層と第二窒化物半導体層との界面に高濃度の二次元電子ガス層が形成される。
第一窒化物半導体層がAlXGa(1-X)N(0≦X<1)からなる層であり、第二窒化物半導体層がAlYGa(1-Y)N(0≦X<Y≦1)からなる層である場合、XとYとの差が大きい程、二次元電子ガス層の濃度が高くなる。しかし、この差が大きくなり過ぎると、格子定数の差により第一窒化物半導体層と第二窒化物半導体層との界面に欠陥が生じて、暗状態での電流値が高くなる恐れがある。これに対して、0.3≦X≦0.6且つ0.6<Y≦0.9を満たすこと、つまり、0.3<Y−X≦0.3を満たすことで、暗状態での電流値を低減できる。
<Preferred embodiment 5>
In the light receiving element of one embodiment, the first nitride semiconductor layer is a layer made of Al x Ga (1-X) N (0.3 ≦ X ≦ 0.6), and the second nitride semiconductor layer is Al Y Ga. A layer made of (1-Y) N (0.6 <Y ≦ 0.9) is preferred. Thereby, a high-concentration two-dimensional electron gas layer is formed at the interface between the first nitride semiconductor layer and the second nitride semiconductor layer.
The first nitride semiconductor layer is a layer made of Al X Ga (1-X) N (0 ≦ X <1), and the second nitride semiconductor layer is Al Y Ga (1-Y) N (0 ≦ X < 1). In the case of a layer composed of Y ≦ 1), the greater the difference between X and Y, the higher the concentration of the two-dimensional electron gas layer. However, if this difference becomes too large, a defect may occur at the interface between the first nitride semiconductor layer and the second nitride semiconductor layer due to the difference in lattice constant, which may increase the current value in the dark state. On the other hand, by satisfying 0.3 ≦ X ≦ 0.6 and 0.6 <Y ≦ 0.9, that is, satisfying 0.3 <Y−X ≦ 0.3, The current value can be reduced.

<好ましい態様6>
一態様の受光素子では、上記界面のうち、上記凹部の直下の部分がゲート領域となり、上記凹部を挟んだ両側の部分がソース・ドレイン領域となるが、ゲート長となる上記凹部の寸法は0.5μm以上5μm以下であることが好ましい。これにより、ソース・ドレイン間に高電界を印加することが可能となり、光入射時にソース・ドレイン間に大量の電流を流すことができる。
<好ましい態様7>
一態様の受光素子は、第二窒化物半導体層の膜厚が10nm以上50nm以下であることが好ましい。これにより、二次元電子ガス層のキャリア濃度を調整し易くなる。
<好ましい態様8>
一態様の受光素子は、上記凹部の底面が露出していることが好ましい。これにより、一態様の受光素子を、凹部の底面を受光面として使用した場合の受光感度が高くなる。
<Preferred Aspect 6>
In one aspect of the light receiving element, a portion of the interface immediately below the recess serves as a gate region, and both portions sandwiching the recess serve as a source / drain region, but the size of the recess serving as a gate length is 0. It is preferably 5 μm or more and 5 μm or less. As a result, a high electric field can be applied between the source and the drain, and a large amount of current can flow between the source and the drain when light is incident.
<Preferred embodiment 7>
In the light receiving element of one embodiment, the thickness of the second nitride semiconductor layer is preferably 10 nm or more and 50 nm or less. Thereby, it becomes easy to adjust the carrier concentration of the two-dimensional electron gas layer.
<Preferred embodiment 8>
In the light receiving element of one embodiment, it is preferable that the bottom surface of the concave portion is exposed. Thereby, the light receiving sensitivity when the light receiving element of one embodiment is used with the bottom surface of the recess as the light receiving surface is increased.

<好ましい態様9:基板について>
一態様の受光素子を構成する基板としては、Al、In及びGaのうち少なくとも一つを含む第一窒化物半導体層を形成可能なものであれば特に制限されない。基板の材料の具体例としては、Si、SiC、MgO、Ga23、Al23、ZnO、GaN、InN、AlN、あるいはこれらの混晶が挙げられる。また、基板には不純物が混入していても良い。
基板をなす材料がサファイア、AlN、またはGaNであると、第一窒化物半導体層との格子定数差が小さく、格子整合系で成長させることができるため、貫通転位を少なくできる。
つまり、一態様の受光素子は、基板が、サファイア基板、AlN基板、またはGaN基板であることが好ましい。
<Preferred Aspect 9: Regarding Substrate>
The substrate constituting the light receiving element of one embodiment is not particularly limited as long as it can form a first nitride semiconductor layer containing at least one of Al, In, and Ga. Specific examples of the substrate material include Si, SiC, MgO, Ga 2 O 3 , Al 2 O 3 , ZnO, GaN, InN, AlN, or a mixed crystal thereof. Further, impurities may be mixed in the substrate.
When the material forming the substrate is sapphire, AlN, or GaN, the difference in lattice constant from the first nitride semiconductor layer is small, and the substrate can be grown in a lattice matching system, so that threading dislocations can be reduced.
That is, in the light receiving element of one embodiment, the substrate is preferably a sapphire substrate, an AlN substrate, or a GaN substrate.

<好ましい態様10>
一態様の受光素子は、基板と第一窒化物半導体層との間にAlNからなるバッファ層をさらに備えることが好ましい。これにより、第一窒化物半導体層の結晶性を向上させ、光入射時の受光感度をさらに高めることができる。
<好ましい態様11>
一態様の受光素子は、第二窒化物半導体層上の凹部を挟んだ両側に、ソース電極及びドレイン電極をさらに備えることが好ましい。
ソース電極及びドレイン電極は、第二窒化物半導体層上に形成され、受光素子にバイアス電圧を印加することが可能であり、入射した光によって発生した電流を取り出すことが可能なものであれば特に限定されない。
<Preferred embodiment 10>
The light receiving element of one embodiment preferably further includes a buffer layer made of AlN between the substrate and the first nitride semiconductor layer. Thereby, the crystallinity of the first nitride semiconductor layer can be improved, and the light receiving sensitivity at the time of light incidence can be further increased.
<Preferred embodiment 11>
The light receiving element of one embodiment preferably further includes a source electrode and a drain electrode on both sides of the recess on the second nitride semiconductor layer.
The source electrode and the drain electrode are formed on the second nitride semiconductor layer, can apply a bias voltage to the light receiving element, and can extract current generated by incident light. It is not limited.

<好ましい態様12>
一態様の受光素子は、ソース電極およびドレイン電極がTi、Al、Au、Ni、V、Mo、およびZrのうち少なくとも一つを含む材料からなることが好ましい。これにより、コンタクト抵抗を低減することができる。
<好ましい態様13>
一態様の受光素子は、第二窒化物半導体層上にゲート電極が存在しないことが好ましい。ゲート電極が存在しないことでバイアス電圧の印加が不要となる。また、ゲート電極の形成工程が不要となるため、素子形成の製造コストが軽減される。
<Preferred embodiment 12>
In the light receiving element of one embodiment, the source electrode and the drain electrode are preferably made of a material containing at least one of Ti, Al, Au, Ni, V, Mo, and Zr. Thereby, contact resistance can be reduced.
<Preferred embodiment 13>
In the light receiving element of one embodiment, it is preferable that no gate electrode exists on the second nitride semiconductor layer. The absence of the gate electrode eliminates the need to apply a bias voltage. In addition, since the gate electrode formation step is not required, the manufacturing cost for element formation is reduced.

<好ましい態様14>
一態様の受光素子は、波長200nm以上365nm以下の光が入射されたときのみにソース電極とドレイン電極との間に10-8A/mm以上の電流が流れることが好ましい。これにより、受光波長の選択性が高いものとなる。
<好ましい態様15>
一態様の受光素子は、波長250nmの光が入射されたときの応答速度が1ms以下であることが好ましい。
<Preferred embodiment 14>
In the light receiving element of one embodiment, it is preferable that a current of 10 −8 A / mm or more flows between the source electrode and the drain electrode only when light having a wavelength of 200 nm to 365 nm is incident. Thereby, the selectivity of the light receiving wavelength is high.
<Preferred embodiment 15>
The light receiving element of one embodiment preferably has a response speed of 1 ms or less when light having a wavelength of 250 nm is incident.

<好ましい態様16>
一態様の受光素子は、受光波長が200nm以上365nm以下であり、暗状態での電流値が10-9A/mm以下であることが好ましい。
<好ましい態様17>
一態様の受光素子は、波長200nm以上365nm以下の光が入射されたときの受光感度が1×102A/W以上であることが好ましい。
<Preferred Aspect 16>
The light receiving element of one embodiment preferably has a light receiving wavelength of 200 nm to 365 nm and a current value in a dark state of 10 −9 A / mm or less.
<Preferred embodiment 17>
The light receiving element of one embodiment preferably has a light receiving sensitivity of 1 × 10 2 A / W or more when light having a wavelength of 200 nm to 365 nm is incident.

<表面保護層>
一態様の受光素子は表面保護層を備えていても良い。表面保護層としてはSiO2、SiN、Al23、AlNなどが挙げられるが、この限りではない。
<第一窒化物半導体層がAlまたはGaを含むことの確認方法>
第一窒化物半導体層がAlまたはGaを含むことは、蛍光X線元素分析装置(XRF)、ラザフォード後方散乱分光装置(RBS)、二次イオン質量測定装置(SIMS)およびX線光電子分光装置(XPS)を用いて確認できる。
<Surface protective layer>
The light receiving element of one embodiment may include a surface protective layer. The surface protective layer SiO 2, SiN, Al 2 O 3, but including AlN and the like, not limited.
<Method for confirming that first nitride semiconductor layer contains Al or Ga>
The fact that the first nitride semiconductor layer contains Al or Ga means that an X-ray fluorescence elemental analyzer (XRF), a Rutherford backscattering spectrometer (RBS), a secondary ion mass spectrometer (SIMS), and an X-ray photoelectron spectrometer ( XPS).

<第一窒化物半導体層のAlXGa(1-X)NのAl組成比Xの測定方法>
第一窒化物半導体層のAlXGa(1-X)NのAl組成比(X)は、X線回折(XRD:X−ray Diffaction)法による2θ−ωスキャンおよび逆格子マッピング測定(RSM)を行うことで測定できる。
具体的には、先ず、X線回折で、基板表面の面方位に対応する面の面指数の2θ−ωスキャンを行い、そのピーク位置から第一窒化物半導体層のAlXGa(1-X)Nの格子定数を求める。
<Measurement Method of Al Composition Ratio X of Al X Ga (1-X) N in First Nitride Semiconductor Layer>
The Al composition ratio (X) of Al X Ga (1-X) N in the first nitride semiconductor layer is determined by 2θ-ω scan and reciprocal lattice mapping measurement (RSM) by X-ray diffraction (XRD) method. Can be measured.
Specifically, first, a 2θ-ω scan of the plane index of the surface corresponding to the plane orientation of the substrate surface is performed by X-ray diffraction, and the Al X Ga (1-X of the first nitride semiconductor layer is determined from the peak position. ) Obtain the lattice constant of N.

ここで、基板が所定の面方位に精度良く切断された基板(ジャスト基板)の場合には、上記のようにジャスト基板の面方位に対応する面の面指数の2θ−ωスキャンにおけるピーク位置から格子定数を求めることができる。基板が所定の面方位からオフ角を付与して切断された基板(オフ基板)の場合には、オフ基板の表面からオフ角の分だけずらした角度からX線を入射させて2θ−ωスキャンを行う必要がある。
次に、得られたAlXGa(1-X)Nの格子定数から、Vegard則を用いてAlXGa(1-X)NのX(Al組成比)を決定する。Vegard則は具体的には以下の式(1)で表される。
AB=XaA+(1−X)aB…(1)
Here, in the case where the substrate is a substrate (just substrate) accurately cut in a predetermined plane orientation, as described above, from the peak position in the 2θ-ω scan of the plane index of the plane corresponding to the plane orientation of the just substrate. The lattice constant can be obtained. When the substrate is a substrate cut off by applying an off angle from a predetermined plane orientation (off substrate), X-rays are incident from an angle shifted from the surface of the off substrate by the off angle, and 2θ-ω scan is performed. Need to do.
Then, the lattice constants of the resulting Al X Ga (1-X) N , to determine the Al X Ga (1-X) N of X (Al composition ratio) using Vegard law. Specifically, the Vegard rule is expressed by the following formula (1).
a AB = Xa A + (1-X) a B (1)

(1)式中のaAはAlNの格子定数、aBはGaNの格子定数であり、aABはAlXGa(1-X)Nの格子定数である。ここで、aAやaBは「S.Strite and H.Morko,GaN,AIN,and InN:A review Journal of Vacuum Science&Technology B 10,1237(1992);doi:10.1116/1.585897」に記載された値(aA=3.112Å、aB=3.189Å)を使用することができる。
よって、aA=3.112Å、aB=3.189Åと、得られたAlXGa(1-X)Nの格子定数の値(aAB)とを用い、式(1)からX(Al組成比)の値を求めることができる。
In the formula (1), a A is the lattice constant of AlN, a B is the lattice constant of GaN, and a AB is the lattice constant of Al X Ga (1-X) N. Here, a A and a B are “S. Strite and H. Morko, GaN, AIN, and InN: A review Journal of Vacuum Science & Technology B 10, 1237 (1992); doi: 10.1161 / 1.585897”. The stated values (a A = 3.112 Å, a B = 3.189 Å) can be used.
Therefore, using a A = 3.112 Å, a B = 3.189 Å, and the value of the lattice constant (a AB ) of the obtained Al X Ga (1-X) N, Equation (1) to X (Al The composition ratio can be determined.

一方、2θ−ωスキャンだけでは緩和率を求めることができないため、正確なX(Al組成比)を算出することができない。そこで、(105)面および(204)面などの非対称面において、逆格子マッピングを行うことが有用である。具体的には、最も基板とAlXGa(1-X)N層が逆格子空間で分離される(204)面で、基板の2θ−ωピークが最大となる点を測定する。そこからωを0.01°間隔で変化させながら2θ−ωをスキャンする。これを繰り返し、得られたQx、Qyをマッピングすることにより、AlXGa(1-X)N層が基板に対してどれだけ緩和しているかを算出できる。この緩和率と上記で算出された格子定数を基に、正確なX(Al組成比)を得ることできる。 On the other hand, since the relaxation rate cannot be obtained only by the 2θ-ω scan, an accurate X (Al composition ratio) cannot be calculated. Therefore, it is useful to perform reciprocal lattice mapping on asymmetric surfaces such as the (105) plane and the (204) plane. Specifically, the point at which the 2θ-ω peak of the substrate is maximized is measured on the (204) plane where the substrate and the Al X Ga (1-X) N layer are separated in the reciprocal space. Then, 2θ−ω is scanned while changing ω at intervals of 0.01 °. By repeating this and mapping the obtained Qx and Qy, it is possible to calculate how much the Al X Ga (1-X) N layer is relaxed with respect to the substrate. Based on this relaxation rate and the lattice constant calculated above, accurate X (Al composition ratio) can be obtained.

<受光素子の製造方法>
一態様の受光素子の製造方法について説明する。
受光素子の製造方法は、基板上に有機金属堆積法(MOCVD法)により第一窒化物半導体層を堆積させる工程と、第一窒化物半導体層上に第二窒化物半導体層を堆積させる工程と、第二窒化物半導体層の第一窒化物半導体層とは反対の面(上面)に凹部を形成する工程と、を含む。第二窒化物半導体層の上面に凹部を形成する方法としては、エッチング等種々の方法が挙げられる。
<Method for manufacturing light receiving element>
A method for manufacturing the light receiving element of one embodiment will be described.
A method for manufacturing a light receiving element includes a step of depositing a first nitride semiconductor layer on a substrate by a metal organic deposition method (MOCVD method), and a step of depositing a second nitride semiconductor layer on the first nitride semiconductor layer. Forming a recess on the surface (upper surface) opposite to the first nitride semiconductor layer of the second nitride semiconductor layer. As a method for forming the concave portion on the upper surface of the second nitride semiconductor layer, various methods such as etching may be mentioned.

第一窒化物半導体層及び第二窒化物半導体層を形成する際に、Al原料、In原料及びGa原料のうち少なくとも一方と、N原料とを用いることができる。基板と第一窒化物半導体層との間にバッファ層を形成する場合も、これらの材料を用いることができる。
Al原料としては、例えばトリメチルアルミニウム(TMAl)を用いることができる。In原料としては、例えばトリメチルインジウム(TMIn)を用いることができる。Ga原料としては、例えばトリメチルガリウム(TMGa)やトリエチルガリウム(TEGa)などを用いることができる。N原料としては例えば、アンモニア(NH3)を用いることができる。
When forming the first nitride semiconductor layer and the second nitride semiconductor layer, at least one of an Al material, an In material, and a Ga material, and an N material can be used. These materials can also be used when a buffer layer is formed between the substrate and the first nitride semiconductor layer.
For example, trimethylaluminum (TMAl) can be used as the Al material. For example, trimethylindium (TMIn) can be used as the In raw material. As the Ga material, for example, trimethylgallium (TMGa), triethylgallium (TEGa), or the like can be used. As the N raw material, for example, ammonia (NH 3) can be used.

〔実施形態〕
以下、本発明を実施するための形態(以下、「実施形態」と称する。)について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。また、図は模式的なものであり、各層の厚さは現実のものとは異なり、各層の厚さの比率も現実のものとは異なる。具体的な厚さと寸法は、本実施形態や実施例の説明を参酌して判断すべきものである。
Embodiment
Hereinafter, although the form for implementing this invention (henceforth "embodiment") is demonstrated, this invention is not limited to embodiment shown below. In the embodiment described below, a technically preferable limitation is made for carrying out the present invention, but this limitation is not an essential requirement of the present invention. Further, the figure is schematic, the thickness of each layer is different from the actual one, and the ratio of the thickness of each layer is also different from the actual one. Specific thicknesses and dimensions should be determined in consideration of the description of this embodiment and examples.

図1に示すように、実施形態の受光素子1は、基板2と、基板2上に形成された第一窒化物半導体層3と、第一窒化物半導体層3上に形成された第二窒化物半導体層4と、第二窒化物半導体層4上に形成されたソース電極5、ドレイン電極6を有する。
基板2はサファイア基板からなる。第一窒化物半導体層3は、AlXGa(1-X)N(0.3≦X≦0.6)からなる層であり、基板2と第一窒化物半導体層3との間にAlNからなるバッファ層を有する。第二窒化物半導体層4は、AlYGa(1-Y)N(0.6<Y≦0.9)からなる。第二窒化物半導体層4の上面(第一窒化物半導体層3とは反対側の面)40に凹部41が形成されている。
As shown in FIG. 1, the light receiving element 1 of the embodiment includes a substrate 2, a first nitride semiconductor layer 3 formed on the substrate 2, and a second nitride formed on the first nitride semiconductor layer 3. And a source electrode 5 and a drain electrode 6 formed on the second nitride semiconductor layer 4.
The substrate 2 is made of a sapphire substrate. The first nitride semiconductor layer 3 is a layer made of Al X Ga (1-X) N (0.3 ≦ X ≦ 0.6), and AlN is interposed between the substrate 2 and the first nitride semiconductor layer 3. A buffer layer. The second nitride semiconductor layer 4 is made of Al Y Ga (1-Y) N (0.6 <Y ≦ 0.9). A recess 41 is formed on the upper surface 40 of the second nitride semiconductor layer 4 (the surface opposite to the first nitride semiconductor layer 3).

第二窒化物半導体層4の凹部41以外の位置での厚さ(T1)に対する凹部41の底面41aの位置での第二窒化物半導体層4の厚さ(T2)の比(T2/T1)は、0.05以上0.4以下である。
第一窒化物半導体層3と第二窒化物半導体層4の界面のうち、凹部41の直下の部分34aには電子濃度が1×107cm-2以下の空乏層が存在し、凹部41の直下を除く部分34bには電子濃度が1×108cm-2以上の二次元電子ガス層が存在する。つまり、両層の界面のうち凹部41の直下の部分34aがゲート領域となり、凹部41の直下を除く部分(凹部41を挟んだ両側の部分)34bがソース・ドレイン領域となる。ソース電極5およびドレイン電極6は、上面40の凹部41を挟んだ両側に形成されている。
また、実施形態の受光素子1は、第二窒化物半導体層4の上面40が受光面であり、凹部41の底面41aが露出している。
Ratio (T2 / T1) of the thickness (T2) of the second nitride semiconductor layer 4 at the position of the bottom surface 41a of the recess 41 to the thickness (T1) at a position other than the recess 41 of the second nitride semiconductor layer 4 Is 0.05 or more and 0.4 or less.
Of the interface between the first nitride semiconductor layer 3 and the second nitride semiconductor layer 4, a depletion layer having an electron concentration of 1 × 10 7 cm −2 or less exists in a portion 34 a immediately below the recess 41. In the portion 34b except immediately below, there is a two-dimensional electron gas layer having an electron concentration of 1 × 10 8 cm −2 or more. That is, of the interface between the two layers, a portion 34a immediately below the recess 41 serves as a gate region, and a portion excluding the portion directly below the recess 41 (a portion on both sides of the recess 41) serves as a source / drain region. The source electrode 5 and the drain electrode 6 are formed on both sides of the upper surface 40 across the recess 41.
In the light receiving element 1 of the embodiment, the upper surface 40 of the second nitride semiconductor layer 4 is a light receiving surface, and the bottom surface 41a of the recess 41 is exposed.

本実施形態の受光素子1によれば、暗状態では、2DEG層が空乏層によって電気的に切断されるため、ソース電極5とドレイン電極6との間には極僅かの電流しか流れない。また、底面41aが露出しているため、底面41a上に光を吸収する層を有する受光素子よりも、光入射時の受光感度を高くすることができる。
また、本実施形態の受光素子1によれば、第二窒化物半導体層4の凹部41の膜厚比(T2/T1)が0.05以上0.4以下の範囲にあるため、膜厚比(T2/T1)がこの範囲を外れるものと比較して、暗状態での電流値が極めて低いことと受光感度が高いことの両立という点で特に優れたものになる。
なお、膜厚比(T2/T1)が0.05以上0.4以下の範囲を外れるものであっても、凹部41を有さないものとの比較では、暗状態での電流値が極めて低いことと受光感度が高いことの両立という点で優れたものになる。
According to the light receiving element 1 of the present embodiment, in the dark state, the 2DEG layer is electrically disconnected by the depletion layer, so that only a very small current flows between the source electrode 5 and the drain electrode 6. Further, since the bottom surface 41a is exposed, the light receiving sensitivity at the time of light incidence can be made higher than that of a light receiving element having a layer that absorbs light on the bottom surface 41a.
Further, according to the light receiving element 1 of the present embodiment, since the film thickness ratio (T2 / T1) of the recess 41 of the second nitride semiconductor layer 4 is in the range of 0.05 to 0.4, the film thickness ratio Compared with the case where (T2 / T1) is outside this range, the current value in the dark state is extremely low and the light receiving sensitivity is high, which is particularly excellent.
Even when the film thickness ratio (T2 / T1) is out of the range of 0.05 or more and 0.4 or less, the current value in the dark state is extremely low as compared with that having no recess 41. And excellent light receiving sensitivity.

以下、本発明の実施例および比較例について説明する。
実施例1〜6の受光素子は、図1に示す実施形態の受光素子1と同様に、サファイアからなる基板2、バッファ層、第一窒化物半導体層3、第二窒化物半導体層4、ソース電極5、およびドレイン電極6を備え、第二窒化物半導体層4の上面に凹部41が形成されている。比較例1の受光素子は、これと同じ層構成を有するが、第二窒化物半導体層4の上面に凹部41が形成されていない。
Examples of the present invention and comparative examples will be described below.
The light receiving elements of Examples 1 to 6 are the substrate 2 made of sapphire, the buffer layer, the first nitride semiconductor layer 3, the second nitride semiconductor layer 4, and the source, similarly to the light receiving element 1 of the embodiment shown in FIG. The electrode 5 and the drain electrode 6 are provided, and a recess 41 is formed on the upper surface of the second nitride semiconductor layer 4. The light receiving element of Comparative Example 1 has the same layer configuration as this, but the recess 41 is not formed on the upper surface of the second nitride semiconductor layer 4.

[実施例1]
2インチのサファイアウエハからなる基板2上に、基板の表面温度を1250℃に保った状態で、有機金属堆積法によりAlN層(バッファ層)を3μm成長させた。次に、AlN層の表面温度を1100℃に保った状態で、AlN層上に、AlXGa(1-X)N(X=0.52)からなる第一窒化物半導体層3を500nm成長させた。次に、第一窒化物半導体層3の表面温度を1100℃に保った状態で、第一窒化物半導体層3上に、AlYGa(1-Y)N(Y=0.7)からなる第二窒化物半導体層4を25nm成長させた。
[Example 1]
An AlN layer (buffer layer) of 3 μm was grown on the substrate 2 made of a 2-inch sapphire wafer by an organic metal deposition method while maintaining the surface temperature of the substrate at 1250 ° C. Next, with the surface temperature of the AlN layer kept at 1100 ° C., the first nitride semiconductor layer 3 made of Al x Ga (1-x) N (X = 0.52) is grown to 500 nm on the AlN layer. I let you. Next, with the surface temperature of the first nitride semiconductor layer 3 kept at 1100 ° C., the first nitride semiconductor layer 3 is made of Al Y Ga (1-Y) N (Y = 0.7). The second nitride semiconductor layer 4 was grown to 25 nm.

この状態の基板2について、C−V測定を実施したところ、第一窒化物半導体層3と第二窒化物半導体層4との界面に誘起された二次元電子ガス(2DEG)層のキャリア濃度は8×1012cm-2であった。
次に、この状態の基板2を洗浄し、第一窒化物半導体層3上に、30μm×100μmの開口部を複数有するレジストマスクを形成した。次に、このレジストマスクを用いてAlN層までメサ分離を行うことにより、ウエハ上に形成する複数の素子間を電気的に絶縁した。
When CV measurement was performed on the substrate 2 in this state, the carrier concentration of the two-dimensional electron gas (2DEG) layer induced at the interface between the first nitride semiconductor layer 3 and the second nitride semiconductor layer 4 is It was 8 × 10 12 cm −2 .
Next, the substrate 2 in this state was washed, and a resist mask having a plurality of openings of 30 μm × 100 μm was formed on the first nitride semiconductor layer 3. Next, mesa separation was performed up to the AlN layer using this resist mask to electrically insulate a plurality of elements formed on the wafer.

次に、各素子に対して、第二窒化物半導体層4上に、8μm間隔でソース電極5およびドレイン電極6を蒸着法により形成した。ソース電極5およびドレイン電極6は、Ti/Al/Ni/Auからなる積層構造であって、各層の膜厚がTi:20nm、Al:80nm、Ni:35nm、Au:100nmである。
次に、この状態の基板2の第二窒化物半導体層4上に、2μm(ゲート長)×100μm(ゲート幅)の開口部を複数有するレジストマスクを形成した。複数の開口部は、各素子のソース電極5とドレイン電極6との間となる位置に設けてある。次に、レジストマスクの開口部に存在する第二窒化物半導体層4に対してRIE(反応性イオンエッチング)を行うことで、各素子の第二窒化物半導体層4の上面40に凹部41を形成した。
Next, for each element, the source electrode 5 and the drain electrode 6 were formed on the second nitride semiconductor layer 4 at an interval of 8 μm by an evaporation method. The source electrode 5 and the drain electrode 6 have a laminated structure made of Ti / Al / Ni / Au, and the thickness of each layer is Ti: 20 nm, Al: 80 nm, Ni: 35 nm, Au: 100 nm.
Next, a resist mask having a plurality of openings of 2 μm (gate length) × 100 μm (gate width) was formed on the second nitride semiconductor layer 4 of the substrate 2 in this state. The plurality of openings are provided at positions between the source electrode 5 and the drain electrode 6 of each element. Next, by performing RIE (reactive ion etching) on the second nitride semiconductor layer 4 existing in the opening of the resist mask, the recess 41 is formed on the upper surface 40 of the second nitride semiconductor layer 4 of each element. Formed.

次に、レジストマスクを除去し、サファイアウエハをダイシングすることで、複数の受光素子1を得た。
得られた受光素子の基板面に垂直な断面を透過型電子顕微鏡(TEM)を用いて解析したところ、凹部41の底面41aの位置での第二窒化物半導体層4の厚さ(T2)は2.0nmであった。第二窒化物半導体層4の凹部41以外の位置での厚さ(T1)は25nmであるため、膜厚比(T2/T1)は0.08となる。
得られた受光素子の特性を以下の方法で測定した。
Next, the resist mask was removed, and the sapphire wafer was diced to obtain a plurality of light receiving elements 1.
When a cross section perpendicular to the substrate surface of the obtained light receiving element was analyzed using a transmission electron microscope (TEM), the thickness (T2) of the second nitride semiconductor layer 4 at the position of the bottom surface 41a of the recess 41 was It was 2.0 nm. Since the thickness (T1) of the second nitride semiconductor layer 4 other than the recess 41 is 25 nm, the film thickness ratio (T2 / T1) is 0.08.
The characteristics of the obtained light receiving element were measured by the following method.

光入射時の電流(光電流)の測定には、光源として疑似太陽光光源を用い、分光器を併用した。そして、第二窒化物半導体層4の上面40に波長250nmの紫外光を強度45μW/cm2で照射し、ソース・ドレイン電圧を3Vとした時のソース・ドレイン電極間に流れる電流を測定した。紫外線照射を行わない暗状態での電流(暗電流)の測定も、ソース・ドレイン電圧を3Vとして行った。なお、電流電圧測定には、パラメーターアナライザーおよびプローブ測定器を用いた。
測定の結果、暗電流は1.0×10-10A/mmであり、光電流は3.0×10-5A/mmであった。光電流を換算して得られた受光感度は3.3×105A/Wであった。また、得られた暗電流値に対する光電流値(250nm紫外光照射時の電流値)の比(光電流/暗電流)は3.0×105であった。また、紫外光照射時(光入射時)の応答速度は1μsec以下であった。
For the measurement of current (photocurrent) at the time of light incidence, a pseudo solar light source was used as a light source, and a spectroscope was used in combination. Then, the upper surface 40 of the second nitride semiconductor layer 4 was irradiated with ultraviolet light having a wavelength of 250 nm at an intensity of 45 μW / cm 2 , and the current flowing between the source and drain electrodes when the source / drain voltage was 3 V was measured. Measurement of current (dark current) in a dark state without ultraviolet irradiation was also performed with a source / drain voltage of 3V. In addition, the parameter analyzer and the probe measuring device were used for the current voltage measurement.
As a result of the measurement, the dark current was 1.0 × 10 −10 A / mm, and the photocurrent was 3.0 × 10 −5 A / mm. The light receiving sensitivity obtained by converting the photocurrent was 3.3 × 10 5 A / W. The ratio (photocurrent / dark current) of the photocurrent value (current value when irradiated with 250 nm ultraviolet light) to the obtained dark current value was 3.0 × 10 5 . Moreover, the response speed at the time of ultraviolet light irradiation (at the time of light incidence) was 1 microsecond or less.

[実施例2]
第二窒化物半導体層4の上面40に凹部41を形成する工程で、RIEによるエッチング深さを実施例1よりも浅くして、凹部41の底面41aの位置での第二窒化物半導体層4の厚さ(T2)を3.0nmにした。第二窒化物半導体層4の凹部41以外の位置での厚さ(T1)は25nmであるため、膜厚比(T2/T1)は0.12となる。これ以外の点は実施例1と同じ方法で受光素子1を得た。
得られた受光素子の特性を実施例1に記載の方法で測定したところ、暗電流は3.0×10-10A/mmであり、光電流は3.0×10-5A/mmであった。光電流を換算して得られた受光感度は3.3×105A/Wであった。また、得られた暗電流値に対する光電流値(250nm紫外光照射時の電流値)の比(光電流/暗電流)は1.0×105であった。また、紫外光照射時(光入射時)の応答速度は1μsec以下であった。
[Example 2]
In the step of forming the recess 41 on the upper surface 40 of the second nitride semiconductor layer 4, the etching depth by RIE is made shallower than that of the first embodiment, and the second nitride semiconductor layer 4 at the position of the bottom surface 41 a of the recess 41 is formed. The thickness (T2) was set to 3.0 nm. Since the thickness (T1) of the second nitride semiconductor layer 4 other than the recess 41 is 25 nm, the film thickness ratio (T2 / T1) is 0.12. Except for this point, the light receiving element 1 was obtained in the same manner as in Example 1.
When the characteristics of the obtained light receiving element were measured by the method described in Example 1, the dark current was 3.0 × 10 −10 A / mm, and the photocurrent was 3.0 × 10 −5 A / mm. there were. The light receiving sensitivity obtained by converting the photocurrent was 3.3 × 10 5 A / W. The ratio (photocurrent / dark current) of the photocurrent value (current value when irradiated with 250 nm ultraviolet light) to the obtained dark current value was 1.0 × 10 5 . Moreover, the response speed at the time of ultraviolet light irradiation (at the time of light incidence) was 1 microsecond or less.

[実施例3]
第二窒化物半導体層4の上面40に凹部41を形成する工程で、RIEによるエッチング深さを実施例1よりも浅くして、凹部41の底面41aの位置での第二窒化物半導体層4の厚さ(T2)を5.0nmにした。第二窒化物半導体層4の凹部41以外の位置での厚さ(T1)は25nmであるため、膜厚比(T2/T1)は0.20となる。これ以外の点は実施例1と同じ方法で受光素子1を得た。
得られた受光素子の特性を実施例1に記載の方法で測定したところ、暗電流は5.0×10-10A/mmであり、光電流は3.0×10-5A/mmであった。光電流を換算して得られた受光感度は3.3×104A/Wであった。また、得られた暗電流値に対する光電流値(250nm紫外光照射時の電流値)の比(光電流/暗電流)は6.0×104であった。また、紫外光照射時(光入射時)の応答速度は1μsec以下であった。
[Example 3]
In the step of forming the recess 41 on the upper surface 40 of the second nitride semiconductor layer 4, the etching depth by RIE is made shallower than that of the first embodiment, and the second nitride semiconductor layer 4 at the position of the bottom surface 41 a of the recess 41 is formed. The thickness (T2) was set to 5.0 nm. Since the thickness (T1) of the second nitride semiconductor layer 4 other than the recess 41 is 25 nm, the film thickness ratio (T2 / T1) is 0.20. Except for this point, the light receiving element 1 was obtained in the same manner as in Example 1.
When the characteristics of the obtained light receiving element were measured by the method described in Example 1, the dark current was 5.0 × 10 −10 A / mm and the photocurrent was 3.0 × 10 −5 A / mm. there were. The light receiving sensitivity obtained by converting the photocurrent was 3.3 × 10 4 A / W. The ratio (photocurrent / dark current) of the photocurrent value (current value when irradiated with 250 nm ultraviolet light) to the obtained dark current value was 6.0 × 10 4 . Moreover, the response speed at the time of ultraviolet light irradiation (at the time of light incidence) was 1 microsecond or less.

[実施例4]
第二窒化物半導体層4の上面40に凹部41を形成する工程で、RIEによるエッチング深さを実施例1よりも浅くして、凹部41の底面41aの位置での第二窒化物半導体層4の厚さ(T2)を9.0nmにした。第二窒化物半導体層4の凹部41以外の位置での厚さ(T1)は25nmであるため、膜厚比(T2/T1)は0.36となる。これ以外の点は実施例1と同じ方法で受光素子1を得た。
得られた受光素子の特性を実施例1に記載の方法で測定したところ、暗電流は8.0×10-10A/mmであり、光電流は3.0×10-5A/mmであった。光電流を換算して得られた受光感度は3.3×104A/Wであった。また、得られた暗電流値に対する光電流値(250nm紫外光照射時の電流値)の比(光電流/暗電流)は3.8×104であった。また、紫外光照射時(光入射時)の応答速度は1μsec以下であった。
[Example 4]
In the step of forming the recess 41 on the upper surface 40 of the second nitride semiconductor layer 4, the etching depth by RIE is made shallower than that of the first embodiment, and the second nitride semiconductor layer 4 at the position of the bottom surface 41 a of the recess 41 is formed. The thickness (T2) was set to 9.0 nm. Since the thickness (T1) of the second nitride semiconductor layer 4 other than the recess 41 is 25 nm, the film thickness ratio (T2 / T1) is 0.36. Except for this point, the light receiving element 1 was obtained in the same manner as in Example 1.
When the characteristics of the obtained light receiving element were measured by the method described in Example 1, the dark current was 8.0 × 10 −10 A / mm, and the photocurrent was 3.0 × 10 −5 A / mm. there were. The light receiving sensitivity obtained by converting the photocurrent was 3.3 × 10 4 A / W. The ratio (photocurrent / dark current) of the photocurrent value (current value when irradiated with 250 nm ultraviolet light) to the obtained dark current value was 3.8 × 10 4 . Moreover, the response speed at the time of ultraviolet light irradiation (at the time of light incidence) was 1 microsecond or less.

[実施例5]
第二窒化物半導体層4の上面40に凹部41を形成する工程で、RIEによるエッチング深さを実施例1よりも浅くして、凹部41の底面41aの位置での第二窒化物半導体層4の厚さ(T2)を12.5nmにした。第二窒化物半導体層4の凹部41以外の位置での厚さ(T1)は25nmであるため、膜厚比(T2/T1)は0.50となる。これ以外の点は実施例1と同じ方法で受光素子1を得た。
得られた受光素子の特性を実施例1に記載の方法で測定したところ、暗電流は3.0×10-9A/mmであり、光電流は3.0×10-5A/mmであった。光電流を換算して得られた受光感度は3.3×105A/Wであった。また、得られた暗電流値に対する光電流値(250nm紫外光照射時の電流値)の比(光電流/暗電流)は1.0×10であった。また、紫外光照射時(光入射時)の応答速度は1μsec以下であった。
[Example 5]
In the step of forming the recess 41 on the upper surface 40 of the second nitride semiconductor layer 4, the etching depth by RIE is made shallower than that of the first embodiment, and the second nitride semiconductor layer 4 at the position of the bottom surface 41 a of the recess 41 is formed. The thickness (T2) was 12.5 nm. Since the thickness (T1) of the second nitride semiconductor layer 4 other than the recess 41 is 25 nm, the film thickness ratio (T2 / T1) is 0.50. Except for this point, the light receiving element 1 was obtained in the same manner as in Example 1.
When the characteristics of the obtained light receiving element were measured by the method described in Example 1, the dark current was 3.0 × 10 −9 A / mm, and the photocurrent was 3.0 × 10 −5 A / mm. It was. The light receiving sensitivity obtained by converting the photocurrent was 3.3 × 10 5 A / W. The ratio (photocurrent / dark current) of the photocurrent value (current value when irradiated with 250 nm ultraviolet light) to the obtained dark current value was 1.0 × 10 4 . Moreover, the response speed at the time of ultraviolet light irradiation (at the time of light incidence) was 1 microsecond or less.

[実施例6]
第二窒化物半導体層4の上面40に凹部41を形成する工程で、RIEによるエッチング深さを実施例1よりも深くして、凹部41の底面41aの位置での第二窒化物半導体層4の厚さ(T2)を1.0nmにした。第二窒化物半導体層4の凹部41以外の位置での厚さ(T1)は25nmであるため、膜厚比(T2/T1)は0.04となる。これ以外の点は実施例1と同じ方法で受光素子1を得た。
得られた受光素子の特性を実施例1に記載の方法で測定したところ、暗電流は9.0×10-11A/mmであり、光電流は8.0×10-6A/mmであった。光電流を換算して得られた受光感度は8.9×104A/Wであった。また、得られた暗電流値に対する光電流値(250nm紫外光照射時の電流値)の比(光電流/暗電流)は8.9×104であった。また、紫外光照射時(光入射時)の応答速度は1μsec以下であった。
[Example 6]
In the step of forming the recess 41 on the upper surface 40 of the second nitride semiconductor layer 4, the etching depth by RIE is made deeper than that of the first embodiment, and the second nitride semiconductor layer 4 at the position of the bottom surface 41 a of the recess 41 is formed. The thickness (T2) was set to 1.0 nm. Since the thickness (T1) of the second nitride semiconductor layer 4 other than the recess 41 is 25 nm, the film thickness ratio (T2 / T1) is 0.04. Except for this point, the light receiving element 1 was obtained in the same manner as in Example 1.
When the characteristics of the obtained light receiving element were measured by the method described in Example 1, the dark current was 9.0 × 10 −11 A / mm, and the photocurrent was 8.0 × 10 −6 A / mm. there were. The light receiving sensitivity obtained by converting the photocurrent was 8.9 × 10 4 A / W. The ratio (photocurrent / dark current) of the photocurrent value (current value when irradiated with 250 nm ultraviolet light) to the obtained dark current value was 8.9 × 10 4 . Moreover, the response speed at the time of ultraviolet light irradiation (at the time of light incidence) was 1 microsecond or less.

[比較例1]
第二窒化物半導体層4の上面40に凹部41を形成する工程を行わなかった。これ以外の点は実施例1と同じ方法で受光素子1を得た。
得られた受光素子の特性を実施例1に記載の方法で測定したところ、暗電流は3.0×10-5A/mmであり、光電流は3.0×10-5A/mmであった。光電流を換算して得られた受光感度は3.3×105A/Wであった。また、得られた暗電流値に対する光電流値(250nm紫外光照射時の電流値)の比(光電流/暗電流)は1.0であった。また、紫外光照射時(光入射時)の応答速度は1μsec以下であった。
[Comparative Example 1]
The step of forming the recess 41 on the upper surface 40 of the second nitride semiconductor layer 4 was not performed. Except for this point, the light receiving element 1 was obtained in the same manner as in Example 1.
When the characteristics of the obtained light receiving element were measured by the method described in Example 1, the dark current was 3.0 × 10 −5 A / mm, and the photocurrent was 3.0 × 10 −5 A / mm. there were. The light receiving sensitivity obtained by converting the photocurrent was 3.3 × 10 5 A / W. The ratio (photocurrent / dark current) of the photocurrent value (current value when irradiated with 250 nm ultraviolet light) to the obtained dark current value was 1.0. Moreover, the response speed at the time of ultraviolet light irradiation (at the time of light incidence) was 1 microsecond or less.

実施例1〜6および比較例1の受光素子を構成する第二窒化物半導体層の構成と、測定により得られた各受光素子の性能を下記の表1にまとめて示す。   The structure of the second nitride semiconductor layer constituting the light receiving elements of Examples 1 to 6 and Comparative Example 1 and the performance of each light receiving element obtained by measurement are summarized in Table 1 below.

Figure 2018056225
Figure 2018056225

この結果から以下のことが分かる。
第二窒化物半導体層4の上面40に凹部41を有する実施例1〜6の受光素子は、凹部41を有さない比較例1の受光素子と比較して、暗電流値が極めて低い。実施例1〜6の受光素子の光電流値および受光感度は、比較例1の受光素子の光電流値および受光感度と同じである。つまり、実施例1〜6の受光素子は、暗状態での電流値が極めて低く、光入射時の受光感度が高い受光素子である。
From this result, the following can be understood.
The light receiving elements of Examples 1 to 6 having the recesses 41 on the upper surface 40 of the second nitride semiconductor layer 4 have an extremely low dark current value as compared with the light receiving element of Comparative Example 1 that does not have the recesses 41. The photocurrent value and the light receiving sensitivity of the light receiving elements of Examples 1 to 6 are the same as the photocurrent value and the light receiving sensitivity of the light receiving element of Comparative Example 1. That is, the light receiving elements of Examples 1 to 6 are light receiving elements that have extremely low current values in the dark state and high light receiving sensitivity when light is incident.

実施例1〜6の受光素子のうち、実施例5の受光素子の暗電流値は、実施例1〜4の受光素子よりも一桁大きい。また、実施例6の受光素子では、暗電流値が実施例1〜4の受光素子よりも一桁小さいが、光電流値および受光感度が実施例1〜5の受光素子よりも一桁小さい。そして、実施例1〜4の受光素子では、第二窒化物半導体層4の凹部41の膜厚比(T2/T1)が0.05以上0.4以下の範囲にあるが、実施例5および実施例6の受光素子では膜厚比(T2/T1)がこの範囲外にある。
よって、膜厚比(T2/T1)が0.05以上0.4以下の範囲にある受光素子は、膜厚比(T2/T1)がこの範囲外にある受光素子よりも、暗状態での電流値が極めて低いことと光入射時の受光感度が高いことの両立という点で優れている。
Among the light receiving elements of Examples 1 to 6, the dark current value of the light receiving element of Example 5 is one digit larger than that of the light receiving elements of Examples 1 to 4. In the light receiving element of Example 6, the dark current value is an order of magnitude smaller than that of the light receiving elements of Examples 1 to 4, but the photocurrent value and the light receiving sensitivity are an order of magnitude smaller than those of the light receiving elements of Examples 1 to 5. And in the light receiving element of Examples 1-4, the film thickness ratio (T2 / T1) of the recessed part 41 of the 2nd nitride semiconductor layer 4 exists in the range of 0.05-0.4, but Example 5 and In the light receiving element of Example 6, the film thickness ratio (T2 / T1) is outside this range.
Therefore, a light receiving element having a film thickness ratio (T2 / T1) in the range of 0.05 to 0.4 is in a darker state than a light receiving element having a film thickness ratio (T2 / T1) outside this range. This is excellent in that both the current value is extremely low and the light receiving sensitivity at the time of light incidence is high.

1 受光素子
2 基板
3 第一窒化物半導体層
34a 第一窒化物半導体層と第二窒化物半導体層の界面のうち、凹部の直下の部分
34b 第一窒化物半導体層と第二窒化物半導体層の界面のうち、凹部の直下を除く部分
4 第二窒化物半導体層
40 第二窒化物半導体層の上面(第一窒化物半導体層とは反対側の面)
41 凹部
41a 凹部の底面
5 ソース電極
6 ドレイン電極
DESCRIPTION OF SYMBOLS 1 Light receiving element 2 Board | substrate 3 1st nitride semiconductor layer 34a The part directly under a recessed part 34b among the interface of a 1st nitride semiconductor layer and a 2nd nitride semiconductor layer 34b 1st nitride semiconductor layer and a 2nd nitride semiconductor layer 4 of the interface except for the portion immediately below the recess 4 Second nitride semiconductor layer 40 Upper surface of the second nitride semiconductor layer (surface opposite to the first nitride semiconductor layer)
41 recess 41a bottom of recess 5 source electrode 6 drain electrode

Claims (18)

基板と、
前記基板上に形成され、Al、In及びGaのうち少なくとも一つを含む窒化物半導体からなる第一窒化物半導体層と、
前記第一窒化物半導体層上に形成された第二窒化物半導体層であって、Al、In及びGaのうち少なくとも一つを含む窒化物半導体からなり、前記第一窒化物半導体層よりも格子定数が小さく、前記第一窒化物半導体層とは反対側の面に凹部を有する第二窒化物半導体層と、
を有する受光素子。
A substrate,
A first nitride semiconductor layer formed on the substrate and made of a nitride semiconductor including at least one of Al, In, and Ga;
A second nitride semiconductor layer formed on the first nitride semiconductor layer, comprising a nitride semiconductor containing at least one of Al, In, and Ga, and having a lattice greater than that of the first nitride semiconductor layer A second nitride semiconductor layer having a small constant and having a recess on a surface opposite to the first nitride semiconductor layer;
A light receiving element.
前記第二窒化物半導体層の前記凹部以外の位置での厚さ(T1)に対する前記凹部の底面位置での厚さ(T2)の比(T2/T1)が0.05以上0.4以下である請求項1記載の受光素子。   The ratio (T2 / T1) of the thickness (T2) at the bottom surface position of the recess to the thickness (T1) at a position other than the recess of the second nitride semiconductor layer is 0.05 or more and 0.4 or less. The light receiving element according to claim 1. 前記第一窒化物半導体層と前記第二窒化物半導体層の界面のうち、前記凹部の直下を除く部分に、電子濃度が1×108cm-2以上の二次元電子ガス層が存在する請求項1または請求項2記載の受光素子。 A two-dimensional electron gas layer having an electron concentration of 1 × 10 8 cm −2 or more exists in a portion of the interface between the first nitride semiconductor layer and the second nitride semiconductor layer except for a portion directly below the recess. Item 3. The light receiving element according to item 1 or 2. 前記界面のうち、前記凹部の直下の部分には、電子濃度が1×107cm-2以下の空乏層が存在する請求項3記載の受光素子。 The light receiving element according to claim 3, wherein a depletion layer having an electron concentration of 1 × 10 7 cm −2 or less exists in a portion of the interface immediately below the recess. 前記第一窒化物半導体層はAlXGa(1-X)N(0≦X<1)からなる層であり、
前記第二窒化物半導体層はAlYGa(1-Y)N(0≦X<Y≦1)からなる層である請求項1〜4の何れか一項に記載の受光素子。
The first nitride semiconductor layer is a layer made of Al x Ga (1-x) N (0 ≦ X <1),
5. The light receiving element according to claim 1, wherein the second nitride semiconductor layer is a layer made of Al Y Ga (1-Y) N (0 ≦ X <Y ≦ 1).
前記第一窒化物半導体層はAlXGa(1-X)N(0.3≦X≦0.6)からなる層であり、
前記第二窒化物半導体層はAlYGa(1-Y)N(0.6<Y≦0.9)からなる層である1〜4の何れか一項に記載の受光素子。
The first nitride semiconductor layer is a layer made of Al x Ga (1-x) N (0.3 ≦ X ≦ 0.6),
5. The light receiving element according to claim 1, wherein the second nitride semiconductor layer is a layer made of Al Y Ga (1-Y) N (0.6 <Y ≦ 0.9).
前記第一窒化物半導体層と前記第二窒化物半導体層の界面のうち、前記凹部の直下の部分がゲート領域であり、前記凹部を挟んだ両側の部分がソース・ドレイン領域であり、ゲート長となる前記凹部の寸法が0.5μm以上5μm以下である請求項1〜6の何れか一項に記載の受光素子。   Of the interface between the first nitride semiconductor layer and the second nitride semiconductor layer, the portion immediately below the recess is a gate region, the portions on both sides sandwiching the recess are source / drain regions, and the gate length The light receiving element according to any one of claims 1 to 6, wherein the size of the recess is 0.5 μm or more and 5 μm or less. 前記第二窒化物半導体層の膜厚が10nm以上50nm以下である請求項1〜7の何れか一項に記載の受光素子。   The light receiving element according to claim 1, wherein the second nitride semiconductor layer has a thickness of 10 nm to 50 nm. 前記凹部の底面が露出している請求項1〜8の何れか一項に記載の受光素子。   The light receiving element according to claim 1, wherein a bottom surface of the concave portion is exposed. 前記基板は、サファイア基板、AlN基板、またはGaN基板である請求項1〜9の何れか一項に記載の受光素子。   The light receiving element according to claim 1, wherein the substrate is a sapphire substrate, an AlN substrate, or a GaN substrate. 前記基板と前記第一窒化物半導体層との間にAlNからなるバッファ層をさらに備える請求項1〜10の何れか一項に記載の受光素子。   The light receiving element according to claim 1, further comprising a buffer layer made of AlN between the substrate and the first nitride semiconductor layer. 前記第二窒化物半導体層上の前記凹部を挟んだ両側に、ソース電極及びドレイン電極をさらに備える請求項1〜11の何れか一項に記載の受光素子。   The light receiving element according to any one of claims 1 to 11, further comprising a source electrode and a drain electrode on both sides of the concave portion on the second nitride semiconductor layer. 前記ソース電極およびドレイン電極は、Ti、Al、Au、Ni、V、Mo、およびZrのうち少なくとも一つを含む材料からなる請求項12記載の受光素子。   The light receiving element according to claim 12, wherein the source electrode and the drain electrode are made of a material containing at least one of Ti, Al, Au, Ni, V, Mo, and Zr. 前記第二窒化物半導体層上にゲート電極が存在しない請求項1〜13の何れか一項に記載の受光素子。   The light receiving element according to claim 1, wherein no gate electrode is present on the second nitride semiconductor layer. 波長200nm以上365nm以下の光が入射されたときのみに前記ソース電極と前記ドレイン電極との間に10-8A/mm以上の電流が流れる請求項12または13に記載の受光素子。 14. The light receiving element according to claim 12, wherein a current of 10 −8 A / mm or more flows between the source electrode and the drain electrode only when light having a wavelength of 200 nm to 365 nm is incident. 波長250nmの光が入射されたときの応答速度が1ms以下である請求項1〜15の何れか一項に記載の受光素子。   The light receiving element according to any one of claims 1 to 15, wherein a response speed when light having a wavelength of 250 nm is incident is 1 ms or less. 受光波長が200nm以上365nm以下であり、暗状態での電流値が10-9A/mm以下である請求項1〜16の何れか一項に記載の受光素子。 The light receiving element according to claim 1, wherein the light receiving wavelength is 200 nm or more and 365 nm or less, and the current value in the dark state is 10 −9 A / mm or less. 波長200nm以上365nm以下の光が入射されたときの受光感度が1×102A/W以上である請求項1〜17の何れか一項に記載の受光素子。 The light receiving element according to claim 1, wherein the light receiving sensitivity when light having a wavelength of 200 nm to 365 nm is incident is 1 × 10 2 A / W or more.
JP2016188004A 2016-09-27 2016-09-27 Light receiving element Active JP6876290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016188004A JP6876290B2 (en) 2016-09-27 2016-09-27 Light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016188004A JP6876290B2 (en) 2016-09-27 2016-09-27 Light receiving element

Publications (2)

Publication Number Publication Date
JP2018056225A true JP2018056225A (en) 2018-04-05
JP6876290B2 JP6876290B2 (en) 2021-05-26

Family

ID=61835898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016188004A Active JP6876290B2 (en) 2016-09-27 2016-09-27 Light receiving element

Country Status (1)

Country Link
JP (1) JP6876290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068283A (en) * 2018-10-24 2020-04-30 旭化成株式会社 Light receiving/emitting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183733A (en) * 2003-12-19 2005-07-07 Furukawa Electric Co Ltd:The High electron mobility transistor
JP2007311475A (en) * 2006-05-17 2007-11-29 Univ Of Tokushima Semiconductor photodetector
WO2007135739A1 (en) * 2006-05-24 2007-11-29 Meijo University Ultraviolet photosensor
JP2008198783A (en) * 2007-02-13 2008-08-28 Sharp Corp Field-effect transistor
JP2009099691A (en) * 2007-10-15 2009-05-07 Sanken Electric Co Ltd Method of manufacturing field-effect semiconductor device
JP2012033773A (en) * 2010-07-30 2012-02-16 Panasonic Electric Works Co Ltd Semiconductor element and semiconductor device
US20140070272A1 (en) * 2011-05-02 2014-03-13 Forschungsverbund Berlin E.V. Photodetector for ultraviolet radiation, having a high sensitivity and a low dark current

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183733A (en) * 2003-12-19 2005-07-07 Furukawa Electric Co Ltd:The High electron mobility transistor
JP2007311475A (en) * 2006-05-17 2007-11-29 Univ Of Tokushima Semiconductor photodetector
WO2007135739A1 (en) * 2006-05-24 2007-11-29 Meijo University Ultraviolet photosensor
JP2008198783A (en) * 2007-02-13 2008-08-28 Sharp Corp Field-effect transistor
JP2009099691A (en) * 2007-10-15 2009-05-07 Sanken Electric Co Ltd Method of manufacturing field-effect semiconductor device
JP2012033773A (en) * 2010-07-30 2012-02-16 Panasonic Electric Works Co Ltd Semiconductor element and semiconductor device
US20140070272A1 (en) * 2011-05-02 2014-03-13 Forschungsverbund Berlin E.V. Photodetector for ultraviolet radiation, having a high sensitivity and a low dark current

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068283A (en) * 2018-10-24 2020-04-30 旭化成株式会社 Light receiving/emitting device
JP7335065B2 (en) 2018-10-24 2023-08-29 旭化成株式会社 light receiving and emitting device

Also Published As

Publication number Publication date
JP6876290B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
KR101772290B1 (en) Superlattice buffer structure for gallium nitride transistors
JP5892495B2 (en) Method for forming Ga2O3-based crystal film and crystal laminated structure
US10074736B2 (en) Semiconductor device
US9536949B2 (en) Nitride semiconductor device comprising nitride semiconductor regrowth layer
WO2017077806A1 (en) Epitaxial substrate for semiconductor elements, semiconductor element, and production method for epitaxial substrates for semiconductor elements
Zhang et al. Space charge profile study of AlGaN-based p-type distributed polarization doped claddings without impurity doping for UV-C laser diodes
US20230045660A1 (en) Nitride semiconductor device
TW201539739A (en) Nitride semiconductor element and nitride semiconductor wafer
KR102104062B1 (en) Substrate structure, complementary metal oxide semiconductor device and method of manufacturing complementary metal oxide semiconductor
US10332975B2 (en) Epitaxial substrate for semiconductor device and method for manufacturing same
US20160079371A1 (en) Semiconductor device
WO2017077805A1 (en) Epitaxial substrate for semiconductor elements, semiconductor element, and production method for epitaxial substrates for semiconductor elements
KR102510589B1 (en) Semiconductor device and production method therefor
O’Reilly et al. Room-temperature ultraviolet luminescence from γ-CuCl grown on near lattice-matched silicon
JP6876290B2 (en) Light receiving element
KR101256467B1 (en) Nitride baced heterostructure semiconductor device and manufacturing method thereof
JP6506453B2 (en) MSM type UV light receiving element, MSM type UV light receiving device
JP6628133B2 (en) UV light receiving element
US10381471B2 (en) Semiconductor device and manufacturing method
JP6614486B2 (en) UV detector
WO2020090870A1 (en) Compound semiconductor device, compound semiconductor substrate, and method for manufacturing compound semiconductor device
Brazzini et al. Impact of AlN spacer on metal–semiconductor–metal Pt–InAlGaN/GaN heterostructures for ultraviolet detection
Lv et al. An ultrahigh performance InGaN/GaN visible-light phototransducer based on polarization induced heterointerface barrier and minority carrier localization
JP7076092B2 (en) Method for manufacturing ultraviolet light receiving element and ultraviolet light receiving element
JP2022121193A (en) Ultraviolet light receiving element and manufacturing method of ultraviolet light receiving element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210416

R150 Certificate of patent or registration of utility model

Ref document number: 6876290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6876290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250