JP2018054914A - Optical system and optical device having the same - Google Patents

Optical system and optical device having the same Download PDF

Info

Publication number
JP2018054914A
JP2018054914A JP2016191333A JP2016191333A JP2018054914A JP 2018054914 A JP2018054914 A JP 2018054914A JP 2016191333 A JP2016191333 A JP 2016191333A JP 2016191333 A JP2016191333 A JP 2016191333A JP 2018054914 A JP2018054914 A JP 2018054914A
Authority
JP
Japan
Prior art keywords
optical
light
optical system
optical element
light shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016191333A
Other languages
Japanese (ja)
Inventor
友彦 石橋
Tomohiko Ishibashi
友彦 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016191333A priority Critical patent/JP2018054914A/en
Publication of JP2018054914A publication Critical patent/JP2018054914A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical system which includes an optical element made of an organic material and offers superior environmental resistance.SOLUTION: An optical system 100 is configured to form an image of an object on a light receiving plane IP, and includes an optical element OE1 made of an organic material, light shielding means MR1 disposed on the object side with respect to the optical element OE1, and an aperture stop. The light shielding means MR1 has a non-circular opening. A distance hp between an optical axis and a point at which one of rays directed to a maximum off-axis image height in the light receiving plane IP that passes through the center of the aperture stop SP passes through the opening of the light shielding means MR1, a maximum distance ha between the optical axis and a point at which a ray heading to an on-axis image height in the light receiving plane IP passes the opening of the light shielding means MR1, and a distance Lr between the light shielding means MR1 and an incident surface of the optical element OE1 on the optical axis satisfy a condition expressed as: 0.020<tan(ha/Lr)/tan(hp/Lr)<0.95.SELECTED DRAWING: Figure 1

Description

本発明は、有機材料で構成される光学素子を有する光学系に関し、例えば、銀塩フィルム用カメラ、デジタルスチルカメラ、ビデオカメラ、望遠鏡、双眼鏡、プロジェクター、デジタル複写機等の光学機器に好適なものである。   The present invention relates to an optical system having an optical element made of an organic material, and is suitable for optical equipment such as a silver salt film camera, a digital still camera, a video camera, a telescope, binoculars, a projector, and a digital copying machine. It is.

近年、カメラ等の光学機器に用いられる光学系(撮影光学系)として、小型軽量でかつ高い光学性能を有するものが求められている。特許文献1及び2には、それぞれ回折光学素子や異常分散特性を有する光学素子を用いることにより、小型化を実現しつつ色収差を良好に補正することができる光学系が記載されている。   In recent years, an optical system (photographing optical system) used in an optical apparatus such as a camera is required to be small and light and have high optical performance. Patent Documents 1 and 2 describe optical systems that can satisfactorily correct chromatic aberration while realizing miniaturization by using diffractive optical elements and optical elements having anomalous dispersion characteristics, respectively.

特開2006−317605号公報JP 2006-317605 A 特開2010−117472号公報JP 2010-117472 A

しかしながら、特許文献1及び2に記載の光学系においては、有機材料から成る光学素子を採用しているため、紫外線が入射した場合にその光学素子の光学特性や形状が変化し、良好な光学性能が得られなくなってしまう可能性がある。なお、特許文献1に記載の光学系においては、最も物体側のレンズに多層膜から成る紫外線カットコートが設けられているが、この構成では入射角が大きい紫外線に対する遮蔽効果が小さく、耐環境性が必ずしも十分ではなかった。   However, since the optical systems described in Patent Documents 1 and 2 employ an optical element made of an organic material, the optical characteristics and shape of the optical element change when ultraviolet light is incident thereon, and the optical performance is excellent. May not be obtained. In the optical system described in Patent Document 1, an ultraviolet cut coat composed of a multilayer film is provided on the lens closest to the object side. With this configuration, the shielding effect against ultraviolet rays having a large incident angle is small, and the environment resistance is improved. There wasn't always enough.

本発明は、有機材料で構成される光学素子を有する光学系において、優れた耐環境性を実現することを目的とする。   An object of the present invention is to realize excellent environmental resistance in an optical system having an optical element made of an organic material.

上記目的を達成するための、本発明の一側面としての光学系は、物体を受光面に結像する光学系であって、有機材料で構成される光学素子と、該光学素子よりも物体側に配置された遮光手段と、開口絞りと、を有し、前記遮光手段には、非円形の開口が設けられており、前記受光面における最軸外像高に向かう光束のうち前記開口絞りの中心を通過する光線が前記遮光手段の開口を通過する位置と光軸との距離をhp、前記受光面における軸上像高に向かう光束が前記遮光手段の開口を通過する位置と光軸との最大距離をha、前記遮光手段と前記光学素子の入射面との光軸上での距離をLr、とするとき、0.020<tan−1(ha/Lr)/tan−1(hp/Lr)<0.95なる条件式を満足することを特徴とする。 In order to achieve the above object, an optical system according to one aspect of the present invention is an optical system that forms an image of an object on a light-receiving surface, an optical element made of an organic material, and an object side of the optical element. A non-circular aperture provided in the light-shielding means, and the light-shielding means has a non-circular aperture. The distance between the optical axis and the position where the light beam passing through the center passes through the opening of the light shielding means, and the optical axis between the position where the light beam traveling toward the axial image height on the light receiving surface passes through the opening of the light shielding means and the optical axis. When the maximum distance is ha and the distance on the optical axis between the light shielding means and the incident surface of the optical element is Lr, 0.020 <tan −1 (ha / Lr) / tan −1 (hp / Lr) ) <0.95 is satisfied.

本発明によれば、有機材料で構成される光学素子を有する光学系において、優れた耐環境性を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the outstanding environmental resistance is realizable in the optical system which has an optical element comprised with an organic material.

本発明の実施例1に係る光学系の無限遠物体の合焦状態における断面図Sectional drawing in the in-focus state of the object at infinity of the optical system which concerns on Example 1 of this invention 実施例1に係る遮光手段の模式図Schematic diagram of the light shielding means according to the first embodiment. 実施例1に係る紫外線反射手段の透過率特性を示す図The figure which shows the transmittance | permeability characteristic of the ultraviolet reflective means based on Example 1 本発明の実施例2に係る光学系の無限遠物体の合焦状態における断面図Sectional drawing in the in-focus state of the object at infinity of the optical system which concerns on Example 2 of this invention 実施例2に係る遮光手段の模式図Schematic diagram of light shielding means according to embodiment 2. 本発明の実施例3に係る光学系の無限遠物体の合焦状態における断面図Sectional drawing in the in-focus state of the object at infinity of the optical system which concerns on Example 3 of this invention 実施例3に係る遮光手段の模式図Schematic diagram of light shielding means according to embodiment 3 本発明の実施形態に係る光学機器の斜視図The perspective view of the optical apparatus which concerns on embodiment of this invention

以下、本発明の好ましい実施形態について図面を参照しながら説明する。なお、各図面は、便宜的に実際とは異なる縮尺で描かれている場合がある。また、各図面において、同一の部材については同一の参照番号を付し、重複する説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Each drawing may be drawn on a different scale for convenience. Moreover, in each drawing, the same reference number is attached | subjected about the same member and the overlapping description is abbreviate | omitted.

図1は、本実施形態に係る光学系100の光軸OAを含む断面内における要部概略図(要部断面図)である。本実施形態に係る光学系100は、物体を像面IPに配置された受光面に結像する光学系であって、有機材料で構成される光学素子OE1と、光学素子OE1よりも物体側に配置された遮光手段MR1と、開口絞りSPと、を有している。遮光手段MR1には、非円形の開口が設けられている。なお、以下の説明では、光学系100に対して無限遠物体からの光束(光軸OAに平行な平行光)が入射する場合を想定している。   FIG. 1 is a main part schematic diagram (main part cross-sectional view) in a cross section including the optical axis OA of the optical system 100 according to the present embodiment. An optical system 100 according to the present embodiment is an optical system that forms an image on a light receiving surface disposed on an image plane IP, and is an optical element OE1 made of an organic material and closer to the object side than the optical element OE1. The light-shielding means MR1 and the aperture stop SP are disposed. The light shielding means MR1 is provided with a non-circular opening. In the following description, it is assumed that a light beam (parallel light parallel to the optical axis OA) from an object at infinity is incident on the optical system 100.

ここで、受光面における最軸外像高に向かう光束のうち開口絞りSPの中心を通過する光線が遮光手段MR1の開口を通過する位置と光軸OAとの距離をhpとする。また、受光面における軸上像高に向かう光束が遮光手段MR1の開口を通過する位置と光軸OAとの最大距離をha、遮光手段MR1と光学素子OE1の物体側の光学面(入射面)との光軸OA上での距離をLr、とする。このとき、本実施形態に係る光学系100は、以下の条件式(1)を満足している。
0.020<tan−1(ha/Lr)/tan−1(hp/Lr)<0.95・・・(1)
Here, the distance between the optical axis OA and the position where the light beam passing through the center of the aperture stop SP1 out of the light flux toward the most off-axis image height on the light receiving surface passes through the aperture of the light shielding means MR1 is denoted by hp. Further, the maximum distance between the position at which the light beam toward the on-axis image height on the light receiving surface passes through the opening of the light shielding unit MR1 and the optical axis OA is ha, and the optical surface (incident surface) on the object side of the light shielding unit MR1 and the optical element OE1. Let Lr be the distance on the optical axis OA. At this time, the optical system 100 according to the present embodiment satisfies the following conditional expression (1).
0.020 <tan −1 (ha / Lr) / tan −1 (hp / Lr) <0.95 (1)

本実施形態に係る光学系100は、上記の構成により優れた耐環境性を実現している。光学系100について、以下に詳細に説明する。   The optical system 100 according to the present embodiment achieves excellent environmental resistance due to the above configuration. The optical system 100 will be described in detail below.

本実施形態における光学素子とは、ガラス等の無機材料やプラスチック(樹脂)等の有機材料などで構成され、屈折作用や回折作用を有する光学部材のことを示している。なお、実質的に屈折作用や回折作用を持たないもの、例えば複数の光学素子を接合するための接合部材(接着剤等)や、反射防止や接着性向上のための薄膜及び塗布材料などについては、本実施形態に係る光学素子には含まれない。   The optical element in the present embodiment refers to an optical member that is made of an inorganic material such as glass or an organic material such as plastic (resin) and has a refractive action or a diffractive action. For materials that have substantially no refracting action or diffracting action, such as bonding members (adhesives) for bonding a plurality of optical elements, thin films and coating materials for preventing reflection and improving adhesion, etc. It is not included in the optical element according to the present embodiment.

また、本実施形態における有機材料は、有機物を主成分とする材料、すなわち有機物の割合が最も高い材料のことを示しており、複数の有機物の混合物や、有機物に無機微粒子を分散させたもの(有機複合物)などを含む。例えば、有機材料として、アクリル、ポリカーボネート、ポリビニルカルバゾールや、それらの混合物、あるいはそれらと他の有機物もしくは無機物を混合させたものなどを採用することができる。   In addition, the organic material in the present embodiment indicates a material mainly composed of an organic substance, that is, a material having the highest ratio of the organic substance, and a mixture of a plurality of organic substances or inorganic fine particles dispersed in the organic substance ( Organic compound). For example, as the organic material, acrylic, polycarbonate, polyvinyl carbazole, a mixture thereof, or a mixture of these with other organic or inorganic substances can be employed.

なお、本実施形態における光学面とは、各光学素子において連続な曲面(曲率半径が一定の球面又は同一の定義式で定義される非球面)から成る部分及び、遮光手段の開口を示しており、結像に寄与する有効光線が通過する面(有効面)に対応する。すなわち、各光学素子において、加工を容易にするため若しくはレンズ鏡筒により保持するために、有効面の外周部に設けられた余裕代は、鏡面加工された面であっても本実施形態における光学面には該当しない。   In addition, the optical surface in this embodiment has shown the part which consists of a continuous curved surface (a spherical surface with a constant curvature radius, or an aspherical surface defined by the same definition formula) in each optical element, and the opening of a light shielding means. , Corresponding to a plane (effective plane) through which an effective ray contributing to image formation passes. That is, in each optical element, in order to facilitate processing or hold by the lens barrel, the margin provided on the outer peripheral portion of the effective surface is the optical surface in the present embodiment even if it is a mirror-finished surface. Does not apply to the face.

有機材料で構成される光学素子OE1として、回折光学素子や、通常の硝子材料とは異なる光学特性(異常分散特性)を有する屈折光学素子を用いることにより、小型化を実現しつつ色収差を良好に補正することが可能になる。しかし、一般的に、有機材料が紫外線に曝された場合、有機材料が紫外線を吸収してポリマー鎖の切断などが生じ、有機材料の屈折率や透過率、吸収等の光学特性や形状が変化してしまう。そのため、有機材料で構成される光学素子を有する光学系においては、その光学素子に紫外線が入射した場合に光学性能が変動してしまう可能性がある。   As the optical element OE1 composed of an organic material, a diffractive optical element or a refractive optical element having an optical characteristic (anomalous dispersion characteristic) different from that of a normal glass material is used, so that chromatic aberration can be reduced while achieving miniaturization It becomes possible to correct. However, in general, when an organic material is exposed to ultraviolet rays, the organic material absorbs ultraviolet rays, resulting in polymer chain scission, etc., and the optical properties and shape of the organic material such as refractive index, transmittance, and absorption change. Resulting in. Therefore, in an optical system having an optical element made of an organic material, there is a possibility that the optical performance will fluctuate when ultraviolet rays are incident on the optical element.

そこで、本実施形態では、光学素子OE1よりも物体側において、結像に寄与する有効光線が通過しない領域を遮蔽する遮光手段MR1を設けることで、結像に寄与しない非有効光線を遮光している。遮光手段MR1としては、例えば、少なくとも紫外線に対して不透明な部材に非円形の開口が設けられたもの(フレアカッター)などを採用することができる。遮光手段MR1によれば、光学系の全長や重量の増加を抑制しつつ、紫外線を遮光することが可能になる。   Therefore, in the present embodiment, by providing light shielding means MR1 that shields an area through which an effective light beam that contributes to image formation does not pass on the object side of the optical element OE1, ineffective light rays that do not contribute to image formation are shielded. Yes. As the light shielding means MR1, for example, a member (flare cutter) in which a noncircular opening is provided in a member that is opaque to at least ultraviolet rays can be employed. According to the light shielding means MR1, it becomes possible to shield ultraviolet rays while suppressing an increase in the overall length and weight of the optical system.

ここで、テレフォトタイプの光学系のように、開口絞りよりも物体側において軸上光束の最周辺光線(軸上光線)の高さが最軸外光束の主光線(最軸外光線)の高さ以上となる光学系を考える。このような光学系においては、遮光手段により有効光線を遮光することなく非有効光線を遮光することは困難である。一方、レトロフォーカスタイプの光学系のように、開口絞りよりも物体側において最軸外光線の高さが軸上光線の高さよりも高くなる光学系においては、遮光手段により有効光線を遮光することなく非有効光線を遮光することが可能になる。   Here, as in the telephoto type optical system, the height of the most peripheral ray (axial beam) of the axial beam is closer to the object side than the aperture stop, and the principal ray (most off-axis beam) of the most off-axis beam is Consider an optical system that is higher than the height. In such an optical system, it is difficult to block the ineffective light beam without blocking the effective light beam by the light blocking means. On the other hand, in an optical system in which the height of the off-axis light beam is higher than the height of the on-axis light beam on the object side of the aperture stop, such as a retrofocus type optical system, the effective light beam is blocked by the light blocking means. Ineffective light rays can be shielded.

一般的に、撮像装置に用いられる撮像素子の撮像面(受光面)の形状は矩形である。例えば、一眼レフレックスカメラに用いられるフルサイズのセンサの撮像面の大きさは、縦×横:24mm×36mmであり、APS−Cサイズのセンサの撮像面の大きさは、縦×横:15mm×22.5mmである。そして、光学系を撮像装置に適用する場合、各光学面の形状は、撮像面の最大長(対角長)に応じた径を有する円形となるため、最軸外光線の高さが軸上光線の高さよりも高い領域においては、結像に寄与しない領域が生じる。   In general, the shape of an imaging surface (light receiving surface) of an imaging element used in an imaging device is a rectangle. For example, the size of the imaging surface of a full-size sensor used in a single-lens reflex camera is vertical × horizontal: 24 mm × 36 mm, and the size of the imaging surface of an APS-C size sensor is vertical × horizontal: 15 mm. × 22.5 mm. When the optical system is applied to an image pickup apparatus, the shape of each optical surface is a circle having a diameter corresponding to the maximum length (diagonal length) of the image pickup surface. In an area higher than the height of the light beam, an area that does not contribute to image formation occurs.

そこで、本実施形態に係る光学系100では、上記の条件式(1)を満たすように、遮光手段MR1及び光学素子OE1の配置を適切に設定することで、光学素子OE1に入射する紫外線の光量を十分に低減している。光軸OA上において光学素子OE1から物体側の最軸外光線を見込む角度に対する軸上光線を見込む角度の比の値が小さくなる場合、遮光手段MR1により非有効光線を遮光することが可能になる。よって、条件式(1)を満たすように、最軸外光線の高さが軸上光線の高さよりも高くなる位置に遮光手段MR1を配置することで、非有効光線を十分に遮光することができ、光学素子OE1に入射する紫外線の光量を低減することが可能になる。   Therefore, in the optical system 100 according to the present embodiment, the amount of ultraviolet light incident on the optical element OE1 is set by appropriately setting the arrangement of the light shielding means MR1 and the optical element OE1 so as to satisfy the conditional expression (1). Is sufficiently reduced. When the ratio of the angle at which the on-axis light beam is expected to be smaller than the angle at which the object-side off-axis light beam is viewed from the optical element OE1 on the optical axis OA becomes small, the light shielding means MR1 can block the ineffective light beam. . Therefore, by disposing the light shielding means MR1 at a position where the height of the most off-axis light beam is higher than the height of the axial light beam so as to satisfy the conditional expression (1), the ineffective light beam can be sufficiently shielded. It is possible to reduce the amount of ultraviolet light incident on the optical element OE1.

条件式(1)の下限を下回ると、軸上光線と最軸外光線との高さが離れ過ぎてしまうため、最も物体側の光学素子の有効径を大きくすることが必要になり、光学系100が大型化してしまう。また、条件式(1)の上限を上回ると、軸上光線と最軸外光線との高さが近づき過ぎてしまい、光学素子OE1の光学面のうち遮光手段MR1により遮蔽できる領域が小さくなり、十分な遮光効果を得ることが困難になる。   If the lower limit of conditional expression (1) is surpassed, the height of the on-axis light beam and the most off-axis light beam will be too far apart, so it is necessary to increase the effective diameter of the optical element closest to the object side. 100 becomes large. If the upper limit of conditional expression (1) is exceeded, the height of the on-axis light beam and the most off-axis light beam will be too close, and the area of the optical surface of the optical element OE1 that can be shielded by the light shielding means MR1 will be small. It becomes difficult to obtain a sufficient light shielding effect.

さらに、以下の条件式(1a)〜(1d)を順に満たしていくことがより好ましい。
0.040<tan−1(ha/Lr)/tan−1(hp/Lr)<0.92・・・(1a)
0.060<tan−1(ha/Lr)/tan−1(hp/Lr)<0.90・・・(1b)
0.080<tan−1(ha/Lr)/tan−1(hp/Lr)<0.85・・・(1c)
0.20<tan−1(ha/Lr)/tan−1(hp/Lr)<0.80・・・(1d)
Furthermore, it is more preferable to satisfy the following conditional expressions (1a) to (1d) in order.
0.040 <tan −1 (ha / Lr) / tan −1 (hp / Lr) <0.92 (1a)
0.060 <tan −1 (ha / Lr) / tan −1 (hp / Lr) <0.90 (1b)
0.080 <tan −1 (ha / Lr) / tan −1 (hp / Lr) <0.85 (1c)
0.20 <tan −1 (ha / Lr) / tan −1 (hp / Lr) <0.80 (1d)

なお、本実施形態に係る光学系100は、以下の条件式(2)を満足することが望ましい。
0.10<hp/Lr<1.0・・・(2)
Note that the optical system 100 according to this embodiment desirably satisfies the following conditional expression (2).
0.10 <hp / Lr <1.0 (2)

条件式(2)は、光学系100における遮光手段MR1により、光学素子OE1に大きな入射角で入射する紫外線を遮光するための、遮光手段MR1の配置を示している。遮光手段MR1を光学素子OE1から十分に離して配置することで、大きな入射角で入射する紫外線を十分に遮光することができる。このとき、遮光手段MR1と光学素子OE1との間に、無機材料で構成される光学要素を配置することが好ましい。これにより、無機材料で構成される光学要素の内部透過率に応じて、光学素子OE1に到達する紫外線の光量を低減することができる。   Conditional expression (2) shows the arrangement of the light shielding means MR1 for shielding the ultraviolet light incident on the optical element OE1 at a large incident angle by the light shielding means MR1 in the optical system 100. By disposing the light shielding means MR1 sufficiently away from the optical element OE1, it is possible to sufficiently shield ultraviolet rays incident at a large incident angle. At this time, it is preferable to arrange an optical element made of an inorganic material between the light shielding means MR1 and the optical element OE1. Thereby, according to the internal transmittance | permeability of the optical element comprised with an inorganic material, the light quantity of the ultraviolet-ray which reaches | attains optical element OE1 can be reduced.

条件式(2)の下限を下回ると、遮光手段MR1と光学素子OE1との距離が大きくなり過ぎてしまい、光学系100が十分に小型化できなくなる可能性が生じる。また、条件式(2)の上限を上回ると、光軸OA上において光学素子OE1から遮光手段MR1の開口における最軸外光線が通過する位置を見込む角度(光学素子OE1から見た遮光手段MR1の開口の開き角)が大きくなり過ぎてしまう。これにより、物体側から大きな入射角で光学素子OE1に入射する紫外線を、遮光手段MR1によって十分に遮光することができなくなる可能性が生じる。   If the lower limit of conditional expression (2) is not reached, the distance between the light shielding means MR1 and the optical element OE1 becomes too large, and the optical system 100 may not be sufficiently miniaturized. If the upper limit of conditional expression (2) is exceeded, the angle at which the off-axis light beam passes through the optical element OE1 at the opening of the light shielding unit MR1 on the optical axis OA (the angle of the light shielding unit MR1 viewed from the optical element OE1). The opening angle of the opening becomes too large. As a result, there is a possibility that the ultraviolet light incident on the optical element OE1 at a large incident angle from the object side cannot be sufficiently shielded by the light shielding means MR1.

さらに、以下の条件式(2a)〜(2d)を順に満たしていくことがより好ましい。
0.15<hp/Lr<0.90・・・(2a)
0.24<hp/Lr<0.80・・・(2b)
0.28<hp/Lr<0.70・・・(2c)
0.32<hp/Lr<0.60・・・(2d)
Furthermore, it is more preferable to satisfy the following conditional expressions (2a) to (2d) in order.
0.15 <hp / Lr <0.90 (2a)
0.24 <hp / Lr <0.80 (2b)
0.28 <hp / Lr <0.70 (2c)
0.32 <hp / Lr <0.60 (2d)

ここで、遮光手段MR1と最も物体側の光学面との光軸OA上での距離をLm、受光面における最軸外像高に向かう光束のうち開口絞りSPの中心を通過する光線が光学系100における最も物体側の光学面を通過する位置と光軸OAとの距離をhp0とする。このとき、光学系100は以下の条件式(3)を満足することが望ましい。
0≦Lm/hp0<1.0・・・(3)
Here, the distance on the optical axis OA between the light shielding means MR1 and the optical surface closest to the object is Lm, and the light beam passing through the center of the aperture stop SP out of the light flux toward the most off-axis image height on the light receiving surface. The distance between the position passing through the optical surface closest to the object in 100 and the optical axis OA is hp0. At this time, it is desirable that the optical system 100 satisfies the following conditional expression (3).
0 ≦ Lm / hp0 <1.0 (3)

条件式(3)は、光学系100における最も物体側の光学面と遮光手段MR1との間の光線の角度を示している。耐環境性に優れた光学系を実現するためには、光学素子OE1に対して大きな入射角で入射する光線を遮光手段MR1により十分に遮光する必要がある。そのためには、遮光手段MR1をできるだけ物体側に配置することで、光学素子OE1のうち遮光手段MR1によって遮蔽できる領域を十分に確保する必要がある。   Conditional expression (3) indicates the angle of light rays between the most object-side optical surface in the optical system 100 and the light shielding means MR1. In order to realize an optical system having excellent environmental resistance, it is necessary to sufficiently shield light incident on the optical element OE1 at a large incident angle by the light shielding means MR1. For this purpose, it is necessary to secure a sufficient area in the optical element OE1 that can be shielded by the light shielding means MR1 by arranging the light shielding means MR1 as close to the object side as possible.

条件式(3)の中辺は、光学系100の最も物体側に遮光手段MR1を配置したときに0となるため、負の値になることはない。条件式(3)の上限を上回る場合、遮光手段MR1が物体側から離れて光学系100の内部に配置(インナー配置)されることになり、非有効光線が遮光手段MR1に入射する領域が小さくなってしまい、十分な遮光効果を得ることが難しくなる可能性が生じる。   The middle side of the conditional expression (3) is 0 when the light shielding unit MR1 is disposed on the most object side of the optical system 100, and therefore does not become a negative value. When the upper limit of the conditional expression (3) is exceeded, the light shielding means MR1 is arranged away from the object side and is arranged inside the optical system 100 (inner arrangement), and the area where ineffective light rays enter the light shielding means MR1 is small. As a result, it may be difficult to obtain a sufficient light shielding effect.

さらに、以下の条件式(3a)〜(3d)を順に満たしていくことがより好ましい。
0≦Lm/hp0<0.95・・・(3a)
0≦Lm/hp0<0.90・・・(3b)
0≦Lm/hp0<0.85・・・(3c)
0≦Lm/hp0<0.80・・・(3d)
Furthermore, it is more preferable to satisfy the following conditional expressions (3a) to (3d) in order.
0 ≦ Lm / hp0 <0.95 (3a)
0 ≦ Lm / hp0 <0.90 (3b)
0 ≦ Lm / hp0 <0.85 (3c)
0 ≦ Lm / hp0 <0.80 (3d)

光学系100において、結像に寄与しない領域に入射する光線を遮光するだけでなく、結像に寄与する領域に入射する紫外線を遮光することが望ましい。その方法として、光学素子OE1よりも物体側に、遮光手段MR1とは別に紫外線遮光手段を設けることが考えられる。紫外線遮光手段としては、紫外線を吸収する特性を有する吸収タイプのもの(紫外線吸収手段)や、紫外線を反射する反射タイプのもの(紫外線反射手段)が挙げられる。例えば、紫外線吸収手段は紫外線吸収材料により形成することができ、紫外線反射手段は複数の誘電体層を堆積させた多層膜により形成することができる。   In the optical system 100, it is desirable not only to shield light rays that enter an area that does not contribute to imaging, but also to shield ultraviolet rays that enter an area that contributes to imaging. As a method therefor, it is conceivable to provide an ultraviolet light shielding means separately from the light shielding means MR1 on the object side of the optical element OE1. Examples of the ultraviolet light shielding means include an absorption type having characteristics of absorbing ultraviolet light (ultraviolet absorption means) and a reflective type reflecting ultraviolet light (ultraviolet reflection means). For example, the ultraviolet absorbing means can be formed of an ultraviolet absorbing material, and the ultraviolet reflecting means can be formed of a multilayer film in which a plurality of dielectric layers are deposited.

紫外線吸収手段は、紫外線遮光効果の角度依存性が無いため、紫外線がどのような角度で入射してきたとしても、光学素子OE1に到達する紫外線を低減させることができる。例えば、紫外線吸収手段として、屈折作用を持たせたレンズ形状のもの、すなわち紫外線吸収材料で構成されるレンズを用いることができる。しかし、紫外線吸収手段の紫外線遮光効果はその厚さに依存するため、レンズ状の紫外線吸収手段を採用した場合は径方向において均一な紫外線遮光効果を得ることができない。   Since the ultraviolet ray absorbing means has no angle dependency of the ultraviolet ray shielding effect, the ultraviolet ray reaching the optical element OE1 can be reduced no matter what angle the ultraviolet ray enters. For example, a lens having a refractive function, that is, a lens made of an ultraviolet absorbing material can be used as the ultraviolet absorbing means. However, since the ultraviolet ray shielding effect of the ultraviolet ray absorbing means depends on the thickness thereof, when the lens-like ultraviolet ray absorbing means is adopted, a uniform ultraviolet ray shielding effect cannot be obtained in the radial direction.

また、紫外線吸収材料の種類は限られているため、光学系の構成によっては、レンズ状の紫外線吸収材料を配置した場合に、良好な光学性能を得ることが困難になってしまう場合がある。なお、レンズ状ではなく平板状の紫外線吸収手段を配置した場合は、それとは別にレンズを配置する必要があるため、レンズ状の紫外線吸収手段を配置した場合よりも光学部材の数が増え、光学系の全長や重量が増大してしまう。   In addition, since the types of ultraviolet absorbing material are limited, depending on the configuration of the optical system, it may be difficult to obtain good optical performance when a lens-shaped ultraviolet absorbing material is disposed. In addition, when a flat-shaped ultraviolet absorbing means is arranged instead of a lens, it is necessary to arrange a lens separately from that, so the number of optical members increases compared to the case where a lens-shaped ultraviolet absorbing means is arranged, and the optical The total length and weight of the system will increase.

一方で、紫外線反射手段によれば、光学面に設ける反射防止膜との兼用が可能であるため、平板フィルター等として光学系に別途配置したり、レンズ枚数を増やしたりする必要がなくなる。また、紫外線反射手段によれば、紫外線吸収手段よりも透過率特性(波長に対する透過率の変化)を急峻にすることができるため、光学系の全系のカラーバランスに与える影響を小さくしつつ、良好な紫外線遮光効果を得ることができる。   On the other hand, according to the ultraviolet reflecting means, since it can be used as an antireflection film provided on the optical surface, it is not necessary to separately arrange it in the optical system as a flat filter or increase the number of lenses. Further, according to the ultraviolet reflecting means, since the transmittance characteristic (change in transmittance with respect to the wavelength) can be made steeper than the ultraviolet absorbing means, the influence on the color balance of the entire optical system is reduced, A good ultraviolet light shielding effect can be obtained.

しかし、紫外線反射手段の透過率特性には、紫外線反射手段が設けられた光学面の面法線と入射光線との成す入射角が大きくなる程、短波長側にシフトしてしまうという角度依存性がある。そのため、紫外線反射手段に入射する紫外線の入射角が大きくなるに従い、紫外線遮光効果が小さくなってしまうことになる。   However, the transmittance characteristic of the ultraviolet reflecting means has an angular dependency that the larger the incident angle between the surface normal of the optical surface provided with the ultraviolet reflecting means and the incident light beam, the shorter the wavelength shifts. There is. Therefore, as the incident angle of the ultraviolet light incident on the ultraviolet reflecting means increases, the ultraviolet light shielding effect decreases.

そこで、本実施形態に係る光学系100は、光学素子OE1よりも物体側において、上述した遮光手段MR1だけでなく紫外線反射手段CU1を配置することで、光学素子OE1に大きな入射角で入射する紫外線を十分に遮光している。このとき、遮光手段MR1によって、紫外線反射手段CU1に大きな入射角で入射する紫外線も遮光されるため、紫外線反射手段CU1の角度依存性の影響を小さくすることができ、良好な紫外線遮光効果を得ることが可能になる。   Therefore, in the optical system 100 according to the present embodiment, not only the above-described light shielding unit MR1 but also the ultraviolet reflecting unit CU1 is arranged on the object side with respect to the optical element OE1, so that the ultraviolet light incident on the optical element OE1 at a large incident angle. Is sufficiently shielded from light. At this time, since the ultraviolet light incident on the ultraviolet reflection means CU1 at a large incident angle is also shielded by the light shielding means MR1, the influence of the angle dependency of the ultraviolet reflection means CU1 can be reduced, and a good ultraviolet light shielding effect is obtained. It becomes possible.

なお、紫外線反射手段CU1は、本実施形態のように光学素子OE1よりも物体側に配置された光学面上に設けることが望ましいが、必要に応じて独立した部材として配置してもよい。また、紫外線反射手段CU1は、物体側に向かって凸形状の光学面上に設けることがより好ましい。これによれば、紫外線反射手段CU1に入射する軸外光線の入射角を小さくすることができるため、軸上の紫外線だけでなく軸外の紫外線についても十分に遮光することが可能になる。   The ultraviolet reflecting means CU1 is desirably provided on the optical surface disposed on the object side of the optical element OE1 as in the present embodiment, but may be disposed as an independent member as necessary. Further, it is more preferable that the ultraviolet reflecting means CU1 is provided on an optical surface that is convex toward the object side. According to this, since the incident angle of the off-axis light beam incident on the ultraviolet reflection means CU1 can be reduced, not only the on-axis ultraviolet light but also the off-axis ultraviolet light can be sufficiently shielded.

紫外線反射手段CU1に対する光線の入射角が45°よりも大きくなると、紫外線反射手段CU1の透過特性が短波長側に大きくシフトしてしまい、紫外線遮光効果を十分に得られなくなる。そこで、遮光手段MR1の開口の最小径及び光軸OAを含む断面内において、その開口から光学素子OE1の入射面と光軸OAとの交点に向かう光線の、紫外線反射手段に対する最大入射角をθcSとするとき、以下の条件式(4)を満足することが望ましい。
θcS<45°・・・(4)
When the incident angle of the light beam with respect to the ultraviolet reflecting means CU1 is larger than 45 °, the transmission characteristics of the ultraviolet reflecting means CU1 are greatly shifted to the short wavelength side, and the ultraviolet light shielding effect cannot be sufficiently obtained. Therefore, in the cross section including the minimum diameter of the opening of the light shielding means MR1 and the optical axis OA, the maximum incident angle with respect to the ultraviolet reflecting means of the light beam traveling from the opening toward the intersection of the incident surface of the optical element OE1 and the optical axis OA is θcS. In this case, it is desirable to satisfy the following conditional expression (4)
θcS <45 ° (4)

さらに、以下の条件式(4a)乃至(4e)を順に満たしてくことがより好ましい。
θcS<42°・・・(4a)
θcS<40°・・・(4b)
θcS<38°・・・(4c)
θcS<36°・・・(4d)
θcS<34°・・・(4e)
Furthermore, it is more preferable that the following conditional expressions (4a) to (4e) are satisfied in order.
θcS <42 ° (4a)
θcS <40 ° (4b)
θcS <38 ° (4c)
θcS <36 ° (4d)
θcS <34 ° (4e)

紫外線反射手段CU1としては、良好な紫外線遮光効果を得るために、紫外線反射手段CU1に垂直に入射する波長360nmの光に対する透過率が20%以下であるものを用いることが望ましい。より好ましくは、紫外線反射手段CU1の透過率を、垂直に入射する波長360nmの光に対して15%以下、さらに好ましくは10%以下、とすればよい。   As the ultraviolet reflecting means CU1, in order to obtain a good ultraviolet light shielding effect, it is desirable to use one having a transmittance for light having a wavelength of 360 nm perpendicularly incident on the ultraviolet reflecting means CU1 of 20% or less. More preferably, the transmittance of the ultraviolet reflecting means CU1 may be 15% or less, more preferably 10% or less, with respect to light having a wavelength of 360 nm that is incident vertically.

また、紫外線反射手段CU1に垂直に入射する光に対して紫外線反射手段CU1の透過率が50%となるときの、その光の波長をλ50とするとき、以下の条件式(5)を満足することが望ましい。
365nm≦λ50≦430nm・・・(5)
Further, when the wavelength of the light when the transmittance of the ultraviolet reflecting means CU1 is 50% with respect to the light perpendicularly incident on the ultraviolet reflecting means CU1, the following conditional expression (5) is satisfied. It is desirable.
365 nm ≦ λ50 ≦ 430 nm (5)

条件式(5)を満足することにより、光学系100の全系の可視光領域における透過率特性(カラーバランス)を良好に保つことができる。さらに、以下の条件式(5a)乃至(5e)を順に満たしてくことがより好ましい。
367nm≦λ50≦430nm・・・(5a)
369nm≦λ50≦420nm・・・(5b)
371nm≦λ50≦415nm・・・(5c)
373nm≦λ50≦410nm・・・(5d)
375nm≦λ50≦405nm・・・(5e)
By satisfying conditional expression (5), it is possible to maintain good transmittance characteristics (color balance) in the visible light region of the entire optical system 100. Furthermore, it is more preferable to satisfy the following conditional expressions (5a) to (5e) in order.
367 nm ≦ λ50 ≦ 430 nm (5a)
369 nm ≦ λ50 ≦ 420 nm (5b)
371 nm ≦ λ50 ≦ 415 nm (5c)
373 nm ≦ λ50 ≦ 410 nm (5d)
375 nm ≦ λ50 ≦ 405 nm (5e)

また、光学系100の全系のカラーバランスを良好に保つためには、紫外線反射手段CU1の紫外線反射効果の特性を急峻にすることが望ましい。具体的には、紫外線反射手段CU1に垂直に入射する光に対して紫外線反射手段CU1の透過率が10%及び90%となるときの、その光の波長を各々λ10及びλ90とするとき、以下の条件式(6)を満足することが望ましい。
λ90−λ10≦30nm・・・(6)
In order to keep the color balance of the entire system of the optical system 100 good, it is desirable to make the characteristics of the ultraviolet reflection effect of the ultraviolet reflection means CU1 steep. Specifically, when the transmittance of the ultraviolet reflecting means CU1 is 10% and 90% with respect to the light incident perpendicularly to the ultraviolet reflecting means CU1, the wavelengths of the light are λ10 and λ90, respectively. It is desirable to satisfy the conditional expression (6).
λ90−λ10 ≦ 30 nm (6)

さらに、以下の条件式(6a)乃至(6d)を順に満たしていくことがより好ましい。
λ90−λ10≦29nm・・・(6a)
λ90−λ10≦28nm・・・(6b)
λ90−λ10≦26nm・・・(6c)
λ90−λ10≦24nm・・・(6d)
Furthermore, it is more preferable to satisfy the following conditional expressions (6a) to (6d) in order.
λ90−λ10 ≦ 29 nm (6a)
λ90−λ10 ≦ 28 nm (6b)
λ90−λ10 ≦ 26 nm (6c)
λ90−λ10 ≦ 24 nm (6d)

また、可視光領域の光に対して良好な透過率特性を得るために、紫外線反射手段CU1の透過率は波長480nm〜660nmの範囲において80%以上であることが望ましい。より好ましくは、紫外線反射手段CU1の波長480nm〜660nmの範囲における透過率を85%以上、さらに好ましくは90%以上、とすればよい。上述した透過率特性を得るためには、紫外線反射手段CU1を、酸化チタン(特にTiO)を含む多層膜により構成することが好ましい。 In order to obtain good transmittance characteristics with respect to light in the visible light region, the transmittance of the ultraviolet reflecting means CU1 is desirably 80% or more in the wavelength range of 480 nm to 660 nm. More preferably, the transmittance in the wavelength range of 480 nm to 660 nm of the ultraviolet reflecting means CU1 may be 85% or more, and more preferably 90% or more. In order to obtain the above-described transmittance characteristics, it is preferable that the ultraviolet reflecting means CU1 is composed of a multilayer film containing titanium oxide (particularly TiO 2 ).

一般的に、撮像装置に用いられる撮像素子の撮像面の形状は、例えば3:2、16:9、1:1のようなアスペクト比の矩形であるため、遮光手段MR1の開口の形状を撮像面と略同等のアスペクト比の矩形とすることが望ましい。これによれば、遮光手段MR1の遮光部の面積を大きくすることができるため、遮光効果を十分に得ることが可能になる。   In general, since the shape of the imaging surface of the imaging element used in the imaging device is a rectangle having an aspect ratio of, for example, 3: 2, 16: 9, or 1: 1, the shape of the opening of the light shielding unit MR1 is imaged. It is desirable to use a rectangle having an aspect ratio substantially equal to the surface. According to this, since the area of the light shielding part of the light shielding means MR1 can be increased, a sufficient light shielding effect can be obtained.

なお、ここでの矩形は、互いに略平行な2対の辺を含む形状を示しており、厳密な矩形だけでなく、矩形を構成する各辺のうち少なくとも1辺を曲線にしたものや、矩形の各頂点をなくしたもの等の略矩形を含んでいる。例えば、円形の遮光部材(不透明部材)MCに図2に示すような矩形の開口MOを設けたものを、遮光手段MR1として採用してもよい。ただし、遮光手段MR1の開口の形状が厳密な矩形ではない場合は、開口の最小径に沿った方向を短辺方向とし、それに垂直な方向を長辺方向とする。   Here, the rectangle indicates a shape including two pairs of sides that are substantially parallel to each other. In addition to a strict rectangle, at least one of the sides constituting the rectangle is a curved line, a rectangle A substantially rectangular shape such as one obtained by eliminating each vertex is included. For example, a circular light shielding member (opaque member) MC provided with a rectangular opening MO as shown in FIG. 2 may be adopted as the light shielding means MR1. However, when the shape of the opening of the light shielding means MR1 is not a strict rectangle, the direction along the minimum diameter of the opening is the short side direction, and the direction perpendicular to the direction is the long side direction.

また、遮光手段MR1の開口及び受光面の夫々の形状が矩形である場合、遮光手段MR1は、その開口の短辺方向及び長辺方向が受光面の短辺方向及び長辺方向と揃うように配置されていることが望ましい。これによれば、光学系100における結像に寄与しない領域を効果的に遮光することが可能になる。   Further, when the shapes of the opening and the light receiving surface of the light shielding unit MR1 are rectangular, the light shielding unit MR1 is arranged so that the short side direction and the long side direction of the opening are aligned with the short side direction and the long side direction of the light receiving surface. It is desirable that they are arranged. According to this, it is possible to effectively shield the area that does not contribute to image formation in the optical system 100.

そして、遮光手段MR1において、開口の最大径を直径とする円及び遮光部の面積を各々S0、Scとするとき、以下の条件式(7)を満足することが望ましい。
0.02<Sc/S0<0.5・・・(7)
In the light shielding means MR1, it is desirable that the following conditional expression (7) is satisfied when the circle having the maximum diameter of the opening and the area of the light shielding portion are S0 and Sc, respectively.
0.02 <Sc / S0 <0.5 (7)

条件式(7)の下限を下回ると、光学系100における結像に寄与しない領域のうち、遮光手段MR1により遮蔽することができる領域が小さくなり、遮光効果を十分に得ることが難しくなる可能性が生じる。条件式(7)の上限を上回ると、光学系100における結像に寄与する領域まで遮光手段MR1によって遮蔽してしまい、有効光束の光量が低下し、アウトフォーカス領域のボケ像が非円形になってしまう可能性が生じる。   If the lower limit of conditional expression (7) is not reached, the area that can be shielded by the light shielding means MR1 among the areas that do not contribute to image formation in the optical system 100 becomes small, and it may be difficult to obtain a sufficient light shielding effect. Occurs. If the upper limit of conditional expression (7) is exceeded, the area contributing to image formation in the optical system 100 is blocked by the light shielding means MR1, the amount of effective light flux decreases, and the out-of-focus area blur image becomes non-circular. There is a possibility that

さらに、以下の条件式(7a)乃至(7d)を順に満たしていくことがより好ましい。
0.030<Sc/S0<0.50・・・(7a)
0.040<Sc/S0<0.50・・・(7b)
0.050<Sc/S0<0.50・・・(7c)
0.060<Sc/S0<0.50・・・(7d)
Furthermore, it is more preferable to satisfy the following conditional expressions (7a) to (7d) in order.
0.030 <Sc / S0 <0.50 (7a)
0.040 <Sc / S0 <0.50 (7b)
0.050 <Sc / S0 <0.50 (7c)
0.060 <Sc / S0 <0.50 (7d)

本実施形態に係る光学素子OE1は、紫外線の照射により硬化する樹脂(紫外線硬化樹脂)で構成される。紫外線硬化樹脂は、i線(365nm)やh線(405nm)などの紫外領域に対して吸収特性を有するため、他の樹脂材料と比較して紫外線を吸収しやすく、紫外線に曝された場合に屈折率や透過率などの特性が変わりやすい。紫外領域の光線によって特性が変化しないように、紫外線硬化樹脂に添加材を加える方法も考えられるが、その場合、紫外線硬化樹脂の紫外線による硬化性が低下してしまい、光学素子OE1を良好に形成することが難しくなる可能性が生じる。そのため、光学素子OE1が紫外線硬化樹脂で構成される場合には、本実施形態に係る遮光手段MR1及び紫外線反射手段CU1を採用することによって、特に大きな本発明の効果を得ることができる。   The optical element OE1 according to this embodiment is made of a resin (ultraviolet curable resin) that is cured by irradiation with ultraviolet rays. The ultraviolet curable resin has absorption characteristics with respect to the ultraviolet region such as i-line (365 nm) and h-line (405 nm). Therefore, it is easier to absorb ultraviolet rays than other resin materials, and when exposed to ultraviolet rays. Properties such as refractive index and transmittance are likely to change. A method of adding an additive to the ultraviolet curable resin so that the characteristics are not changed by light in the ultraviolet region is also conceivable. However, in this case, the curability of the ultraviolet curable resin due to ultraviolet rays is reduced, and the optical element OE1 is formed well. It can be difficult to do. Therefore, when the optical element OE1 is made of an ultraviolet curable resin, a particularly great effect of the present invention can be obtained by employing the light shielding unit MR1 and the ultraviolet reflection unit CU1 according to the present embodiment.

なお、光学系100において色収差を良好に補正するために、異常分散特性を有する材料を用いて光学素子OE1を形成した場合などには、光学素子OE1の光軸方向における厚さを十分に厚くすることが望ましい。しかし、光学素子OE1において、その光軸方向の厚さが増大するほど、紫外線の照射による光学特性の変化が顕著になる。よって、特に光学素子OE1が光軸方向において厚い場合、具体的には光学素子OE1の最大厚が0.2mm以上の場合に、本実施形態に係る遮光手段MR1及び紫外線反射手段CU1を採用することが望ましい。さらに、光学素子OE1の最大厚が、0.4mm以上、0.6mm以上、0.9mm以上、と順に増大するほど、遮光手段MR1及び紫外線反射手段CU1による顕著な効果を得ることができる。   In order to satisfactorily correct chromatic aberration in the optical system 100, when the optical element OE1 is formed using a material having anomalous dispersion characteristics, the thickness of the optical element OE1 in the optical axis direction is sufficiently increased. It is desirable. However, in the optical element OE1, as the thickness in the optical axis direction increases, the change in optical characteristics due to irradiation with ultraviolet rays becomes more significant. Therefore, particularly when the optical element OE1 is thick in the optical axis direction, specifically, when the maximum thickness of the optical element OE1 is 0.2 mm or more, the light shielding unit MR1 and the ultraviolet reflection unit CU1 according to the present embodiment are employed. Is desirable. Further, as the maximum thickness of the optical element OE1 increases in the order of 0.4 mm or more, 0.6 mm or more, and 0.9 mm or more, a remarkable effect can be obtained by the light shielding unit MR1 and the ultraviolet reflection unit CU1.

また、光学系100において色収差を良好に補正するために、光学素子OE1に大きな屈折力を持たせた場合は、光学素子OE1の偏肉比が大きくなるため、光学素子OE1の光学特性の変化による光学性能への影響が大きくなってしまう。よって、光学素子OE1及び光学系100の全系の屈折力を各々φr、φとするとき、以下の条件式(8)を満足する場合に、遮光手段MR1及び紫外線反射手段CU1による顕著な効果を得ることができる。
0.010<φr/φ・・・(8)
Further, when the optical element OE1 has a large refractive power in order to correct chromatic aberration satisfactorily in the optical system 100, the deviation ratio of the optical element OE1 increases, and therefore, due to a change in the optical characteristics of the optical element OE1. The effect on optical performance will increase. Therefore, when the refractive powers of the entire optical element OE1 and the optical system 100 are φr and φ, respectively, when the following conditional expression (8) is satisfied, the light shielding means MR1 and the ultraviolet reflection means CU1 have a remarkable effect. Can be obtained.
0.010 <φr / φ (8)

条件式(8)の下限を下回ると、光学素子OE1の屈折力が十分に小さくなり、光学素子OE1の径方向における偏肉比も十分に小さくなるため、光学素子OE1の光学特性が変化しても全系に対する影響が小さく問題にならない。一方、条件式(8)を満足し、光学素子OE1が全系に対して大きな屈折力を有する場合は、光学素子OE1の光学特性の変化による影響が大きくなるため、本実施形態に係る遮光手段MR1及び紫外線反射手段CU1を採用することが特に望ましい。   If the lower limit of conditional expression (8) is not reached, the refractive power of the optical element OE1 becomes sufficiently small, and the deviation ratio in the radial direction of the optical element OE1 becomes sufficiently small, so that the optical characteristics of the optical element OE1 change. However, the effect on the entire system is small and it does not matter. On the other hand, when the conditional expression (8) is satisfied and the optical element OE1 has a large refractive power with respect to the entire system, the influence due to the change in the optical characteristics of the optical element OE1 becomes large. It is particularly desirable to employ MR1 and UV reflection means CU1.

さらに、以下の条件式(8a)乃至(8d)を順に満たしていくことがより好ましい。
0.020<φr/φ・・・(8a)
0.040<φr/φ・・・(8b)
0.080<φr/φ・・・(8c)
0.10<φr/φ ・・・(8d)
Furthermore, it is more preferable to satisfy the following conditional expressions (8a) to (8d) in order.
0.020 <φr / φ (8a)
0.040 <φr / φ (8b)
0.080 <φr / φ (8c)
0.10 <φr / φ (8d)

光学素子OE1を構成する有機材料の波長360nmの光に対する消衰係数をkrとするとき、以下の条件式(9)を満足する場合に、遮光手段MR1及び紫外線反射手段CU1による大きな本発明の効果を得ることができる。
5.0×10−6<kr・・・(9)
When the extinction coefficient of the organic material constituting the optical element OE1 with respect to light having a wavelength of 360 nm is kr, when the following conditional expression (9) is satisfied, the light-shielding means MR1 and the ultraviolet reflection means CU1 have a large effect. Can be obtained.
5.0 × 10 −6 <kr (9)

条件式(9)の下限を下回ると、光学素子OE1を構成する有機材料の紫外線吸収量が十分に小さくなり、紫外線による光学性能への影響が小さくなるため、遮光手段MR1及び紫外線反射手段CU1による本発明の効果が得られなくなってしまう。   If the lower limit of conditional expression (9) is not reached, the amount of ultraviolet light absorbed by the organic material constituting the optical element OE1 becomes sufficiently small, and the influence of the ultraviolet light on the optical performance is reduced, so that the light shielding means MR1 and the ultraviolet light reflecting means CU1. The effect of the present invention cannot be obtained.

さらに、以下の条件式(9a)乃至(9d)を順に満たしていくことがより好ましい。
6.0×10−6<kr・・・(9a)
7.0×10−6<kr・・・(9b)
8.0×10−6<kr・・・(9c)
1.0×10−5<kr・・・(9d)
Furthermore, it is more preferable to satisfy the following conditional expressions (9a) to (9d) in order.
6.0 × 10 −6 <kr (9a)
7.0 × 10 −6 <kr (9b)
8.0 × 10 −6 <kr (9c)
1.0 × 10 −5 <kr (9d)

上述したように、光学素子OE1の材料として異常分散性を有する有機材料を用いてもよい。ここで、光学素子OE1のg線及びF線に対する異常分散性をΔθgFとするとき、光学系100における色収差を良好に補正するためには、以下の条件式(10)を満足することが望ましい。
0.027<|ΔθgF|・・・(10)
As described above, an organic material having anomalous dispersion may be used as the material of the optical element OE1. Here, when the anomalous dispersion of the optical element OE1 with respect to the g-line and the F-line is ΔθgF, in order to satisfactorily correct the chromatic aberration in the optical system 100, it is desirable to satisfy the following conditional expression (10).
0.027 <| ΔθgF | (10)

さらに、以下の条件式(10a)及び(10b)を順に満たしていくことがより好ましい。
0.050<|ΔθgF|・・・(10a)
0.10<|ΔθgF|・・・(10b)
Furthermore, it is more preferable to satisfy the following conditional expressions (10a) and (10b) in order.
0.050 <| ΔθgF | (10a)
0.10 <| ΔθgF | (10b)

なお、ここでは、フラウンホーファー線であるg線(435.8nm)、F線(486.1nm)、d線(587.6nm)、及びC線(656.3nm)に対する屈折率を各々ng、nF、nd、nCとしている。このとき、d線に対するアッベ数νd、g線及びF線に対する部分分散比θgF、g線及びF線に対する異常分散性ΔθgF、の夫々は、以下の式(11)〜(13)のように定義される。
νd=(nd−1)/(nF−nC)・・・(11)
θgF=(ng−nF)/(nF−nC)・・・(12)
ΔθgF=θgF−(−1.665×10−7νd+5.213×10−5νd−5.656×10−3νd+0.7278)・・・(13)
Here, the refractive indices for the g-line (435.8 nm), F-line (486.1 nm), d-line (587.6 nm), and C-line (656.3 nm), which are Fraunhofer lines, are ng and nF, respectively. , Nd, nC. At this time, the Abbe number νd with respect to the d-line, the partial dispersion ratio θgF with respect to the g-line and the F-line, and the anomalous dispersion ΔθgF with respect to the g-line and the F-line are defined as the following equations (11) to (13). Is done.
νd = (nd−1) / (nF−nC) (11)
θgF = (ng−nF) / (nF−nC) (12)
ΔθgF = θgF − (− 1.665 × 10 −7 νd 3 + 5.213 × 10 −5 νd 2 −5.656 × 10 −3 νd + 0.7278) (13)

なお、光学素子OE1の材料として、固体材料に無機酸化物(例えばTiOやITO:Indium−Tin−Oxideなど)の微粒子を混合した材料を用いる場合は、無機酸化物の微粒子によって光が散乱してしまうことを抑制する必要がある。そのためには、微粒子の粒径を2nmから50nmの範囲内に設定することが好ましい。また、固体材料に無機酸化物の微粒子を混合する際の凝集を抑制するために、分散剤等を添加してもよい。 Note that when the material of the optical element OE1 is a solid material in which fine particles of an inorganic oxide (for example, TiO 2 or ITO: Indium-Tin-Oxide) are used, light is scattered by the fine particles of the inorganic oxide. It is necessary to suppress this. For this purpose, it is preferable to set the particle diameter of the fine particles within a range of 2 nm to 50 nm. Further, a dispersant or the like may be added in order to suppress aggregation when the inorganic oxide fine particles are mixed with the solid material.

ここで、固体材料(母材)に微粒子を分散させた混合体において、波長λに対する屈折率n(λ)は、Maxwell−Garnett理論に基づく関係式から導き出すことができる。具体的に、屈折率n(λ)は、固体材料の比誘電率をεm、微粒子の比誘電率をεp、固体材料の体積に対する微粒子の総体積の分率をη、とするとき、以下の式(14)で定義される混合体の比誘電率εavに基づいて、以下の式(15)のように表される。   Here, in a mixture in which fine particles are dispersed in a solid material (base material), the refractive index n (λ) with respect to the wavelength λ can be derived from a relational expression based on Maxwell-Garnett theory. Specifically, the refractive index n (λ) is expressed as follows when the relative permittivity of the solid material is εm, the relative permittivity of the fine particles is εp, and the fraction of the total volume of the fine particles with respect to the volume of the solid material is η. Based on the relative dielectric constant εav of the mixture defined by the equation (14), it is expressed as the following equation (15).

Figure 2018054914
Figure 2018054914

Figure 2018054914
Figure 2018054914

以上、本実施形態に係る光学系100によれば、有機材料で構成される光学素子を用いた場合にも、優れた耐環境性を実現することができる。なお、必要に応じて、本実施形態に係る有機材料で構成される光学素子OE1、遮光手段MR1、及び紫外線反射手段CU1のうち少なくとも何れかを、光学系100に複数設けてもよい。その場合、複数の光学素子OE1、複数の遮光手段MR1、及び複数の紫外線反射手段CU1の夫々について、少なくとも1つが上述した各条件式を満足することが望ましく、全てが各条件式を満足することがより好ましい。   As described above, according to the optical system 100 according to the present embodiment, excellent environmental resistance can be realized even when an optical element made of an organic material is used. If necessary, the optical system 100 may be provided with at least one of the optical element OE1, the light shielding unit MR1, and the ultraviolet reflection unit CU1 made of the organic material according to the present embodiment. In that case, it is desirable that at least one of the plurality of optical elements OE1, the plurality of light shielding units MR1, and the plurality of ultraviolet reflection units CU1 satisfy the above-described conditional expressions, and all satisfy the respective conditional expressions. Is more preferable.

次に、本実施形態に係る光学系100の実施例について詳細に説明する。   Next, examples of the optical system 100 according to the present embodiment will be described in detail.

[実施例1]
以下、本発明の実施例1に係る光学系100について詳細に説明する。本実施例に係る光学系100は、上述の実施形態に係る光学系100と同様である。
[Example 1]
Hereinafter, the optical system 100 according to the first embodiment of the present invention will be described in detail. The optical system 100 according to the present example is the same as the optical system 100 according to the above-described embodiment.

図1に示すように、本実施例に係る光学系100は、物体側から像側へ順に、負の屈折力の第1レンズユニット(レンズ群)L1、正の屈折力の第2レンズユニットL2、正の屈折力の第3レンズユニットL3、で構成されている。光学系100において、各レンズユニットの間隔は、フォーカシングに際して変化する。なお、図1では、光学系100が無限遠物体に合焦したときの断面を示しており、図中の矢印は、無限遠から近距離へのフォーカシングに際する、各レンズユニットの光軸方向における移動軌跡を示している。また、図2は、本実施例に係る遮光手段MR1の模式図(正面図)である。   As shown in FIG. 1, the optical system 100 according to the present embodiment includes a first lens unit (lens group) L1 having a negative refractive power and a second lens unit L2 having a positive refractive power in order from the object side to the image side. And a third lens unit L3 having a positive refractive power. In the optical system 100, the interval between the lens units changes during focusing. Note that FIG. 1 shows a cross section when the optical system 100 is focused on an object at infinity, and an arrow in the figure indicates the direction in the optical axis direction of each lens unit during focusing from infinity to a short distance. The movement trajectory is shown. FIG. 2 is a schematic view (front view) of the light shielding means MR1 according to the present embodiment.

本実施例において、有機材料で構成される光学素子OE1及び開口絞りSPは、第3レンズユニットL3に含まれている。また、本実施例に係る遮光手段MR1は、光軸OAに対して垂直に配置された平面形状の不透明部材である遮光部MCに開口MOが設けられて構成されており、光学系100における最も物体側に配置されている。
遮光手段MR1の開口MOの最大径は59.40mm、該最大径を直径とする円の面積に対する遮光部MCの面積の比の値は0.189、開口MOの短辺方向の径MS及び長辺方向の径MLは各々43.8mm、53.7mm、である。
In the present embodiment, the optical element OE1 made of an organic material and the aperture stop SP are included in the third lens unit L3. Further, the light shielding means MR1 according to the present embodiment is configured by providing an opening MO in the light shielding portion MC that is a planar opaque member arranged perpendicular to the optical axis OA. It is arranged on the object side.
The maximum diameter of the opening MO of the light shielding means MR1 is 59.40 mm, the ratio of the area of the light shielding part MC to the area of the circle having the maximum diameter as the diameter is 0.189, the diameter MS and the length of the short side direction of the opening MO The diameter ML in the side direction is 43.8 mm and 53.7 mm, respectively.

また、本実施例に係る光学素子OE1は、(メタ)アクリルモノマーにTiO微粒子を体積比で25%分散させた混合体から成る、正の屈折力の屈折レンズであり、第3レンズユニットL3における開口絞りSPよりも像側に配置されている。光学系100の全系の屈折力に対する光学素子OE1の屈折力の比の値は0.235である。光学素子OE1を構成する材料は、異常分散特性及び紫外領域に対する吸収特性を有しており、その波長360nmにおける消衰係数krは1.14×10−5である。 Further, the optical element OE1 according to the present example is a refractive lens having a positive refractive power, which is made of a mixture in which TiO 2 fine particles are dispersed in a volume ratio of 25% in a (meth) acrylic monomer, and the third lens unit L3. Is disposed on the image side of the aperture stop SP. The ratio of the refractive power of the optical element OE1 to the refractive power of the entire optical system 100 is 0.235. The material constituting the optical element OE1 has an anomalous dispersion characteristic and an absorption characteristic for the ultraviolet region, and the extinction coefficient kr at a wavelength of 360 nm is 1.14 × 10 −5 .

さらに、本実施例に係る光学系100は、物体側から2番目の光学素子(第2レンズ)の像側の光学面(出射面)に設けられた紫外線反射手段CU1を有している。紫外線反射手段CU1が設けられた光学面は、物体側に向かって凸形状の曲面である。本実施例に係る紫外線反射手段CU1は、株式会社オハラのS−NSL36から成る基材と、その上に設けられたSiO(nd=1.46)及びTiO(nd=2.32)を含む多層膜とで構成され、各界面を利用して紫外領域の光の通過を抑制している。表1に、本実施例に係る紫外線反射手段CU1の構成を示す。なお、表1において、ndはd線(587.6nm)に対する屈折率を示している。 Further, the optical system 100 according to the present embodiment includes an ultraviolet reflecting unit CU1 provided on the optical surface (exit surface) on the image side of the second optical element (second lens) from the object side. The optical surface provided with the ultraviolet reflecting means CU1 is a curved surface that is convex toward the object side. The ultraviolet reflecting means CU1 according to the present embodiment includes a base material made of S-NSL36 of OHARA INC. And SiO 2 (nd = 1.46) and TiO 2 (nd = 2.32) provided thereon. It is composed of a multilayer film including the same, and the passage of light in the ultraviolet region is suppressed using each interface. Table 1 shows the configuration of the ultraviolet reflecting means CU1 according to the present embodiment. In Table 1, nd represents the refractive index with respect to the d line (587.6 nm).

Figure 2018054914
Figure 2018054914

また、図3に、本実施例に係る紫外線反射手段CU1の透過率特性を示す。図3において、実線は紫外線反射手段CU1に垂直に入射した光線に対する透過率特性を示し、破線は紫外線反射手段CU1に入射角50°で入射した光線に対する透過率特性を示している。   FIG. 3 shows the transmittance characteristics of the ultraviolet reflecting means CU1 according to this embodiment. In FIG. 3, the solid line indicates the transmittance characteristic for the light beam perpendicularly incident on the ultraviolet reflecting means CU1, and the broken line indicates the transmittance characteristic for the light beam incident on the ultraviolet reflecting means CU1 at an incident angle of 50 °.

図3の実線より、入射角0°の光線に対する透過率が紫外領域近傍(400nm近傍)で急激に変化しており、良好な紫外線遮光効果が得られていることがわかる。具体的に、紫外線反射手段CU1に垂直に入射する光線の透過率が10%、50%、90%となるのは、各々波長376nm、390nm、400nmの光に対してであり、λ90−λ10は24nmとなる。また、紫外線反射手段CU1に垂直に入射する波長360nmの光に対する透過率は3%以下であり、波長480nm〜660nmの範囲における光の透過率は95%以上である。   From the solid line in FIG. 3, it can be seen that the transmittance with respect to a light beam having an incident angle of 0 ° changes rapidly in the vicinity of the ultraviolet region (near 400 nm), and a good ultraviolet light shielding effect is obtained. Specifically, the transmissivity of light incident perpendicularly to the ultraviolet reflecting means CU1 is 10%, 50%, and 90% for light with wavelengths of 376 nm, 390 nm, and 400 nm, respectively, and λ90-λ10 is 24 nm. Further, the transmittance with respect to light having a wavelength of 360 nm perpendicularly incident on the ultraviolet reflecting means CU1 is 3% or less, and the transmittance of light in the wavelength range of 480 nm to 660 nm is 95% or more.

また、図3の破線で示されるように、入射角50°の光線に対する透過率が10%、50%、90%となるのは、各々波長353nm、367nm、381nmの光に対してである。これより、紫外線反射手段CU1に入射角0°の光線が入射するときに対して、入射角50°の光線が入射するときの方が、紫外線遮光効果が低くなっていることがわかる。   Further, as indicated by the broken line in FIG. 3, the transmittances with respect to a light beam having an incident angle of 50 ° are 10%, 50%, and 90%, respectively, for light having wavelengths of 353 nm, 367 nm, and 381 nm. From this, it can be seen that the ultraviolet light shielding effect is lower when a light beam having an incident angle of 50 ° is incident on the ultraviolet light reflecting means CU1.

遮光手段MR1の開口MOの最大径及び光軸OAを含む断面内において、光学素子OE1の入射面と光軸OAとの交点に向かう光線の、紫外線反射手段CU1に対する最大入射角θc0は39.9°である。また、遮光手段MR1の開口MOの最小径及び光軸OAを含む断面内において、開口MOを通過して光学素子OE1の入射面と光軸OAとの交点に向かう光線の、紫外線反射手段CU1に対する最大入射角θcSは28.6°である。これより、紫外線反射手段CU1に入射する光線の入射角が十分に小さくなっていることがわかる。   In the cross section including the maximum diameter of the opening MO of the light shielding unit MR1 and the optical axis OA, the maximum incident angle θc0 with respect to the ultraviolet reflecting unit CU1 of the light beam toward the intersection of the incident surface of the optical element OE1 and the optical axis OA is 39.9. °. Further, in the cross section including the minimum diameter of the opening MO of the light shielding means MR1 and the optical axis OA, the light beam that passes through the opening MO and travels toward the intersection of the incident surface of the optical element OE1 and the optical axis OA, with respect to the ultraviolet reflecting means CU1. The maximum incident angle θcS is 28.6 °. From this, it can be seen that the incident angle of the light incident on the ultraviolet reflecting means CU1 is sufficiently small.

以上、本実施例に係る光学系100によれば、非円形の開口が設けられた遮光手段MR1及び紫外線反射手段CU1を、光学素子OE1よりも物体側に配置することで、光学素子OE1に入射する紫外線を良好に遮光することができる。   As described above, according to the optical system 100 according to the present embodiment, the light shielding unit MR1 and the ultraviolet reflection unit CU1 provided with the non-circular opening are arranged on the object side with respect to the optical element OE1, thereby entering the optical element OE1. UV rays can be shielded well.

[実施例2]
図4は、本発明の実施例2に係る光学系200の要部断面図であり、図5は、本実施例に係る遮光手段MR2の模式図である。本実施例に係る光学系200において、実施例1に係る光学系100と同等の構成については、説明を省略する。
[Example 2]
FIG. 4 is a cross-sectional view of an essential part of the optical system 200 according to the second embodiment of the present invention, and FIG. 5 is a schematic diagram of the light shielding means MR2 according to the present embodiment. In the optical system 200 according to the present embodiment, the description of the configuration equivalent to that of the optical system 100 according to the first embodiment is omitted.

本実施例に係る光学系200は、物体側から像側へ順に、正の屈折力の第1レンズユニットL1、正の屈折力の第2レンズユニットL2、で構成されている。光学系200においては、図中の矢印で示すように、無限遠から近距離へのフォーカシングに際して、第2レンズユニットL2が光軸方向へ移動する。本実施例において、有機材料で構成される光学素子OE2及び開口絞りSPは、第1レンズユニットL1に含まれている。   The optical system 200 according to the present embodiment includes, in order from the object side to the image side, a first lens unit L1 having a positive refractive power and a second lens unit L2 having a positive refractive power. In the optical system 200, as indicated by an arrow in the drawing, the second lens unit L2 moves in the optical axis direction during focusing from infinity to a short distance. In this embodiment, the optical element OE2 made of an organic material and the aperture stop SP are included in the first lens unit L1.

本実施例に係る遮光手段MR2は、吸収特性を有する薄膜から成り、光学系200における最も物体側の光学面上に設けられている。遮光手段MR2の製法としては、例えば、マスクを用いた蒸着により光学面において結像に寄与しない領域のみに成膜する方法などを採用することができる。図5に示すように、遮光手段MR2の開口MOは矩形であり、その最大径は29.2mm、該最大径を直径とする円の面積に対する遮光部MCの面積の比の値は0.420、短辺方向の径MS及び長辺方向の径MLは各々16.4mm、23.7mm、である。   The light shielding means MR2 according to the present embodiment is made of a thin film having absorption characteristics, and is provided on the optical surface closest to the object in the optical system 200. As a manufacturing method of the light shielding unit MR2, for example, a method of forming a film only in a region that does not contribute to image formation on the optical surface by vapor deposition using a mask can be employed. As shown in FIG. 5, the opening MO of the light shielding means MR2 is rectangular, its maximum diameter is 29.2 mm, and the value of the ratio of the area of the light shielding part MC to the area of the circle having the diameter as the maximum diameter is 0.420. The diameter MS in the short side direction and the diameter ML in the long side direction are 16.4 mm and 23.7 mm, respectively.

また、本実施例に係る光学素子OE2は、(メタ)アクリルモノマーから成る、正の屈折力の屈折レンズであり、第1レンズユニットL1における開口絞りSPよりも像側に配置されている。光学系200の全系の屈折力に対する光学素子OE2の屈折力の比の値は0.208であり、光学素子OE2を構成する材料の波長360nmにおける消衰係数krは1.40×10−5である。このように、光学素子OE2を構成する材料は、異常分散特性及び紫外領域に対する吸収特性を有している。 The optical element OE2 according to the present embodiment is a refractive lens having a positive refractive power made of (meth) acrylic monomer, and is disposed on the image side with respect to the aperture stop SP in the first lens unit L1. The ratio of the refractive power of the optical element OE2 to the refractive power of the entire optical system 200 is 0.208, and the extinction coefficient kr at a wavelength of 360 nm of the material constituting the optical element OE2 is 1.40 × 10 −5. It is. Thus, the material constituting the optical element OE2 has an anomalous dispersion characteristic and an absorption characteristic for the ultraviolet region.

さらに、本実施例に係る光学系200は、物体側から4番目の光学素子(第4レンズ)の、物体側に向かって凹形状の出射面に設けられた紫外線反射手段CU2を有している。遮光手段MR2の開口MOの最大径及び光軸OAを含む断面内において、光学素子OE2の入射面と光軸OAとの交点に向かう光線の、紫外線反射手段CU2に対する最大入射角は41.7°である。また、遮光手段MR2の開口MOの最小径及び光軸OAを含む断面内において、開口MOを通過して光学素子OE2の入射面と光軸OAとの交点に向かう光線の、紫外線反射手段CU2に対する最大入射角θcSは31.3°である。   Furthermore, the optical system 200 according to the present embodiment includes the ultraviolet reflecting means CU2 provided on the concave emission surface of the fourth optical element (fourth lens) from the object side toward the object side. . In the cross section including the maximum diameter of the opening MO of the light shielding unit MR2 and the optical axis OA, the maximum incident angle with respect to the ultraviolet reflecting unit CU2 of the light beam directed to the intersection of the incident surface of the optical element OE2 and the optical axis OA is 41.7 °. It is. Further, in the cross section including the minimum diameter of the opening MO of the light shielding unit MR2 and the optical axis OA, the light beam that passes through the opening MO and travels to the intersection between the incident surface of the optical element OE2 and the optical axis OA, with respect to the ultraviolet reflecting unit CU2. The maximum incident angle θcS is 31.3 °.

[実施例3]
図6は、本発明の実施例3に係る光学系300の要部断面図であり、図7は、本実施例に係る遮光手段MR3の模式図である。本実施例に係る光学系300において、実施例1に係る光学系100と同等の構成については、説明を省略する。
[Example 3]
FIG. 6 is a cross-sectional view of a main part of an optical system 300 according to the third embodiment of the present invention, and FIG. 7 is a schematic diagram of the light shielding means MR3 according to the present embodiment. In the optical system 300 according to the present embodiment, the description of the configuration equivalent to that of the optical system 100 according to the first embodiment is omitted.

本実施例に係る光学系300は、物体側から像側へ順に、正の屈折力の第1レンズユニットL1、正の屈折力の第2レンズユニットL2、正の屈折力の第3レンズユニットL3から構成されている。光学系300においては、図中の矢印で示すように、無限遠から近距離へのフォーカシングに際して、第2及び第3レンズユニットL2及びL3が光軸方向へ移動する。本実施例において、有機材料で構成される光学素子OE3は第2レンズユニットL2に含まれ、開口絞りSPは第3レンズユニットL3に含まれている。   The optical system 300 according to the present embodiment includes, in order from the object side to the image side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a positive refractive power, and a third lens unit L3 having a positive refractive power. It is composed of In the optical system 300, as indicated by the arrows in the figure, the second and third lens units L2 and L3 move in the optical axis direction during focusing from infinity to a short distance. In the present embodiment, the optical element OE3 made of an organic material is included in the second lens unit L2, and the aperture stop SP is included in the third lens unit L3.

本実施例に係る遮光手段MR3は、不透明部材から成り、光学系300における物体側から1番目の光学素子(第1レンズ)と2番目の光学素子(第2レンズ)との間に設けられている。図7に示すように、遮光手段MR3の開口MOは矩形であり、その最大径は40.9mm、該最大径を直径とする円の面積に対する遮光部MCの面積の比の値は0.076、短辺方向の径MS及び長辺方向の径MLは各々35.1mm、38.9mm、である。   The light blocking means MR3 according to the present embodiment is made of an opaque member, and is provided between the first optical element (first lens) and the second optical element (second lens) from the object side in the optical system 300. Yes. As shown in FIG. 7, the opening MO of the light shielding means MR3 is rectangular, its maximum diameter is 40.9 mm, and the value of the ratio of the area of the light shielding part MC to the area of the circle having the diameter as the maximum diameter is 0.076. The diameter MS in the short side direction and the diameter ML in the long side direction are 35.1 mm and 38.9 mm, respectively.

本実施例に係る光学素子OE3は、(メタ)アクリルモノマーから成る、正の屈折力の屈折レンズであり、開口絞りSPよりも物体側の第2レンズユニットL2中に配置されている。光学系300の全系の屈折力に対する光学素子OE3の屈折力の比の値は0.124であり、光学素子OE3を構成する材料の波長360nmにおける消衰係数krは1.40×10−5である。このように、光学素子OE2を構成する材料は、異常分散特性及び紫外領域に対する吸収特性を有している。 The optical element OE3 according to the present embodiment is a refractive lens having a positive refractive power made of a (meth) acrylic monomer, and is disposed in the second lens unit L2 on the object side with respect to the aperture stop SP. The ratio of the refractive power of the optical element OE3 to the refractive power of the entire system of the optical system 300 is 0.124, and the extinction coefficient kr at the wavelength of 360 nm of the material constituting the optical element OE3 is 1.40 × 10 −5. It is. Thus, the material constituting the optical element OE2 has an anomalous dispersion characteristic and an absorption characteristic for the ultraviolet region.

さらに、本実施例に係る光学系300は、光学系300における物体側から5番目の光学素子(第5レンズ)の、物体側に向かって凸形状の入射面に設けられた紫外線反射手段CU3を有している。遮光手段MR3の開口MOの最大径及び光軸OAを含む断面内において、光学素子OE3の入射面と光軸OAとの交点に向かう光線の、紫外線反射手段CU3に対する最大入射角は7.0°である。また、遮光手段MR3の開口MOの最小径及び光軸OAを含む断面内において、開口MOを通過して光学素子OE3の入射面と光軸OAとの交点に向かう光線の、紫外線反射手段CU3に対する最大入射角θcSは7.4°である。   Furthermore, the optical system 300 according to the present embodiment includes an ultraviolet reflecting unit CU3 provided on a convex incident surface of the fifth optical element (fifth lens) from the object side in the optical system 300 toward the object side. Have. In the cross section including the maximum diameter of the opening MO of the light shielding unit MR3 and the optical axis OA, the maximum incident angle of the light ray toward the intersection of the incident surface of the optical element OE3 and the optical axis OA with respect to the ultraviolet reflecting unit CU3 is 7.0 °. It is. Further, in the cross section including the minimum diameter of the opening MO of the light shielding means MR3 and the optical axis OA, the light beam that passes through the opening MO and travels to the intersection of the incident surface of the optical element OE3 and the optical axis OA, with respect to the ultraviolet reflection means CU3. The maximum incident angle θcS is 7.4 °.

次に、上述した実施例1乃至3の夫々に対応する数値実施例1乃至3について、具体的な数値データを示す。但し、各数値実施例において、面番号は光入射側から数えた光学面の番号を示し、rは光学面の曲率半径を示し、dはその面番号の光学面と次の面番号の光学面との間の軸上間隔(光軸上の距離)を示す。また、nd及びνdの夫々は、その面番号の光学面と次の面番号の光学面との間の媒質の、d線に対する屈折率及びアッベ数を示す。   Next, specific numerical data will be shown for numerical examples 1 to 3 corresponding to the first to third embodiments described above. However, in each numerical example, the surface number indicates the number of the optical surface counted from the light incident side, r indicates the radius of curvature of the optical surface, and d indicates the optical surface of the surface number and the optical surface of the next surface number. The distance on the axis (distance on the optical axis) is shown. Each of nd and νd indicates the refractive index and Abbe number of the medium between the optical surface with the surface number and the optical surface with the next surface number with respect to the d-line.

各数値実施例において、BFは光学系のバックフォーカスを示しており、長さ(距離)の単位は[mm]であり、画角の単位は[deg]である。なお、各数値実施例において、非球面形状の光学面については、面番号の後に*(アスタリスク)の符号を付加している。また、各非球面係数における「e±XX」は「×10±XX」を意味している。光学面の非球面形状は、光軸方向における面頂点からの変位量をX、光軸方向に垂直な方向における光軸からの高さをh、近軸曲率半径をr、円錐定数をk、非球面係数をB、C、D、E…、とするとき、以下の式(16)により表される。 In each numerical example, BF indicates the back focus of the optical system, the unit of length (distance) is [mm], and the unit of field angle is [deg]. In each numerical example, an aspherical optical surface is given an asterisk (*) after the surface number. In addition, “e ± XX” in each aspheric coefficient means “× 10 ± XX ”. The aspherical shape of the optical surface is such that the amount of displacement from the surface vertex in the optical axis direction is X, the height from the optical axis in the direction perpendicular to the optical axis direction is h, the paraxial radius of curvature is r, the conic constant is k, When the aspheric coefficients are B, C, D, E..., They are expressed by the following equation (16).

Figure 2018054914
Figure 2018054914

(数値実施例1)
面番号 r d nd vd 有効径
1 ∞ 2.00 59.40
2 480.322 2.82 1.67270 32.1 55.79
3 36.983 6.74 47.80
4 119.552 2.46 1.51742 52.4 47.72
5 42.361 5.06 45.90
6 90.295 4.27 1.90366 31.3 46.24
7 -18601.026 0.15 46.10
8 93.603 3.43 1.58313 59.4 45.43
9* 39.044 4.01 43.41
10 62.996 5.50 1.91082 35.3 43.38
11 -756.556 (可変) 42.91
12 37.467 5.79 1.83481 42.7 34.86
13 779.999 3.27 34.14
14 72.301 2.99 1.59522 67.7 30.47
15 -1236.876 1.50 1.72825 28.5 29.64
16 28.912 (可変) 26.78
17(絞り) ∞ 7.36 25.30
18 -18.879 1.64 1.84666 23.8 24.50
19 197.444 1.21 1.69934 26.4 28.47
20 -209.968 3.90 1.91082 35.3 28.61
21 -42.029 0.27 29.63
22 92.376 7.48 1.59522 67.7 31.68
23 -33.657 0.15 32.00
24* -106.635 3.88 1.85400 40.4 33.05
25 -41.586 39.05 34.12
像面 ∞

非球面データ
第9面
K 0.00000e+000 B=-3.29635e-006 C=-1.06088e-009 D=-8.09890e-012
E= 1.33588e-014 F=-9.49240e-018

第24面
K= 0.00000e+000 B=-6.98994e-006 C=-7.36799e-010 D=-7.33127e-012
E= 6.43354e-015

各種データ
焦点距離 34.30
Fナンバー 1.45
画角 32.24
像高 21.64
レンズ全長 127.48
BF 39.05

物体距離 無限遠 1750 1000 500 300
d11 5.93 5.48 5.09 3.97 1.70
d16 8.60 8.30 8.07 7.45 6.48

入射瞳位置 34.66
射出瞳位置 -43.12
前側主点位置 54.64
後側主点位置 4.75

レンズユニットデータ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 -396.15 34.44 -96.68 -163.46
2 12 116.60 13.56 -20.89 -25.39
3 17 42.30 25.90 23.59 10.19

単レンズデータ
レンズ 始面 焦点距離
1 2 -59.72
2 4 -128.19
3 6 99.45
4 8 -117.60
5 10 64.05
6 12 46.98
7 14 114.86
8 15 -38.77
9 18 -20.28
10 19 145.68
11 20 57.06
12 22 42.38
13 24 77.69
(Numerical example 1)
Surface number rd nd vd Effective diameter
1 ∞ 2.00 59.40
2 480.322 2.82 1.67270 32.1 55.79
3 36.983 6.74 47.80
4 119.552 2.46 1.51742 52.4 47.72
5 42.361 5.06 45.90
6 90.295 4.27 1.90366 31.3 46.24
7 -18601.026 0.15 46.10
8 93.603 3.43 1.58313 59.4 45.43
9 * 39.044 4.01 43.41
10 62.996 5.50 1.91082 35.3 43.38
11 -756.556 (variable) 42.91
12 37.467 5.79 1.83481 42.7 34.86
13 779.999 3.27 34.14
14 72.301 2.99 1.59522 67.7 30.47
15 -1236.876 1.50 1.72825 28.5 29.64
16 28.912 (variable) 26.78
17 (Aperture) ∞ 7.36 25.30
18 -18.879 1.64 1.84666 23.8 24.50
19 197.444 1.21 1.69934 26.4 28.47
20 -209.968 3.90 1.91082 35.3 28.61
21 -42.029 0.27 29.63
22 92.376 7.48 1.59522 67.7 31.68
23 -33.657 0.15 32.00
24 * -106.635 3.88 1.85400 40.4 33.05
25 -41.586 39.05 34.12
Image plane ∞

Aspheric data 9th surface K 0.00000e + 000 B = -3.29635e-006 C = -1.06088e-009 D = -8.09890e-012
E = 1.33588e-014 F = -9.49240e-018

24th surface K = 0.00000e + 000 B = -6.98994e-006 C = -7.36799e-010 D = -7.33127e-012
E = 6.43354e-015

Various data focal length 34.30
F number 1.45
Angle of View 32.24
Statue height 21.64
Total lens length 127.48
BF 39.05

Object distance infinity 1750 1000 500 300
d11 5.93 5.48 5.09 3.97 1.70
d16 8.60 8.30 8.07 7.45 6.48

Entrance pupil position 34.66
Exit pupil position -43.12
Front principal point position 54.64
Rear principal point position 4.75

Lens unit data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 -396.15 34.44 -96.68 -163.46
2 12 116.60 13.56 -20.89 -25.39
3 17 42.30 25.90 23.59 10.19

Single lens Data lens Start surface Focal length
1 2 -59.72
2 4 -128.19
3 6 99.45
4 8 -117.60
5 10 64.05
6 12 46.98
7 14 114.86
8 15 -38.77
9 18 -20.28
10 19 145.68
11 20 57.06
12 22 42.38
13 24 77.69

(数値実施例2)
面番号 r d nd vd 有効径
1 49.172 0.00 29.18
2 49.172 1.80 1.72916 54.7 29.18
3 7.731 8.54 15.12
4 11.844 1.83 1.74320 49.3 11.33
5 8.327 2.25 9.43
6 39.257 2.03 1.84666 23.8 8.62
7 -45.502 1.21 7.78
8 -13.730 3.85 1.72916 54.7 7.07
9 -10.941 0.69 8.22
10(絞り) ∞ 2.62 8.21
11 21.663 2.39 1.49700 81.5 8.18
12 -13.589 0.52 7.99
13 -15.907 0.64 1.72825 28.5 8.27
14 9.609 0.57 1.63556 22.7 9.69
15 13.950 3.25 1.65160 58.5 9.79
16 -27.106 (可変) 11.02
17* -52.965 2.04 1.58313 59.4 15.91
18 -19.867 (可変) 16.68
像面 ∞

非球面データ
第17面
K= 0.00000e+000 B=-6.57616e-005 C= 2.99433e-007 D=-4.07412e-009
E= 2.53079e-011 F=-2.25245e-014

各種データ
焦点距離 9.60
Fナンバー 2.80
画角 181.7
像高 13.66
レンズ全長 55.13
BF (可変)

物体距離 無限遠 480 90
d16 5.89 5.44 1.79
d18(BF) 15.00 15.46 19.11

入射瞳位置 8.62
射出瞳位置 -22.89
前側主点位置 15.79
後側主点位置 5.40

レンズユニットデータ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 13.10 32.19 16.93 14.25
2 17 53.31 2.04 2.02 0.76
単レンズデータ
レンズ 始面 焦点距離
1 2 -12.82
2 4 -48.47
3 6 25.17
4 8 46.68
5 11 17.19
6 13 -8.14
7 14 46.21
8 15 14.59
9 17 53.31
(Numerical example 2)
Surface number rd nd vd Effective diameter
1 49.172 0.00 29.18
2 49.172 1.80 1.72916 54.7 29.18
3 7.731 8.54 15.12
4 11.844 1.83 1.74320 49.3 11.33
5 8.327 2.25 9.43
6 39.257 2.03 1.84666 23.8 8.62
7 -45.502 1.21 7.78
8 -13.730 3.85 1.72916 54.7 7.07
9 -10.941 0.69 8.22
10 (Aperture) ∞ 2.62 8.21
11 21.663 2.39 1.49700 81.5 8.18
12 -13.589 0.52 7.99
13 -15.907 0.64 1.72825 28.5 8.27
14 9.609 0.57 1.63556 22.7 9.69
15 13.950 3.25 1.65 160 58.5 9.79
16 -27.106 (variable) 11.02
17 * -52.965 2.04 1.58313 59.4 15.91
18 -19.867 (variable) 16.68
Image plane ∞

Aspheric data 17th surface K = 0.00000e + 000 B = -6.57616e-005 C = 2.99433e-007 D = -4.07412e-009
E = 2.53079e-011 F = -2.25245e-014

Various data focal length 9.60
F number 2.80
Angle of View 181.7
Statue height 13.66
Total lens length 55.13
BF (variable)

Object distance infinity 480 90
d16 5.89 5.44 1.79
d18 (BF) 15.00 15.46 19.11

Entrance pupil position 8.62
Exit pupil position -22.89
Front principal point 15.79
Rear principal point position 5.40

Lens unit data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 13.10 32.19 16.93 14.25
2 17 53.31 2.04 2.02 0.76
Single lens Data lens Start surface Focal length
1 2 -12.82
2 4 -48.47
3 6 25.17
4 8 46.68
5 11 17.19
6 13 -8.14
7 14 46.21
8 15 14.59
9 17 53.31

(数値実施例3)
面番号 r d nd vd 有効径
1 72.080 2.65 1.58313 59.4 50.00
2* 25.512 11.00 41.33
3 ∞ 2.45 40.87
4 -96.609 2.50 1.48749 70.2 40.75
5 66.944 3.13 39.59
6 175.419 5.63 1.91082 35.3 39.68
7 -77.862 3.86 39.54
8 -44.606 2.30 1.69895 30.1 38.10
9 -178.782 0.15 38.34
10 62.257 8.11 1.59522 67.7 38.01
11 -59.637 (可変) 37.40
12 48.797 4.61 2.00100 29.1 35.03
13 9939.838 1.32 34.39
14 333.607 4.76 1.60311 60.6 32.67
15 -61.478 1.00 1.63556 22.4 31.18
16 -45.844 1.59 1.72825 28.5 30.99
17 32.360 (可変) 27.20
18(絞り) ∞ 7.17 26.60
19 -21.286 1.40 1.69895 30.1 25.93
20 177.619 4.21 1.59522 67.7 28.93
21 -52.749 0.15 29.70
22 97.355 7.19 1.59522 67.7 31.37
23 -35.549 0.15 32.12
24* -158.409 4.26 1.85400 40.4 33.44
25 -43.693 (可変) 34.50
像面 ∞

非球面データ
第2面
K=0.00000e+000 B=-1.26283e-006 C=-4.27073e-009 D= 5.04254e-012 E=-1.12945e-014
第24面
K =0.00000e+000 B=-6.35905e-006 C=-4.47403e-010 D=-4.21764e-012 E=2.36025e-015

各種データ
焦点距離 34.30
Fナンバー 1.45
画角 32.24
像高 21.64
レンズ全長 131.15
BF 39.00

物体距離 無限遠 1750 300
d11 7.06 6.32 0.80
d17 5.50 5.50 5.50
d25 39.00 39.74 45.26

入射瞳位置 35.71
射出瞳位置 -37.10
前側主点位置 54.55
後側主点位置 4.70

レンズユニットデータ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 170.03 41.79 78.71 82.50
2 12 783.13 13.28 -152.17 -134.21
3 18 44.42 24.52 22.40 8.09

単レンズデータ
レンズ 始面 焦点距離
1 1 -69.17
2 4 -80.71
3 6 59.84
4 8 -85.64
5 10 52.48
6 12 48.98
7 14 86.47
8 15 276.77
9 16 -25.83
10 19 -27.12
11 20 68.80
12 22 44.65
13 24 69.46
(Numerical Example 3)
Surface number rd nd vd Effective diameter
1 72.080 2.65 1.58313 59.4 50.00
2 * 25.512 11.00 41.33
3 ∞ 2.45 40.87
4 -96.609 2.50 1.48749 70.2 40.75
5 66.944 3.13 39.59
6 175.419 5.63 1.91082 35.3 39.68
7 -77.862 3.86 39.54
8 -44.606 2.30 1.69895 30.1 38.10
9 -178.782 0.15 38.34
10 62.257 8.11 1.59522 67.7 38.01
11 -59.637 (variable) 37.40
12 48.797 4.61 2.00 100 29.1 35.03
13 9939.838 1.32 34.39
14 333.607 4.76 1.60311 60.6 32.67
15 -61.478 1.00 1.63556 22.4 31.18
16 -45.844 1.59 1.72825 28.5 30.99
17 32.360 (variable) 27.20
18 (Aperture) ∞ 7.17 26.60
19 -21.286 1.40 1.69895 30.1 25.93
20 177.619 4.21 1.59522 67.7 28.93
21 -52.749 0.15 29.70
22 97.355 7.19 1.59522 67.7 31.37
23 -35.549 0.15 32.12
24 * -158.409 4.26 1.85400 40.4 33.44
25 -43.693 (variable) 34.50
Image plane ∞

Aspheric data 2nd surface
K = 0.00000e + 000 B = -1.26283e-006 C = -4.27073e-009 D = 5.04254e-012 E = -1.12945e-014
24th page
K = 0.00000e + 000 B = -6.35905e-006 C = -4.47403e-010 D = -4.21764e-012 E = 2.36025e-015

Various data focal length 34.30
F number 1.45
Angle of View 32.24
Statue height 21.64
Total lens length 131.15
BF 39.00

Object distance infinity 1750 300
d11 7.06 6.32 0.80
d17 5.50 5.50 5.50
d25 39.00 39.74 45.26

Entrance pupil position 35.71
Exit pupil position -37.10
Front principal point position 54.55
Rear principal point position 4.70

Lens unit data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 170.03 41.79 78.71 82.50
2 12 783.13 13.28 -152.17 -134.21
3 18 44.42 24.52 22.40 8.09

Single lens Data lens Start surface Focal length
1 1 -69.17
2 4 -80.71
3 6 59.84
4 8 -85.64
5 10 52.48
6 12 48.98
7 14 86.47
8 15 276.77
9 16 -25.83
10 19 -27.12
11 20 68.80
12 22 44.65
13 24 69.46

表2に、各数値実施例に係る光学系についての、条件式(1)乃至(10)における代数部分の数値を示し、表3に、各数値実施例に係る有機材料で構成される光学素子の光学特性を示す。また、表4に、実施例1に係る有機材料で構成される光学素子を構成する混合体のベース材料及び混合微粒子の光学特性を示す。   Table 2 shows numerical values of the algebra part in the conditional expressions (1) to (10) for the optical systems according to the numerical examples, and Table 3 shows an optical element composed of an organic material according to the numerical examples. The optical characteristics of are shown. Table 4 shows the base material of the mixture constituting the optical element made of the organic material according to Example 1, and the optical characteristics of the mixed fine particles.

Figure 2018054914
Figure 2018054914

Figure 2018054914
Figure 2018054914

Figure 2018054914
Figure 2018054914

[光学機器]
図8は、本発明の実施形態に係る光学機器としての撮像装置(デジタルスチルカメラ)の要部概略図である。本実施形態に係る撮像装置は、カメラ本体10と、上述した各実施例のいずれかに係る光学系(撮影光学系)11と、撮影光学系11からの光を受光し、撮影光学系11によって形成される被写体像を光電変換する受光素子(撮像素子)12と、を備える。撮影光学系11は、鏡筒(保持部材)により保持され、カメラ本体10に接続されている。
[Optical equipment]
FIG. 8 is a main part schematic diagram of an imaging apparatus (digital still camera) as an optical apparatus according to an embodiment of the present invention. The image pickup apparatus according to the present embodiment receives light from the camera body 10, the optical system (shooting optical system) 11 according to any of the above-described embodiments, and the shooting optical system 11. And a light receiving element (imaging element) 12 that photoelectrically converts a formed subject image. The imaging optical system 11 is held by a lens barrel (holding member) and connected to the camera body 10.

本実施形態に係る撮像装置によれば、上述した各実施例のいずれかに係る光学系を採用することにより、高い光学性能を得ることができ、高画質な画像を取得することが可能になる。なお、受光素子12としては、CCDセンサやCMOSセンサ等の固体撮像素子(電子撮像素子)を用いることができる。このとき、受光素子12により取得された画像の歪曲収差や色収差等の諸収差を電気的に補正することにより、出力画像を高画質化することが可能になる。   According to the imaging apparatus according to the present embodiment, by employing the optical system according to any of the above-described examples, high optical performance can be obtained, and a high-quality image can be acquired. . As the light receiving element 12, a solid-state imaging device (electronic imaging device) such as a CCD sensor or a CMOS sensor can be used. At this time, it is possible to improve the image quality of the output image by electrically correcting various aberrations such as distortion and chromatic aberration of the image acquired by the light receiving element 12.

なお、図8では、カメラ本体10と撮影光学系11とが一体化されたものを本実施形態に係る光学機器として示しているが、カメラ本体10と撮影光学系11とを互いに着脱可能に構成してもよい。すなわち、本実施形態に係る光学機器として、撮影光学系11と鏡筒(保持部材)とを備える交換レンズを構成してもよい。また、上述した各実施例に係る光学系は、図8に示したデジタルスチルカメラに限らず、銀塩フィルム用カメラやビデオカメラ、望遠鏡、双眼鏡、プロジェクター、デジタル複写機等の種々の光学機器に適用することができる。   In FIG. 8, the camera body 10 and the photographing optical system 11 are integrated as an optical apparatus according to this embodiment, but the camera body 10 and the photographing optical system 11 are configured to be detachable from each other. May be. That is, an interchangeable lens including the photographing optical system 11 and the lens barrel (holding member) may be configured as the optical apparatus according to the present embodiment. The optical system according to each of the above-described embodiments is not limited to the digital still camera shown in FIG. 8, but is applied to various optical devices such as a silver salt film camera, a video camera, a telescope, binoculars, a projector, and a digital copying machine. Can be applied.

以上、本発明の好ましい実施形態及び実施例について説明したが、本発明はこれらの実施形態及び実施例に限定されず、その要旨の範囲内で種々の組合せ、変形及び変更が可能である。   The preferred embodiments and examples of the present invention have been described above, but the present invention is not limited to these embodiments and examples, and various combinations, modifications, and changes can be made within the scope of the gist.

OA 光軸
SP 開口絞り
IP 像面(受光面)
MR1 遮光手段
OE1 有機材料で構成される光学素子
100 光学系
OA Optical axis SP Aperture stop IP Image surface (light receiving surface)
MR1 light shielding means OE1 optical element composed of organic material

Claims (18)

物体を受光面に結像する光学系であって、
有機材料で構成される光学素子と、該光学素子よりも物体側に配置された遮光手段と、開口絞りと、を有し、
前記遮光手段には、非円形の開口が設けられており、
前記受光面における最軸外像高に向かう光束のうち前記開口絞りの中心を通過する光線が前記遮光手段の開口を通過する位置と光軸との距離をhp、前記受光面における軸上像高に向かう光束が前記遮光手段の開口を通過する位置と光軸との最大距離をha、前記遮光手段と前記光学素子の入射面との光軸上での距離をLr、とするとき、
0.020<tan−1(ha/Lr)/tan−1(hp/Lr)<0.95
なる条件式を満足することを特徴とする光学系。
An optical system for imaging an object on a light receiving surface,
An optical element composed of an organic material, a light shielding means disposed closer to the object side than the optical element, and an aperture stop,
The light shielding means is provided with a non-circular opening,
The distance between the position of the light beam passing through the center of the aperture stop and the optical axis of the light beam traveling toward the most off-axis image height on the light receiving surface is hp, and the on-axis image height on the light receiving surface. When the maximum distance between the optical axis and the position where the light beam traveling to the light-shielding means passes through the opening is ha, and the distance on the optical axis between the light-shielding means and the incident surface of the optical element is Lr,
0.020 <tan −1 (ha / Lr) / tan −1 (hp / Lr) <0.95
An optical system that satisfies the following conditional expression:
0.10<hp/Lr<1.0
なる条件式を満足することを特徴とする請求項1に記載の光学系。
0.10 <hp / Lr <1.0
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記受光面における最軸外像高に向かう光束のうち前記開口絞りの中心を通過する光線が、最も物体側の光学面を通過する位置と光軸との距離をhp0、前記遮光手段と最も物体側の光学面との光軸上での距離をLm、とするとき、
0≦Lm/hp0<1.0
なる条件式を満足することを特徴とする請求項1又は2に記載の光学系。
The distance between the optical axis of the light beam that passes through the center of the aperture stop and the optical axis among the light fluxes toward the most off-axis image height on the light receiving surface is hp0, and the light shielding means and the most object When the distance on the optical axis with the optical surface on the side is Lm,
0 ≦ Lm / hp0 <1.0
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記光学素子よりも物体側に配置された、紫外線を反射する紫外線反射手段を有することを特徴とする請求項1乃至3のいずれか1項に記載の光学系。   The optical system according to any one of claims 1 to 3, further comprising an ultraviolet reflecting unit that reflects ultraviolet rays and is disposed closer to the object side than the optical element. 前記紫外線反射手段の透過率は、該紫外線反射手段に垂直に入射する波長360nmの光に対して20%以下であることを特徴とする請求項4に記載の光学系。   5. The optical system according to claim 4, wherein the transmittance of the ultraviolet reflecting means is 20% or less with respect to light having a wavelength of 360 nm perpendicularly incident on the ultraviolet reflecting means. 前記遮光手段の開口の最小径及び光軸を含む断面内において、該開口を通過して前記光学素子の入射面と光軸との交点に向かう光線の、前記紫外線反射手段に対する最大入射角をθcSとするとき、
θcS<45°
なる条件式を満足することを特徴とする請求項4又は5に記載の光学系。
In a cross section including the minimum diameter of the opening of the light shielding means and the optical axis, the maximum incident angle with respect to the ultraviolet reflection means of the light beam that passes through the opening and goes to the intersection of the incident surface of the optical element and the optical axis is θcS. And when
θcS <45 °
The optical system according to claim 4, wherein the following conditional expression is satisfied.
前記紫外線反射手段は、TiOを含むことを特徴とする請求項4乃至6のいずれか1項に記載の光学系。 The optical system according to claim 4, wherein the ultraviolet reflecting means includes TiO 2 . 前記紫外線反射手段に垂直に入射する光に対して前記紫外線反射手段の透過率が50%となるときの、前記光の波長をλ50とするとき、
365nm≦λ50≦430nm
なる条件式を満足することを特徴とする請求項4乃至7のいずれか1項に記載の光学系。
When the wavelength of the light is λ50 when the transmittance of the ultraviolet reflecting means is 50% with respect to the light perpendicularly incident on the ultraviolet reflecting means,
365 nm ≦ λ50 ≦ 430 nm
The optical system according to claim 4, wherein the following conditional expression is satisfied.
前記紫外線反射手段に垂直に入射する光に対して前記紫外線反射手段の透過率が10%及び90%となるときの、前記光の波長を各々λ10及びλ90とするとき、
λ90−λ10≦30nm
なる条件式を満足することを特徴とする請求項4乃至8のいずれか1項に記載の光学系。
When the wavelengths of the light when the transmittance of the ultraviolet reflecting means is 10% and 90% with respect to light perpendicularly incident on the ultraviolet reflecting means are λ10 and λ90, respectively,
λ90-λ10 ≦ 30nm
The optical system according to claim 4, wherein the following conditional expression is satisfied.
前記遮光手段の開口の形状は、矩形であることを特徴とする請求項1乃至9のいずれか1項に記載の光学系。   The optical system according to claim 1, wherein the shape of the opening of the light shielding unit is a rectangle. 前記遮光手段において、開口の最大径を直径とする円及び遮光部の面積を各々S0、Scとするとき、
0.020<Sc/S0<0.50
なる条件式を満足することを特徴とする請求項1乃至10のいずれか1項に記載の光学系。
In the light shielding means, when the circle having the maximum diameter of the opening and the area of the light shielding portion are S0 and Sc, respectively,
0.020 <Sc / S0 <0.50
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記遮光手段と前記光学素子との間に配置された、無機材料で構成される光学要素を有することを特徴とする請求項1及び11のいずれか1項に記載の光学系。   12. The optical system according to claim 1, further comprising an optical element made of an inorganic material, disposed between the light shielding unit and the optical element. 前記光学素子は、紫外線の照射により硬化する樹脂で構成されることを特徴とする請求項1乃至12のいずれか1項に記載の光学系。   The optical system according to claim 1, wherein the optical element is made of a resin that is cured by irradiation with ultraviolet rays. 前記光学素子及び全系の屈折力を各々φr、φとするとき、
0.010<φr/φ
なる条件式を満足することを特徴とする請求項1乃至13のいずれか1項に記載の光学系。
When the refractive power of the optical element and the whole system is φr and φ, respectively,
0.010 <φr / φ
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記光学素子を構成する有機材料の波長360nmの光に対する消衰係数をkrとするとき、
5.0×10−6<kr
なる条件式を満足することを特徴とする請求項1乃至14のいずれか1項に記載の光学系。
When the extinction coefficient for light having a wavelength of 360 nm of the organic material constituting the optical element is kr,
5.0 × 10 −6 <kr
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記光学素子のg線及びF線に対する異常分散性をΔθgFとするとき、
0.027<|ΔθgF|
なる条件式を満足することを特徴とする請求項1乃至15のいずれか1項に記載の光学系。
When the anomalous dispersion for the g-line and F-line of the optical element is ΔθgF,
0.027 <| ΔθgF |
The optical system according to claim 1, wherein the following conditional expression is satisfied.
請求項1乃至16のいずれか1項に記載の光学系と、前記受光面を含む受光素子と、を備えることを特徴とする光学機器。   An optical apparatus comprising: the optical system according to any one of claims 1 to 16; and a light receiving element including the light receiving surface. 前記遮光手段の開口及び前記受光面の夫々の形状は矩形であり、該開口の短辺方向と前記受光面の短辺方向とは互いに揃っていることを特徴とする請求項17に記載の光学機器。   18. The optical device according to claim 17, wherein each of the opening of the light shielding unit and the light receiving surface has a rectangular shape, and a short side direction of the opening and a short side direction of the light receiving surface are aligned with each other. machine.
JP2016191333A 2016-09-29 2016-09-29 Optical system and optical device having the same Pending JP2018054914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016191333A JP2018054914A (en) 2016-09-29 2016-09-29 Optical system and optical device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016191333A JP2018054914A (en) 2016-09-29 2016-09-29 Optical system and optical device having the same

Publications (1)

Publication Number Publication Date
JP2018054914A true JP2018054914A (en) 2018-04-05

Family

ID=61836704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016191333A Pending JP2018054914A (en) 2016-09-29 2016-09-29 Optical system and optical device having the same

Country Status (1)

Country Link
JP (1) JP2018054914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020154060A (en) * 2019-03-19 2020-09-24 株式会社リコー Image capturing lens system
CN115145091A (en) * 2021-03-31 2022-10-04 玉晶光电(厦门)有限公司 Shading component and optical imaging lens using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020154060A (en) * 2019-03-19 2020-09-24 株式会社リコー Image capturing lens system
JP7172776B2 (en) 2019-03-19 2022-11-16 株式会社リコー shooting lens system
CN115145091A (en) * 2021-03-31 2022-10-04 玉晶光电(厦门)有限公司 Shading component and optical imaging lens using the same

Similar Documents

Publication Publication Date Title
JP6849350B2 (en) Optical system and optical equipment with it
JP5885518B2 (en) Imaging optical system and imaging apparatus having the same
US10627646B2 (en) Image pickup optical system and image pickup apparatus
JP6265768B2 (en) Teleconverter and imaging system including the same
JP6489857B2 (en) Optical system and optical equipment
CN110007449B (en) Zoom lens and imaging device
JP2013156405A5 (en)
JP6366347B2 (en) Imaging optical system and imaging apparatus having the same
JP6253615B2 (en) Optical system and optical apparatus including the same
JP5751991B2 (en) Zoom lens and imaging apparatus having the same
JP4636812B2 (en) Zoom lens
JP2013050519A5 (en)
JP6308425B2 (en) Zoom lens and camera
CN109946824B (en) Zoom lens and imaging device
JP2019045631A (en) Optical system and optical device having the same
JP2018205527A (en) Large diameter wide-angle lens
JP5273172B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP2018004726A (en) Optical system and image capturing device having the same
JP6742807B2 (en) Photographing optical system and imaging device
JP2018054914A (en) Optical system and optical device having the same
JP6821365B2 (en) Optical system and optical equipment with it
JP2019124823A (en) Optical system and image capturing device
JP2014056133A (en) Zoom lens and image capturing device having the same
WO2015163368A1 (en) Variable power optical system, optical device, and method of manufacturing variable power optical system
JP7337626B2 (en) Optical system and imaging device having the same