JP2018054567A - Railway vehicle abnormality detection method - Google Patents

Railway vehicle abnormality detection method Download PDF

Info

Publication number
JP2018054567A
JP2018054567A JP2016194180A JP2016194180A JP2018054567A JP 2018054567 A JP2018054567 A JP 2018054567A JP 2016194180 A JP2016194180 A JP 2016194180A JP 2016194180 A JP2016194180 A JP 2016194180A JP 2018054567 A JP2018054567 A JP 2018054567A
Authority
JP
Japan
Prior art keywords
value
region
detection method
axis
abnormality detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016194180A
Other languages
Japanese (ja)
Other versions
JP6833434B2 (en
Inventor
岡田 信之
Nobuyuki Okada
信之 岡田
谷川 安彦
Yasuhiko Tanigawa
安彦 谷川
崇宏 笹内
Takahiro Sasauchi
崇宏 笹内
山田 幸一
Koichi Yamada
幸一 山田
正敏 平野
Masatoshi Hirano
正敏 平野
拓也 大庭
Takuya Oba
拓也 大庭
裕二 上村
Yuji Uemura
裕二 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Central Japan Railway Co
Original Assignee
Nippon Sharyo Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd, Central Japan Railway Co filed Critical Nippon Sharyo Ltd
Priority to JP2016194180A priority Critical patent/JP6833434B2/en
Publication of JP2018054567A publication Critical patent/JP2018054567A/en
Application granted granted Critical
Publication of JP6833434B2 publication Critical patent/JP6833434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a railway vehicle abnormality detection method which achieves both safety operation with reliable detection of a failure in a railway vehicle and stable operation without erroneous detection.SOLUTION: A railway vehicle abnormality detection method uses: a sensor section 14 which measures oscillation Pa generated on a specific portion on a railway vehicle 100; a sampling section 16 which samples a signal of the oscillation Pa measured by the sensor section 14 under a predetermined condition; and a calculation section 18 which determines an occurrence of abnormality on the basis of a specific spatial frequency component extracted from the signal of the oscillation Pa sampled by the sampling section 16. The calculation section 18 calculates: a continued distance L which is a distance with continuation of abnormally high acceleration indicated by the oscillation Pa continuously higher than a first threshold line WT1; relative frequency R which is the number of times that the oscillation Pa exceeds the first threshold line WT1 within a predetermined period; and a maximum amplitude Wmax1 while the oscillation Pa exceeds the first threshold line WT1. Then, the occurrence of a critical failure is determined on the basis of the continued distance L, the maximum amplitude Wmax1, and the relative frequency R.SELECTED DRAWING: Figure 6

Description

本発明は、鉄道車両の走行時の異常振動を検知する鉄道車両の異常検知方法に関するものである。   The present invention relates to a railway vehicle abnormality detection method for detecting abnormal vibrations during running of a railway vehicle.

従来、軌道上を走行する鉄道車両の異常検出は、車両に乗車している乗務員が目視で行っていた。例えば、乗務員が異常振動等を感じた際に、非常停止操作を行うなどした上で、車両の状態を確認していた。定期点検で異常が確認できない場合でも、まれに運行中にこうした異常振動を生じるケースがあるためである。しかしながら、この様な車両異常の検出方法では、中間車両などの乗務員が搭乗していない車両では異常検出が遅れるなどの問題があった。そこで、次に紹介するような技術が検討されてきた。   Conventionally, the detection of an abnormality in a railway vehicle traveling on a track has been performed visually by a crew member on the vehicle. For example, when the crew member feels abnormal vibration or the like, the state of the vehicle is confirmed after performing an emergency stop operation. This is because even when abnormalities cannot be confirmed by regular inspections, there are rare cases where such abnormal vibration occurs during operation. However, in such a vehicle abnormality detection method, there is a problem that abnormality detection is delayed in a vehicle such as an intermediate vehicle in which a crew member is not on board. Therefore, the following technologies have been studied.

特許文献1には、脱線検出装置に関する技術が開示されている。軌道上を走行する鉄道車両の車体に加速度センサを設置し、車両に加わる加速度を検出する。そして、その検出された加速度から特定周波数帯の信号を検出した後、特定周波数帯の信号が所定時間内に所定レベルを超えた回数を積算する。その回数が予め設定した所定回数を超えた時に車両異常とする判定を行っている。   Patent Document 1 discloses a technique related to a derailment detection device. An acceleration sensor is installed on the body of a railway vehicle traveling on the track to detect the acceleration applied to the vehicle. Then, after detecting a signal of a specific frequency band from the detected acceleration, the number of times that the signal of the specific frequency band exceeds a predetermined level within a predetermined time is integrated. When the number of times exceeds a preset number of times, it is determined that the vehicle is abnormal.

特許文献2には、鉄道車両の状態監視装置及び状態監視方法並びに鉄道車両に関する技術が開示されている。鉄道車両に振動を検出する振動検出装置と、振動検出装置から検出した信号を用いて鉄道車両の異常を検知する異常検知装置を備える。そして、振動検出装置に、車体の振動加速度から鉄道車両の振動を検出する振動検出手段を備え、異常検出装置は振動検出手段の車体振動加速度から異なる2つの周波数帯成分をフィルタ処理手段により検出する。そして、フィルタ処理手段から検出された2つの車体加速度の振幅比率を計算して異常判定を行っている。   Patent Document 2 discloses a state monitoring apparatus and state monitoring method for a railway vehicle, and a technique related to the railway vehicle. A vibration detection device that detects vibration in the railway vehicle, and an abnormality detection device that detects an abnormality of the railway vehicle using a signal detected from the vibration detection device. The vibration detection device includes vibration detection means for detecting the vibration of the railway vehicle from the vibration acceleration of the vehicle body, and the abnormality detection device detects two different frequency band components from the vehicle body vibration acceleration of the vibration detection means by the filter processing means. . Then, abnormality determination is performed by calculating the amplitude ratio of the two vehicle body accelerations detected from the filter processing means.

特開2002−211396号公報JP 2002-212396 A 特開2012−078213号公報JP 2012-078213 A

しかしながら、特許文献1では、特定振動の検出を回数のみで監視している。また、特許文献2では、車体振動加速度から2以上の周波数帯域成分の振幅比を計算し、その計算結果から異常判定をしている。この何れの方法も外的要因からの車両振動と、鉄道車両より発生する車両振動との区別をすることが難しく、誤検知する虞があると考えられる。つまり、車両の異常検知の検出安定性に欠けると考えられる。又、検出する為の閾値を甘くすると、車両の故障を確実に検出する安全性に欠ける結果となる可能性が考えられる。   However, in patent document 1, the detection of specific vibration is monitored only by the number of times. In Patent Document 2, the amplitude ratio of two or more frequency band components is calculated from the vehicle body vibration acceleration, and abnormality is determined from the calculation result. In any of these methods, it is difficult to distinguish between vehicle vibrations caused by external factors and vehicle vibrations generated from railway vehicles, and it is considered that there is a risk of erroneous detection. That is, it is considered that the detection stability of the vehicle abnormality detection is lacking. Moreover, if the threshold value for detection is reduced, there is a possibility that the result of lack of safety for reliably detecting a vehicle failure can be obtained.

そこで、本発明はこの様な課題を解決する為に、鉄道車両の故障を確実に検出する安全性と、誤検知しない安定性を両立した異常検知方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide an abnormality detection method that achieves both safety for reliably detecting a failure of a railway vehicle and stability without erroneous detection in order to solve such problems.

前記目的を達成するために、本発明の一態様による異常検知方法は、以下のような特徴を有する。   In order to achieve the above object, an abnormality detection method according to an aspect of the present invention has the following characteristics.

(1)鉄道車両の振動を測定して異常を検知する、鉄道車両の異常検知方法において、前記鉄道車両の特定部位に生じる前記振動を測定するセンサ部と、該センサ部で測定された前記振動の信号を所定の条件でサンプリングするサンプリング部と、該サンプリング部でサンプリングされた前記振動の信号から異常の有無を判定する演算部と、を使用し、前記演算部にて、前記振動の信号に基づく振幅値と、前記振動の前記振幅値が第1の閾値よりも連続して超えている距離に基づく継続距離値、又は所定距離を前記鉄道車両が進む間に前記振動の前記振幅値が前記第1の閾値を超えた割合に基づく相対度数値を求め、前記振動に関する判定情報とし、前記演算部と通信可能な記憶装置に、前記振幅値に関する尺度を第1軸とし、前記振幅値に関する尺度、前記継続距離値に関する尺度、又は前記相対度数値に関する尺度の何れか1つを第2軸とし、故障判定を行う第1領域と、要注意範囲を示す第2領域と、正常作動範囲を示す第3領域に分けられた第1エリアマップ、又は、前記継続距離値に関する尺度を第1軸とし、前記相対度数値に関する尺度を第2軸とし、前記第1領域と前記第2領域と、前記第3領域に分けられた第2エリアマップを記憶し、前記演算部にて、前記第1エリアマップ又は前記第2エリアマップに対して、前記判定情報が前記第1領域または前記第2領域に含まれるか否か判断して異常判定を行うこと、を特徴とする。 (1) In a railway vehicle abnormality detection method for measuring abnormality of a railway vehicle by measuring vibration of the railway vehicle, a sensor unit that measures the vibration generated in a specific part of the railway vehicle, and the vibration measured by the sensor unit Using a sampling unit that samples the signal of a predetermined condition and a calculation unit that determines the presence or absence of abnormality from the vibration signal sampled by the sampling unit. And the amplitude value based on the distance over which the amplitude value of the vibration continuously exceeds a first threshold, or the amplitude value of the vibration while the railcar travels a predetermined distance A relative numerical value based on a ratio exceeding the first threshold is obtained, used as determination information related to the vibration, a storage device that can communicate with the calculation unit, a scale related to the amplitude value as a first axis, and the amplitude value A first area for performing a failure determination, a second area indicating a caution area, and a normal operating range, with any one of a scale to measure, a scale for the continuous distance value, or a scale for the relative value value as a second axis A first area map divided into a third area showing, or a scale related to the continuation distance value as a first axis, a scale related to the relative degree value as a second axis, the first area and the second area, A second area map divided into the third area is stored, and the determination unit includes the determination information in the first area or the second area with respect to the first area map or the second area map. It is characterized by determining whether or not an abnormality is made.

上記(1)に記載の態様によって、鉄道車両の発する振動を測定して異常判定を行うことで、安全かつ安定的に鉄道車両の異常を検出することができる。課題に示したように車両に伝わる振動の発生源は内的要因と外的要因で区別が難しいが、振動発生源によって振動の特性が異なる。このため、振動に対してそれぞれ継続距離や相対度数などのパラメータを元にするエリアマップを使い異常判定をすることで、より確実性の高い異常判定を行う事ができる。   According to the aspect described in (1) above, the abnormality of the railway vehicle can be detected safely and stably by measuring the vibration generated by the railway vehicle and performing the abnormality determination. As shown in the problem, it is difficult to distinguish the generation source of vibration transmitted to the vehicle by an internal factor and an external factor, but the vibration characteristics differ depending on the vibration generation source. For this reason, it is possible to perform abnormality determination with higher certainty by performing abnormality determination using an area map based on parameters such as a continuous distance and relative frequency with respect to vibration.

(2)(1)に記載の鉄道車両の異常検知方法において、前記第1軸、前記第2軸に加えて、前記振幅値に関する尺度、前記継続距離値に関する尺度又は前記相対度数値に関する尺度の何れか1つを第3軸とし、前記第1領域、前記第2領域、及び前記第3領域に分けられた第3エリアマップを前記記憶装置に記憶し、前記第3エリアマップに対して、前記判定情報が前記第1領域または前記第2領域に含まれるか否か判断して異常判定を行うこと、が好ましい。 (2) In the railway vehicle abnormality detection method according to (1), in addition to the first axis and the second axis, a scale related to the amplitude value, a scale related to the continuation distance value, or a scale related to the relative degree value Any one of them as a third axis, and a third area map divided into the first area, the second area, and the third area is stored in the storage device, and the determination is performed with respect to the third area map. It is preferable to determine whether the information is included in the first area or the second area and perform an abnormality determination.

上記(2)に記載の態様によって、3次元のエリアマップを利用して故障判定を行うことで、より複雑な条件によって、異常判定を行うことが可能となる。   By performing failure determination using a three-dimensional area map according to the aspect described in (2) above, it is possible to perform abnormality determination under more complicated conditions.

(3)(1)または(2)に記載の鉄道車両の異常検知方法において、上記異常判定を、前記判定情報が、前記第1領域に含まれる場合を重故障状態とし、前記判定情報が、前記第2領域に含まれる場合を軽故障状態とし、前記重故障状態を判定した段階と、前記軽故障状態を判定した段階とで、異なる保護動作を行うこと、が好ましい。 (3) In the abnormality detection method for a railway vehicle according to (1) or (2), the abnormality determination is a case where the determination information is included in the first region as a serious failure state, and the determination information is It is preferable that a case of being included in the second region is a light failure state, and different protection operations are performed at the stage of determining the heavy failure state and the stage of determining the light failure state.

上記(3)に記載の態様によって、異常判定を重故障状態と軽故障状態としてその対応のレベルを変えて軽故障判定を行い、運行後点検を重点的に行う。このように適切に対応できる様にすることで、運用コストを低減することが可能となる。   According to the aspect described in (3) above, the abnormality determination is made into a major failure state and a minor failure state, the corresponding level is changed, the minor failure determination is performed, and the post-operation inspection is focused. By making it possible to respond appropriately in this way, it is possible to reduce operational costs.

(4)(3)に記載の鉄道車両の異常検知方法において、前記重故障状態と判定した際に、前記保護動作として車両停止を行うこと、が好ましい。 (4) In the rail vehicle abnormality detection method according to (3), it is preferable to stop the vehicle as the protection operation when it is determined that the state is a serious failure.

(5)(3)に記載の鉄道車両の異常検知方法において、前記振動の信号に基づく前記振幅値は、最大値又は中央値又は平均値又は実効値を用いており、前記第1エリアマップの前記第1軸と前記第2軸にそれぞれ前記振幅値を用いる場合には、異なる指標を用いること、が好ましい。 (5) In the rail vehicle abnormality detection method according to (3), the amplitude value based on the vibration signal uses a maximum value, a median value, an average value, or an effective value, and the first area map includes When using the amplitude values for the first axis and the second axis, it is preferable to use different indices.

(6)(1)に記載の鉄道車両の異常検知方法において、前記第1エリアマップは、前記第1軸に前記振幅値に関する尺度を用い、前記第2軸に前記振幅値又は前記継続距離値又は前記相対度数値に関する尺度を用い、前記第1領域は、前記第1軸に直交する第1の閾値直線以上で、かつ前記第2軸に直交する第2の閾値直線以上の領域であり、前記第3領域は、前記第1軸に直交する第3の閾値直線以下で、かつ前記第2軸に直交する第4の閾値直線以下の領域であり、前記第2領域は、前記第1領域と前記第3領域を含まない領域であること、が好ましい。 (6) In the railway vehicle abnormality detection method according to (1), the first area map uses a scale related to the amplitude value on the first axis, and the amplitude value or the continuation distance value on the second axis. Using the scale relating to the relative degree value, the first region is a region equal to or greater than a first threshold line orthogonal to the first axis and equal to or greater than a second threshold line orthogonal to the second axis, The third region is a region below the third threshold line orthogonal to the first axis and below the fourth threshold line orthogonal to the second axis, and the second region is the first region and It is preferable that the region does not include the third region.

(7)(6)に記載の鉄道車両の異常検知方法において、前記第1領域は、前記第1領域は、前記第1の閾値直線以上で、かつ前記第2の閾値直線以上であり、かつ前記第2の閾値直線上にあって前記第1の閾値直線以上である第1点と、前記第1の閾値直線上にあって前記第2の閾値直線以上である第2点と、を結ぶ線分と、前記第1の閾値直線及び前記第2の閾値直線で囲まれる範囲を含まない領域であること、が好ましい。 (7) In the railway vehicle abnormality detection method according to (6), the first region is greater than or equal to the first threshold straight line and greater than or equal to the second threshold straight line, and A first point that is on the second threshold line and that is greater than or equal to the first threshold line is connected to a second point that is on the first threshold line and is greater than or equal to the second threshold line. It is preferable that the region does not include a range surrounded by a line segment and the first threshold straight line and the second threshold straight line.

(8)(1)に記載の鉄道車両の異常検知方法において、前記第1エリアマップは、前記第1軸に前記振幅値に関する尺度を用い、前記第2軸に前記振幅値又は前記継続距離値又は前記相対度数値に関する尺度を用い、前記第1領域は、第1の閾値曲線以上の領域であり、前記第2領域は、第2の閾値曲線以下の領域であること、が好ましい。 (8) In the railway vehicle abnormality detection method according to (1), the first area map uses a scale related to the amplitude value on the first axis, and the amplitude value or the continuation distance value on the second axis. Preferably, the first area is an area that is equal to or greater than a first threshold curve, and the second area is an area that is equal to or less than a second threshold curve, using a scale relating to the relative degree value.

上記(4)乃至(8)に記載の態様によって、適切に異常判定をおこなうことが可能となる。   According to the aspects described in (4) to (8) above, it is possible to appropriately perform abnormality determination.

第1実施形態の、異常検知装置の概略を示すブロック図である。It is a block diagram which shows the outline of the abnormality detection apparatus of 1st Embodiment. 第1実施形態の、走行距離と振幅の関係を示すグラフである。It is a graph which shows the relationship between a travel distance and amplitude of 1st Embodiment. 第1実施形態の、走行距離と振幅の関係の他のまとめ方の例を示すグラフである。It is a graph which shows the example of the other way of summarizing the relationship between travel distance and amplitude of a 1st embodiment. 第1実施形態の、第1故障判定の概念を示す図である。It is a figure which shows the concept of the 1st failure determination of 1st Embodiment. 第1実施形態の、第2故障判定の概念を示す図である。It is a figure which shows the concept of the 2nd failure determination of 1st Embodiment. 第1実施形態の、判定フローである。It is a determination flow of 1st Embodiment. 第2実施形態の、第1故障判定の概念図である。It is a conceptual diagram of the 1st failure determination of 2nd Embodiment. 第2実施形態の、第2故障判定の概念図である。It is a conceptual diagram of the 2nd failure determination of 2nd Embodiment. 第3実施形態の、第3故障判定の概念図である。It is a conceptual diagram of the 3rd failure determination of 3rd Embodiment. 第4実施形態の、第4故障判定の概念図である。It is a conceptual diagram of the 4th failure determination of 4th Embodiment. 第5実施形態の、第5故障判定の概念図である。It is a conceptual diagram of the 5th failure determination of 5th Embodiment.

まず、本発明の第1の実施形態について図面を用いて説明を行う。図1に、第1実施形態の異常検知装置の概略をブロック図に示す。図1に示すように鉄道車両100は、車体10と台車12を有している。そして、車体10は、図示しない空気バネ等を介して台車12に支持されている。また、鉄道車両100は、センサ部14と、サンプリング部16と、演算部18と、管理装置20を有している。台車12には車輪36が設けられる。   First, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating an outline of the abnormality detection device according to the first embodiment. As shown in FIG. 1, the railway vehicle 100 has a vehicle body 10 and a carriage 12. The vehicle body 10 is supported by the carriage 12 via an air spring or the like (not shown). The railway vehicle 100 also includes a sensor unit 14, a sampling unit 16, a calculation unit 18, and a management device 20. The carriage 12 is provided with wheels 36.

センサ部14は、台車12に取付けられていて、鉄道車両100の進行方向に対して前後方向をX軸方向とし、左右方向をY軸方向として、2方向で台車12に生じる振動Paを測定する。つまり、台車12のX軸方向とY軸方向の振動Paをセンサ部14にて測定することになる。このセンサ部14は、例えば静電容量センサを利用したものであっても良い。なお、具体的に図示していないが、センサ部14は、台車12に設けられたモータに取付けられるモータ部振動検知センサ14a、歯車が納められるギアボックスに取付けられる歯車部振動検知センサ14b、軸受に取付けられる軸受部振動検知センサ14cなどがある。そして、センサ部14で測定された結果はサンプリング部16に電気信号として送られる。なお、センサ部14の取付け位置は台車12に限られず適宜変更が可能である。   The sensor unit 14 is attached to the carriage 12 and measures the vibration Pa generated in the carriage 12 in two directions, where the front-rear direction is the X-axis direction and the left-right direction is the Y-axis direction with respect to the traveling direction of the railway vehicle 100. . That is, the vibration Pa in the X axis direction and the Y axis direction of the carriage 12 is measured by the sensor unit 14. The sensor unit 14 may use, for example, a capacitance sensor. Although not specifically illustrated, the sensor unit 14 includes a motor unit vibration detection sensor 14a attached to a motor provided in the carriage 12, a gear unit vibration detection sensor 14b attached to a gear box in which a gear is housed, a bearing. There is a bearing part vibration detection sensor 14c attached to the motor. Then, the result measured by the sensor unit 14 is sent to the sampling unit 16 as an electrical signal. In addition, the attachment position of the sensor part 14 is not restricted to the trolley | bogie 12, and can be changed suitably.

サンプリング部16は、センサ部14で測定された振動Paを、所定の条件でサンプリングする。演算部18は、サンプリング部16でサンプリングされた振動Paの信号を、演算処理して計測結果として判定値Aを得る。また、演算部18にて判定値Aを元に異常の有無を判断する。管理装置20は、車両搭載機器を管理しており、サンプリング部16と演算部18に対して速度データなどを送る。管理装置20より、鉄道車両100の運転士などに判定結果を通知する。   The sampling unit 16 samples the vibration Pa measured by the sensor unit 14 under a predetermined condition. The calculation unit 18 performs a calculation process on the vibration Pa signal sampled by the sampling unit 16 to obtain a determination value A as a measurement result. Further, the calculation unit 18 determines whether there is an abnormality based on the determination value A. The management device 20 manages the on-vehicle equipment and sends speed data to the sampling unit 16 and the calculation unit 18. The management device 20 notifies the determination result to the driver of the railway vehicle 100 and the like.

図2に、走行距離Dと振幅Wの関係をグラフに示す。縦軸に振幅Wを、横軸に走行距離Dを用いている。振幅Wは、センサ部14より得られたデータをサンプリング部16にてサンプリングした結果であり、振動の振幅Wを示す。つまり、信号S1は鉄道車両100の移動に伴う振動振幅の変化を示している。なお、鉄道車両100が一定速度で走っているのであれば、走行距離はすなわち経過時間に置き換えられる。実際、走行距離は経過時間に置き換えても良い。第1閾値直線WT1は、実験や実績などを元に定めている。信号S1の振幅が、この第1閾値直線WT1を超えている距離を振動継続距離a1とする。また、信号S1の最大振幅Wmax1も得る。   FIG. 2 is a graph showing the relationship between the travel distance D and the amplitude W. Amplitude W is used on the vertical axis and travel distance D is used on the horizontal axis. The amplitude W is a result obtained by sampling the data obtained from the sensor unit 14 by the sampling unit 16, and indicates the amplitude W of vibration. That is, the signal S <b> 1 indicates a change in vibration amplitude accompanying the movement of the railway vehicle 100. If the railway vehicle 100 is running at a constant speed, the travel distance is replaced with the elapsed time. Actually, the travel distance may be replaced with the elapsed time. The first threshold straight line WT1 is determined based on experiments and results. A distance where the amplitude of the signal S1 exceeds the first threshold straight line WT1 is defined as a vibration continuation distance a1. Further, the maximum amplitude Wmax1 of the signal S1 is also obtained.

図3に、走行距離Dと振幅Wの関係の他のまとめ方の例をグラフに示す。図2同様に、縦軸に振幅Wを、横軸に走行距離Dを用いている。振幅Wは、センサ部14より得られたデータをサンプリング部16にてサンプリングした結果であり、振動の振幅Wを示す。つまり、信号S2は信号S1同様に鉄道車両100の移動に伴う振動振幅の変化を示している。相対度数算出距離bは、実験や実績などから所定の値に定められる。この相対度数算出距離bの間に、第1振動継続距離b1、及び第2振動継続距離b2が含まれる様子が図3には示されている。第1閾値直線WT1は、図2と同じものを使用している。相対度数Rは、図3より{(b1+b2)/b}*100=Rという数式によって求められる。また、信号S2の最大振幅Wmax2も得る。   FIG. 3 is a graph showing another example of how the travel distance D and the amplitude W are related. Similarly to FIG. 2, the vertical axis uses the amplitude W and the horizontal axis uses the travel distance D. The amplitude W is a result obtained by sampling the data obtained from the sensor unit 14 by the sampling unit 16, and indicates the amplitude W of vibration. That is, the signal S2 indicates the change in the vibration amplitude accompanying the movement of the railway vehicle 100, like the signal S1. The relative frequency calculation distance b is set to a predetermined value based on experiments and results. FIG. 3 shows a state in which the first vibration duration distance b1 and the second vibration duration distance b2 are included in the relative frequency calculation distance b. The first threshold straight line WT1 is the same as that in FIG. The relative frequency R is obtained from the mathematical formula {(b1 + b2) / b} * 100 = R from FIG. Further, the maximum amplitude Wmax2 of the signal S2 is also obtained.

図4に、第1故障判定の概念図を示す。縦軸に振幅Wを、横軸に継続距離Lを示しており、第1故障判定を行う為の第1エリアマップとして図示しない記憶装置に記憶される。そして、重故障状態を示す第1領域A1が設定される。第1領域A1は、振幅Wに関する閾値である第2閾値直線WT2を超え、かつ継続距離Lに関する閾値である第3閾値直線WT3を超えた領域である。第2閾値直線WT2は、実験や実績などから所定の値に定められる。また、第3閾値直線WT3は実験や実績などによって定められるが、例えば1km程度に設定される。第1故障判定として、演算部18により得られた判定値A(振動継続距離a1,最大振幅Wmax1)の振幅Wと継続距離Lがそれぞれ第2閾値直線WT2と第3閾値直線WT3を超えているかどうかを判定する。   FIG. 4 shows a conceptual diagram of the first failure determination. The vertical axis indicates the amplitude W and the horizontal axis indicates the continuation distance L, which is stored in a storage device (not shown) as a first area map for performing the first failure determination. And 1st area | region A1 which shows a serious failure state is set. The first region A1 is a region that exceeds the second threshold line WT2 that is a threshold value related to the amplitude W and exceeds the third threshold line WT3 that is a threshold value related to the continuation distance L. The second threshold straight line WT2 is set to a predetermined value based on experiments and results. Further, the third threshold straight line WT3 is determined by experiments, actual results, or the like, and is set to about 1 km, for example. As the first failure determination, whether the amplitude W and the continuous distance L of the determination value A (vibration continuation distance a1, maximum amplitude Wmax1) obtained by the calculation unit 18 exceed the second threshold straight line WT2 and the third threshold straight line WT3, respectively. Determine if.

図5に、第2故障判定の概念図を示す。図4と同様に縦軸に振幅Wを、横軸に継続距離Lを示しており、第2故障判定を行う為の第1エリアマップとして図示しない記憶装置に記憶される。なお、説明のために図4と図5は分けて説明している。そして、軽故障状態を示す第2領域A2が設定される。第2領域A2は、振幅Wが第4閾値直線WT4を超え、または継続距離Lが第5閾値直線WT5を超えた場合である。第2故障判定として、演算部18より得られた判定値A(振動継続距離a1,最大振幅Wmax1)の振幅Wと継続距離Lが第2領域A2に含まれているか否かを判定する。第4閾値直線WT4は、実験や実績などから所定の値に定められる。また、第5閾値直線WT5は実験や実績などによって定められるが、例えば500m程度に設定される。   FIG. 5 shows a conceptual diagram of the second failure determination. Similar to FIG. 4, the vertical axis indicates the amplitude W and the horizontal axis indicates the continuation distance L, which is stored in a storage device (not shown) as a first area map for performing the second failure determination. For the sake of explanation, FIG. 4 and FIG. 5 are described separately. And 2nd area | region A2 which shows a light failure state is set. The second region A2 is a case where the amplitude W exceeds the fourth threshold line WT4 or the continuation distance L exceeds the fifth threshold line WT5. As the second failure determination, it is determined whether or not the amplitude W and the continuous distance L of the determination value A (vibration continuous distance a1, maximum amplitude Wmax1) obtained from the calculation unit 18 are included in the second region A2. The fourth threshold straight line WT4 is set to a predetermined value based on experiments and results. Further, the fifth threshold straight line WT5 is determined by experiments, actual results, etc., but is set to about 500 m, for example.

図6に、判定フローを示す。S10では、鉄道車両100より発生する振動をセンサ部14で検出して振動Paを計測し、信号S1を得る。S11では、演算部18にて信号S1の処理を行い、判定値Aを得る。具体的には信号S1より図2に示すような形で振動継続距離a1と最大振幅Wmax1を得て判定値Aとする。S12では、検出結果が第1領域A1に含まれるかを確認する。図4に示すように検査結果である判定値Aが第2閾値直線WT2を超えかつ第3閾値直線WT3を超えて第1領域A1に含まれると判定されれば、S13に移行する。一方、第1領域A1に含まれないと判断されれば、S14に移行する。   FIG. 6 shows a determination flow. In S10, the vibration generated from the railway vehicle 100 is detected by the sensor unit 14, and the vibration Pa is measured to obtain the signal S1. In S11, the processing unit 18 processes the signal S1 to obtain the determination value A. Specifically, the vibration continuation distance a1 and the maximum amplitude Wmax1 are obtained from the signal S1 in the form shown in FIG. In S12, it is confirmed whether the detection result is included in the first area A1. If it is determined that the determination value A as the inspection result exceeds the second threshold straight line WT2 and exceeds the third threshold straight line WT3 as shown in FIG. 4 and is included in the first region A1, the process proceeds to S13. On the other hand, if it is determined that it is not included in the first area A1, the process proceeds to S14.

S13では、演算部18より重故障判定を出す。そして、S16に移行する。S14では、検査結果が第2領域A2に含まれるかを確認する。図5に示すように検査結果である判定値Aが第2領域A2に含まれれば、S15に移行し、検査結果が第2領域A2に含まれなければS17に移行する。S15では、軽故障判定を出す。そして、S16に移行する。S16では、判定結果に応じた処理を行う。そして処理を終了する。S17では、正常作動範囲と判断され、処理を終了する。この図6に示す処理は、鉄道車両100の走行中は繰り返し行われる。   In S <b> 13, a serious failure determination is issued from the calculation unit 18. Then, the process proceeds to S16. In S14, it is confirmed whether the inspection result is included in the second area A2. As shown in FIG. 5, if the determination value A, which is an inspection result, is included in the second area A2, the process proceeds to S15, and if the inspection result is not included in the second area A2, the process proceeds to S17. In S15, a minor failure determination is issued. Then, the process proceeds to S16. In S16, processing according to the determination result is performed. Then, the process ends. In S17, it is determined that the operating range is normal, and the process ends. The process shown in FIG. 6 is repeatedly performed while the railway vehicle 100 is traveling.

第1実施形態の鉄道車両100に用いる異常検知方法は上記構成である為、以下に説明するような作用及び効果を奏する。   Since the abnormality detection method used for the railway vehicle 100 of the first embodiment has the above-described configuration, the following operations and effects can be achieved.

まず、鉄道車両100の安全性を向上させることが可能となる点が効果として挙げられる。これは、鉄道車両100の振動を測定して異常を検知する、鉄道車両100の異常検知方法において、鉄道車両100の特定部位に生じる振動Paを測定するセンサ部14と、センサ部14で測定された振動Paを所定の条件でサンプリングするサンプリング部16と、サンプリング部16でサンプリングされた振動Paから異常の有無を判定する演算部18と、を使用し、演算部18にて、振動Paに基づく振幅値である振幅Wと、振動Paが第1閾値直線WT1よりも連続して超えている距離に基づく継続距離L、又は所定距離を鉄道車両100が進む間に振動Paが第1閾値直線WT1を超えた割合に基づく相対度数Rを求め、振動に関する判定情報とする。   First, the effect is that the safety of the railway vehicle 100 can be improved. This is measured by a sensor unit 14 that measures vibration Pa generated in a specific part of the railway vehicle 100 and a sensor unit 14 in the abnormality detection method of the railway vehicle 100 that detects the abnormality by measuring the vibration of the railway vehicle 100. A sampling unit 16 that samples the vibration Pa under a predetermined condition, and a calculation unit 18 that determines whether there is an abnormality from the vibration Pa sampled by the sampling unit 16. The amplitude Pa, which is an amplitude value, and the continuing distance L based on the distance that the vibration Pa continuously exceeds the first threshold straight line WT1, or the vibration Pa is the first threshold straight line WT1 while the railway vehicle 100 travels a predetermined distance. Relative frequency R based on the ratio exceeding is obtained and used as determination information related to vibration.

そして、演算部18と通信可能な記憶装置に、振幅Wに関する尺度を第1軸とし、振幅値に関する尺度、または継続距離Lに関する尺度、または相対度数に関す尺度を第2軸とし、故障判定を行う第1領域A1と、要注意範囲を示す第2領域A2と、正常動作範囲を示す第3領域に分けられた第1エリアマップを記憶し、演算部18にて、第1エリアマップに対して、判定情報が第1領域となるまたは第2領域に含まれるか否か判断して異常判定を行う。   Then, in the storage device communicable with the calculation unit 18, a scale relating to the amplitude W is set as the first axis, a scale relating to the amplitude value, a scale relating to the continuous distance L, or a scale relating to the relative frequency is set as the second axis, and failure determination is performed. A first area map divided into a first area A1 to be performed, a second area A2 indicating a range of caution, and a third area indicating a normal operation range is stored. It is determined whether or not the determination information is the first area or included in the second area, and an abnormality is determined.

そして、異常判定を、図4に示すように判定値Aの継続距離Lが所定の値(距離閾値を含む第3閾値直線WT3)を超え、かつ最大振幅Wmax1が振幅閾値を含む第2閾値直線WT2を超えた場合を重故障状態とする。また、図5に示すように振幅Wが第4閾値直線WT4を超え、または継続距離Lが第5閾値直線WT5を超えた場合を軽故障状態とする。そして、重故障状態と判定した段階で、鉄道車両100の停止を行う。また、軽故障状態を判定した場合は、運行後点検を重点的に行うこととする。   Then, in the abnormality determination, as shown in FIG. 4, the continuous distance L of the determination value A exceeds a predetermined value (third threshold line WT3 including the distance threshold), and the maximum amplitude Wmax1 includes the second threshold line including the amplitude threshold. A case where WT2 is exceeded is regarded as a serious failure state. Further, as shown in FIG. 5, a case where the amplitude W exceeds the fourth threshold straight line WT4 or the continuation distance L exceeds the fifth threshold straight line WT5 is regarded as a minor failure state. Then, when it is determined that the state is a serious failure, the railway vehicle 100 is stopped. In addition, if a minor failure state is determined, post-operation inspection will be conducted with priority.

なお、この処理はセンサ部14がモータ部振動検知センサ14a、歯車部振動検知センサ14b、軸受部振動検知センサ14c等複数に及ぶので、それぞれのセンサ部14からのデータをそれぞれ処理する。したがって、被検出体の特性によって継続距離Lか相対度数Rの何れをパラメータに使うかを選択することが望ましい。或いは、両方のパラメータについて異常状態をチェックしても良い。この様な構成であるので、鉄道車両100に異常が発生した場合に、確実に異常検知をすることができる。   In this process, the sensor unit 14 includes a plurality of motor unit vibration detection sensors 14a, gear unit vibration detection sensors 14b, bearing unit vibration detection sensors 14c, and the like, and therefore processes data from each sensor unit 14, respectively. Therefore, it is desirable to select which of the continuation distance L and the relative frequency R is used as a parameter depending on the characteristics of the detected object. Alternatively, the abnormal state may be checked for both parameters. Since it is such a structure, when abnormality has generate | occur | produced in the rail vehicle 100, abnormality detection can be performed reliably.

次に本発明の第2の実施形態について説明する。第2実施形態は第1実施形態とほぼ同じであるが、故障判定に用いる概念が少々異なる。以下に説明する。   Next, a second embodiment of the present invention will be described. The second embodiment is almost the same as the first embodiment, but the concept used for failure determination is slightly different. This will be described below.

図7に、第2実施形態の第1故障判定の他の概念図を示す。縦軸に振幅Wを、横軸に相対度数Rを示しており、第1故障判定を行う為の第2エリアマップとして図示しない記憶装置に記憶される。そして、重故障状態を示す第1領域A1が設定される。第1領域A1は、振幅Wに関する閾値である第6閾値直線WT6を超え、かつ相対度数Rに関する閾値である第7閾値直線WT7を超えた領域である。第6閾値直線WT6は、実験や実績などから所定の値に定められる。また、第7閾値直線WT7は実験や実績などによって定められるが、例えば40%程度に設定される。第1故障判定として、演算部18により得られた判定値A(相対度数R,最大振幅Wmax1)の振幅Wと相対度数Rが、それぞれ第6閾値直線WT6と第7閾値直線WT7を超えているかどうかを判定する。   FIG. 7 shows another conceptual diagram of the first failure determination of the second embodiment. The vertical axis indicates the amplitude W, and the horizontal axis indicates the relative frequency R, which is stored in a storage device (not shown) as a second area map for performing the first failure determination. And 1st area | region A1 which shows a serious failure state is set. The first region A1 is a region that exceeds a sixth threshold line WT6 that is a threshold value related to the amplitude W and exceeds a seventh threshold line WT7 that is a threshold value related to the relative frequency R. The sixth threshold straight line WT6 is set to a predetermined value based on experiments and results. In addition, the seventh threshold straight line WT7 is determined by experiments, actual results, or the like, but is set to about 40%, for example. As the first failure determination, whether the amplitude W and the relative frequency R of the determination value A (relative frequency R, maximum amplitude Wmax1) obtained by the calculation unit 18 exceed the sixth threshold line WT6 and the seventh threshold line WT7, respectively. Determine if.

図8に、第2故障判定の他の概念図を示す。図7と同様に縦軸に振幅Wを、横軸に相対度数Rを示しており、第2故障判定を行う為の第2エリアマップとして図示しない記憶装置に記憶される。そして、軽故障状態を示す第2領域A2が設定される。第2領域A2は、振幅Wが第8閾値直線WT8を超え、または相対度数Rが第9閾値直線WT9を超えた場合である。第2故障判定として、演算部18より得られた判定値A(相対度数R,最大振幅Wmax1)の振幅Wと相対度数Rが、第2領域A2に含まれているか否かを判定する。判定フローは図6に示す流れと同様である。第8閾値直線WT8は、実験や実績などから所定の値に定められる。また、第9閾値直線WT9は実験や実績などによって定められるが、例えば10%程度に設定される。   FIG. 8 shows another conceptual diagram of the second failure determination. As in FIG. 7, the vertical axis indicates the amplitude W and the horizontal axis indicates the relative frequency R, which is stored in a storage device (not shown) as a second area map for performing the second failure determination. And 2nd area | region A2 which shows a light failure state is set. The second region A2 is a case where the amplitude W exceeds the eighth threshold line WT8 or the relative frequency R exceeds the ninth threshold line WT9. As the second failure determination, it is determined whether or not the amplitude W and the relative frequency R of the determination value A (relative frequency R, maximum amplitude Wmax1) obtained from the calculation unit 18 are included in the second region A2. The determination flow is the same as the flow shown in FIG. The eighth threshold straight line WT8 is set to a predetermined value based on experiments and results. Further, the ninth threshold line WT9 is determined by experiments, actual results, etc., and is set to about 10%, for example.

異常判定に相対度数Rを用いた場合も第1実施形態の継続距離Lを用いた場合と同様であり、図7及び図8に示すように判定値Aが第1領域A1に含まれる場合は重故障判定をして鉄道車両100の停止を行い、第2領域A2に含まれる場合は軽故障判定をして運行後点検を重点的に行う。なお、この手順は第1実施形態の継続距離Lを用いた故障判定とあわせて行うのが好ましい。これは、振幅Wと継続距離L、又は振幅Wと相対度数Rの両方をパラメータとして監視している為である。例えば、レールの継ぎ目や明かり区間からトンネル区間に入る場所など、鉄道車両100が揺れやすい場所というのは存在する。こうした場所では鉄道車両100が大きく揺れるケースがあり、センサ部14で振幅Wだけ監視しているだけでは異常なのか、外的要因からの揺れなのか判断が困難である。   The case where the relative frequency R is used for the abnormality determination is the same as the case where the continuation distance L of the first embodiment is used, and when the determination value A is included in the first region A1 as shown in FIGS. The major failure is determined and the railway vehicle 100 is stopped. When the railway vehicle 100 is included in the second area A2, the minor failure is determined and the post-operation inspection is focused. This procedure is preferably performed together with the failure determination using the continuation distance L of the first embodiment. This is because the amplitude W and the continuous distance L or both the amplitude W and the relative frequency R are monitored as parameters. For example, there are places where the railroad vehicle 100 easily shakes, such as a rail joint or a place where a light section enters a tunnel section. In such a place, there is a case where the railway vehicle 100 shakes greatly, and it is difficult to judge whether it is abnormal or a shake due to an external factor only by monitoring only the amplitude W by the sensor unit 14.

しかしながら、長年の経験や実績などから継続距離L或いは相対度数Rを参考にすることで、より的確に異常を検出できることが分かってきた。この為、センサ部14からの振動を信号S1として取得し、演算部18で信号S1より判定値Aを得て,第1故障判定又は第2故障判定を行う。そして、第1領域A1や第2領域A2に判定値Aが含まれる場合には異常として判断する。無論、第1実施形態の故障判定と第2実施形態の故障判定を、それぞれ単独でエリア毎に分けて実施することを妨げない。   However, it has been found that abnormalities can be detected more accurately by referring to the continuation distance L or the relative frequency R from many years of experience and results. For this reason, the vibration from the sensor unit 14 is acquired as the signal S1, and the calculation unit 18 obtains the determination value A from the signal S1, and performs the first failure determination or the second failure determination. When the determination value A is included in the first area A1 or the second area A2, it is determined as abnormal. Of course, it does not prevent the failure determination of the first embodiment and the failure determination of the second embodiment from being performed separately for each area.

センサ部14の振動から重故障判定が出た場合には、鉄道車両100を停車させるなどの処置を行う。一方、軽故障判定が出た場合には、鉄道車両100の運行後点検で重点的に整備を行うなどの対応を行うことが可能になる。これによって鉄道車両100の安全性を高めると共に、確実に故障の判断が行える事で鉄道車両100の運行の安定性を高めることができる。   When a serious failure determination is made from the vibration of the sensor unit 14, measures such as stopping the railway vehicle 100 are performed. On the other hand, when a minor failure determination is made, it is possible to take measures such as focusing on maintenance after the operation of the railway vehicle 100. As a result, the safety of the railway vehicle 100 can be enhanced, and the stability of the operation of the railway vehicle 100 can be enhanced by reliably determining the failure.

次に本発明の第3の実施形態について説明する。第3実施形態は第1実施形態とほぼ同じであるが、故障判定に用いる概念が少々異なる。以下に説明する。   Next, a third embodiment of the present invention will be described. The third embodiment is substantially the same as the first embodiment, but the concept used for failure determination is slightly different. This will be described below.

図9に、第3実施形態の、第3故障判定の概念図を示す。第3故障判定は第1実施形態で示した第1故障判定及び第2故障判定、第2実施形態で示した第1故障判定及び第2故障判定に用いたエリアマップとは異なり、縦軸に振幅Wに関する尺度を用い、横軸にも振幅Wに関する尺度を用いている。ただし、縦軸に用いているパラメータは振幅Wの最大値であり、横軸に用いているパラメータは振幅Wの中央値である。また、第1領域A1及び第2領域A2に含まれない領域を正常作動範囲A3と定義しており、その閾値に関しては経験に基づいて曲線で繋がれて示されている。   FIG. 9 is a conceptual diagram of third failure determination according to the third embodiment. The third failure determination is different from the area map used for the first failure determination and the second failure determination shown in the first embodiment and the first failure determination and the second failure determination shown in the second embodiment, and the amplitude is shown on the vertical axis. A scale for W is used, and a scale for amplitude W is also used on the horizontal axis. However, the parameter used on the vertical axis is the maximum value of the amplitude W, and the parameter used on the horizontal axis is the median value of the amplitude W. Moreover, the area | region which is not contained in 1st area | region A1 and 2nd area | region A2 is defined as the normal operation | movement range A3, About the threshold value, it is shown connected with the curve based on experience.

第3実施形態では、振幅Wのパラメータを変えた例を示しているが、最大値や中央値の他にも平均値などを用いる事を妨げない。この様に同じ振動から得られるデータであっても評価の仕方を変えることで、様々なケースに対応することができる。鉄道車両100は走行区間や乗車率などによって、その振動から得られるデータが異なるので、複数の条件を加味して異常判定を行うことで、より正確な異常判定を実現することが可能である。さらに、第1実施形態や第2実施形態のように、継続距離Lや相対度数Rなどと組み合わせて異常判定を行うことで、より正確な異常判定を実現可能となる。   In the third embodiment, an example is shown in which the parameter of the amplitude W is changed. However, it is not prohibited to use an average value in addition to the maximum value and the median value. Thus, even if the data is obtained from the same vibration, various cases can be dealt with by changing the evaluation method. Since the railway vehicle 100 differs in data obtained from its vibration depending on the travel section, the boarding rate, and the like, more accurate abnormality determination can be realized by performing abnormality determination in consideration of a plurality of conditions. Furthermore, as in the first embodiment and the second embodiment, by performing abnormality determination in combination with the continuation distance L, the relative frequency R, and the like, more accurate abnormality determination can be realized.

次に本発明の第4の実施形態について説明する。第4実施形態は第3実施形態とほぼ同じであるが、故障判定に用いる概念が少々異なる。以下に説明する。   Next, a fourth embodiment of the present invention will be described. The fourth embodiment is almost the same as the third embodiment, but the concept used for failure determination is slightly different. This will be described below.

図10に、第4実施形態の、第4故障判定の概念図を示す。第4故障判定は、第1軸に継続距離Lを、第2軸に相対度数Rを、第3軸に振幅Wを用いている。つまり、3次元のエリアマップを用いている点で異なる。第4実施形態では3次元のエリアマップを用いる事で、第3実施形態同様に複雑な異常判定を行うことが可能となり、より正確な異常判定を実現可能である。   In FIG. 10, the conceptual diagram of the 4th failure determination of 4th Embodiment is shown. In the fourth failure determination, the continuous distance L is used for the first axis, the relative frequency R is used for the second axis, and the amplitude W is used for the third axis. That is, it is different in that a three-dimensional area map is used. In the fourth embodiment, by using a three-dimensional area map, it is possible to perform complex abnormality determination as in the third embodiment, and it is possible to realize more accurate abnormality determination.

次に本発明の第5の実施形態について説明する。第5実施形態は第3実施形態とほぼ同じであるが、故障判定に用いるエリアマップのバリエーションとして以下に説明する。   Next, a fifth embodiment of the present invention will be described. The fifth embodiment is substantially the same as the third embodiment, but will be described below as variations of the area map used for failure determination.

図11に、第5実施形態の、第5故障判定の概念図を示す。第5故障判定は、縦軸に振幅Wを、横軸に相対度数Rを用いている。そして、正常作動範囲A3は第10閾値直線WT10以下かつ第11閾値直線WT11以下の領域として定義される。また、第1領域A1は第10閾値直線WT10以上かつ、第11閾値直線WT11以上で、第12閾値直線WT12と第11閾値直線WT11の交差する点と第13閾値直線WT13と第10閾値直線WT10の交差する点で結ばれる直線で切り取られる領域として定義される。第2領域A2は、正常作動範囲A3を含まない範囲として定義されている。   FIG. 11 shows a conceptual diagram of the fifth failure determination in the fifth embodiment. The fifth failure determination uses the amplitude W on the vertical axis and the relative frequency R on the horizontal axis. The normal operation range A3 is defined as an area that is equal to or less than the tenth threshold line WT10 and equal to or less than the eleventh threshold line WT11. Further, the first area A1 is equal to or greater than the tenth threshold straight line WT10 and equal to or greater than the eleventh threshold straight line WT11, the intersection of the twelfth threshold straight line WT12 and the eleventh threshold straight line WT11, the thirteenth threshold straight line WT13, and the tenth threshold straight line WT10. It is defined as a region cut by a straight line connected at the intersecting points. The second region A2 is defined as a range that does not include the normal operation range A3.

以上、本発明に係る鉄道車両100の異常検知方法の実施形態を説明したが、本発明はこれに限定されるわけではなく、その趣旨を逸脱しない範囲で様々な変更が可能である。例えば、第1実施形態では軽故障判定と重故障判定の2パターンに分けているが、更に細分化することを妨げない。また、複数の実施形態を紹介しているが、任意に組み合わせて異常判定することを妨げない。   As mentioned above, although embodiment of the abnormality detection method of the railway vehicle 100 which concerns on this invention was described, this invention is not necessarily limited to this, A various change is possible in the range which does not deviate from the meaning. For example, in the first embodiment, although it is divided into two patterns of minor failure determination and serious failure determination, further subdivision is not prevented. Moreover, although several embodiment is introduced, it does not prevent judging abnormality by combining arbitrarily.

10 車体
12 台車
14 センサ部
16 サンプリング部
18 演算部
20 管理装置
100 鉄道車両
A 判定値
A1 第1領域
A2 第2領域
DESCRIPTION OF SYMBOLS 10 Car body 12 Bogie 14 Sensor part 16 Sampling part 18 Calculation part 20 Management apparatus 100 Railway vehicle A Determination value A1 1st area | region A2 2nd area | region

Claims (8)

鉄道車両の振動を測定して異常を検知する、鉄道車両の異常検知方法において、
前記鉄道車両の特定部位に生じる前記振動を測定するセンサ部と、
該センサ部で測定された前記振動の信号を所定の条件でサンプリングするサンプリング部と、
該サンプリング部でサンプリングされた前記振動の信号から異常の有無を判定する演算部と、を使用し、
前記演算部にて、
前記振動の信号に基づく振幅値と、前記振動の前記振幅値が第1の閾値よりも連続して超えている距離に基づく継続距離値、又は所定距離を前記鉄道車両が進む間に前記振動の前記振幅値が前記第1の閾値を超えた割合に基づく相対度数値を求め、前記振動に関する判定情報とし、
前記演算部と通信可能な記憶装置に、
前記振幅値に関する尺度を第1軸とし、前記振幅値に関する尺度、前記継続距離値に関する尺度、又は前記相対度数値に関する尺度の何れか1つを第2軸とし、故障判定を行う第1領域と、要注意範囲を示す第2領域と、正常作動範囲を示す第3領域に分けられた第1エリアマップ、又は、前記継続距離値に関する尺度を第1軸とし、前記相対度数値に関する尺度を第2軸とし、前記第1領域と前記第2領域と、前記第3領域に分けられた第2エリアマップを記憶し、
前記演算部にて、
前記第1エリアマップ又は前記第2エリアマップに対して、前記判定情報が前記第1領域または前記第2領域に含まれるか否か判断して異常判定を行うこと、
を特徴とする鉄道車両の異常検知方法。
In the railway vehicle abnormality detection method, which detects the abnormality by measuring the vibration of the railway vehicle,
A sensor unit for measuring the vibration generated in a specific part of the railway vehicle;
A sampling unit that samples the vibration signal measured by the sensor unit under a predetermined condition;
Using an arithmetic unit that determines the presence or absence of abnormality from the vibration signal sampled by the sampling unit;
In the calculation unit,
An amplitude value based on the vibration signal and a continuation distance value based on a distance at which the amplitude value of the vibration continuously exceeds a first threshold, or while the railcar travels a predetermined distance, Obtain a relative value based on a ratio of the amplitude value exceeding the first threshold, and use it as determination information regarding the vibration.
In a storage device that can communicate with the arithmetic unit,
The first axis is a scale related to the amplitude value, and one of the scale related to the amplitude value, the scale related to the continuation distance value, or the scale related to the relative value is the second axis, The first area map divided into the second area indicating the range of caution and the third area indicating the normal operating range, or the scale relating to the continuation distance value as the first axis, and the scale relating to the relative degree value is the second Store the second area map divided into the first area, the second area, and the third area as an axis,
In the calculation unit,
Determining whether or not the determination information is included in the first area or the second area with respect to the first area map or the second area map;
An abnormality detection method for railway vehicles characterized by the above.
請求項1に記載の鉄道車両の異常検知方法において、
前記第1軸、前記第2軸に加えて、前記振幅値に関する尺度、前記継続距離値に関する尺度又は前記相対度数値に関する尺度の何れか1つを第3軸とし、前記第1領域、前記第2領域、及び前記第3領域に分けられた第3エリアマップを前記記憶装置に記憶し、
前記第3エリアマップに対して、前記判定情報が前記第1領域または前記第2領域に含まれるか否か判断して異常判定を行うこと、
を特徴とする鉄道車両の異常検知方法。
In the rail vehicle abnormality detection method according to claim 1,
In addition to the first axis and the second axis, any one of a scale related to the amplitude value, a scale related to the continuation distance value, or a scale related to the relative degree value is set as a third axis, and the first region, the first Storing a third area map divided into two areas and the third area in the storage device;
Determining whether or not the determination information is included in the first area or the second area with respect to the third area map;
An abnormality detection method for railway vehicles characterized by the above.
請求項1または請求項2に記載の鉄道車両の異常検知方法において、
上記異常判定を、
前記判定情報が、前記第1領域に含まれる場合を重故障状態とし、
前記判定情報が、前記第2領域に含まれる場合を軽故障状態とし、
前記重故障状態を判定した段階と、前記軽故障状態を判定した段階とで、異なる保護動作を行うこと、
を特徴とする鉄道車両の異常検知方法。
In the rail vehicle abnormality detection method according to claim 1 or 2,
The above abnormality determination
A case where the determination information is included in the first region is a serious failure state,
A case where the determination information is included in the second region is a minor failure state,
Performing different protection operations at the stage of determining the major fault state and the stage of determining the minor fault state;
An abnormality detection method for railway vehicles characterized by the above.
請求項3に記載の鉄道車両の異常検知方法において、
前記重故障状態と判定した際に、前記保護動作として車両停止を行うこと、
を特徴とする鉄道車両の異常検知方法。
The abnormality detection method for a railway vehicle according to claim 3,
When it is determined that the major failure state, the vehicle is stopped as the protection operation,
An abnormality detection method for railway vehicles characterized by the above.
請求項3に記載の鉄道車両の異常検知方法において、
前記振動の信号に基づく前記振幅値は、最大値又は中央値又は平均値又は実効値を用いており、
前記第1エリアマップの前記第1軸と前記第2軸にそれぞれ前記振幅値を用いる場合には、異なる指標を用いること、
を特徴とする鉄道車両の異常検知方法。
The abnormality detection method for a railway vehicle according to claim 3,
The amplitude value based on the vibration signal uses a maximum value, a median value, an average value, or an effective value,
When using the amplitude value for each of the first axis and the second axis of the first area map, use different indices.
An abnormality detection method for railway vehicles characterized by the above.
請求項1に記載の鉄道車両の異常検知方法において、
前記第1エリアマップには、前記第1軸に前記振幅値に関する尺度を用い、前記第2軸に前記振幅値、前記継続距離値又は前記相対度数値に関する尺度を用い、
前記第1領域は、
前記第1軸に直交する第1の閾値直線以上で、かつ前記第2軸に直交する第2の閾値直線以上の領域であり、
前記第3領域は、
前記第1軸に直交する第3の閾値直線以下で、かつ前記第2軸に直交する第4の閾値直線以下の領域であり、
前記第2領域は、
前記第1領域と前記第3領域を含まない領域であること、
を特徴とする鉄道車両の異常検知方法。
In the rail vehicle abnormality detection method according to claim 1,
In the first area map, a scale related to the amplitude value is used for the first axis, and a scale related to the amplitude value, the duration distance value or the relative degree value is used for the second axis,
The first region is
A region equal to or greater than a first threshold line orthogonal to the first axis and equal to or greater than a second threshold line orthogonal to the second axis;
The third region is
A region below a third threshold line orthogonal to the first axis and below a fourth threshold line orthogonal to the second axis;
The second region is
A region not including the first region and the third region;
An abnormality detection method for railway vehicles characterized by the above.
請求項6に記載の鉄道車両の異常検知方法において、
前記第1領域は、
前記第1の閾値直線以上で、かつ前記第2の閾値直線以上であり、
かつ前記第2の閾値直線上にあって前記第1の閾値直線以上である第1点と、前記第1の閾値直線上にあって前記第2の閾値直線以上である第2点と、を結ぶ線分と、
前記第1閾直線及び前記第2閾直線で囲まれる範囲を含まない領域であること、
を特徴とする鉄道車両の異常検知方法。
The abnormality detection method for a railway vehicle according to claim 6,
The first region is
Greater than or equal to the first threshold line and greater than or equal to the second threshold line;
And a first point that is on the second threshold line and greater than or equal to the first threshold line, and a second point that is on the first threshold line and greater than or equal to the second threshold line. Connecting line segments,
A region not including a range surrounded by the first threshold line and the second threshold line;
An abnormality detection method for railway vehicles characterized by the above.
請求項1に記載の鉄道車両の異常検知方法において、
前記第1エリアマップには、前記第1軸に前記振幅値に関する尺度を用い、前記第2軸に前記振幅値又は前記継続距離値又は前記相対度数値に関する尺度を用い、
前記第1領域は、第1の閾値曲線以上の領域であり、
前記第2領域は、第2の閾値曲線以下の領域であること、
を特徴とする鉄道車両の異常検知方法。
In the rail vehicle abnormality detection method according to claim 1,
In the first area map, a scale related to the amplitude value is used for the first axis, and a scale related to the amplitude value or the duration value or the relative value value is used for the second axis,
The first region is a region equal to or greater than a first threshold curve,
The second region is a region below a second threshold curve;
An abnormality detection method for railway vehicles characterized by the above.
JP2016194180A 2016-09-30 2016-09-30 Railway vehicle anomaly detection method Active JP6833434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016194180A JP6833434B2 (en) 2016-09-30 2016-09-30 Railway vehicle anomaly detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016194180A JP6833434B2 (en) 2016-09-30 2016-09-30 Railway vehicle anomaly detection method

Publications (2)

Publication Number Publication Date
JP2018054567A true JP2018054567A (en) 2018-04-05
JP6833434B2 JP6833434B2 (en) 2021-02-24

Family

ID=61834170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016194180A Active JP6833434B2 (en) 2016-09-30 2016-09-30 Railway vehicle anomaly detection method

Country Status (1)

Country Link
JP (1) JP6833434B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112413814A (en) * 2020-11-04 2021-02-26 武汉科技大学 Online renewable heating ventilation air conditioner sensor fault detection method based on comprehensive distance
WO2022054290A1 (en) * 2020-09-14 2022-03-17 三菱電機株式会社 Central device and failure level modification method
CN114954586A (en) * 2022-06-16 2022-08-30 中车青岛四方机车车辆股份有限公司 Intelligent operation system, method, device, equipment, product and rail vehicle

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123411A (en) * 1997-07-04 1999-01-29 Mazda Motor Corp Strange sound judging apparatus and method therefor
JP2008001285A (en) * 2006-06-23 2008-01-10 Toyota Motor Corp Vehicle warning device
JP2008013153A (en) * 2006-07-10 2008-01-24 Central Japan Railway Co Abnormality detection device for railway vehicle
JP2011257154A (en) * 2010-06-04 2011-12-22 Mitsubishi Electric Corp Deterioration diagnosis device and deterioration diagnosis method
JP2012058208A (en) * 2010-09-13 2012-03-22 Railway Technical Research Institute State monitoring system of train vehicle and state monitoring method of train vehicle using the same
JP2012078213A (en) * 2010-10-01 2012-04-19 Hitachi Ltd Railway vehicle state monitor, state monitoring method and railway vehicle
JP2012100434A (en) * 2010-11-02 2012-05-24 Akebono Brake Ind Co Ltd Abnormality diagnosis system for rolling stocks
JP2013205259A (en) * 2012-03-29 2013-10-07 Railway Technical Research Institute Pq measurement processing device and pq measurement processing program
JP2015155223A (en) * 2014-02-20 2015-08-27 日本車輌製造株式会社 railway vehicle
JP2015214201A (en) * 2014-05-08 2015-12-03 日本車輌製造株式会社 Abnormality detection device for rolling stock and abnormality detecting method for rolling stock

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123411A (en) * 1997-07-04 1999-01-29 Mazda Motor Corp Strange sound judging apparatus and method therefor
JP2008001285A (en) * 2006-06-23 2008-01-10 Toyota Motor Corp Vehicle warning device
JP2008013153A (en) * 2006-07-10 2008-01-24 Central Japan Railway Co Abnormality detection device for railway vehicle
JP2011257154A (en) * 2010-06-04 2011-12-22 Mitsubishi Electric Corp Deterioration diagnosis device and deterioration diagnosis method
JP2012058208A (en) * 2010-09-13 2012-03-22 Railway Technical Research Institute State monitoring system of train vehicle and state monitoring method of train vehicle using the same
JP2012078213A (en) * 2010-10-01 2012-04-19 Hitachi Ltd Railway vehicle state monitor, state monitoring method and railway vehicle
JP2012100434A (en) * 2010-11-02 2012-05-24 Akebono Brake Ind Co Ltd Abnormality diagnosis system for rolling stocks
JP2013205259A (en) * 2012-03-29 2013-10-07 Railway Technical Research Institute Pq measurement processing device and pq measurement processing program
JP2015155223A (en) * 2014-02-20 2015-08-27 日本車輌製造株式会社 railway vehicle
JP2015214201A (en) * 2014-05-08 2015-12-03 日本車輌製造株式会社 Abnormality detection device for rolling stock and abnormality detecting method for rolling stock

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054290A1 (en) * 2020-09-14 2022-03-17 三菱電機株式会社 Central device and failure level modification method
JPWO2022054290A1 (en) * 2020-09-14 2022-03-17
DE112020007608T5 (en) 2020-09-14 2023-07-27 Mitsubishi Electric Corporation CENTRAL DEVICE AND FAILURE LEVEL CHANGE PROCEDURE
CN112413814A (en) * 2020-11-04 2021-02-26 武汉科技大学 Online renewable heating ventilation air conditioner sensor fault detection method based on comprehensive distance
CN112413814B (en) * 2020-11-04 2021-11-19 武汉科技大学 Online renewable heating ventilation air conditioner sensor fault detection method based on comprehensive distance
CN114954586A (en) * 2022-06-16 2022-08-30 中车青岛四方机车车辆股份有限公司 Intelligent operation system, method, device, equipment, product and rail vehicle
CN114954586B (en) * 2022-06-16 2023-12-26 中车青岛四方机车车辆股份有限公司 Intelligent operation system, method, device, equipment, product and railway vehicle

Also Published As

Publication number Publication date
JP6833434B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
KR101736523B1 (en) Method for monitoring the state of a bogie of a railway vehicle comprising at least one wheel set
Chudzikiewicz et al. Condition monitoring of railway track systems by using acceleration signals on wheelset axle-boxes
JP5525404B2 (en) Railway vehicle state monitoring device, state monitoring method, and rail vehicle
JP4298433B2 (en) Railway vehicle abnormality detection device
KR101026350B1 (en) System for measuring cross-level irregularity of track using inertial sensor, and method thereof
JP2006341659A (en) Abnormality detecting method of railroad vehicle
JP2018054567A (en) Railway vehicle abnormality detection method
Melnik et al. Rail vehicle suspension condition monitoring-approach and implementation
RU2683818C1 (en) Acceleration sensor failure detection method and measuring system
KR101590712B1 (en) Rail car and track monitoring system using running record and the method
JP4388594B2 (en) Railway vehicle abnormality detection device
KR20130013133A (en) Prediction methods for derailment of the wheels using the external force acted on the wheelset
US20210394805A1 (en) Method and Device for Detecting a Derailed State of a Rail Vehicle
KR100921547B1 (en) The Fatigue Monitoring System For Railway Vehicle Bogie and Method For Protecting Railway Vehicle Using The Fatigue Monitoring System
JP2004090848A (en) Abnormality detection device and method of rolling stock
JP2020012733A (en) Locus state evaluation method and evaluation device
JP7120934B2 (en) Railway vehicle monitoring system
JP7121753B2 (en) System and method for detecting abnormal running conditions of rail vehicles
Cheng et al. Vibration of axle box from wheel diameter difference in vehicle
JP3630079B2 (en) Repair replacement time detection method
RU2601467C2 (en) Method of determining fitness of cargo railway cars by size of gaps in side bearings
JP7328779B2 (en) Abnormality detection device for beam type bogie
JP7445406B2 (en) Monitoring device, monitoring method and program
JP7383654B2 (en) Rail breakage detection device and rail breakage detection method
JP7430622B2 (en) Wear diagnosis system and method for wheel flanges of railway vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210203

R150 Certificate of patent or registration of utility model

Ref document number: 6833434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250