JP2018053737A - System for recovering steam from exhaust gas, thermal power generation system, and water steam recovery method - Google Patents

System for recovering steam from exhaust gas, thermal power generation system, and water steam recovery method Download PDF

Info

Publication number
JP2018053737A
JP2018053737A JP2016187374A JP2016187374A JP2018053737A JP 2018053737 A JP2018053737 A JP 2018053737A JP 2016187374 A JP2016187374 A JP 2016187374A JP 2016187374 A JP2016187374 A JP 2016187374A JP 2018053737 A JP2018053737 A JP 2018053737A
Authority
JP
Japan
Prior art keywords
exhaust gas
steam
water vapor
power generation
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016187374A
Other languages
Japanese (ja)
Inventor
徳介 早見
Tokusuke Hayami
徳介 早見
大介 堀川
Daisuke Horikawa
大介 堀川
法光 阿部
Norimitsu Abe
法光 阿部
健志 出
Kenji Ide
健志 出
柴崎 理
Osamu Shibazaki
理 柴崎
俊男 太原
Toshio Tahara
俊男 太原
敏弘 今田
Toshihiro Imada
敏弘 今田
志村 尚彦
Naohiko Shimura
尚彦 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016187374A priority Critical patent/JP2018053737A/en
Publication of JP2018053737A publication Critical patent/JP2018053737A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system for recovering steam from exhaust gas, a thermal power generation system and a water steam recovery method, which can retain a temperature difference between an exhaust gas temperature and an outdoor temperature sufficiently.SOLUTION: According to an embodiment, a system for recovering steam from exhaust gas comprises: a steam separation film for separating steam from flue gas; evacuation means for evacuating the exhaust gas having penetrated said steam separation film; compression means for compressing the exhaust gas having been evacuated by said compression means; and air-cooling means for cooling the exhaust gas having been compressed by said compression means, with ambient air.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、排ガス中水蒸気回収システム、火力発電システム、および水蒸気回収方法に関する。   Embodiments described herein relate generally to an exhaust gas steam recovery system, a thermal power generation system, and a steam recovery method.

今後、工業化、人口増加が目覚ましい新興国において電力需要の増加に供給が追い付か
ない地域(特に内陸部)への火力発電プラントの設置が見込まれる。しかし、石炭火力発
電、天然ガスコンバインドサイクル火力発電(以下、「コンバインドサイクル発電」と略
称する場合がある。)では、燃料の燃焼による燃焼熱で水を気化させた蒸気でタービンを
回した後、冷却して復水する必要があり、そのために、例えば、石炭火力発電所では、冷
却媒体(海水等)を必要とする。また、蒸気タービンを動かすボイラー水には、防錆剤や
シリカなどが濃縮析出し、機器を劣化させるため、ブロー水としてボイラー水の一部を抜
き取り、抜き取った分を補給水として純水を供給する必要がある。通常、発電所外から上
水または工水を供給し、所内で純水を製造する。更に、石炭火力発電所では、脱硫水、貯
炭場での粉炭飛散防止のために散水で大量の水を必要とする。
In the future, it is expected that thermal power plants will be installed in regions (especially inland areas) where supply cannot catch up with the increase in power demand in emerging countries where industrialization and population growth are remarkable. However, in coal-fired power generation and natural gas combined cycle power generation (hereinafter sometimes abbreviated as “combined cycle power generation”), after turning the turbine with steam obtained by vaporizing water with combustion heat from fuel combustion, For example, a coal-fired power plant requires a cooling medium (such as seawater). Also, the boiler water that moves the steam turbine concentrates and precipitates rust preventives and silica and degrades the equipment, so part of the boiler water is extracted as blow water, and pure water is supplied as make-up water. There is a need to. Usually, clean water or industrial water is supplied from outside the power plant to produce pure water. Furthermore, a coal-fired power plant requires a large amount of water to spray desulfurized water and to prevent scattering of pulverized coal at the coal storage.

大量の冷却水を確保できない地域向けでは、例えば、石炭火力発電所の冷却手段として
冷却水を復水器とクーリングタワー間を循環させ、クーリングタワーにて冷却水を強制的
に空気接触させることでその水量の1.5〜2%を気化させて、その気化熱で冷却するの
が一般的である。しかし、ここでも気化した分と冷却水中の塩濃縮による析出や腐食によ
る機劣化を防止するため冷却水の一部をブローする必要があり、それらの減少分として、
水(工水等)を補給する必要がある。例えば、空冷式復水器を採用することで発電所外か
らの補給水量を大幅に減らすことができるが、ボイラー補給水を確保するために所外から
上水または工水を供給する必要がある。
For areas where a large amount of cooling water cannot be secured, for example, the cooling water is circulated between the condenser and the cooling tower as a cooling means for coal-fired power plants, and the cooling water is forcibly brought into air contact with the cooling tower. In general, 1.5 to 2% of the gas is vaporized and cooled with the heat of vaporization. However, it is necessary to blow a part of the cooling water to prevent vaporization and precipitation due to salt concentration in the cooling water and machine deterioration due to corrosion.
It is necessary to replenish water (such as industrial water). For example, by using an air-cooled condenser, the amount of makeup water from outside the power plant can be greatly reduced, but it is necessary to supply clean water or industrial water from outside the plant in order to secure boiler makeup water. .

一方、ボイラーの排ガス中の蒸気を凝縮させて水分を回収し、プラント内で必要な水を
確保する技術がある。水蒸気分離膜で排ガス中の水蒸気を分離してから、水蒸気濃縮排ガ
スを冷却して凝縮させて水分を回収するものもある。水蒸気分離膜では水蒸気と他のガス
成分との通過速度差を利用して分離する。
On the other hand, there is a technology for condensing steam in the exhaust gas of a boiler to collect moisture to secure necessary water in the plant. Some of them collect water vapor by separating the water vapor in the exhaust gas with a water vapor separation membrane and then cooling and condensing the steam concentrated exhaust gas. In the water vapor separation membrane, separation is performed using the difference in the passing speed between water vapor and other gas components.

特開2000−337106号公報JP 2000-337106 A 特開2006−23053号公報JP 2006-23053 A 特開2014−129731号公報JP 2014-129731 A

水蒸気分離膜を透過した水蒸気濃縮排ガスは、CO2などの不凝縮ガスを含むため、低
圧下での冷却による水回収は容易ではない。更に、水の確保が難しい環境ではクーリング
タワーなどの水を大気中に放散することによる冷却は難しいため、冷熱源を確保するため
には外気による空冷を用いざるを得ない。しかし、外気による空冷は熱伝達の効率が悪い
ため、所内率が上昇したり装置が大きくなったりするなどの課題がある。更に、外気によ
る空冷は、外気温以下には冷却できず、夏季日中などは排ガス温度との温度差が十分に確
保できないため、二次媒体を使用するなどして外気温以下に冷却する手段を設けなければ
ならない。
Since the steam-concentrated exhaust gas that has permeated the steam separation membrane contains non-condensable gas such as CO2, water recovery by cooling under low pressure is not easy. Further, in an environment where it is difficult to secure water, it is difficult to cool by dissipating water such as a cooling tower into the atmosphere, so air cooling by outside air must be used to secure a cold heat source. However, the air cooling by the outside air has a problem that the efficiency of heat transfer is bad and the inside ratio increases or the apparatus becomes large. Furthermore, air cooling by outside air cannot be cooled below the outside air temperature, and the temperature difference from the exhaust gas temperature cannot be secured sufficiently during the summer day. Must be provided.

本発明が解決しようとする課題は、排ガス温度と外気温との温度差を十分確保できる排
ガス中水蒸気回収システム、火力発電システム、および水蒸気回収方法を提供することで
ある。
The problem to be solved by the present invention is to provide a steam recovery system in exhaust gas, a thermal power generation system, and a steam recovery method capable of ensuring a sufficient temperature difference between the exhaust gas temperature and the outside air temperature.

実施形態の排ガス中水蒸気回収システムは、燃焼排ガスから水蒸気を分離する水蒸気分
離膜と、前記水蒸気分離膜を透過した排ガスを減圧する減圧手段と、前記減圧手段で減圧
された排ガスを圧縮する圧縮手段と、前記圧縮手段で圧縮された排ガスを外気で冷却する
空冷手段とを備える。
The steam recovery system in the exhaust gas according to the embodiment includes a water vapor separation membrane that separates water vapor from combustion exhaust gas, a decompression unit that decompresses the exhaust gas that has permeated the water vapor separation membrane, and a compression unit that compresses the exhaust gas decompressed by the decompression unit. And air cooling means for cooling the exhaust gas compressed by the compression means with outside air.

本実施形態に係る火力発電システムの構成を示す概略図。Schematic which shows the structure of the thermal power generation system which concerns on this embodiment.

以下、実施の形態について、図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1は本実施形態に係る火力発電システムの構成を示す概略図である。火力発電システ
ムの一例として、LNG専焼の火力発電所であるガスタービンコンバインドサイクル方式
の発電所を示している。コンバインドサイクルでは、一般に、燃焼器1、ガスタービン2
、発電機3、排熱回収ボイラー4、スタック(煙突)5、蒸気タービン7、復水器9、水
蒸気分離膜11、真空ポンプ12、圧縮冷却装置13、水回収装置14および受水槽15
を備えている。
FIG. 1 is a schematic diagram showing a configuration of a thermal power generation system according to the present embodiment. As an example of a thermal power generation system, a gas turbine combined cycle power plant that is a LNG-only fired thermal power plant is shown. In the combined cycle, the combustor 1 and the gas turbine 2 are generally used.
, Generator 3, exhaust heat recovery boiler 4, stack (chimney) 5, steam turbine 7, condenser 9, water vapor separation membrane 11, vacuum pump 12, compression cooling device 13, water recovery device 14 and water receiving tank 15
It has.

燃料であるLNGは、空気圧縮機によって高圧に圧縮された空気と混合され、燃焼器1に
導かれて着火される。1000℃を超える燃焼ガスのエネルギーは、ガスタービン2に回
転エネルギーとして消費され、ガスタービン2に接続された発電機3によって発電され、
電気を発生する。ガスタービン2から出た排気ガスは約500〜600℃となり、脱硝装
置を介して排熱回収ボイラー4に流れる。排熱回収ボイラー4は、500℃の排気ガスの
熱エネルギーにより蒸気を発生させる熱交換方式の蒸気発生装置である。蒸気発生は、排
熱回収ボイラ内部で多段化されることで、より効率的に行われる。排熱回収ボイラー4で
発生した蒸気は、蒸気タービン7に導入され、蒸気タービン7を回転させる。蒸気タービ
ン7はガスタービン2と同軸で直結されている。ガスタービン2と蒸気タービン7とは、
発電機3を同時に回転させ、電気を効率よく生じさせる。
LNG as fuel is mixed with air compressed to a high pressure by an air compressor, led to the combustor 1 and ignited. The energy of the combustion gas exceeding 1000 ° C. is consumed as rotational energy in the gas turbine 2, and is generated by the generator 3 connected to the gas turbine 2.
Generate electricity. The exhaust gas emitted from the gas turbine 2 becomes about 500 to 600 ° C. and flows to the exhaust heat recovery boiler 4 through the denitration device. The exhaust heat recovery boiler 4 is a heat exchange type steam generator that generates steam by the thermal energy of the exhaust gas at 500 ° C. Steam generation is performed more efficiently by being multistaged in the exhaust heat recovery boiler. Steam generated in the exhaust heat recovery boiler 4 is introduced into the steam turbine 7 to rotate the steam turbine 7. The steam turbine 7 is directly connected to the gas turbine 2 coaxially. The gas turbine 2 and the steam turbine 7 are
The generator 3 is simultaneously rotated to generate electricity efficiently.

排熱回収ボイラー4からの排気ガス中には水蒸気が含まれているので、水蒸気分離膜11
で排気ガス中の水蒸気を回収する。水蒸気分離膜11で排気ガス中の水蒸気を回収された
排ガスは、スタック(煙突)5を通じて大気に放出される。
Since the exhaust gas from the exhaust heat recovery boiler 4 contains water vapor, the water vapor separation membrane 11
To collect water vapor in the exhaust gas. The exhaust gas from which the water vapor in the exhaust gas has been recovered by the water vapor separation membrane 11 is released to the atmosphere through the stack (chimney) 5.

水蒸気分離膜11は、一次側と二次側の圧力差を駆動力として水蒸気(およびその他排ガ
ス成分)を透過する。水蒸気分離膜11の二次側に、減圧による水蒸気分離促進のため真
空ポンプ12を導入する。数Pa〜数10kPa程度まで減圧するが、好ましくは数kPa程度ま
で減圧する。これにより水蒸気分離膜11は排ガス中の水蒸気を主成分とする水蒸気濃縮
排ガスを分離することができる。水蒸気分離膜11は水蒸気以外の排ガス成分(例えば、
NOx、SOx、CO2など)も透過するため、膜二次側を真空近くまで減圧しても水
蒸気分離膜11を通じて不凝縮ガス(水蒸気以外の排ガス成分)が膜二次側へ流入する。
The water vapor separation membrane 11 transmits water vapor (and other exhaust gas components) using the pressure difference between the primary side and the secondary side as a driving force. A vacuum pump 12 is introduced on the secondary side of the water vapor separation membrane 11 to promote water vapor separation by reduced pressure. The pressure is reduced to about several Pa to several tens kPa, preferably about several kPa. Thereby, the water vapor separation membrane 11 can separate the water vapor concentrated exhaust gas mainly containing water vapor in the exhaust gas. The water vapor separation membrane 11 is an exhaust gas component other than water vapor (for example,
NOx, SOx, CO2, etc.) also permeate, so that even when the pressure on the secondary side of the membrane is reduced to near vacuum, non-condensable gas (exhaust gas components other than water vapor) flows into the secondary side of the membrane through the water vapor separation membrane 11.

水蒸気濃縮排ガスは、真空ポンプ12の二次側へ導かれ、圧縮冷却装置13で圧縮され、
冷却される。圧縮のためにコンプレッサを備えてもよいが、真空ポンプ12で圧縮する構
成であれば簡素となり、好ましい。水蒸気濃縮排ガスを冷却することで水を凝縮させる。
冷却装置は水が不足した環境では空冷の冷却器を用いる。
The steam-concentrated exhaust gas is guided to the secondary side of the vacuum pump 12 and compressed by the compression cooling device 13.
To be cooled. A compressor may be provided for compression, but a configuration in which compression is performed by the vacuum pump 12 is simplified and preferable. Water is condensed by cooling the steam-concentrated exhaust gas.
The cooling device uses an air-cooled cooler in an environment where water is insufficient.

圧縮する際の容器は管を用いることができる。管は例えばローフィン管を用いることで、
冷却の際の伝熱性能を良好に保つことができる。更に出口に圧力制御弁と必要に応じて不
凝縮ガス排出のためのポンプを備えることで管内を圧縮する。必要な圧縮後の圧力は、外
気温と圧縮後のガス温度との関係、および熱交換器の伝熱性能やガス組成などから算出さ
れ、外気温に対して+10℃程度以上の温度となるように圧力を設定して圧縮することが望
ましい。種々の機器条件や運転条件によるが、およそ水蒸気分離に必要な膜二次側の圧力
(絶対圧)に対しておよそ1.5倍〜100倍程度まで圧縮することで、外気で冷却可能な温度
域へ圧縮し、さらにガスに含まれる水蒸気を凝縮させることができる。
A tube can be used as a container for compression. By using, for example, a low fin tube,
The heat transfer performance during cooling can be kept good. Further, the inside of the pipe is compressed by providing a pressure control valve at the outlet and, if necessary, a pump for discharging non-condensable gas. The required post-compression pressure is calculated from the relationship between the outside air temperature and the compressed gas temperature, the heat transfer performance of the heat exchanger and the gas composition, etc., and is about + 10 ° C or higher than the outside air temperature. It is desirable to set the pressure so as to compress. Depending on various equipment conditions and operating conditions, it is compressed to about 1.5 to 100 times the pressure on the membrane secondary side (absolute pressure) necessary for water vapor separation, to a temperature range that can be cooled with outside air It is possible to compress and further condense the water vapor contained in the gas.

水蒸気濃縮排ガスの通気は、多数の管に分岐して行う。更に多数の管を束ねて一つのファ
ンで外気を管外に流通させ、冷却する。排ガス温度は一般に外気よりも高いが、圧縮によ
る温度上昇分を加えることで更に温度差を得られ、圧縮しない場合に比べて冷却の効率が
高くなる。冷却されながら、水蒸気の一部は凝縮してミスト化する。
The steam-concentrated exhaust gas is vented to a number of pipes. Further, a large number of tubes are bundled, and the outside air is circulated outside the tubes with a single fan, and then cooled. The exhaust gas temperature is generally higher than that of the outside air, but a temperature difference can be obtained by adding a temperature increase due to compression, and the efficiency of cooling is higher than when compression is not performed. While being cooled, a part of the water vapor condenses and becomes mist.

ここで、圧縮冷却装置13で、煙突5入口における排ガス圧力よりも高い圧力まで圧縮さ
れた場合、水蒸気濃縮排ガスは、水回収装置14に導かれ、ノズルなどを用いて水回収装
置14内に放出されることで、急速に圧力が解放される。圧力解放と共に体積が大きくな
り、断熱膨張に近い状態となるので、水蒸気濃縮排ガスは温度降下する。温度降下に伴い
水蒸気の凝縮が起こり、水滴が発生する。ここで、水回収装置14内にはミストセパレー
タが備えられているので、発生した水滴はミストセパレータに付着して回収される。ミス
トが回収された排ガスは、主配管の排ガスと混合してスタック(煙突)5へ送られ、排気
される。比較的水蒸気濃度が低い場合に、このような圧力を高くする運転が必要となる。
Here, when the compression cooling device 13 compresses the exhaust gas to a pressure higher than the exhaust gas pressure at the chimney 5 inlet, the steam-concentrated exhaust gas is guided to the water recovery device 14 and discharged into the water recovery device 14 using a nozzle or the like. As a result, the pressure is rapidly released. As the pressure is released, the volume increases and the state becomes close to adiabatic expansion, so that the temperature of the steam-concentrated exhaust gas drops. As the temperature drops, water vapor condenses and water droplets are generated. Here, since the mist separator is provided in the water recovery apparatus 14, the generated water droplets adhere to the mist separator and are recovered. The exhaust gas from which the mist has been recovered is mixed with the exhaust gas from the main pipe, sent to the stack (chimney) 5 and exhausted. When the water vapor concentration is relatively low, an operation for increasing the pressure is required.

圧縮冷却装置13で、煙突5入口における排ガス圧力よりも低い圧力まで圧縮された場合
、水蒸気濃縮排ガスは、水回収装置14に導かれ、水回収装置14内に備えられたミスト
セパレータにより、発生したミストは付着して回収される。ミストが回収された排ガスは
、不凝縮ガス排出のためのポンプにより主配管の排ガスと混合してスタック(煙突)5へ
送られ、排気される。比較的水蒸気濃度が高く、低い圧力でも凝縮が起こる場合にはこの
ような圧力設定をした運転をすると効率が良い。
When the compression cooling device 13 compresses the exhaust gas to a pressure lower than the exhaust gas pressure at the inlet of the chimney 5, the steam-concentrated exhaust gas is guided to the water recovery device 14 and is generated by the mist separator provided in the water recovery device 14. Mist adheres and is collected. The exhaust gas from which the mist has been recovered is mixed with the exhaust gas from the main pipe by a pump for discharging non-condensable gas, sent to the stack (chimney) 5 and exhausted. When the water vapor concentration is relatively high and condensation occurs even at a low pressure, it is efficient to operate at such a pressure setting.

ミストセパレータに付着した水滴は、徐々に成長し、やがて重力により流下・落下する。
このときミストセパレータを親水性の材質で構成し、接触角20°以下とすることで、ミス
トセパレータに付着した水滴を速やかに流下させることができる。具体的にはPET(ポリ
エチレンテレフタラート)やPEN(ポリエチレンナフタレート)、PP(ポリプロピレン)
、PE(ポリエチレン)などのフィルムや繊維に親水性や超親水性の塗料を塗布して形成し
たものを用いる。
The water droplets adhering to the mist separator grow gradually and eventually flow down and drop due to gravity.
At this time, when the mist separator is made of a hydrophilic material and has a contact angle of 20 ° or less, water droplets adhering to the mist separator can be quickly flowed down. Specifically, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PP (polypropylene)
, PE (polyethylene) film or fiber coated with a hydrophilic or super-hydrophilic paint is used.

水回収装置14下方に配置された受水槽15に水が溜まり、ポンプなどを用いて排出され
る。排出された水は不凝縮ガス成分が溶解しており酸性であるので、アルカリ塩を用いて
中和したり、逆浸透膜やイオン交換樹脂などを用いて脱塩するなどして所内で用いること
ができる。
Water accumulates in a water receiving tank 15 disposed below the water recovery device 14 and is discharged using a pump or the like. Since the discharged water is acidic with non-condensable gas components dissolved, it should be neutralized with an alkali salt or desalted with a reverse osmosis membrane or ion exchange resin, etc. Can do.

なお、石炭火力発電システムの場合は、脱硫装置の後段に水蒸気分離膜11を設置する。 In the case of a coal-fired power generation system, the water vapor separation membrane 11 is installed at the subsequent stage of the desulfurization apparatus.

以上詳述したように、少なくとも1つの実施形態によれば、排ガス温度と外気温との温
度差を十分確保できる。
As described in detail above, according to at least one embodiment, a sufficient temperature difference between the exhaust gas temperature and the outside air temperature can be secured.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したも
のであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その
他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の
省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や
要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる
Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…燃焼器、2…ガスタービン、3…発電機、4…排熱回収ボイラー、5…スタック(
煙突)、7…蒸気タービン、9…復水器、11…水蒸気分離膜、12…真空ポンプ、13
…圧縮冷却装置、14…水回収装置、15…受水槽
1 ... Combustor, 2 ... Gas turbine, 3 ... Generator, 4 ... Waste heat recovery boiler, 5 ... Stack (
Chimney), 7 ... Steam turbine, 9 ... Condenser, 11 ... Steam separation membrane, 12 ... Vacuum pump, 13
... compression cooling device, 14 ... water recovery device, 15 ... water receiving tank

Claims (8)

燃焼排ガスから水蒸気を分離する水蒸気分離膜と、
前記水蒸気分離膜を透過した排ガスを減圧する減圧手段と、
前記減圧手段で減圧された排ガスを圧縮する圧縮手段と、
前記圧縮手段で圧縮された排ガスを外気で冷却する空冷手段と
を備えた排ガス中水蒸気回収システム。
A water vapor separation membrane for separating water vapor from combustion exhaust gas;
Decompression means for decompressing the exhaust gas permeated through the water vapor separation membrane;
Compression means for compressing the exhaust gas decompressed by the decompression means;
An exhaust gas water vapor recovery system comprising: air cooling means for cooling the exhaust gas compressed by the compression means with outside air.
前記空冷手段で冷却された排ガス中のミストを捕集するミスト捕集手段
を備えた請求項1記載の排ガス中水蒸気回収システム。
The exhaust gas steam recovery system according to claim 1, further comprising mist collecting means for collecting mist in the exhaust gas cooled by the air cooling means.
前記ミスト捕集手段の前段に設けられ、前記空冷手段で冷却された排ガスを圧力開放す
る圧力開放手段
を備えた請求項2記載の排ガス中水蒸気回収システム。
The exhaust gas steam recovery system according to claim 2, further comprising a pressure release means provided in a preceding stage of the mist collecting means for releasing the pressure of the exhaust gas cooled by the air cooling means.
前記ミスト捕集手段に付着したミストを溜める受水槽
を備えた請求項2または請求項3に記載の排ガス中水蒸気回収システム。
The steam recovery system for exhaust gas according to claim 2 or 3, further comprising a water receiving tank for storing mist adhering to the mist collecting means.
燃料を燃焼することで生じる熱を使って蒸気を発生させるボイラーと、前記ボイラーで
発生した蒸気が持つエネルギーを発電機の駆動力に変換する蒸気タービンとを有する火力
発電システムに適用される排ガス中水蒸気回収システムであって、
前記火力発電システムがコンバインドサイクル発電システムであり、前記ボイラーが排熱
回収ボイラーであり、前記排熱回収ボイラーの後段に前記水蒸気分離装置が設けられた請
求項1乃至4のいずれか1項に記載の排ガス中水蒸気回収システム。
In exhaust gas applied to a thermal power generation system having a boiler that generates steam using heat generated by burning fuel and a steam turbine that converts the energy of the steam generated in the boiler into the driving force of a generator A steam recovery system,
5. The thermal power generation system according to claim 1, wherein the thermal power generation system is a combined cycle power generation system, the boiler is an exhaust heat recovery boiler, and the water vapor separation device is provided downstream of the exhaust heat recovery boiler. System for collecting water vapor in exhaust gas.
燃料を燃焼することで生じる熱を使って蒸気を発生させるボイラーと、前記ボイラーで
発生した蒸気が持つエネルギーを発電機の駆動力に変換する蒸気タービンとを有する火力
発電システムに適用される排ガス中水蒸気回収システムであって、
前記火力発電システムは前記ボイラーから排出される排ガス中に含まれる硫化物を除去
する脱硫装置をさらに有し、
前記脱硫装置の後段に前記水蒸気分離装置が設けられた請求項1乃至4のいずれか1項
に記載の排ガス中水蒸気回収システム。
In exhaust gas applied to a thermal power generation system having a boiler that generates steam using heat generated by burning fuel and a steam turbine that converts the energy of the steam generated in the boiler into the driving force of a generator A steam recovery system,
The thermal power generation system further includes a desulfurization device that removes sulfides contained in the exhaust gas discharged from the boiler,
The exhaust gas steam recovery system according to any one of claims 1 to 4, wherein the steam separator is provided downstream of the desulfurizer.
請求項1乃至6のいずれか1項に記載の排ガス中水蒸気回収システムを有する火力発電
システム。
A thermal power generation system having the steam recovery system in exhaust gas according to any one of claims 1 to 6.
前記ボイラーから排出される燃焼排ガスから水蒸気を水蒸気分離膜で分離し、
前記水蒸気分離膜を透過した排ガスを減圧し、
減圧された排ガスを圧縮し、
圧縮された排ガスを外気で冷却する
排ガス中水蒸気回収方法。
Water vapor is separated from the combustion exhaust gas discharged from the boiler by a water vapor separation membrane;
Depressurizing the exhaust gas that has permeated the water vapor separation membrane,
Compress the exhaust gas with reduced pressure,
A method for recovering water vapor in exhaust gas by cooling the compressed exhaust gas with outside air.
JP2016187374A 2016-09-26 2016-09-26 System for recovering steam from exhaust gas, thermal power generation system, and water steam recovery method Pending JP2018053737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016187374A JP2018053737A (en) 2016-09-26 2016-09-26 System for recovering steam from exhaust gas, thermal power generation system, and water steam recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016187374A JP2018053737A (en) 2016-09-26 2016-09-26 System for recovering steam from exhaust gas, thermal power generation system, and water steam recovery method

Publications (1)

Publication Number Publication Date
JP2018053737A true JP2018053737A (en) 2018-04-05

Family

ID=61836307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016187374A Pending JP2018053737A (en) 2016-09-26 2016-09-26 System for recovering steam from exhaust gas, thermal power generation system, and water steam recovery method

Country Status (1)

Country Link
JP (1) JP2018053737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7304023B1 (en) 2022-01-07 2023-07-06 株式会社プランテック Exhaust gas treatment device and method of using water vapor in exhaust gas treatment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293523A (en) * 1985-06-24 1986-12-24 Mitsubishi Heavy Ind Ltd Water making process
JP2014500793A (en) * 2010-11-12 2014-01-16 ザ テキサス エイ・アンド・エム ユニヴァーシティ システム System and method for efficient air dehumidification and liquid recovery by evaporative cooling
JP2014129731A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Thermal power system
JP2015025415A (en) * 2013-07-26 2015-02-05 三菱日立パワーシステムズ株式会社 Gas turbine system utilizing air of high moisture content

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293523A (en) * 1985-06-24 1986-12-24 Mitsubishi Heavy Ind Ltd Water making process
JP2014500793A (en) * 2010-11-12 2014-01-16 ザ テキサス エイ・アンド・エム ユニヴァーシティ システム System and method for efficient air dehumidification and liquid recovery by evaporative cooling
JP2014129731A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Thermal power system
JP2015025415A (en) * 2013-07-26 2015-02-05 三菱日立パワーシステムズ株式会社 Gas turbine system utilizing air of high moisture content

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7304023B1 (en) 2022-01-07 2023-07-06 株式会社プランテック Exhaust gas treatment device and method of using water vapor in exhaust gas treatment device
JP2023101231A (en) * 2022-01-07 2023-07-20 株式会社プランテック Exhaust gas treatment device and steam utilization method in exhaust gas treatment device

Similar Documents

Publication Publication Date Title
US6857268B2 (en) Cascading closed loop cycle (CCLC)
US7559977B2 (en) Purification works for thermal power plant
CN108136321B (en) For CO2Method and apparatus for trapping
AU2003252000B2 (en) Cascading closed loop cycle power generation
US20130312386A1 (en) Combined cycle power plant with co2 capture plant
JP5427741B2 (en) Multipurpose thermal power generation system
US8920548B2 (en) CO2 capture system by chemical absorption
US11484825B1 (en) Devices, systems, facilities and processes for carbon capture optimization in industrial facilities
JP2010235395A (en) Apparatus for recovering carbon dioxide, and thermal power system with apparatus for recovering carbon dioxide
CN108351098B (en) System for recovering water vapor from power generation exhaust gas, thermal power generation system, and method for recovering water vapor from power generation exhaust gas
US9447996B2 (en) Carbon dioxide removal system using absorption refrigeration
US8317982B2 (en) FGEPSC (flared, gas exhaust, pneumatic, saturation and condensation) process and system
JP2010112377A (en) System and method for reducing corrosion in gas turbine system
US20100071878A1 (en) System and method for cooling using system exhaust
KR101741834B1 (en) Apparatus for recovering VOC
WO2014038412A1 (en) Heat recovery system and heat recovery method
JP2018053737A (en) System for recovering steam from exhaust gas, thermal power generation system, and water steam recovery method
JP4929227B2 (en) Gas turbine system using high humidity air
JP2012132452A (en) System and method for increasing efficiency and water recovery of combined cycle power plant
KR20180000288A (en) Apparatus for recovering VOC
KR101644237B1 (en) Combined cycle power generation system
KR101644236B1 (en) Integrated gasification combined cycle system
KR101593827B1 (en) Combined cycle power generation system
JP6740059B2 (en) Water collection device for thermal power plant
JP2018094539A (en) Steam separator

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171128

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200717