JP2018053375A - Carbon fiber coated with thin film containing nano-carbon material and method for producing the same - Google Patents

Carbon fiber coated with thin film containing nano-carbon material and method for producing the same Download PDF

Info

Publication number
JP2018053375A
JP2018053375A JP2016187588A JP2016187588A JP2018053375A JP 2018053375 A JP2018053375 A JP 2018053375A JP 2016187588 A JP2016187588 A JP 2016187588A JP 2016187588 A JP2016187588 A JP 2016187588A JP 2018053375 A JP2018053375 A JP 2018053375A
Authority
JP
Japan
Prior art keywords
carbon
aqueous solution
thin film
carbon fiber
film containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016187588A
Other languages
Japanese (ja)
Other versions
JP6792861B2 (en
Inventor
浜田 晴夫
Haruo Hamada
晴夫 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016187588A priority Critical patent/JP6792861B2/en
Publication of JP2018053375A publication Critical patent/JP2018053375A/en
Application granted granted Critical
Publication of JP6792861B2 publication Critical patent/JP6792861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a carbon fiber in which the conductivity is improved by forming, on the surface, a thin film containing carbon nano-tubes in a well dispersed state.SOLUTION: Provided is a method for producing a carbon fiber coated with a thin film containing carbon nano-tubes by: preparing an aqueous solution in which carbon nano-tubes, carboxymethyl cellulose ammonium and ammonium hydrogen carbonate are added; subjecting the aqueous solution to dispersion treatment of carbon nano-tubes to make it into a dispersed aqueous solution; coating or impregnating the dispersed aqueous solution on or into the carbon fibers; and drying the same to form a thin film.

Description

本発明は、表面にナノ炭素材料を含有する薄膜を形成することで導電性が向上された炭素繊維を製造する方法に関するものである。   The present invention relates to a method for producing a carbon fiber having improved conductivity by forming a thin film containing a nanocarbon material on the surface.

炭素繊維は、ポリアクリロニトリル繊維、ピッチ繊維、レーヨンなどの有機繊維を不活性雰囲気中で加熱して炭素以外の元素を脱離させることで製造される、約90%〜100%が炭素成分の繊維である。
炭素繊維は、強度、弾性、軽量性、耐熱性、化学的安定性などに優れており、従来の金属材料を代替する新材料としての幅広い分野での利用が期待されている。また、主成分が炭素であり導電性を有するため、電極等の材料としても利用が可能である。
Carbon fiber is produced by heating organic fibers such as polyacrylonitrile fiber, pitch fiber, rayon, etc. in an inert atmosphere to desorb elements other than carbon, and fiber with about 90% to 100% carbon component. It is.
Carbon fiber is excellent in strength, elasticity, lightness, heat resistance, chemical stability, and the like, and is expected to be used in a wide range of fields as a new material that replaces conventional metal materials. Further, since the main component is carbon and it has conductivity, it can be used as a material for electrodes and the like.

炭素は、従来、グラファイト、ダイヤモンド、無定形炭素など、性質が大きく異なる複数の同素体が存在することが明らかとなっていた。1980年代以降次々と新発見されたナノメートルサイズの炭素の同素体は、従来知られていた炭素同素体とは全く異なる原子構造や物性を有することが確かめられ、その工業的利用価値の高さが注目されている。本明細書ではそれらを「ナノ炭素材料」と称し、カーボンナノチューブ、カーボンナノファイバー、ナノグラフェン、フラーレン、カーボンナノホーン、カーボンマイクロコイル、カーボンブラック、ダイヤモンドライクカーボン、カーボンナノクリスタル、活性炭などであって、数nm〜10μm程度のサイズのものを含むものとする。   Conventionally, it has been clarified that carbon has a plurality of allotropes having greatly different properties such as graphite, diamond, and amorphous carbon. Nanometer-sized carbon allotropes that have been newly discovered since the 1980s have been confirmed to have completely different atomic structures and physical properties from the conventionally known carbon allotropes. Has been. In the present specification, these are referred to as “nanocarbon materials”, and are carbon nanotubes, carbon nanofibers, nanographene, fullerenes, carbon nanohorns, carbon microcoils, carbon black, diamond-like carbon, carbon nanocrystals, activated carbon, etc. The one having a size of about 10 nm to 10 μm is included.

ナノ炭素材料は炭素のみから構成されるため、極めて軽量で、高強度で、導電性を有する高分子材料である。その導電性は銅よりも優れ、強度は鋼よりも優れ、耐熱性が高く、多くの薬品に対しても反応せず、大気中で安定である。
ナノ炭素材料の中でも、カーボンナノチューブは、特に優れた電気特性、力学特性、熱特性などを示すものであり、様々な材料への応用が期待され、広く研究開発が行われている。例えば、カーボンナノチューブと樹脂とを混合した複合材とし、あるいはカーボンナノチューブ分散液をバインダーとを混合して乾燥させたものから、様々な用途の材料が得られる。
Since the nanocarbon material is composed only of carbon, it is a polymer material that is extremely lightweight, high in strength, and conductive. Its conductivity is superior to copper, strength is superior to steel, heat resistance is high, it does not react to many chemicals, and is stable in the atmosphere.
Among nanocarbon materials, carbon nanotubes exhibit particularly excellent electrical properties, mechanical properties, thermal properties, etc., and are expected to be applied to various materials, and are widely researched and developed. For example, a material for various uses can be obtained from a composite material in which carbon nanotubes and a resin are mixed, or a carbon nanotube dispersion mixed with a binder and dried.

上述したような炭素繊維及びナノ炭素材料の優れた性質に着目し、様々な炭素複合材料が提案されている。
特許文献1には、炭素繊維の表面に、単離分散したカーボンナノチューブが互いに絡み合った状態でネットワーク状の薄膜を形成することで、樹脂等の母材との密着強度が向上された炭素繊維複合素材が提案されている。
Paying attention to the excellent properties of the carbon fibers and nanocarbon materials as described above, various carbon composite materials have been proposed.
Patent Document 1 discloses a carbon fiber composite in which adhesion strength with a base material such as a resin is improved by forming a network-like thin film in a state in which isolated and dispersed carbon nanotubes are intertwined with each other on the surface of carbon fiber. Material has been proposed.

特開2013−76198公報JP2013-76198A

上述した特許文献1記載の発明においては、炭素繊維表面におけるカーボンナノチューブ薄膜の形成により樹脂等の母材との密着強度が向上するという効果が記載されている。しかしながら、この炭素繊維複合素材の導電性については一切言及がなされていない。炭素繊維表面の薄膜中のカーボンナノチューブの分散性が導電性に大きく影響を与えるものと考えられるが、特許文献1では薄膜中のカーボンナノチューブの分散状態についてなんらの試験も評価も行われておらず、炭素繊維表面におけるカーボンナノチューブ薄膜の形成が導電性の向上にどれほど寄与しているかも不明である。   In the invention described in Patent Document 1 described above, the effect that adhesion strength with a base material such as a resin is improved by forming a carbon nanotube thin film on the surface of the carbon fiber is described. However, no mention is made of the conductivity of the carbon fiber composite material. Although it is considered that the dispersibility of the carbon nanotubes in the thin film on the surface of the carbon fiber has a great influence on the conductivity, Patent Document 1 does not perform any test or evaluation on the dispersion state of the carbon nanotubes in the thin film. It is also unclear how much the formation of the carbon nanotube thin film on the carbon fiber surface contributes to the improvement of conductivity.

本発明は、このような実情に鑑みてなされたものであり、表面にカーボンナノチューブを良好な分散状態で含有する薄膜を形成することで導電性が向上された炭素繊維を製造する方法を提供しようとするものである。   The present invention has been made in view of such circumstances, and provides a method for producing a carbon fiber having improved conductivity by forming a thin film containing carbon nanotubes in a well dispersed state on the surface. It is what.

上記解決課題に鑑みて鋭意研究の結果、本発明者は、カーボンナノチューブ、アンモニウム塩、炭酸水素塩を含み、カーボンナノチューブが好適に分散された水溶液を薄膜材料として炭素繊維表面に塗布し乾燥させることにより、分散液での好適な分散状態が保持されたまま薄膜を形成することができることを発見し、本発明を成すに至った。
すなわち、本発明は、カーボンナノチューブと、カルボキシメチルセルロースアンモニウムと、炭酸水素アンモニウムとを添加した水溶液を調整し、前記水溶液に対してカーボンナノチューブの分散処理を行い分散水溶液とし、前記分散水溶液を炭素繊維に塗布し又は含浸させ、乾燥させて薄膜化することにより、カーボンナノチューブを含有する薄膜を被覆された炭素繊維を製造する方法を提供するものである。
As a result of diligent research in view of the above problems, the present inventors apply an aqueous solution containing carbon nanotubes, ammonium salts, and hydrogen carbonates, in which carbon nanotubes are suitably dispersed, as a thin film material and dry the carbon fiber surface Thus, it was discovered that a thin film can be formed while maintaining a preferable dispersion state in the dispersion, and the present invention has been achieved.
That is, the present invention prepares an aqueous solution in which carbon nanotubes, carboxymethyl cellulose ammonium, and ammonium hydrogen carbonate are added, disperses the carbon nanotubes in the aqueous solution to obtain a dispersed aqueous solution, and the dispersed aqueous solution is converted into carbon fiber. The present invention provides a method for producing carbon fibers coated with a thin film containing carbon nanotubes by applying or impregnating and drying to form a thin film.

上述した本発明の製造方法において、前記水溶液には、カーボンナノチューブ1重量部に対して、カルボキシメチルセルロースアンモニウム1〜5重量部、炭酸水素アンモニウム1〜5重量部が含まれていることを特徴とする。
上述した本発明の製造方法において、前記分散処理は超音波照射によって行うことを特徴とする。
上述した本発明の製造方法において、前記水溶液は、グラフェン、カーボンブラック、活性炭のうち1種類又は2種類以上の炭素材料をさらに含むことを特徴とする。
In the production method of the present invention described above, the aqueous solution contains 1 to 5 parts by weight of carboxymethyl cellulose ammonium and 1 to 5 parts by weight of ammonium hydrogen carbonate with respect to 1 part by weight of carbon nanotubes. .
In the manufacturing method of the present invention described above, the dispersion treatment is performed by ultrasonic irradiation.
In the production method of the present invention described above, the aqueous solution further includes one or more carbon materials among graphene, carbon black, and activated carbon.

以上、説明したように、本発明によれば、表面にカーボンナノチューブを良好な分散状態で含有する薄膜を形成することで導電性が向上された炭素繊維を製造する方法が提供される。   As described above, according to the present invention, a method for producing a carbon fiber with improved conductivity by forming a thin film containing carbon nanotubes in a good dispersion state on the surface is provided.

以下、本発明のナノ炭素材料を含有する薄膜を被覆された炭素繊維及びその製造方法の実施例として、カーボンナノチューブを含有する薄膜を被覆された炭素繊維を製造する方法とその製造物が示す物性の試験結果について説明する。   Hereinafter, as an example of a carbon fiber coated with a thin film containing a nanocarbon material of the present invention and a method for producing the same, a method for producing a carbon fiber coated with a thin film containing a carbon nanotube and physical properties of the product are shown. The test results will be described.

<実施例1>
≪原材料水溶液の調製≫
カーボンナノチューブは、多層カーボンナノチューブ(Nanocyl社製、NC7000(平均直径9.5nm、平均長さ1.5μm、比表面積250〜300m2/g、炭素純度90%))を用いた。
カルボキシメチルセルロースアンモニウムは、株式会社ファインクレイ製の製品名「CMCA25」(カルボキシメチルセルロースアンモニウム25%水和物)を用いた。
炭酸水素アンモニウムは、宇部興産株式会社製品(製品コード:IO−B14−0016、純度95.0%以上)を用いた。
300mlの水に、カーボンナノチューブ2g、カルボキシメチルセルロースアンモニウム10g、炭酸水素アンモニウム10g、グリセリン2gを溶解して原材料水溶液を得た。
<Example 1>
≪Preparation of raw material aqueous solution≫
As the carbon nanotube, a multi-wall carbon nanotube (manufactured by Nanocyl, NC7000 (average diameter 9.5 nm, average length 1.5 μm, specific surface area 250 to 300 m 2 / g, carbon purity 90%)) was used.
As the carboxymethyl cellulose ammonium, a product name “CMCA25” (carboxymethyl cellulose ammonium 25% hydrate) manufactured by Fine Clay Co., Ltd. was used.
Ube Industries, Ltd. product (product code: IO-B14-0016, purity 95.0% or more) was used for ammonium hydrogen carbonate.
In 300 ml of water, 2 g of carbon nanotubes, 10 g of carboxymethylcellulose ammonium, 10 g of ammonium bicarbonate, and 2 g of glycerin were dissolved to obtain an aqueous raw material solution.

≪分散処理≫
この原材料水溶液に、超音波ホモジナイザー(三井電気精機株式会社製、型式:UX−600、発振周波数20±1KHz、最大出力600W)により20分間超音波を照射して、カーボンナノチューブの分散水溶液を得た。
≪Distributed processing≫
This raw material aqueous solution was irradiated with ultrasonic waves for 20 minutes using an ultrasonic homogenizer (Mitsui Denki Seiki Co., Ltd., model: UX-600, oscillation frequency 20 ± 1 KHz, maximum output 600 W) to obtain a dispersed aqueous solution of carbon nanotubes. .

≪炭素繊維への塗布・含浸及び乾燥処理≫
炭素繊維は、東レ株式会社の製品を用いた。
この炭素繊維を分散水溶液に含浸した後、140℃で30分間焼付け処理を行い、分散水溶液の水分及びアンモニア成分を蒸発させて炭素繊維の表面を乾燥させた。この含浸及び焼付け処理を3回繰り返した。
以上の手順により、カーボンナノチューブを含有する薄膜を被覆された炭素繊維を得た。
≪Coating, impregnation and drying treatment on carbon fiber≫
The carbon fiber used was a product of Toray Industries, Inc.
After impregnating the carbon fiber with the aqueous dispersion, baking treatment was performed at 140 ° C. for 30 minutes to evaporate the water and ammonia components of the aqueous dispersion, thereby drying the surface of the carbon fiber. This impregnation and baking process was repeated three times.
By the above procedure, carbon fibers coated with a thin film containing carbon nanotubes were obtained.

<実施例2>
≪原材料水溶液の調製≫
カーボンナノチューブ、カルボキシメチルセルロースアンモニウム、炭酸水素アンモニウムは、実施例1と同じ製品を用いた。
300mlの水に、カーボンナノチューブ3g、カルボキシメチルセルロースアンモニウム3g、炭酸水素アンモニウム3gを溶解して原材料水溶液を得た。
<Example 2>
≪Preparation of raw material aqueous solution≫
The same products as in Example 1 were used for carbon nanotubes, carboxymethyl cellulose ammonium, and ammonium hydrogen carbonate.
In 300 ml of water, 3 g of carbon nanotubes, 3 g of carboxymethyl cellulose ammonium and 3 g of ammonium hydrogen carbonate were dissolved to obtain an aqueous raw material solution.

≪分散処理≫
この原材料水溶液に、超音波ホモジナイザー(実施例1と同じ製品)により20分間超音波を照射して、カーボンナノチューブの分散水溶液を得た。
≪Distributed processing≫
This raw material aqueous solution was irradiated with ultrasonic waves for 20 minutes by an ultrasonic homogenizer (the same product as in Example 1) to obtain a dispersed aqueous solution of carbon nanotubes.

≪炭素繊維への塗布・含浸及び乾燥処理≫
炭素繊維(実施例1と同じ製品)を分散水溶液に含浸した後、140℃で30分間焼付け処理を行い、分散水溶液の水分及びアンモニア成分を蒸発させて炭素繊維の表面を乾燥させた。この含浸及び焼付け処理を3回繰り返した。
以上の手順により、カーボンナノチューブを含有する薄膜を被覆された炭素繊維を得た。
≪Coating, impregnation and drying treatment on carbon fiber≫
After impregnating carbon fiber (the same product as in Example 1) into the dispersion aqueous solution, baking treatment was performed at 140 ° C. for 30 minutes to evaporate water and ammonia components of the dispersion aqueous solution, thereby drying the surface of the carbon fiber. This impregnation and baking process was repeated three times.
By the above procedure, carbon fibers coated with a thin film containing carbon nanotubes were obtained.

<実施例3>
≪炭酸水素ナトリウムとグリセリンとを用いて原材料水溶液を調整≫
原材料水溶液の調整にあたって、実施例1の炭酸水素アンモニウムの代わりに、炭酸水素ナトリウムとグリセリンとの混合物を用いて、同様に薄膜を被覆された炭素繊維を得た。
<Example 3>
≪Preparation of raw material aqueous solution using sodium bicarbonate and glycerin≫
In preparing the raw material aqueous solution, a carbon fiber coated with a thin film was obtained in the same manner by using a mixture of sodium hydrogen carbonate and glycerin instead of ammonium hydrogen carbonate in Example 1.

[比較例]
以上の実施例1に対する比較例として、カーボンナノチューブの分散水溶液を塗布・含浸されていない炭素繊維(実施例1と同じ製品)を用いて評価実験を行った。
[Comparative example]
As a comparative example with respect to Example 1 described above, an evaluation experiment was performed using carbon fiber (the same product as Example 1) that was not coated / impregnated with a dispersed aqueous solution of carbon nanotubes.

[空気マグネシウム電池の電極として用いる]
実施例1と比較例の炭素繊維について、空気マグネシウム電池の空気極(正極)として用いて、幅2センチメートル、長さ5センチメートルのマグネシウム板を負極として用い、それと同等の大きさの炭素繊維を正極とし、塩化第二鉄を電解液として、炭素繊維に垂らす。そのときに解放電圧2ボルトで、どれだけのイニシャル電流が流れるかをテスターにより測定した。
マグネシウムは、権田金属工業株式会社の製品の「難燃性マグネシウム」を用いた。テスターは、共立電気計器社のAC/DCクランプ付デジタルマルチメーターを用いた。
比較例では、66.4ミリアンペアのイニシャル電流を得られた。実施例1では、538.3ミリアンペアのイニシャル電流を得ることができた。
[Used as an electrode for air magnesium battery]
About the carbon fiber of Example 1 and a comparative example, it uses as an air electrode (positive electrode) of an air magnesium battery, uses a magnesium plate of width 2cm and length 5cm as a negative electrode, and carbon fiber of the magnitude | size equivalent to it Is used as a positive electrode, and ferric chloride is used as an electrolytic solution and hung on a carbon fiber. At that time, it was measured by a tester how much initial current flows at an open-circuit voltage of 2 volts.
As the magnesium, “Flame-resistant magnesium” manufactured by Gonda Metal Industry Co., Ltd. was used. The tester used was a digital multimeter with an AC / DC clamp manufactured by Kyoritsu Electric Instruments.
In the comparative example, an initial current of 66.4 milliamperes was obtained. In Example 1, an initial current of 538.3 milliamps could be obtained.

このように、実施例1の炭素繊維は、比較例の炭素繊維に比べて、電流値が顕著に大きく、8倍以上の電流密度を達成できたことが明らかとなった。   Thus, it became clear that the carbon fiber of Example 1 had a significantly larger current value than the carbon fiber of the comparative example, and was able to achieve a current density of 8 times or more.

以上、ナノ炭素材料を含有する薄膜を被覆された炭素繊維及びその製造方法について、具体的な実施の形態を示して説明したが、本発明はこれらに限定されるものではない。当業者であれば、本発明の要旨を逸脱しない範囲内において、原材料、試薬、処理条件、処理手順、測定条件、測定方法について様々な変更・改良を加えることが可能である。   As mentioned above, although the carbon fiber coated with the thin film containing nanocarbon material and its manufacturing method were shown and demonstrated concrete embodiment, this invention is not limited to these. A person skilled in the art can make various changes and improvements to the raw materials, reagents, processing conditions, processing procedures, measurement conditions, and measurement methods without departing from the scope of the present invention.

本発明のナノ炭素材料を含有する薄膜を被覆された炭素繊維及びその製造方法は、空気マグネシウム電池の電極をはじめとする無機化学分野、有機化学分野、金属科学分野ほか多くの産業において利用することができるものである。   The carbon fiber coated with a thin film containing the nanocarbon material of the present invention and the method for producing the same are used in inorganic chemistry, organic chemistry, metal science and many other industries including electrodes for air magnesium batteries. It is something that can be done.

Claims (5)

カーボンナノチューブと、カルボキシメチルセルロースアンモニウムと、炭酸水素アンモニウムとを添加した水溶液を調整し、
前記水溶液に対してカーボンナノチューブの分散処理を行い分散水溶液とし、
前記分散水溶液を炭素繊維に塗布し又は含浸させ、乾燥させて薄膜化することにより、
カーボンナノチューブを含有する薄膜を被覆された炭素繊維を製造する方法。
Prepare an aqueous solution to which carbon nanotubes, carboxymethyl cellulose ammonium, and ammonium hydrogen carbonate are added,
Dispersing the carbon nanotubes to the aqueous solution to obtain a dispersed aqueous solution,
By applying or impregnating the dispersed aqueous solution to carbon fiber, drying and thinning,
A method for producing a carbon fiber coated with a thin film containing carbon nanotubes.
前記水溶液において、カーボンナノチューブ1重量部に対して、カルボキシメチルセルロースアンモニウム1〜5重量部、炭酸水素アンモニウム1〜5重量部が含まれていることを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the aqueous solution contains 1 to 5 parts by weight of carboxymethyl cellulose ammonium and 1 to 5 parts by weight of ammonium hydrogen carbonate with respect to 1 part by weight of the carbon nanotube. 前記分散処理は超音波照射によって行うことを特徴とする請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1, wherein the dispersion treatment is performed by ultrasonic irradiation. 前記水溶液は、グラフェン、カーボンブラック、活性炭のうち1種類又は2種類以上の炭素材料をさらに含むことを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the aqueous solution further includes one or more carbon materials among graphene, carbon black, and activated carbon. 請求項1から4のいずれか1項に記載の製造方法により製造された、カーボンナノチューブを含有する薄膜を被覆された炭素繊維。   A carbon fiber coated with a thin film containing carbon nanotubes, produced by the production method according to claim 1.
JP2016187588A 2016-09-26 2016-09-26 Electrodes of an air magnesium battery coated with a thin film containing a nanocarbon material and its manufacturing method Active JP6792861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016187588A JP6792861B2 (en) 2016-09-26 2016-09-26 Electrodes of an air magnesium battery coated with a thin film containing a nanocarbon material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016187588A JP6792861B2 (en) 2016-09-26 2016-09-26 Electrodes of an air magnesium battery coated with a thin film containing a nanocarbon material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018053375A true JP2018053375A (en) 2018-04-05
JP6792861B2 JP6792861B2 (en) 2020-12-02

Family

ID=61835454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016187588A Active JP6792861B2 (en) 2016-09-26 2016-09-26 Electrodes of an air magnesium battery coated with a thin film containing a nanocarbon material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6792861B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108934089A (en) * 2018-04-11 2018-12-04 杭州牛墨科技有限公司 A kind of preparation method of work China Democratic National Construction Association building bottom snow-removing and ice-thawing graphene heating film
CN113293605A (en) * 2021-07-02 2021-08-24 四川大学 Method for improving interface performance of resin matrix and carbon fiber
JP2022014871A (en) * 2020-07-07 2022-01-20 東洋インキScホールディングス株式会社 Carbon nanotubes, carbon nanotube dispersions, and non-aqueous electrolyte battery using them
JP2022094274A (en) * 2020-12-14 2022-06-24 ツィンファ ユニバーシティ Infrared stealth fabric and infrared stealth dress

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239171A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Carbon fiber, method for producing the same and carbon fiber-reinforced resin composition
JP2013155083A (en) * 2012-01-30 2013-08-15 Tateyama Kagaku Kogyo Kk Carbon conductive film and method for producing the same
JP2015214734A (en) * 2014-05-13 2015-12-03 丸祥電器株式会社 Spherical composite copper fine particle containing extra-fine carbon fiber and manufacturing method therefor
WO2016136428A1 (en) * 2015-02-25 2016-09-01 東レ株式会社 Carbon nanotube dispersion and method for manufacturing conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239171A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Carbon fiber, method for producing the same and carbon fiber-reinforced resin composition
JP2013155083A (en) * 2012-01-30 2013-08-15 Tateyama Kagaku Kogyo Kk Carbon conductive film and method for producing the same
JP2015214734A (en) * 2014-05-13 2015-12-03 丸祥電器株式会社 Spherical composite copper fine particle containing extra-fine carbon fiber and manufacturing method therefor
WO2016136428A1 (en) * 2015-02-25 2016-09-01 東レ株式会社 Carbon nanotube dispersion and method for manufacturing conductive film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMCR(多層カーボンナノチューブ)を事業化,[ONLINE],2011年6月20日,宇部興産株式会社[2020年3月27日, JPN6020013184, ISSN: 0004251867 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108934089A (en) * 2018-04-11 2018-12-04 杭州牛墨科技有限公司 A kind of preparation method of work China Democratic National Construction Association building bottom snow-removing and ice-thawing graphene heating film
JP2022014871A (en) * 2020-07-07 2022-01-20 東洋インキScホールディングス株式会社 Carbon nanotubes, carbon nanotube dispersions, and non-aqueous electrolyte battery using them
JP2022094274A (en) * 2020-12-14 2022-06-24 ツィンファ ユニバーシティ Infrared stealth fabric and infrared stealth dress
JP7146197B2 (en) 2020-12-14 2022-10-04 ツィンファ ユニバーシティ Infrared Stealth Fabrics and Infrared Stealth Garments
CN113293605A (en) * 2021-07-02 2021-08-24 四川大学 Method for improving interface performance of resin matrix and carbon fiber

Also Published As

Publication number Publication date
JP6792861B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
Zhang et al. Co 2 P quantum dot embedded N, P dual-doped carbon self-supported electrodes with flexible and binder-free properties for efficient hydrogen evolution reactions
Zhang et al. Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor
Yu et al. Facile synthesis of nitrogen-doped, hierarchical porous carbons with a high surface area: the activation effect of a nano-ZnO template
Ge et al. Multidimensional evolution of carbon structures underpinned by temperature‐induced intermediate of chloride for sodium‐ion batteries
Foroughi et al. Highly conductive carbon nanotube‐graphene hybrid yarn
Ji et al. Porous hybrid composites of few‐layer MoS2 nanosheets embedded in a carbon matrix with an excellent supercapacitor electrode performance
He et al. Porous carbon nanofiber mats from electrospun polyacrylonitrile/polymethylmethacrylate composite nanofibers for supercapacitor electrode materials
Cruz-Silva et al. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling
Inagaki et al. Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne
JP6792861B2 (en) Electrodes of an air magnesium battery coated with a thin film containing a nanocarbon material and its manufacturing method
Endo et al. Applications of carbon nanotubes in the twenty–first century
JP2019527641A (en) Carbon nanotube film structure and manufacturing method thereof
Agrawalla et al. A facile synthesis of a novel three‐phase nanocomposite: Single‐wall carbon nanotube/silver nanohybrid fibers embedded in sulfonated polyaniline
Mohapatra et al. Designing binder-free, flexible electrodes for high-performance supercapacitors based on pristine carbon nano-onions and their composite with CuO nanoparticles
Majeed et al. Carbon-encapsulated NiO nanoparticle decorated single-walled carbon nanotube thin films for binderless flexible electrodes of supercapacitors
Wu et al. Tubular graphene nanoribbons with attached manganese oxide nanoparticles for use as electrodes in high-performance supercapacitors
CN107055521A (en) The method and the graphene microballoon of prepare with scale height rule spherical graphite alkene microballoon
Lai et al. Effect of temperature on morphology and electrochemical capacitive properties of electrospun carbon nanofibers and nickel hydroxide composites
Kazemi et al. Polyaniline–ionic liquid derived ordered mesoporous carbon nanocomposite: synthesis and supercapacitive behavior
Lv et al. Vertically aligned heteroatom doped carbon nanosheets from unzipped self-doped carbon tubes for high performance supercapacitor
Issman et al. Highly oriented direct-spun carbon nanotube textiles aligned by in situ radio-frequency fields
Tamburri et al. Electrochemical growth of nickel nanoparticles on carbon nanotubes fibers: Kinetic modeling and implications for an easy to handle platform for gas sensing device
Li et al. Free-standing N-enriched C foam@ WS2 nanoflakes for efficient electrocatalytic hydrogen evolution
Xu et al. Designing Tubular Architectures Composed of Hollow N‐Doped Carbon Polyhedrons for Improved Supercapacitance
JP2020164378A (en) Nanocellulose-nanocarbon composite structure and production method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190919

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200302

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200409

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201030

R150 Certificate of patent or registration of utility model

Ref document number: 6792861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250