JP2018052771A - Bromine recovery apparatus and bromine recovery process - Google Patents

Bromine recovery apparatus and bromine recovery process Download PDF

Info

Publication number
JP2018052771A
JP2018052771A JP2016189959A JP2016189959A JP2018052771A JP 2018052771 A JP2018052771 A JP 2018052771A JP 2016189959 A JP2016189959 A JP 2016189959A JP 2016189959 A JP2016189959 A JP 2016189959A JP 2018052771 A JP2018052771 A JP 2018052771A
Authority
JP
Japan
Prior art keywords
bromine
gas
bromine recovery
aqueous solution
recovery apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016189959A
Other languages
Japanese (ja)
Other versions
JP6733463B2 (en
Inventor
光広 入山
Mitsuhiro Iriyama
光広 入山
国吉 実
Minoru Kuniyoshi
実 国吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016189959A priority Critical patent/JP6733463B2/en
Publication of JP2018052771A publication Critical patent/JP2018052771A/en
Application granted granted Critical
Publication of JP6733463B2 publication Critical patent/JP6733463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bromine recovery apparatus for recovering bromine present in bromine-containing air, and a bromine recovery process that uses the bromine recovery apparatus.SOLUTION: A bromine recovery apparatus is provided. In a bromine generation packed column of the apparatus, bromine present in an aqueous solution obtained by adding an oxidant to a bromide ion-containing aqueous solution is brought into contact with inert gas (such as air) for gasification. Thereafter, the bromine-containing gas is mixed with SOgas to give a hydrogen bromide-containing gas. The hydrogen bromide-containing gas is turned into an aqueous solution of hydrogen bromide and thereby bromine is separated and recovered. The bromine recovery apparatus comprises an outlet gas duct for discharging a gas within the apparatus; an oxidation reduction potential detector including a measuring electrode for measuring an oxidation reduction potential of a gas present in the gas duct, the measuring electrode being surrounded and covered by a material that exhibits liquid retainability and is selected from glass fibers, porous glass, porous sintered products, porous polymer resins and resin nets; and a SOgas control valve.SELECTED DRAWING: None

Description

本発明は、臭素含有空気から臭素を回収する臭素回収装置及びその臭素回収装置を用いる臭素回収方法に関するものである。   The present invention relates to a bromine recovery apparatus for recovering bromine from bromine-containing air and a bromine recovery method using the bromine recovery apparatus.

臭素製造の工業的原料の主なものは、海水、濃縮海水、ニガリ、天然かん水等であり、これらの水溶液中において、臭素は常時、臭化物イオンとして存在する。これら水溶液中に含まれる臭化物イオンを塩素等の酸化剤を用いて臭素に転化した後、臭素を水溶液から分離・抽出する製造方法が一般的に採用されている(例えば、特許文献1参照)。   The main industrial raw materials for bromine production are seawater, concentrated seawater, bittern, natural brine, etc., and bromine always exists as bromide ions in these aqueous solutions. A production method is generally employed in which bromide ions contained in these aqueous solutions are converted into bromine using an oxidizing agent such as chlorine and then bromine is separated and extracted from the aqueous solution (see, for example, Patent Document 1).

臭素を水溶液から分離・抽出する方法は、凡そ水溶液中に含まれる臭化物イオンの濃度によって選択され、高濃度の場合(例えば、1000ppm(as臭素)以上)は、必要蒸気量が少なくてすむため、経済的観点から直接水蒸気蒸留によって採取する方法が採用されている。しかし、高濃度の臭化物イオンを含有する水溶液は資源量として有限であり、臭素を採取するにつれて、資源が枯渇してくるという課題がある。   The method of separating / extracting bromine from the aqueous solution is selected depending on the concentration of bromide ions contained in the aqueous solution, and in the case of a high concentration (for example, 1000 ppm (as bromine) or more), the required amount of steam is small. A method of collecting by direct steam distillation is adopted from an economic viewpoint. However, an aqueous solution containing a high concentration of bromide ions has a finite amount of resources, and there is a problem that resources are depleted as bromine is collected.

一方、臭化物イオンが無尽蔵に存在する海水などの低濃度の臭化物イオンを含む水溶液の場合は、塩素で臭素に酸化後、充填塔にて空気と接触させて臭素を空気中に追出し、この臭素含有空気を還元剤、例えば亜硫酸ガス(以下、「SOガス」と称す)又は苛性ソーダ(NaOH)を添加・混合し、臭素を還元濃縮した臭化物イオン含有水溶液に戻して、採取する方法がとられる。尚、還元剤としてSOガスの方がNaOHよりも反応性が高いため、装置をコンパクトにでき、かつ薬剤コストも安価なため、SOガスを用いる方法(SO法)が経済的なメリットが高い。 On the other hand, in the case of an aqueous solution containing low-concentration bromide ions such as seawater in which bromide ions are inexhaustible, the bromine is expelled into the air by contacting it with air in a packed tower after oxidation to bromine with chlorine. A method is used in which air is added to and mixed with a reducing agent such as sulfurous acid gas (hereinafter referred to as “SO 2 gas”) or caustic soda (NaOH) and returned to a bromide ion-containing aqueous solution obtained by reducing and concentrating bromine. Since SO 2 gas is more reactive than NaOH as a reducing agent, the apparatus can be made compact and the chemical cost is low, so the method using SO 2 gas (SO 2 method) is an economic advantage. Is expensive.

下記にSO法での臭素を還元濃縮する際の化学反応式を示す。 The chemical reaction formula for reducing and concentrating bromine by the SO 2 method is shown below.

Br(臭素)+SO(亜硫酸)+2HO→2HBr(臭化水素)+HSO(硫酸) Br 2 (bromine) + SO 2 (sulfurous acid) + 2H 2 O → 2HBr (hydrogen bromide) + H 2 SO 4 (sulfuric acid)

特開2001−002402公報JP 2001-002402 A

SO法で臭素を採取する製造法において、SOガスの必要投入量は、原料臭化物イオン含有水溶液から臭素への転化量によって決定される。理論上、臭素とSOガスは等モルで反応するため、モル比SO/Brが1未満となるとBrが未回収、SO/Brが大となると排ガス中のSOガスが増加し、排ガス中のSOガス処理コスト等がかかるため、SO/Br=1.0〜1.3の範囲になるようにSOガスを投入すると良い。 In the production method for collecting bromine by the SO 2 method, the required input amount of SO 2 gas is determined by the amount of conversion from the raw material bromide ion-containing aqueous solution to bromine. Theoretically, bromine and SO 2 gas react in equimolar amounts. Therefore, when the molar ratio SO 2 / Br 2 is less than 1, Br 2 is not recovered, and when SO 2 / Br 2 is large, SO 2 gas in the exhaust gas is reduced. Since this increases the cost of processing SO 2 gas in the exhaust gas, it is preferable to input SO 2 gas so that SO 2 / Br 2 = 1.0 to 1.3.

転化量は、原料水溶液の降雨等による臭化物イオンの濃度変動や原料水溶液の液温による転化率の変動(高温なほど収率向上)等の自然的要因の変動、塩素量、不活性ガス(空気)量、気液接触効率(充填物の汚れ状況)等の操作因子の変動により一定であることはない。従って、臭素回収装置出口の排ガス中の臭素を適宜モニタリングして、適正なSOガス投入量を制御する必要がある。 The amount of conversion depends on fluctuations in natural factors such as fluctuations in bromide ion concentration due to rainfall of raw material aqueous solution and changes in conversion rate due to liquid temperature of raw material aqueous solution (yield increases as temperature rises), chlorine content, inert gas (air ) It is not constant due to fluctuations in operating factors such as quantity and gas-liquid contact efficiency (soil contamination status). Accordingly, it is necessary to appropriately monitor bromine in the exhaust gas at the outlet of the bromine recovery device and control the appropriate amount of SO 2 gas input.

現在、このガス分析装置として、オキシダント計(I遊離/吸光度測定)、赤外分光光度計(FT-IR)等があるが、高価で、測定ガス中のミストを完全に除去するための技術的課題の他に、精密機器ゆえに機能維持のためのメンテナンス等の手間やランニング費用等が発生する。 Currently, there are oxidant meters (I 2 release / absorbance measurement), infrared spectrophotometers (FT-IR), etc. as this gas analyzer, but they are expensive and a technology for completely removing mist in the measurement gas. In addition to the technical problems, it is a precision instrument, and thus maintenance work for maintaining functions, running costs, etc. are generated.

本発明の目的は、これら高価なガス分析装置を使用しなくても、汎用的で安価かつ応答性の高い計器を用いてSOガスを制御し、臭素を回収する製造方法を提供することにある。 An object of the present invention is to provide a production method for recovering bromine by controlling SO 2 gas using a general-purpose, inexpensive and highly responsive instrument without using these expensive gas analyzers. is there.

本発明者らは、上記の事情に鑑み、応答性が高く、安価で汎用的な計器を鋭意検討した結果、溶液測定にて使用されている酸化還元電位計について、その使用条件を検討することにより、気体中の臭素が検知できることを見出した。   In light of the above circumstances, the present inventors have intensively studied a low-cost, general-purpose instrument that is highly responsive, and as a result, have studied the use conditions of the oxidation-reduction potentiometer used in solution measurement. Thus, it was found that bromine in the gas can be detected.

本発明の装置は、臭素発生用充填塔1から得られた臭素含有空気5にSOガス10を投入するための流量制御弁11と、臭素回収装置6と、臭素回収装置ガス出口部に取り付けたミストエリミネーター7と酸化還元電位検出器9と、酸化還元電位データ処理用の減算器15と、比例積分調整器18からなるものである。 The apparatus of the present invention is attached to a flow rate control valve 11 for introducing SO 2 gas 10 into bromine-containing air 5 obtained from the bromine generation packed tower 1, bromine recovery device 6, and bromine recovery device gas outlet. The mist eliminator 7, the oxidation-reduction potential detector 9, the subtraction unit 15 for processing the oxidation-reduction potential data, and the proportional integration adjuster 18 are included.

酸化還元電位検出器9は、測定電極の周囲をガラス繊維、多孔質ガラス、多孔質焼結体、多孔性ポリマー樹脂、樹脂製ネット等の含液性のある物質を用い、厚さ3〜25mmで被覆されている。これは、水分飽和である臭素回収装置出口ガス21に微量に含まれる希硫酸ミスト(以下、「ミスト」と称す)により、本被覆物を湿らせ、臭素回収装置出口ガス21中の臭素を吸収するためである。被覆体の厚みが増すと応答性が悪くなり、薄くすると電位が不安定となる。   The oxidation-reduction potential detector 9 uses a liquid-containing substance such as glass fiber, porous glass, porous sintered body, porous polymer resin, resin net around the measurement electrode, and has a thickness of 3 to 25 mm. It is covered with. This is because the coating is moistened with dilute sulfuric acid mist (hereinafter referred to as “mist”) contained in a trace amount in the bromine recovery device outlet gas 21 which is saturated with water, and the bromine in the bromine recovery device outlet gas 21 is absorbed. It is to do. When the thickness of the covering increases, the responsiveness deteriorates, and when the covering is thinned, the potential becomes unstable.

以下に、酸化還元電位検出器の実施形態を図2に基づいてさらに詳細に説明する。   Hereinafter, an embodiment of the redox potential detector will be described in more detail with reference to FIG.

図2において、符号23はガラスチューブ、24はそのガラスチューブ23の一部に一体的に形成されたチューブ状の酸化還元電位応答部分、25はそのガラスチューブ23内に充填された例えば飽和KCl溶液よりなる内部電解質、26はその内部電解質25内の酸化還元電位応答部分24に接着するように設けられた内部電極であり、例えば白金よりなる。   In FIG. 2, reference numeral 23 is a glass tube, 24 is a tube-shaped oxidation-reduction potential response portion formed integrally with a part of the glass tube 23, and 25 is a saturated KCl solution filled in the glass tube 23, for example. An internal electrolyte 26, which is an internal electrode provided so as to adhere to the oxidation-reduction potential response portion 24 in the internal electrolyte 25, is made of, for example, platinum.

27は保水性の高い物質でできた被覆体で、少なくとも酸化還元電位応答部分24を包囲するように、ガラスチューブ23を被覆し、バンド28で固定することにより、被膜体27に気体吸収用液を含浸させることができる。これにより、気体試料をその気体吸収用液と広い面積で接触させ、その酸化還元電位の変化を酸化還元電位応答部分24で感応させ、これを内部電極26で検出して、気体試料の酸化還元電位を信頼性良く測定することができる。   27 is a covering made of a substance having high water retention, and covers the glass tube 23 so as to surround at least the oxidation-reduction potential response portion 24, and is fixed with a band 28. Can be impregnated. As a result, the gas sample is brought into contact with the gas absorption liquid over a wide area, the change in the oxidation-reduction potential is made sensitive by the oxidation-reduction potential response portion 24, which is detected by the internal electrode 26, and the oxidation-reduction of the gas sample The potential can be measured with high reliability.

その酸化還元電位応答部分24が気体吸収用液と接触し、かつ、その接触部分の全面に被覆体27を透過した気体試料が導入されるため、応答特性が極めて良好となり、低濃度の気体試料をも迅速に精度良く測定することができる。   Since the redox potential response portion 24 is in contact with the gas absorption liquid and the gas sample that has passed through the covering 27 is introduced to the entire contact portion, the response characteristics are extremely good, and the low concentration gas sample Can be measured quickly and accurately.

臭素回収装置出口ガス21のミストが過剰となると、被覆体27に含浸された気体吸収用液の更新が早くなりすぎ、吸収した臭素の内部電極26での検知が困難になる。逆にミストがないとドライとなり、酸化還元電位検出器9での電位測定が不可となる。よって、適正なミスト量を得るために、臭素回収装置出口ガスダクト部に取り付けたミストエリミネーター7でのミスト捕捉率は90〜99.9%が好ましい。用いられるエリミネーター7としてはフィラメントから構成されたもので、開口率が30〜99%、好ましくは60〜98%のものであり、フィラメントの厚み設定によりミスト捕捉率を上記範囲に調整することができる。ただし、ミストが完全に除去されてミストフリーとなった場合であっても、酸化還元電位検出器9の内部電極26に一定量の水を噴霧することによって、電位測定は可能となる。   If the mist of the bromine recovery device outlet gas 21 becomes excessive, the gas absorption liquid impregnated in the covering 27 is renewed too quickly, and it becomes difficult to detect the absorbed bromine at the internal electrode 26. On the contrary, if there is no mist, it becomes dry and the potential measurement with the redox potential detector 9 becomes impossible. Therefore, in order to obtain an appropriate amount of mist, the mist capture rate in the mist eliminator 7 attached to the bromine recovery device outlet gas duct is preferably 90 to 99.9%. The eliminator 7 used is composed of a filament and has an aperture ratio of 30 to 99%, preferably 60 to 98%. The mist capture ratio can be adjusted to the above range by setting the thickness of the filament. . However, even when the mist is completely removed and becomes mist-free, the potential can be measured by spraying a certain amount of water on the internal electrode 26 of the oxidation-reduction potential detector 9.

本発明の方法は、臭素回収装置出口ガス21の酸化還元電位を400〜550mV(設定酸化還元電位16)にすると良く、この設定酸化還元電位16と前記酸化還元電位検出器9での測定酸化還元電位14との酸化還元電位偏差17を減算器15で取り、酸化還元電位偏差17を比例積分調節器18で演算処理して求めた弁開閉指令19をSOガス流量制御弁11に伝送するものである。 In the method of the present invention, the oxidation-reduction potential of the bromine recovery apparatus outlet gas 21 is preferably set to 400 to 550 mV (set oxidation-reduction potential 16). The set oxidation-reduction potential 16 and the oxidation-reduction potential measured by the oxidation-reduction potential detector 9 are used. A valve open / close command 19 obtained by taking the oxidation-reduction potential deviation 17 from the potential 14 by the subtractor 15 and calculating the oxidation-reduction potential deviation 17 by the proportional integration controller 18 is transmitted to the SO 2 gas flow control valve 11. It is.

本発明によれば、臭化物イオンが無尽蔵に存在する海水などから、高価なガス分析装置を使用しなくても、汎用的で安価かつ応答性の高い計器を用いてSOガスを制御し、臭素を回収することができる。 According to the present invention, a general purpose, inexpensive and highly responsive instrument is used to control SO 2 gas from seawater or the like where infinite amounts of bromide ions exist without using an expensive gas analyzer. Can be recovered.

本発明の臭素回収装置の一実施形態を示す製造フローである。It is a manufacturing flow which shows one Embodiment of the bromine collection | recovery apparatus of this invention. 本発明の酸化還元電位検出器の一実施形態を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows one Embodiment of the oxidation reduction potential detector of this invention. 実施例4の製造フロー図である。6 is a production flow diagram of Example 4. FIG. 実施例4にて得られたガス組成と酸化還元電位の相関を示すグラフである。It is a graph which shows the correlation of the gas composition obtained in Example 4, and oxidation-reduction potential.

実施例1
10%硫酸水溶液から成るミストを含む相対湿度100%の空気をキャリアーガスとし、Brガスが104.9v−ppm、SOガスが0.2v−ppmである混合ガスをガス線速2.5m/秒で配管内に流通させ、本発明の気体測定電極(ガラス繊維被覆、厚み10mm)で酸化還元電位を測定したところ、716mVであった。
Example 1
100% relative humidity air containing mist composed of 10% sulfuric acid aqueous solution is used as a carrier gas, Br 2 gas is 104.9 v-ppm, SO 2 gas is 0.2 v-ppm, and a mixed gas having a gas linear velocity of 2.5 m It was 716 mV when it was made to distribute | circulate in piping at / second and the oxidation-reduction potential was measured with the gas measuring electrode (glass fiber coating | coated, thickness 10mm) of this invention.

実施例2
10%硫酸水溶液からなるミストを含む相対湿度100%の空気をキャリアーガスとし、Brガスが0.3v−ppm、SOガスが2.0v−ppmである混合ガスをガス線速2.5m/秒で配管内に流通させ、本発明の気体測定電極(ガラス繊維被覆、厚み10mm)で酸化還元電位を測定したところ、559mVであった。
Example 2
A 100% relative humidity air containing mist composed of 10% sulfuric acid aqueous solution is used as a carrier gas, a mixed gas containing Br 2 gas at 0.3 v-ppm and SO 2 gas at 2.0 v-ppm is a gas linear velocity of 2.5 m. The redox potential was measured with the gas measurement electrode of the present invention (glass fiber coating, thickness 10 mm) and was 559 mV.

実施例3
10%硫酸水溶液からなるミストを含む相対湿度100%の空気をキャリアーガスとし、SOガスが15.3v−ppmであるガスをガス線速2.5m/秒で配管内に流通させ、本発明の気体測定電極(ガラス繊維被覆、厚み10mm)で酸化還元電位を測定したところ、413mVであった。
Example 3
A gas having a relative humidity of 100% containing mist composed of a 10% sulfuric acid aqueous solution is used as a carrier gas, and a gas having an SO 2 gas of 15.3 v-ppm is circulated in a pipe at a gas linear velocity of 2.5 m / sec. When the redox potential was measured with a gas measuring electrode (glass fiber coating, thickness 10 mm), it was 413 mV.

比較例1
10%硫酸水溶液からなるミストを含む相対湿度100%の空気をキャリアーガスとし、Brガスが104.9v−ppm、SOガスが0.2v−ppmである混合ガスをガス線速2.5m/秒で配管内に流通させ、ガラス繊維被覆されていない酸化還元電極で酸化還元電位を測定したところ、指示値は不安定であり、酸化還元電位を測定することはできなかった。
Comparative Example 1
100% relative humidity air containing mist composed of 10% sulfuric acid aqueous solution is used as a carrier gas, Br 2 gas is 104.9 v-ppm, SO 2 gas is 0.2 v-ppm, and the gas linear velocity is 2.5 m. When the redox potential was measured with a redox electrode not coated with glass fiber, the indicated value was unstable and the redox potential could not be measured.

比較例2
相対湿度50%の空気をキャリアーガスとし、Brガスが104.9v−ppm、SOガスが0.2v−ppmである混合ガスをガス線速2.5m/秒で配管内に流通させ、本発明の気体測定電極(ガラス繊維被覆、厚み10mm)で酸化還元電位を測定したところ、応答性が悪く、かつ指示値は不安定であり、酸化還元電位を測定することはできなかった。
Comparative Example 2
Air having a relative humidity of 50% is used as a carrier gas, and a mixed gas having Br 2 gas of 104.9 v-ppm and SO 2 gas of 0.2 v-ppm is circulated in the pipe at a gas linear velocity of 2.5 m / sec. When the oxidation-reduction potential was measured with the gas measuring electrode of the present invention (glass fiber coating, thickness 10 mm), the responsiveness was poor and the indicated value was unstable, and the oxidation-reduction potential could not be measured.

上記の結果を下表にまとめた。本発明の方法により気体の酸化還元電位を測定することが可能であり、気体中の臭素濃度を測定することができる。   The above results are summarized in the table below. The oxidation-reduction potential of gas can be measured by the method of the present invention, and the bromine concentration in gas can be measured.

Figure 2018052771
実施例4
図3に示した装置において、臭素イオンが60mg/Lの海水に硫酸を添加し、pH3.5とした。この海水に塩素ガスを臭素イオンに対して1.1倍当量加えて酸化し、この水溶液に臭素発生用充填塔にて55倍当量の空気を導入し、臭素含有空気を得た。この臭素含有空気に多孔管からSOガスを添加した後、ガス出口部に開口率80%の折れ板式ミストエリミネーターを取付けた臭素回収装置(充填塔)に導入して、臭素を回収した。
Figure 2018052771
Example 4
In the apparatus shown in FIG. 3, sulfuric acid was added to seawater having a bromine ion of 60 mg / L to adjust the pH to 3.5. This seawater was oxidized by adding 1.1 times equivalent of chlorine gas to bromine ions, and 55 times equivalent of air was introduced into this aqueous solution in a packed tower for bromine generation to obtain bromine-containing air. After adding SO 2 gas from the perforated tube to this bromine-containing air, the bromine was recovered by introducing it into a bromine recovery device (packed tower) in which a bent plate type mist eliminator having an opening ratio of 80% was attached to the gas outlet.

ミストエリミネーター通過後に本発明の気体測定電極(ガラス繊維被覆、厚み10mm)を取付け、SOガスの添加量を変えてガス組成を測定し、ガス組成と酸化還元電位の関係を調べた。その結果、ガス組成と酸化還元電位との間に相関があり、酸化還元電位を測定することにより、適正なSOガスの吹込み量を把握することが可能であることがわかった。 After passing through the mist eliminator, the gas measuring electrode of the present invention (glass fiber coating, thickness 10 mm) was attached, the gas composition was measured by changing the amount of SO 2 gas added, and the relationship between the gas composition and the oxidation-reduction potential was examined. As a result, it was found that there is a correlation between the gas composition and the oxidation-reduction potential, and it is possible to grasp the appropriate amount of SO 2 gas injection by measuring the oxidation-reduction potential.

本発明によれば、臭化物イオンが無尽蔵に存在する海水などから臭素を回収できる。   According to the present invention, bromine can be recovered from seawater or the like in which bromide ions are inexhaustible.

1 臭素発生用充填塔
2 空気
3 臭化物イオン含有水溶液(海水など)
4 塩素
5 臭素含有空気
6 臭素回収装置
7 ミストエリミネーター
8 回収液循環ポンプ
9 酸化還元電位検出器
10 SO(亜硫酸)ガス
11 SOガス流量制御弁
12 メイクアップ水
13 臭素回収液(還元濃縮)
14 測定酸化還元電位
15 減算器
16 設定酸化還元電位
17 酸化還元電位偏差
18 比例積分調整器
19 弁開閉指令
20 臭素回収装置出口ガスダクト
21 臭素回収装置出口ガス
22 排ガス洗浄塔
23 ガラスチューブ
24 酸化還元電位応答部
25 内部電解質
26 内部電極
27 被覆体
28 固定用バンド
29 酸化還元電位表示盤
30 SOガス吹込み多孔配管
1 Bromine generation packed tower 2 Air 3 Bromide ion-containing aqueous solution (seawater, etc.)
4 Chlorine 5 Bromine-containing air 6 Bromine recovery device 7 Mist eliminator 8 Recovery liquid circulation pump 9 Redox potential detector 10 SO 2 (sulfurous acid) gas 11 SO 2 gas flow control valve 12 Make-up water 13 Bromine recovery liquid (reduction concentration)
14 Measurement redox potential 15 Subtractor 16 Set redox potential 17 Redox potential deviation 18 Proportional integral regulator 19 Valve open / close command 20 Bromine recovery device outlet gas duct 21 Bromine recovery device outlet gas 22 Exhaust gas cleaning tower 23 Glass tube 24 Redox potential Response unit 25 Internal electrolyte 26 Internal electrode 27 Cover 28 Fixing band 29 Redox potential display panel 30 SO 2 gas blown porous pipe

Claims (4)

臭化物イオンを含有する水溶液に酸化剤を加え、得られた水溶液中の臭素を臭素発生用充填塔にて不活性ガスと接触させてガス化した後、この臭素含有ガスにSOガスを混合することにより臭化水素含有ガスを得、当該臭化水素含有ガスから臭化水素を水溶液化して臭素を分離回収する臭素回収装置であって、当該装置内ガスを排出する臭素回収装置出口ガスダクト、当該ガスダクト中のガスの酸化還元電位を測定するための測定電極の周囲をガラス繊維、多孔質ガラス、多孔質焼結体、多孔性ポリマー樹脂、樹脂製ネットから選ばれる含液性のある物質で被覆されてなる酸化還元電位検出器、及びSOガス制御弁を備えることを特徴とする臭素回収装置。 An oxidizing agent is added to an aqueous solution containing bromide ions, and bromine in the obtained aqueous solution is gasified by bringing it into contact with an inert gas in a bromine generation packed tower, and then SO 2 gas is mixed with the bromine-containing gas. A bromine recovery device for obtaining a hydrogen bromide-containing gas, converting hydrogen bromide from the hydrogen bromide-containing gas into an aqueous solution and separating and recovering bromine, the bromine recovery device outlet gas duct for discharging the gas in the device, The measurement electrode for measuring the oxidation-reduction potential of the gas in the gas duct is covered with a liquid-containing substance selected from glass fiber, porous glass, porous sintered body, porous polymer resin, and resin net. A bromine recovery apparatus comprising a redox potential detector and an SO 2 gas control valve. 臭素回収装置出口ガスダクトに、フィラメントから構成された開口率が30〜99%のエリミネーターを備えることを特徴とする請求項1に記載の臭素回収装置。 The bromine recovery apparatus according to claim 1, wherein the bromine recovery apparatus outlet gas duct is provided with an eliminator having an opening ratio of 30 to 99% constituted by a filament. 臭素回収装置出口ガスダクトに接続された酸化還元電位検出器により、臭素回収装置出口ガスの酸化還元電位と設定酸化還元電位との酸化還元電位偏差を減算器で取り、酸化還元電位偏差を比例積分調節器で演算処理して求めた弁開閉指令をSOガス制御弁に伝送する手段を有することを特徴とする請求項1又は2に記載の臭素回収装置。 The redox potential detector connected to the bromine recovery unit outlet gas duct takes the redox potential deviation between the redox potential of the bromine recovery unit outlet gas and the set redox potential with a subtractor, and the redox potential deviation is proportionally integrated. vessel with bromine recovery apparatus according to claim 1 or 2 the valve switching command found by arithmetic processing, characterized in that it comprises means for transmitting the SO 2 gas control valve. 請求項1〜3のいずれか一項に記載の臭素回収装置を用い、酸化還元電位検出器で検出する酸化還元電位が400〜550mVとなるようにSOガス添加量を制御することを特徴とする臭素回収方法。 Using the bromine recovery apparatus according to any one of claims 1 to 3, the SO 2 gas addition amount is controlled so that the oxidation-reduction potential detected by the oxidation-reduction potential detector is 400 to 550 mV. Bromine recovery method.
JP2016189959A 2016-09-28 2016-09-28 Bromine recovery device and bromine recovery method Active JP6733463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016189959A JP6733463B2 (en) 2016-09-28 2016-09-28 Bromine recovery device and bromine recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189959A JP6733463B2 (en) 2016-09-28 2016-09-28 Bromine recovery device and bromine recovery method

Publications (2)

Publication Number Publication Date
JP2018052771A true JP2018052771A (en) 2018-04-05
JP6733463B2 JP6733463B2 (en) 2020-07-29

Family

ID=61835064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189959A Active JP6733463B2 (en) 2016-09-28 2016-09-28 Bromine recovery device and bromine recovery method

Country Status (1)

Country Link
JP (1) JP6733463B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650342A (en) * 2019-02-22 2019-04-19 唐山海港旭宁化工有限公司 Pressure-vaccum tower group
CN115636395A (en) * 2022-10-22 2023-01-24 山东菜央子盐场有限公司 Method and equipment for producing bromine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650342A (en) * 2019-02-22 2019-04-19 唐山海港旭宁化工有限公司 Pressure-vaccum tower group
CN115636395A (en) * 2022-10-22 2023-01-24 山东菜央子盐场有限公司 Method and equipment for producing bromine

Also Published As

Publication number Publication date
JP6733463B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
Johnson et al. Coulometric TCO2 analyses for marine studies; an introduction
US5820823A (en) Method and apparatus for the measurement of dissolved carbon
US5132094A (en) Method and apparatus for the determination of dissolved carbon in water
FI68037C (en) CONTROL SYSTEM FOR KLORDIOXIDANLAEGGNING
CN104931593B (en) The method and system of trace hydrogen sulfide and total chloride in analysis methanation unstripped gas
US8709820B2 (en) Concentration measuring apparatus for hydrogen sulfide in gas flow, and method for determining sulfide ion
JP2018052771A (en) Bromine recovery apparatus and bromine recovery process
Thomas et al. Automatic Apparatus for Determination of Small Concentrations of Sulfur Dioxide in Air. New Countercurrent Absorber for Rapid Recording of Low and High Concentrations
Colle et al. Pilot-scale validation of the kinetics of SO2 absorption into sulphuric acid solutions containing hydrogen peroxide
CN108287157A (en) A kind of fluorine gas analysis reforming unit
JP2018091809A (en) Device, system, and method for vapor characteristic monitoring for geothermal power generation, and geothermal power generation system control method
CN211318293U (en) Water-soluble ion measuring device in desulfurization system
CN204422487U (en) A kind of monitoring system
Marzouk et al. Analyzer for continuous monitoring of H2S in gas streams based on a novel thermometric detection
Soelberg et al. Iodine sorbent performance in FY 2012 deep bed tests
US20100281950A1 (en) Method and apparatus for analysis of mixed streams
CN104535725A (en) Monitoring system
Lee System for continuously monitoring hydrogen chloride concentrations in gaseous mixtures using a chloride ion-selective electrode
US3296098A (en) Method and apparatus for gas analysis
El-Hamouz et al. Chemical reaction engineering analysis of the blowout process for bromine manufacture from seawater
JPS6041976B2 (en) Sulfur dioxide gas removal method
JP2007240437A (en) Gas sensor
CN204330725U (en) A kind of monitoring system
Thomas et al. Designing wet scrubbers for SO2 absorption into fairly concentrated sulfuric acid solutions containing hydrogen peroxide
Roy et al. Chlorine absorption in sulfite solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R151 Written notification of patent or utility model registration

Ref document number: 6733463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151