JP2018052752A - Monolithic refractory for use in extending work of blast furnace trough and its construction method - Google Patents

Monolithic refractory for use in extending work of blast furnace trough and its construction method Download PDF

Info

Publication number
JP2018052752A
JP2018052752A JP2016187279A JP2016187279A JP2018052752A JP 2018052752 A JP2018052752 A JP 2018052752A JP 2016187279 A JP2016187279 A JP 2016187279A JP 2016187279 A JP2016187279 A JP 2016187279A JP 2018052752 A JP2018052752 A JP 2018052752A
Authority
JP
Japan
Prior art keywords
mass
raw material
blast furnace
carbide raw
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016187279A
Other languages
Japanese (ja)
Inventor
高橋 伸幸
Nobuyuki Takahashi
伸幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2016187279A priority Critical patent/JP2018052752A/en
Publication of JP2018052752A publication Critical patent/JP2018052752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an integrated material (a monolithic refractory for extending using both a slug portion and a metal portion of the lining of a blast furnace trough) having excellent adhesion to base materials (construction materials which have been previously applied to the slug portion and the metal portion of the lining of the blast furnace trough); and its construction method.SOLUTION: A monolithic refractory is composed of silicon carbide of 15 mass% or more to 30 mass% or less, boron carbide of 0.1 mass% or more to 3 mass% or less, carbon black of 0.5 mass% or more to 3 mass% or less as the raw materials. In these components, as to the silicon carbide, the content of fine powder having a particle size of 30 μm or less is set to be from 1 mass% or more to 7.5 mass% or less, based on 100 mass% of the components; and the mass ratio of boron carbide/(the total of silicon carbide as the fine powder and carbon black) is set to be from 0.05 or more to 2 or less. The monolithic refractory prepared by adding water to these components is applied in an extending manner to construction materials which have been previously applied to the slug portion and the metal portion of the lining of the blast furnace trough.SELECTED DRAWING: None

Description

本発明は、高炉樋の内張りのスラグ部とメタル部とを兼用した継ぎ足し施工に使用する不定形耐火物とその施工方法に関する。   The present invention relates to an indeterminate refractory for use in an extension construction that doubles as a slag portion and a metal portion of a blast furnace lining, and a construction method thereof.

高炉樋は、高炉から出銑した溶銑が取鍋、混銑車等に至る通路の役割をもつ。近年、その内張りには施工性の面から、従来のれんが積みに換えて不定形耐火物が使用されている。また、高炉樋の内張りの不定形耐火物の施工においては、一般的に、スラグ部(スラグライン部)とメタル部(メタルライン部)とを異なる材質で施工する、いわゆるゾーンライニングが行われている(例えば、特許文献1、2参照)。   The blast furnace has a role of a passage from the hot metal discharged from the blast furnace to a ladle, a kneading car, and the like. In recent years, from the viewpoint of workability, an irregular refractory material has been used for the lining in place of conventional bricks. Also, in the construction of irregular refractories on the blast furnace lining, so-called zone lining is generally performed in which the slag part (slag line part) and the metal part (metal line part) are constructed from different materials. (For example, refer to Patent Documents 1 and 2).

しかし、ゾーンライニングの場合、例えば、損傷したメタル部のみを解体して補修施工しようとしても、健全である上部のスラグ部も解体されてしまい、結果として不定形耐火物の施工量が増加してコストアップを招来する。   However, in the case of zone lining, for example, even if only the damaged metal part is dismantled and repaired, the upper slag part that is healthy will be dismantled, resulting in an increase in the amount of construction of the irregular refractory. Incurs an increase in cost.

そこで、スラグ部とメタル部とを兼用する材質(以下「一体材」ともいう。)の適用が検討されている。一体材の場合、スラグ部とメタル部とを兼用することができるため、ゾーンライニングによりスラグ部とメタル部に異なる材質が施工されていたとしても、補修の際には、スラグ部とメタル部とを兼用した継ぎ足し施工が可能となる。ただし、一体材により継ぎ足し施工をする場合、スラグ部及びメタル部に予め施工された施工材(以下「母材」ともいう。)との接着性を確保することが特に重要になるところ、従来、一体材と母材との接着性についての検討は不十分であった。   In view of this, the application of a material that combines the slag portion and the metal portion (hereinafter also referred to as “integrated material”) has been studied. In the case of an integral material, the slag part and the metal part can be used together, so even if different materials are applied to the slag part and the metal part by zone lining, the slag part and the metal part Add-on construction that also serves as a facility becomes possible. However, when adding and constructing with an integral material, it is particularly important to ensure adhesion with a construction material (hereinafter also referred to as “base material”) pre-constructed on the slag part and the metal part. The study on the adhesiveness between the integral material and the base material has been insufficient.

特開2000−203953号公報JP 2000-203953 A 特開2010−235342号公報JP 2010-235342 A

本発明が解決しようとする課題は、母材(高炉樋の内張りのスラグ部及びメタル部に予め施工された施工材)に対して優れた接着性を発揮する、一体材(高炉樋の内張りのスラグ部とメタル部とを兼用した継ぎ足し施工に使用する不定形耐火物)、及びその施工方法を提供することにある。   The problem to be solved by the present invention is to provide an excellent material for the base material (the construction material preliminarily applied to the slag part and the metal part of the blast furnace lining). An object of the present invention is to provide an irregular refractory material for use in addition construction that combines a slag portion and a metal portion, and a construction method thereof.

本発明によれば、次の高炉樋の継ぎ足し施工用不定形耐火物、すなわち一体材及びその施工方法が提供される。
(1)原料配合物に水を添加してなり、高炉樋の内張りのスラグ部とメタル部とを兼用した継ぎ足し施工に使用する高炉樋の継ぎ足し施工用不定形耐火物であって、
前記原料配合物100質量%に占める割合で、炭化珪素原料を15質量%以上30質量%以下、炭化硼素原料を0.1質量%以上3質量%以下、カーボンブラックを0.5質量%以上3質量%以下含有し、
前記炭化珪素原料のうち粒径30μm以下の微粉の含有量が、前記原料配合物100質量%に占める割合で1質量%以上7.5質量%以下であり、
前記炭化硼素原料/(前記微粉の炭化珪素原料と前記カーボンブラックの合量)の質量比が、0.05以上2以下である、高炉樋の継ぎ足し施工用不定形耐火物。
(2)前記(1)に記載の高炉樋の継ぎ足し施工用不定形耐火物を、高炉樋の内張りのスラグ部とメタル部に予め施工された施工材に対して継ぎ足し施工する、高炉樋の継ぎ足し施工用不定形耐火物の施工方法。
(3)前記予め施工された施工材の付着物を除去した後に継ぎ足し施工する、前記(2)に記載の高炉樋の継ぎ足し施工用不定形耐火物の施工方法。
According to the present invention, there is provided an amorphous refractory for the subsequent construction of a blast furnace pit, that is, an integral material and a construction method thereof.
(1) It is an unshaped refractory for blast furnace slag addition construction used for slag addition and slag part and metal part of the blast furnace saddle, with water added to the raw material composition,
In a proportion of 100% by mass of the raw material mixture, the silicon carbide raw material is 15% by mass to 30% by mass, the boron carbide raw material is 0.1% by mass to 3% by mass, and the carbon black is 0.5% by mass to 3% by mass. Containing less than mass%,
The content of fine powder having a particle size of 30 μm or less in the silicon carbide raw material is 1% by mass or more and 7.5% by mass or less in a proportion of 100% by mass of the raw material mixture,
An amorphous refractory material for blast furnace slag addition, wherein a mass ratio of the boron carbide raw material / (total amount of the fine silicon carbide raw material and the carbon black) is 0.05 or more and 2 or less.
(2) Addition of blast furnace slag as described in (1) above to blast furnace slag slag part and metal part of blast furnace saddle for construction material. Construction method for irregular refractories for construction.
(3) The construction method of the unshaped refractory material for blast furnace addition as described in (2), wherein the construction material is added after removing the deposits of the construction material applied in advance.

詳細は後述するが、本発明の一体材は、粒径30μm以下の微粉の炭化珪素原料の含有量を特定範囲とするとともに、炭化硼素原料/(粒径30μm以下の微粉の炭化珪素原料とカーボンブラックの合量)の質量比を特定範囲としたことで、母材に対して優れた接着性を発揮する。したがって本発明の一体材は、高炉樋の内張りのスラグ部とメタル部とを兼用した継ぎ足し施工に好適に使用することができ、しかも、継ぎ足し施工の施工厚を小さくできる。すなわち本発明の一体材によれば、スラグ部であるかメタル部であるかにかかわらず、施工材の付着物を除去した後にそのまま継ぎ足し施工を問題なく行うことができる。これにより、補修のための不定形耐火物の施工量を低減でき、コストダウンに寄与できる。   Although details will be described later, the monolithic material of the present invention has a specific content of fine silicon carbide raw material having a particle size of 30 μm or less and a boron carbide raw material / (fine silicon carbide raw material and carbon having a particle size of 30 μm or less). By making the mass ratio of the total amount of black a specific range, it exhibits excellent adhesion to the base material. Therefore, the integral material of the present invention can be suitably used for the addition work that uses both the slag portion and the metal portion of the blast furnace lining, and the thickness of the addition work can be reduced. That is, according to the integral material of the present invention, it is possible to perform the construction without any problem after removing the deposits of the construction material, regardless of whether it is a slag portion or a metal portion. Thereby, the construction amount of the irregular refractory for repair can be reduced, and it can contribute to cost reduction.

本発明の一体材は、高炉樋の内張りのスラグ部とメタル部とを兼用した継ぎ足し施工に使用する高炉樋の継ぎ足し施工用不定形耐火物であり、その基本的な構成は、一般的な不定形耐火物と同様に原料配合物に水を添加してなる。   The integral material of the present invention is an irregular refractory material for blast furnace saddle construction that is used for slag construction and metal part of the blast furnace slag. Water is added to the raw material mixture in the same manner as the regular refractory.

本発明の一体材は、原料配合物100質量%に占める割合で、炭化珪素原料を15質量%以上30質量%以下、炭化硼素原料を0.1質量%以上3質量%以下、カーボンブラックを0.5質量%以上3質量%以下含有する。そして、前記炭化珪素原料のうち粒径30μm以下の微粉の含有量は原料配合物100質量%に占める割合で1質量%以上7.5質量%以下であり、前記炭化硼素原料/(前記微粉の炭化珪素原料と前記カーボンブラックの合量)の質量比(以下、単に「炭化硼素原料の質量比」という。)は、0.05以上2以下である   The integral material of the present invention is a proportion of 100% by mass of the raw material blend, 15% by mass to 30% by mass of the silicon carbide raw material, 0.1% by mass to 3% by mass of the boron carbide raw material, and 0% of carbon black. .5% by mass or more and 3% by mass or less. The content of fine powder having a particle size of 30 μm or less in the silicon carbide raw material is 1% by mass or more and 7.5% by mass or less in a proportion of 100% by mass of the raw material mixture, and the boron carbide raw material / (the fine powder of The mass ratio of the silicon carbide raw material and the carbon black (hereinafter simply referred to as “the mass ratio of the boron carbide raw material”) is 0.05 or more and 2 or less.

このうち炭化珪素原料の総含有量は、主に耐メタル性(耐溶銑性)及び耐スラグ性、すなわち耐食性を確保する点から規定している。ここで、炭化珪素原料は耐スラグ性には優れるが耐メタル性には優れない。したがって、ゾーンライニングの場合、スラグ部用には特許文献1の表1に見られるように炭化珪素原料を多く(50質量%程度)含有させ、メタル部用には炭化珪素原料の含有量は相対的に低く抑えるようにしていた。一体材としては、スラグ部とメタル部の両方において耐食性を確保する必要があるところ、本発明者らは、実際の高炉樋ではスラグ部に比べメタル部の方が化学的損傷が大きく耐食性が要求されるとの実情を踏まえ、耐メタル性を重視した含有量(15質量%以上30質量%以下)とした。この炭化珪素原料の総含有量の好ましい範囲は、18質量%以上25質量%以下である。   Among these, the total content of the silicon carbide raw material is defined mainly from the viewpoint of securing metal resistance (molten metal resistance) and slag resistance, that is, corrosion resistance. Here, the silicon carbide raw material is excellent in slag resistance but not in metal resistance. Therefore, in the case of zone lining, as shown in Table 1 of Patent Document 1, a large amount (about 50% by mass) of silicon carbide raw material is contained for the slag part, and the content of silicon carbide raw material is relative for the metal part. To keep it low. As an integral material, it is necessary to ensure corrosion resistance in both the slag part and the metal part. In the actual blast furnace iron, the metal part is more chemically damaged than the slag part and requires corrosion resistance. Based on the fact that it is done, the content (15 to 30% by mass) with an emphasis on metal resistance was determined. A preferable range of the total content of the silicon carbide raw material is 18% by mass or more and 25% by mass or less.

この炭化珪素原料のうち、粒径30μm以下の微粉の含有量は、前述のとおり原料配合物100質量%に占める割合で1質量%以上7.5質量%以下とする。すなわち本発明の一体材では、粒径30μm以下の微粉の炭化珪素原料(以下、単に「微粉の炭化珪素原料」という。)を積極的に含有させるようにしている。これは、本発明者らによる以下の知見に基づく。
(a)微粉の炭化珪素原料は微粉であるがゆえに酸化しやすく、炭化珪素原料(SiC)が酸化すると表面にシリカ(SiO)の被膜が生成し、その結果、物理的に体積膨張する。この体積膨張により母材に対する接着性が向上する。
(b)前記酸化により生成したシリカ(SiO)は低融点物質であるため一体材の焼結性が向上し、結果として母材に対する接着性が向上する。
In the silicon carbide raw material, the content of fine powder having a particle size of 30 μm or less is 1% by mass or more and 7.5% by mass or less as a proportion of 100% by mass of the raw material mixture as described above. That is, the monolithic material of the present invention actively contains a fine silicon carbide raw material having a particle size of 30 μm or less (hereinafter simply referred to as “fine silicon carbide raw material”). This is based on the following findings by the present inventors.
(A) Since the fine silicon carbide raw material is fine, it is easily oxidized, and when the silicon carbide raw material (SiC) is oxidized, a silica (SiO 2 ) film is formed on the surface, resulting in physical volume expansion. This volume expansion improves the adhesion to the base material.
(B) Since the silica (SiO 2 ) produced by the oxidation is a low melting point substance, the sinterability of the integral material is improved, and as a result, the adhesion to the base material is improved.

これらの点から、微粉の炭化珪素原料の含有量は1質量%以上とした。一方、微粉の炭化珪素原料の含有量が7.5質量%を超えると、粒径30μm以下という微粉が過剰となるため一体材の流動性が損なわれ、かえって母材に対する接着性が低下する。また、微粉の炭化珪素原料の微粉の含有量が7.5質量%を超えると、酸化により生成するシリカ(低融点物質)が過剰となるため耐食性、特に耐メタル性が低下する。これらの点から、微粉の炭化珪素原料の含有量の上限は7.5質量%とした。この微粉の炭化珪素原料の好ましい含有量の範囲は、2質量%以上5質量%以下である。   From these points, the content of the fine silicon carbide raw material is 1% by mass or more. On the other hand, if the content of the fine silicon carbide raw material exceeds 7.5% by mass, the fine powder having a particle size of 30 μm or less becomes excessive, so that the fluidity of the integral material is impaired and the adhesiveness to the base material is lowered. On the other hand, if the fine powder content of the fine silicon carbide raw material exceeds 7.5% by mass, the silica (low melting point substance) produced by oxidation becomes excessive, so that the corrosion resistance, particularly the metal resistance is lowered. From these points, the upper limit of the content of the fine silicon carbide raw material was 7.5% by mass. The preferable content range of the fine silicon carbide raw material is 2% by mass or more and 5% by mass or less.

ここで、本発明の一体材の原料配合物において、炭化珪素原料の総含有量は15質量%以上30質量%以下であり、微粉の炭化珪素原料の含有量は1質量%以上7.5質量%以下であるから、必然的に微粉の炭化珪素原料以外の炭化珪素原料が含まれる。微粉の炭化珪素原料以外の炭化珪素原料の粒度構成は特に限定されないが、母材に対する接着性をさらに向上する点から、微粉の炭化珪素原料以外の炭化珪素原料の最大粒径(トップサイズ)は1mm未満とすることが好ましい。   Here, in the raw material composition of the integral material of the present invention, the total content of the silicon carbide raw material is 15% by mass or more and 30% by mass or less, and the content of the fine silicon carbide raw material is 1% by mass or more and 7.5% by mass. Therefore, silicon carbide raw materials other than fine silicon carbide raw materials are necessarily included. The particle size constitution of the silicon carbide raw material other than the fine silicon carbide raw material is not particularly limited, but the maximum particle size (top size) of the silicon carbide raw material other than the fine silicon carbide raw material is further improved from the point of further improving the adhesion to the base material. It is preferable to be less than 1 mm.

次に炭化硼素原料について説明すると、従来一般的に炭化硼素原料は炭化珪素原料やカーボンブラック(炭素原料)などの酸化防止剤として、これら炭化珪素原料やカーボンブラックの含有量に見合った量を含有させるようにしているが、本発明者らは、以下の知見に基づき炭化硼素原料を従来の酸化防止剤としての含有量より多量に含有させることとした。
(c)炭化硼素原料(BC)は酸化すると酸化硼素(B)となるが、この酸化硼素(B)は前述のシリカ(SiO)と同様に低融点物質であるため、これらが相まって一体材の焼結性が向上し、結果として母材に対する接着性が向上する。
(d)炭化硼素原料(BC)の酸化により生成した酸化硼素(B)は、一体材の焼結時に非常に粘性の高い液相を生成する。焼結時に非常に粘性の高い液相が生成すると焼結収縮が抑えられ、結果として母材に対する接着性が向上する。
Next, boron carbide raw materials will be described. Conventionally, boron carbide raw materials generally contain an amount corresponding to the content of these silicon carbide raw materials and carbon black as antioxidants such as silicon carbide raw materials and carbon black (carbon raw materials). However, based on the following knowledge, the present inventors decided to contain a boron carbide raw material in a larger amount than the content as a conventional antioxidant.
(C) The boron carbide raw material (B 4 C), when oxidized, becomes boron oxide (B 2 O 3 ). This boron oxide (B 2 O 3 ) is a low-melting substance as in the case of the silica (SiO 2 ). Therefore, these combine to improve the sinterability of the integral material, and as a result, improve the adhesion to the base material.
(D) Boron oxide (B 2 O 3 ) generated by oxidation of the boron carbide raw material (B 4 C) generates a very viscous liquid phase during sintering of the integral material. When a very viscous liquid phase is generated during sintering, sintering shrinkage is suppressed, and as a result, adhesion to the base material is improved.

これらの点から、炭化硼素原料の含有量を0.1質量%以上、炭化硼素原料の質量比を0.05以上とした。一方、炭化硼素原料が過剰であると、炭化硼素原料の酸化により生成する酸化硼素(低融点物質)が過剰となるため耐食性、特に耐メタル性が低下する。また、炭化硼素原料は水に対する濡れ性が低いから、炭化硼素原料が過剰であると一体材の流動性が損なわれる。これらの点から、炭化硼素原料の含有量の上限は3質量%、炭化硼素原料の質量比の上限は2とした。炭化硼素原料の好ましい含有量の範囲は0.3質量%以上1質量%以下、炭化硼素原料の質量比の好ましい範囲は0.1以上1.5以下である。   From these points, the content of the boron carbide raw material is set to 0.1% by mass or more, and the mass ratio of the boron carbide raw material is set to 0.05 or more. On the other hand, when the boron carbide raw material is excessive, the boron oxide (low melting point substance) produced by the oxidation of the boron carbide raw material becomes excessive, so that the corrosion resistance, particularly the metal resistance is lowered. In addition, since the boron carbide raw material has low wettability to water, the fluidity of the integral material is impaired if the boron carbide raw material is excessive. From these points, the upper limit of the content of the boron carbide raw material is 3% by mass, and the upper limit of the mass ratio of the boron carbide raw material is 2. A preferable range of the content of the boron carbide raw material is 0.3 to 1% by mass, and a preferable range of the mass ratio of the boron carbide raw material is 0.1 to 1.5.

次にカーボンブラックは、主にベアリング効果による流動性の向上のために0.5質量%以上3質量%以下で含有させる。流動性が向上すると水の添加量が少量で済むことから、施工体の緻密性が向上し、耐メタル性、耐スラグ性及び母材に対する接着性の向上に寄与する。カーボンブラックの含有量が0.5質量%未満ではベアリング効果が得られず流動性が低下する。一方、カーボンブラックの含有量が3質量%を超えると、カーボンブラックは分散性が悪いのでその悪影響が顕著となり、かえって流動性が低下し、母材に対する接着性も低下する。   Next, carbon black is contained in an amount of 0.5% by mass or more and 3% by mass or less in order to improve fluidity mainly due to the bearing effect. When the fluidity is improved, a small amount of water is required, so that the compactness of the construction body is improved, which contributes to the improvement of metal resistance, slag resistance and adhesion to the base material. If the carbon black content is less than 0.5% by mass, the bearing effect cannot be obtained and the fluidity is lowered. On the other hand, when the content of carbon black exceeds 3% by mass, since carbon black has poor dispersibility, the adverse effect thereof becomes remarkable. On the contrary, the fluidity is lowered and the adhesion to the base material is also lowered.

ここで、本発明の一体材の原料配合物において、前述の炭化珪素原料、炭化硼素原料及びカーボンブラック以外の残部は、耐食性に寄与するという点から、アルミナ原料を主体とすることが好ましい。具体的には、原料配合物100質量%に占める割合で、アルミナ原料を60質量%以上80質量%以下含有することが好ましい。なお、本発明の一体材の原料配合物には、前述の耐火原料のほかに、通常の不定形耐火物の原料配合物と同様に、添加剤として、結合剤、分散剤、硬化調整材、爆裂防止剤等を適宜含有させる。   Here, in the raw material composition of the integral material of the present invention, it is preferable that the remainder other than the aforementioned silicon carbide raw material, boron carbide raw material and carbon black mainly comprises an alumina raw material from the viewpoint of contributing to corrosion resistance. Specifically, it is preferable to contain 60% by mass or more and 80% by mass or less of the alumina raw material in a ratio of 100% by mass of the raw material mixture. In addition to the above-mentioned refractory raw material, the raw material composition of the integral material of the present invention, as with the raw material composition of ordinary amorphous refractory, as additives, binder, dispersant, curing modifier, An explosion prevention agent or the like is appropriately contained.

結合剤としては、アルミナセメント、コロイダルシリカ、水硬性遷移アルミナ、リン酸塩、及びケイ酸塩から選択される一種以上を用いることができる。   As the binder, one or more selected from alumina cement, colloidal silica, hydraulic transition alumina, phosphate, and silicate can be used.

分散剤としては、例えば、トリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ等のアルカリ金属リン酸塩、ポリカルボン酸ソーダ等のポリカルボン酸塩、アルキルスルホン酸塩、芳香族スルホン酸塩、ポリアクリル酸ソーダ、及びスルホン酸ソーダ等から選択される一種以上を用いることができる。   Examples of the dispersant include alkali metal phosphates such as sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, sodium hexametaphosphate, polycarboxylate such as sodium polycarboxylate, alkylsulfonate, aromatic One or more selected from sulfonates, sodium polyacrylate, sodium sulfonate, and the like can be used.

硬化時間調整剤には、硬化促進剤と硬化遅延剤とがあり、硬化促進剤としては、例えば、消石灰、塩化カルシウム、アルミン酸ソーダ、及び炭酸リチウム等から選択される一種以上を用いることができ、硬化遅延剤としては、例えば、ホウ酸、シュウ酸、クエン酸、グルコン酸、炭酸ソーダ、及び砂糖等から選択される一種以上を用いることができる。   The curing time adjusting agent includes a curing accelerator and a curing retarder. As the curing accelerator, for example, one or more selected from slaked lime, calcium chloride, sodium aluminate, lithium carbonate, and the like can be used. As the curing retarder, for example, one or more selected from boric acid, oxalic acid, citric acid, gluconic acid, sodium carbonate, sugar and the like can be used.

爆裂防止剤としては、例えば、金属アルミニウム、乳酸アルミ、及び有機繊維(例:ビ
ニロン繊維、ポリエチレン繊維、ポリプロピレン繊維等)が挙げられる。
Examples of the explosion preventing agent include metal aluminum, aluminum lactate, and organic fiber (eg, vinylon fiber, polyethylene fiber, polypropylene fiber, etc.).

以上のとおり本発明の一体材は、母材に対して優れた接着性を発揮するから、高炉樋の内張りのスラグ部とメタル部とを兼用した継ぎ足し施工に好適に使用することができ、しかも、継ぎ足し施工の施工厚を小さくできる。したがって本発明の一体材によれば、スラグ部であるかメタル部であるかにかかわらず、施工材の付着物を除去した後にそのまま継ぎ足し施工を問題なく行うことができる。これにより、補修のための不定形耐火物の施工量を低減でき、コストダウンに寄与できる。   As described above, since the integral material of the present invention exhibits excellent adhesion to the base material, it can be suitably used for the addition work that combines the slag portion and metal portion of the blast furnace lining, The thickness of the construction can be reduced. Therefore, according to the integral material of the present invention, regardless of whether it is a slag part or a metal part, it is possible to perform the construction without any problem after removing the deposits on the construction material. Thereby, the construction amount of the irregular refractory for repair can be reduced, and it can contribute to cost reduction.

なお、本発明の一体材による継ぎ足し施工は流し込み施工を基本とするが、吹き付け施工やコテ塗り施工とすることもできる。   In addition, although the addition construction by the integral material of this invention is based on pouring construction, it can also be set as spray construction or iron coating construction.

表1に示す各例の原料配合物100質量%に対して外掛けで5.3質量%の水を添加して得た不定形耐火物について、接着性、耐スラグ性、耐メタル性及び流動性を以下の要領で評価した。   About the amorphous refractory material obtained by adding 5.3% by mass of water as an outer shell to 100% by mass of the raw material composition of each example shown in Table 1, adhesion, slag resistance, metal resistance and flow Sex was evaluated as follows.

なお、表1に示す実施例及び比較例では、炭化珪素原料中において、粒径30μm以下の微粉の炭化珪素原料の占める割合が異なる原料をそれぞれ用いた。具体的には、表2に示す炭化珪素原料Aを実施例1、6、比較例2、5〜8、炭化珪素原料Bを実施例2、7、比較例1、炭化珪素原料Cを実施例3、5、炭化珪素原料Dを実施例4、炭化珪素原料Eを比較例3、炭化珪素原料Fを比較例4にそれぞれ用いた。   In Examples and Comparative Examples shown in Table 1, raw materials having different proportions of fine silicon carbide raw materials having a particle size of 30 μm or less were used in the silicon carbide raw materials. Specifically, Examples 1 and 6 and Comparative Examples 2 and 5-8 are used for the silicon carbide raw material A shown in Table 2, Examples 2 and 7 are provided for the silicon carbide raw material B, Examples 1 and 7 are provided for the silicon carbide raw material C. 3, 5, silicon carbide raw material D was used in Example 4, silicon carbide raw material E was used in Comparative Example 3, and silicon carbide raw material F was used in Comparative Example 4.

<スラグ材に対する接着性の評価>
まず、炭化珪素原料60質量%、アルミナ原料30質量%、炭素原料5質量%、残部に結合剤及び分散剤を配合した原料配合物に対して水を6質量%添加して、40×40×80mmの形状に流し込み成形し、110℃で乾燥後、1450℃で還元焼成を実施する。これにより、母材としてスラグ部に施工される材料(スラグ材)の試験片を得る。
この試験片を40×40×160mmの枠にセットし、継ぎ足し施工を模擬して一体材として各例の不定形耐火物を前記試験片の片側に流し込み、110℃で乾燥後,1450℃で還元焼成を実施する。そして、曲げ強度を測定する方法(JISR2553に準拠)で、母材としての試験片と一体材との接着面に荷重を加える。その結果得られた曲げ強度を接着強度とする。この接着強度が高いほど、母材に対する接着性に優れる。表1では、接着強度が5MPa以上の場合を○、3MPa以上5MPa未満の場合を△、3MPa未満の場合を×で表記した。
<Evaluation of adhesion to slag material>
First, 60% by mass of a silicon carbide raw material, 30% by mass of an alumina raw material, 5% by mass of a carbon raw material, and 6% by mass of water are added to a raw material mixture in which a binder and a dispersant are added to the balance, and 40 × 40 × It is cast into a shape of 80 mm, dried at 110 ° C., and then reduced and fired at 1450 ° C. Thereby, the test piece of the material (slag material) constructed in a slag part as a base material is obtained.
This test piece is set in a frame of 40 × 40 × 160 mm, and the unfixed refractory material of each example is poured into one side of the test piece as an integrated material by simulating the addition work, dried at 110 ° C., and reduced at 1450 ° C. Firing is performed. Then, a load is applied to the bonding surface between the test piece as a base material and the integral material by a method of measuring bending strength (based on JISR2553). The bending strength obtained as a result is defined as the adhesive strength. The higher the adhesive strength, the better the adhesion to the base material. In Table 1, the case where the adhesive strength is 5 MPa or more is indicated by ◯, the case where it is 3 MPa or more and less than 5 MPa, and the case where it is less than 3 MPa are indicated by ×.

<メタル材に対する接着性の評価>
まず、アルミナ原料20質量%、スピネル原料55質量%、炭化珪素原料15質量%、炭素原料5質量%、残部に結合剤及び分散剤を配合した原料配合物に対して水を5.3質量%添加して、40×40×80mmの形状に流し込み成形し、110℃で乾燥後、1450℃で還元焼成を実施する。これにより、母材としてメタル部に施工される材料(メタル材)の試験片を得る。
この試験片を40×40×160mmの枠にセットし、継ぎ足し施工を模擬して一体材として各例の不定形耐火物を前記試験片の片側に流し込み、110℃で乾燥後,1450℃で還元焼成を実施する。試験方法は上記スラグ材に対する接着性の評価と同様である。
<Evaluation of adhesion to metal materials>
First, 20% by mass of an alumina raw material, 55% by mass of a spinel raw material, 15% by mass of a silicon carbide raw material, 5% by mass of a carbon raw material, and 5.3% by mass of water with respect to a raw material mixture in which a binder and a dispersant are blended in the balance It is added, cast into a 40 × 40 × 80 mm shape, dried at 110 ° C., and then reduced and fired at 1450 ° C. Thereby, the test piece of the material (metal material) constructed in a metal part as a base material is obtained.
This test piece is set in a frame of 40 × 40 × 160 mm, and the unfixed refractory material of each example is poured into one side of the test piece as an integrated material by simulating the addition work, dried at 110 ° C., and reduced at 1450 ° C. Firing is performed. The test method is the same as the evaluation of adhesion to the slag material.

<耐スラグ性>
各例の不定形耐火物を所定の型枠に流し込み、養生及び乾燥させて試験片を得る。この試験片について、侵食剤を高炉スラグとする回転ドラム侵食試験法による試験を実施する。試験後、試験片の溶損寸法を測定し、実施例1の試験片の溶損寸法で割って100倍した値を溶損指数として求める。この溶損指数が小さいほど、耐スラグ性に優れる。表1では、溶損指数が110以下の場合を○、110超120以下の場合を△、120超の場合を×で表記した。
<Slag resistance>
The amorphous refractory of each example is poured into a predetermined mold, cured and dried to obtain a test piece. The test piece is subjected to a test by a rotating drum erosion test method using an erodant as a blast furnace slag. After the test, the erosion dimension of the test piece is measured, and the value obtained by dividing the erosion dimension of the test piece of Example 1 by 100 is obtained as the erosion index. The smaller the erosion index, the better the slag resistance. In Table 1, the case where the erosion index is 110 or less is indicated by ○, the case where it is more than 110 or less is indicated by Δ, and the case where it is more than 120 is indicated by ×.

<耐メタル性>
各例の不定形耐火物を所定の型枠に流し込み、養生及び乾燥させて試験片を得る。この試験片について、侵食剤を高炉スラグ及び銑鉄とする回転ドラム侵食試験法による試験を実施する。試験後、試験片の溶損寸法を測定し、実施例1の試験片の溶損寸法で割って100倍した値を溶損指数として求める。この溶損指数が小さいほど、耐メタル性に優れる。表1では、溶損指数が110以下の場合を○、110超120以下の場合を△、120超の場合を×で表記した。なお、耐メタル性の評価において侵食剤に高炉スラグを添加しているのは、実際の高炉樋においては溶銑とスラグが撹拌混合されてメタル部においてもスラグと接触するからである。
<Metal resistance>
The amorphous refractory of each example is poured into a predetermined mold, cured and dried to obtain a test piece. The test piece is subjected to a test by a rotating drum erosion test method using blast furnace slag and pig iron as erosion agents. After the test, the erosion dimension of the test piece is measured, and the value obtained by dividing the erosion dimension of the test piece of Example 1 by 100 is obtained as the erosion index. The smaller the melting index, the better the metal resistance. In Table 1, the case where the erosion index is 110 or less is indicated by ○, the case where it is more than 110 or less is indicated by Δ, and the case where it is more than 120 is indicated by ×. In the evaluation of metal resistance, the reason why blast furnace slag is added to the erodant is that the molten iron and slag are stirred and mixed in an actual blast furnace so as to come into contact with the slag even in the metal part.

<流動性>
各例の不定形耐火物について、JISR2521に準拠してタップフロー値を求める。このタップフロー値が大きいほど、流動性に優れる。表1では、タップフロー値が150mm以上の場合を○、130mm以上150mm未満の場合を△、130mm未満の場合を×で表記した。
<Fluidity>
The tap flow value is obtained in accordance with JIS R2521 for the irregular refractories in each example. The larger the tap flow value, the better the fluidity. In Table 1, a case where the tap flow value is 150 mm or more is indicated by ◯, a case where the tap flow value is 130 mm or more and less than 150 mm is indicated by Δ, and a case where the tap flow value is less than 130 mm is indicated by ×.

Figure 2018052752
Figure 2018052752

Figure 2018052752
Figure 2018052752

表1中、実施例1から7は原料配合物の構成が本発明の範囲内にある例であり、接着性、スラグ性、耐メタル性、流動性のいずれも良好であった。なかでも原料配合物の構成が好ましい範囲内にある実施例1は、前記各特性が特に良好であった。   In Table 1, Examples 1 to 7 are examples in which the composition of the raw material blend was within the scope of the present invention, and all of the adhesiveness, slag property, metal resistance, and fluidity were good. In particular, Example 1 in which the composition of the raw material blend was within the preferred range had particularly good characteristics described above.

これに対して比較例1は炭化珪素原料の総含有量が少ない例で、耐スラグ性が低下した。また、耐メタル性についても侵食剤に高炉スラグを含むことなどの理由により低下した。一方、比較例2は炭化珪素原料の総含有量が多い例で、耐メタル性が低下した。   On the other hand, Comparative Example 1 is an example in which the total content of the silicon carbide raw material is small, and the slag resistance is lowered. In addition, the metal resistance also decreased due to reasons such as the inclusion of blast furnace slag in the erodant. On the other hand, Comparative Example 2 is an example in which the total content of the silicon carbide raw material is large, and the metal resistance decreased.

比較例3は微粉の炭化珪素原料の含有量が少ない例で、接着性が低下した。また、炭化珪素原料による耐スラグ性向上の効果も得られず、耐スラグ性も低下した。一方、比較例4は微粉の炭化珪素原料の含有量が多い例で、耐メタル性が低下した。また、粒径30μm以下という微粉が多くなるため、流動性が低下し接着性も低下した。   Comparative Example 3 was an example in which the content of fine silicon carbide raw material was small, and the adhesiveness was lowered. Moreover, the effect of the slag resistance improvement by a silicon carbide raw material was not acquired, and slag resistance also fell. On the other hand, Comparative Example 4 is an example in which the content of the fine silicon carbide raw material is large, and the metal resistance is lowered. Moreover, since fine powder with a particle size of 30 μm or less increased, the fluidity decreased and the adhesiveness also decreased.

比較例5は炭化硼素原料の含有量が少なく炭化硼素原料の質量比が小さい例で、前述した炭化硼素原料による接着性向上の効果が得られず、接着性が低下した。また、炭化硼素原料による炭化珪素原料やカーボンブラックの酸化防止効果も得られず、耐スラグ性も低下した。一方、比較例6は炭化硼素原料の含有量が多く炭化硼素原料の質量比が大きい例である。前述のとおり炭化硼素原料は水に対する濡れ性が低いから炭化硼素原料が多すぎると流動性が低下し、これに伴い耐スラグ性及び耐メタル性も低下した。   Comparative Example 5 is an example in which the content of the boron carbide raw material is small and the mass ratio of the boron carbide raw material is small. The effect of improving the adhesiveness by the boron carbide raw material described above cannot be obtained, and the adhesiveness is lowered. Further, the effect of preventing oxidation of silicon carbide raw material and carbon black by the boron carbide raw material was not obtained, and the slag resistance was also lowered. On the other hand, Comparative Example 6 is an example in which the content of the boron carbide raw material is large and the mass ratio of the boron carbide raw material is large. As described above, since the boron carbide raw material has low wettability to water, if there is too much boron carbide raw material, the fluidity is lowered, and accordingly, the slag resistance and metal resistance are also lowered.

比較例7はカーボンブラックの含有量が少ない、具体的にはカーボンブラックを含有しない例で、流動性が低下した。一方、比較例8はカーボンブラックの含有量が多い例である。前述のとおりカーボンブラックは分散性が悪いのでカーボンブラックが多すぎると流動性が低下し、これに伴い接着性及び耐メタル性も低下した。   Comparative Example 7 is an example in which the content of carbon black is small, specifically, no carbon black is contained, and the fluidity is lowered. On the other hand, Comparative Example 8 is an example having a high carbon black content. As described above, since carbon black has poor dispersibility, if there is too much carbon black, the fluidity is lowered, and the adhesiveness and metal resistance are also lowered accordingly.

Claims (3)

原料配合物に水を添加してなり、高炉樋の内張りのスラグ部とメタル部とを兼用した継ぎ足し施工に使用する高炉樋の継ぎ足し施工用不定形耐火物であって、
前記原料配合物100質量%に占める割合で、炭化珪素原料を15質量%以上30質量%以下、炭化硼素原料を0.1質量%以上3質量%以下、カーボンブラックを0.5質量%以上3質量%以下含有し、
前記炭化珪素原料のうち粒径30μm以下の微粉の含有量が、前記原料配合物100質量%に占める割合で1質量%以上7.5質量%以下であり、
前記炭化硼素原料/(前記微粉の炭化珪素原料と前記カーボンブラックの合量)の質量比が、0.05以上2以下である、高炉樋の継ぎ足し施工用不定形耐火物。
It is an unshaped refractory material for blast furnace saddle construction that is used for slag construction and slag part and metal part of blast furnace saddle, which is made by adding water to the raw material mixture,
In a proportion of 100% by mass of the raw material mixture, the silicon carbide raw material is 15% by mass to 30% by mass, the boron carbide raw material is 0.1% by mass to 3% by mass, and the carbon black is 0.5% by mass to 3% by mass. Containing less than mass%,
The content of fine powder having a particle size of 30 μm or less in the silicon carbide raw material is 1% by mass or more and 7.5% by mass or less in a proportion of 100% by mass of the raw material mixture,
An amorphous refractory material for blast furnace slag addition, wherein a mass ratio of the boron carbide raw material / (total amount of the fine silicon carbide raw material and the carbon black) is 0.05 or more and 2 or less.
請求項1に記載の高炉樋の継ぎ足し施工用不定形耐火物を、高炉樋の内張りのスラグ部とメタル部に予め施工された施工材に対して継ぎ足し施工する、高炉樋の継ぎ足し施工用不定形耐火物の施工方法。   The refractory material for blast furnace slag addition construction according to claim 1 is added to the construction material previously applied to the slag part and metal part of the blast furnace slag lining. Refractory construction method. 前記予め施工された施工材の付着物を除去した後に継ぎ足し施工する、請求項2に記載の高炉樋の継ぎ足し施工用不定形耐火物の施工方法。   The construction method of the irregular refractory material for the blast furnace slag addition construction according to claim 2, wherein the construction is performed after removing the deposits of the construction material previously constructed.
JP2016187279A 2016-09-26 2016-09-26 Monolithic refractory for use in extending work of blast furnace trough and its construction method Pending JP2018052752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016187279A JP2018052752A (en) 2016-09-26 2016-09-26 Monolithic refractory for use in extending work of blast furnace trough and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016187279A JP2018052752A (en) 2016-09-26 2016-09-26 Monolithic refractory for use in extending work of blast furnace trough and its construction method

Publications (1)

Publication Number Publication Date
JP2018052752A true JP2018052752A (en) 2018-04-05

Family

ID=61835078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016187279A Pending JP2018052752A (en) 2016-09-26 2016-09-26 Monolithic refractory for use in extending work of blast furnace trough and its construction method

Country Status (1)

Country Link
JP (1) JP2018052752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022077378A (en) * 2020-11-11 2022-05-23 黒崎播磨株式会社 Dry spray material for firing furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022077378A (en) * 2020-11-11 2022-05-23 黒崎播磨株式会社 Dry spray material for firing furnace

Similar Documents

Publication Publication Date Title
JP6499464B2 (en) Insulated refractory
JP4796170B2 (en) Chromium castable refractories and precast blocks using the same
JP2002241182A (en) Monolithic refractory composition
JP6179534B2 (en) Unshaped refractories for blast furnace glazing
JP2018052752A (en) Monolithic refractory for use in extending work of blast furnace trough and its construction method
JP2001114571A (en) Castable refractory for trough of blast furnace
KR20090095294A (en) Refractories for industrial iron and steel
JP2014152092A (en) Castable refractory for blast furnace trough
JP6219751B2 (en) Unshaped refractories for tundish lining
CN114773035A (en) Erosion-resistant magnesia refractory mortar for steel ladle
JP4102065B2 (en) Refractory for casting construction
JP6303792B2 (en) Cast refractories for lance pipes
JP7032084B2 (en) Amorphous refractory
JPH08175877A (en) Castable refractory
JP2020100853A (en) Monolithic refractory for blast furnace runner cover
JP6609389B1 (en) Unshaped refractory for blast furnace
JP6694541B1 (en) Castable refractory for blast furnace gutter metal part
JPH06144939A (en) Basic castable refractory
TWI478892B (en) No carbon and aluminum magnesium does not burn bricks
JP6086751B2 (en) Refractory mortar
JPH01282143A (en) Refractory mortar composition
JP2015168596A (en) Unshaped refractory
JP2010260770A (en) Chromium-free monolithic refractory for waste melting furnace
JPH04182360A (en) Reparing material for torpedo ladle car
JP2004307293A (en) Monolithic refractory composition