JP2018050821A - Ultrasound oscillator driving device and mesh-type nebulizer - Google Patents

Ultrasound oscillator driving device and mesh-type nebulizer Download PDF

Info

Publication number
JP2018050821A
JP2018050821A JP2016188717A JP2016188717A JP2018050821A JP 2018050821 A JP2018050821 A JP 2018050821A JP 2016188717 A JP2016188717 A JP 2016188717A JP 2016188717 A JP2016188717 A JP 2016188717A JP 2018050821 A JP2018050821 A JP 2018050821A
Authority
JP
Japan
Prior art keywords
current
ultrasonic transducer
frequency
conversion circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016188717A
Other languages
Japanese (ja)
Other versions
JP2018050821A5 (en
JP6711225B2 (en
Inventor
真郎 前田
Masao Maeda
真郎 前田
秀孝 東郷
Hidetaka Togo
秀孝 東郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Healthcare Co Ltd
Original Assignee
Omron Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Healthcare Co Ltd filed Critical Omron Healthcare Co Ltd
Priority to JP2016188717A priority Critical patent/JP6711225B2/en
Priority to PCT/JP2017/028912 priority patent/WO2018061494A1/en
Priority to DE112017004833.8T priority patent/DE112017004833B4/en
Priority to CN201780055140.0A priority patent/CN109689229B/en
Publication of JP2018050821A publication Critical patent/JP2018050821A/en
Priority to US16/351,569 priority patent/US10603683B2/en
Publication of JP2018050821A5 publication Critical patent/JP2018050821A5/ja
Application granted granted Critical
Publication of JP6711225B2 publication Critical patent/JP6711225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0085Inhalators using ultrasonics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/005Sprayers or atomisers specially adapted for therapeutic purposes using ultrasonics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0638Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices
    • B05B17/0646Vibrating plates, i.e. plates being directly subjected to the vibrations, e.g. having a piezoelectric transducer attached thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0669Excitation frequencies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0253Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken directly from the generator circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasound oscillator driving device 60, which applies, via a conversion circuit 63, a sinusoidal alternating voltage Va as a drive voltage to an ultrasound oscillator 40 having an inherent resonance frequency, and which can suppress a leak current to the ground GND.SOLUTION: The ultrasound oscillator driving device comprises: a first current detection unit 65 which detects a first current i1 flowing from a drive voltage generating unit 62 to the conversion circuit 63; and a second current detection unit 66 which detects a second current i2 flowing from the conversion circuit 63 to the ultrasound oscillator 40. A frequency control unit 61 performs control to cause the drive voltage generating unit 62 to change the frequency of a rectangular-waveform alternating voltage Vg such that the difference between the first current i1 and the second current i2 approaches a minimum value.SELECTED DRAWING: Figure 1

Description

この発明は超音波振動子駆動装置に関し、より詳しくは、固有の共振周波数をもつ超音波振動子に対して、駆動電圧(交番電圧)を印加して駆動する超音波振動子駆動装置に関する。また、この発明は、そのような超音波振動子駆動装置を備えたメッシュ式ネブライザに関する。   The present invention relates to an ultrasonic transducer driving apparatus, and more particularly, to an ultrasonic transducer driving apparatus that drives by applying a driving voltage (alternating voltage) to an ultrasonic transducer having a specific resonance frequency. The present invention also relates to a mesh nebulizer provided with such an ultrasonic transducer driving device.

従来、この種の超音波振動子駆動装置としては、例えば特許文献1(特開2003−038646号公報)に、超音波振動子としての圧電素子に正弦波または矩形波の駆動電圧を印加して、この圧電素子の超音波振動によって薬液を霧化して噴霧するものが開示されている。   Conventionally, as this type of ultrasonic vibrator driving device, for example, in Japanese Patent Application Laid-Open No. 2003-038646, a driving voltage of a sine wave or a rectangular wave is applied to a piezoelectric element as an ultrasonic vibrator. Further, there has been disclosed a technique in which a chemical liquid is atomized and sprayed by ultrasonic vibration of the piezoelectric element.

特開2003−038646号公報JP 2003-038646 A

ところで、上記超音波振動子が、例えばメッシュ式ネブライザを構成するのに広く用いられているような、圧電素子とこの圧電素子の振動を伝えるホーンとが一体に組み合わされたタイプのもの(適宜「ホーン振動子」と呼ぶ。)である場合、図8から分かるように、Q値(共振の鋭さ)が非常に高い。このため、図9に例示するように、或るホーン振動子(固有の共振周波数をfrとする。frの単位はkHzとする。)について、駆動電圧の周波数の実用的な範囲は、(fr−0.8kHz)からfrまでの範囲Δfに限られている。なお、図8、図9では、横軸が駆動電圧の周波数を表し、縦軸がホーン振動子のインピーダンス(実線で示す)と位相(破線で示す)を表している。   By the way, the ultrasonic transducer is of a type in which a piezoelectric element and a horn that transmits vibration of the piezoelectric element are combined together as is widely used for forming, for example, a mesh type nebulizer (as appropriate “ In the case of “horn resonator”, the Q value (resonance sharpness) is very high as can be seen from FIG. For this reason, as illustrated in FIG. 9, for a certain horn vibrator (a specific resonance frequency is fr. The unit of fr is kHz), the practical range of the drive voltage frequency is (fr It is limited to a range Δf from −0.8 kHz) to fr. 8 and 9, the horizontal axis represents the frequency of the drive voltage, and the vertical axis represents the impedance (shown by a solid line) and the phase (shown by a broken line) of the horn vibrator.

さらに、ホーン振動子の共振周波数frには、±1.5kHz程度の製造ばらつきがあることが知られている。図10は、製造ばらつきにより共振周波数が異なる3つのサンプルNo.1〜3について、矩形波からなる駆動電圧の周波数を変化させたときの単位時間当たりの噴霧量の変化を示している。駆動電圧の周波数が、サンプルNo.1では共振周波数fr1=178.85kHz、サンプルNo.2では共振周波数fr2=179.15kHz、サンプルNo.3では共振周波数fr3=179.40kHzを、それぞれ高々0.03kHz程度上回ると、単位時間当たりの噴霧量が約半分に低下している。   Furthermore, it is known that the resonance frequency fr of the horn vibrator has a manufacturing variation of about ± 1.5 kHz. FIG. 10 shows three sample numbers having different resonance frequencies due to manufacturing variations. About 1-3, the change of the spray amount per unit time when the frequency of the drive voltage which consists of a rectangular wave is changed is shown. The frequency of the drive voltage is the sample number. 1, the resonance frequency fr1 = 178.85 kHz, sample No. 2, the resonance frequency fr2 = 179.15 kHz, sample No. 3, when the resonance frequency fr3 = 179.40 kHz exceeds the resonance frequency by about 0.03 kHz, the spray amount per unit time is reduced to about half.

このため、例えば駆動用IC(集積回路)が出力した矩形波状の交番電圧をそのまま駆動電圧としてホーン振動子に印加すると、駆動電圧の周波数がホーン振動子の共振周波数から外れて、ホーン振動子の駆動効率が低下することがある。   For this reason, for example, when a rectangular wave-shaped alternating voltage output from a driving IC (integrated circuit) is applied to the horn vibrator as a driving voltage as it is, the frequency of the driving voltage deviates from the resonance frequency of the horn vibrator, and Drive efficiency may decrease.

これに対して、駆動用ICが発生した矩形波状の交番電圧(駆動電圧の元になる)を、誘導性リアクタンス素子(L)と容量性リアクタンス素子(C)とを含む変換回路を介して正弦波状の交番電圧に変換した状態でホーン振動子に印加すると、駆動電圧の周波数がホーン振動子の共振周波数を少し外れたとしても、駆動効率の低下を抑制でき、単位時間当たりの噴霧量の減少を抑制できる。しかしながら、単に駆動用ICとホーン振動子との間に変換回路を介挿すると、上記変換回路を介して接地(GND)へリーク電流が流れて、消費電流が増大するという問題がある。   On the other hand, a rectangular wave-like alternating voltage generated by the driving IC (which is the source of the driving voltage) is sine through a conversion circuit including an inductive reactance element (L) and a capacitive reactance element (C). When applied to the horn vibrator in a state where it is converted to a wavy alternating voltage, even if the frequency of the drive voltage deviates slightly from the resonance frequency of the horn vibrator, the reduction in drive efficiency can be suppressed, and the amount of spray per unit time can be reduced. Can be suppressed. However, if a conversion circuit is simply inserted between the driving IC and the horn vibrator, there is a problem in that a leakage current flows to the ground (GND) through the conversion circuit, thereby increasing current consumption.

そこで、この発明の課題は、固有の共振周波数をもつ超音波振動子に対して変換回路を介して正弦波状の交番電圧を駆動電圧として印加する超音波振動子駆動装置であって、接地へのリーク電流を抑制できるものを提供することにある。また、この発明の課題は、そのような超音波振動子駆動装置を備えたメッシュ式ネブライザを提供することにある。   Therefore, an object of the present invention is an ultrasonic transducer driving apparatus that applies a sinusoidal alternating voltage as a driving voltage to an ultrasonic transducer having a specific resonance frequency via a conversion circuit, The object is to provide a device capable of suppressing leakage current. Moreover, the subject of this invention is providing the mesh type nebulizer provided with such an ultrasonic transducer | vibrator drive device.

上記課題を解決するため、この発明の超音波振動子駆動装置は、
圧電素子を含み固有の共振周波数をもつ超音波振動子に対して、駆動電圧を印加して駆動する超音波振動子駆動装置であって、
上記駆動電圧の元になる矩形波状の交番電圧を、上記超音波振動子の共振周波数を含む周波数範囲で周波数可変に発生する駆動電圧発生部と、
上記駆動電圧発生部から上記超音波振動子への配線経路に介挿され、誘導性リアクタンス素子と容量性リアクタンス素子とによって、上記駆動電圧発生部が発生した矩形波状の交番電圧を正弦波状の交番電圧に変換する変換回路とを備え、この正弦波状の交番電圧が上記駆動電圧として上記超音波振動子に印加され、
上記駆動電圧発生部から上記変換回路へ流れる第1の電流を検出する第1の電流検出部と、
上記変換回路から上記超音波振動子へ流れる第2の電流を検出する第2の電流検出部と、
上記第1の電流と上記第2の電流との間の差が極小値に近づくように、上記駆動電圧発生部に対して上記矩形波状の交番電圧の周波数を変更させる制御を行う周波数制御部と
を備えたことを特徴とする。
In order to solve the above problems, an ultrasonic transducer driving device of the present invention is
An ultrasonic transducer driving apparatus that drives by applying a driving voltage to an ultrasonic transducer including a piezoelectric element and having a specific resonance frequency,
A drive voltage generator that generates a rectangular wave-shaped alternating voltage that is a source of the drive voltage in a frequency range that includes a resonance frequency of the ultrasonic transducer; and
A rectangular wave-shaped alternating voltage generated by the driving voltage generating unit is inserted into a wiring path from the driving voltage generating unit to the ultrasonic transducer and is generated by the inductive reactance element and the capacitive reactance element. A conversion circuit that converts the voltage into a voltage, and this sinusoidal alternating voltage is applied to the ultrasonic transducer as the drive voltage,
A first current detector for detecting a first current flowing from the drive voltage generator to the conversion circuit;
A second current detection unit for detecting a second current flowing from the conversion circuit to the ultrasonic transducer;
A frequency control unit that controls the drive voltage generation unit to change the frequency of the rectangular-wave alternating voltage so that the difference between the first current and the second current approaches a minimum value; It is provided with.

ここで、「矩形波状」とは、厳密な矩形波だけでなく、上記超音波振動子に対する駆動電圧としての用途において実質的に矩形波と見なせるような、角をもつ波形を含む。また、「正弦波状」とは、厳密な正弦波だけでなく、上記超音波振動子に対する駆動電圧としての用途において実質的に正弦波と見なせるような、滑らかに変化する波形を含む。   Here, the “rectangular wave shape” includes not only a strict rectangular wave but also a waveform having an angle that can be regarded as a substantially rectangular wave in the use as a driving voltage for the ultrasonic transducer. Further, the “sine wave shape” includes not only a strict sine wave but also a smoothly changing waveform that can be regarded as a substantially sine wave when used as a driving voltage for the ultrasonic transducer.

この発明の超音波振動子駆動装置では、駆動電圧発生部が、上記駆動電圧の元になる矩形波状の交番電圧を、上記超音波振動子の共振周波数を含む周波数範囲で周波数可変に発生する。上記駆動電圧発生部から上記超音波振動子へ向かう配線経路に介挿された変換回路が、誘導性リアクタンス素子と容量性リアクタンス素子とによって、上記駆動電圧発生部が発生した矩形波状の交番電圧を正弦波状の交番電圧に変換する。この正弦波状の交番電圧が上記駆動電圧として上記超音波振動子に印加される。したがって、上記駆動電圧の周波数が上記超音波振動子の共振周波数を少し外れたとしても、駆動効率の低下を抑制できる。しかも、この超音波振動子駆動装置では、第1の電流検出部が、上記駆動電圧発生部から上記変換回路へ流れる第1の電流を検出すると共に、第2の電流検出部が、上記変換回路から上記超音波振動子へ流れる第2の電流を検出する。周波数制御部は、上記第1の電流と上記第2の電流との間の差が極小値に近づくように、上記駆動電圧発生部に対して上記矩形波状の交番電圧の周波数を変更させる制御を行う。上記制御によって上記第1の電流と上記第2の電流との間の差が極小値近傍になったとき、上記変換回路のインピーダンスと上記超音波振動子のインピーダンスとが整合する。したがって、上記第1の電流と上記第2の電流との差、すなわち、上記変換回路を介した接地へのリーク電流が抑制される。この結果、消費電流の増大を抑制できる。   In the ultrasonic transducer driving apparatus according to the present invention, the drive voltage generator generates the rectangular-wave alternating voltage that is the source of the drive voltage in a frequency range that includes the resonance frequency of the ultrasonic transducer. The conversion circuit inserted in the wiring path from the drive voltage generator to the ultrasonic transducer converts the rectangular wave-shaped alternating voltage generated by the drive voltage generator by an inductive reactance element and a capacitive reactance element. Convert to sinusoidal alternating voltage. This sinusoidal alternating voltage is applied to the ultrasonic transducer as the drive voltage. Therefore, even if the frequency of the driving voltage slightly deviates from the resonance frequency of the ultrasonic transducer, a decrease in driving efficiency can be suppressed. Moreover, in this ultrasonic transducer driving device, the first current detection unit detects the first current flowing from the drive voltage generation unit to the conversion circuit, and the second current detection unit includes the conversion circuit. The second current flowing from the current to the ultrasonic transducer is detected. The frequency control unit controls the drive voltage generation unit to change the frequency of the rectangular-wave alternating voltage so that the difference between the first current and the second current approaches a minimum value. Do. When the difference between the first current and the second current becomes close to the minimum value by the control, the impedance of the conversion circuit matches the impedance of the ultrasonic transducer. Therefore, the difference between the first current and the second current, that is, the leakage current to the ground via the conversion circuit is suppressed. As a result, an increase in current consumption can be suppressed.

一実施形態の超音波振動子駆動装置では、上記第1の電流と上記第2の電流との間の差は、上記第1の電流のピーク・ツー・ピーク値と上記第2の電流のピーク・ツー・ピーク値との間の差、上記第1の電流の振幅と上記第2の電流の振幅との間の差、または、上記第1の電流の実効値と上記第2の電流の実効値との間の差であることを特徴とする。   In the ultrasonic transducer driving apparatus according to one embodiment, the difference between the first current and the second current is a peak-to-peak value of the first current and a peak of the second current. The difference between the two peak values, the difference between the amplitude of the first current and the amplitude of the second current, or the effective value of the first current and the effective value of the second current. It is a difference between values.

この一実施形態の超音波振動子駆動装置では、上記第1、第2の電流の位相にかかわらず、上記第1の電流と上記第2の電流との間の差を簡単に求めることができる。   In the ultrasonic transducer driving apparatus according to this embodiment, the difference between the first current and the second current can be easily obtained regardless of the phase of the first and second currents. .

一実施形態の超音波振動子駆動装置では、上記超音波振動子の共振周波数を含む周波数範囲で上記変換回路が示すインピーダンスは、上記超音波振動子のインピーダンスの最小値に実質的に一致するように設定されていることを特徴とする。   In the ultrasonic transducer driving apparatus of one embodiment, the impedance indicated by the conversion circuit in a frequency range including the resonance frequency of the ultrasonic transducer is substantially equal to the minimum impedance value of the ultrasonic transducer. It is characterized by being set to.

ここで、超音波振動子のインピーダンスの最小値に「実質的に一致」するとは、丁度一致する場合に加えて、インピーダンス整合の観点から、最小値に実質的に一致していると見なせる範囲(例えば、上記最小値から、上記最小値の1.5倍までの範囲)を含む。   Here, “substantially matches” the minimum value of the impedance of the ultrasonic transducer means a range that can be considered to substantially match the minimum value from the viewpoint of impedance matching in addition to the case of just matching. For example, a range from the minimum value to 1.5 times the minimum value) is included.

この一実施形態の超音波振動子駆動装置では、上記超音波振動子の共振周波数を含む周波数範囲で上記変換回路が示すインピーダンスは、上記超音波振動子のインピーダンスの最小値に実質的に一致するように設定されている。ここで、上述のように、上記周波数制御部による上記制御によって上記第1の電流と上記第2の電流との間の差が極小値近傍になったとき、上記変換回路のインピーダンスと上記超音波振動子のインピーダンスとが整合する。したがって、そのとき、上記矩形波状の交番電圧の周波数が上記超音波振動子の共振周波数(上記超音波振動子のインピーダンスの最小値を与える周波数)に略一致する。この結果、上記超音波振動子の駆動効率が高まる。   In the ultrasonic transducer driving apparatus according to this embodiment, the impedance indicated by the conversion circuit in the frequency range including the resonance frequency of the ultrasonic transducer substantially matches the minimum value of the impedance of the ultrasonic transducer. Is set to Here, as described above, when the difference between the first current and the second current becomes close to the minimum value by the control by the frequency control unit, the impedance of the conversion circuit and the ultrasonic wave The impedance of the vibrator matches. Therefore, at that time, the frequency of the alternating voltage having the rectangular wave shape substantially coincides with the resonance frequency of the ultrasonic transducer (the frequency that gives the minimum value of the impedance of the ultrasonic transducer). As a result, the driving efficiency of the ultrasonic transducer is increased.

一実施形態の超音波振動子駆動装置では、上記超音波振動子は、上記圧電素子とこの圧電素子の振動を伝えるホーンとが一体に組み合わされて構成されたホーン振動子であることを特徴とする。   In an ultrasonic transducer driving apparatus according to an embodiment, the ultrasonic transducer is a horn transducer configured by integrally combining the piezoelectric element and a horn that transmits vibration of the piezoelectric element. To do.

この一実施形態の超音波振動子駆動装置では、上記超音波振動子は、上記圧電素子とこの圧電素子の振動を伝えるホーンとが一体に組み合わされて構成されたホーン振動子である。したがって、上記駆動電圧の周波数が上記超音波振動子の共振周波数を少し外れたとしても、駆動効率の低下を抑制できる、という本発明による利益が大きい。   In the ultrasonic transducer driving apparatus according to the embodiment, the ultrasonic transducer is a horn transducer configured by integrally combining the piezoelectric element and a horn that transmits vibration of the piezoelectric element. Therefore, even if the frequency of the drive voltage slightly deviates from the resonance frequency of the ultrasonic transducer, the advantage of the present invention that the reduction in drive efficiency can be suppressed is great.

別の局面では、この発明のメッシュ式ネブライザは、
上記発明の超音波振動子駆動装置であって、上記超音波振動子が、上記圧電素子とこの圧電素子の振動を伝えるホーンとが一体に組み合わされて構成されたホーン振動子であるものと、
上記ホーン振動子の振動面に対向して配置された平板状またはシート状のメッシュ部とを備え、
上記振動面と上記メッシュ部との間に供給された液体を、上記メッシュ部を通して霧化して噴霧することを特徴とする。
In another aspect, the mesh nebulizer of the present invention is
The ultrasonic vibrator driving device according to the invention, wherein the ultrasonic vibrator is a horn vibrator configured by integrally combining the piezoelectric element and a horn that transmits vibration of the piezoelectric element,
A flat plate-like or sheet-like mesh portion arranged to face the vibration surface of the horn vibrator,
The liquid supplied between the vibration surface and the mesh part is atomized and sprayed through the mesh part.

本明細書で、「平板状またはシート状のメッシュ部」とは、平板またはシートを貫通する複数の貫通孔を有し、これらの貫通孔を通過させて液体を霧化するための要素を意味する。なお、シートはフィルムを含む。   In this specification, the “flat plate or sheet mesh portion” means an element for atomizing a liquid by having a plurality of through holes penetrating the flat plate or sheet and passing through the through holes. To do. The sheet includes a film.

この発明のメッシュ式ネブライザによれば、上記液体を効率良く霧化して噴霧でき、また、消費電流の増大を抑制できる。   According to the mesh type nebulizer of the present invention, the liquid can be efficiently atomized and sprayed, and an increase in current consumption can be suppressed.

以上より明らかなように、この発明の超音波振動子駆動装置は、固有の共振周波数をもつ超音波振動子に対して変換回路を介して正弦波状の交番電圧を駆動電圧として印加する超音波振動子駆動装置であって、接地へのリーク電流を抑制できる。また、この発明のメッシュ式ネブライザによれば、液体を効率良く霧化して噴霧でき、また、消費電流の増大を抑制できる。   As is clear from the above, the ultrasonic transducer driving apparatus of the present invention is an ultrasonic vibration that applies a sinusoidal alternating voltage as a drive voltage to an ultrasonic transducer having a specific resonance frequency via a conversion circuit. This is a slave drive device, and leakage current to the ground can be suppressed. Further, according to the mesh type nebulizer of the present invention, the liquid can be efficiently atomized and sprayed, and an increase in current consumption can be suppressed.

この発明の一実施形態の超音波振動子駆動装置の、駆動電圧発生部から超音波振動子としてのホーン振動子への配線経路に変換回路が介挿された回路構成を示す図である。It is a figure which shows the circuit structure by which the conversion circuit was inserted in the wiring path | route from the drive voltage generation part to the horn vibrator | oscillator as an ultrasonic vibrator of the ultrasonic transducer drive device of one Embodiment of this invention. 上記超音波振動子駆動装置を搭載したメッシュ式ネブライザの霧化部の構成を示す図である。It is a figure which shows the structure of the atomization part of the mesh type nebulizer carrying the said ultrasonic transducer | vibrator drive device. 上記超音波振動子駆動装置を構成する制御部による制御の概略フローを示す図である。It is a figure which shows the general | schematic flow of control by the control part which comprises the said ultrasonic transducer | vibrator drive device. 上記制御部による周波数制御のフローを示す図である。It is a figure which shows the flow of the frequency control by the said control part. 図5(A)、図5(C)は、上記駆動電圧発生部が発生する矩形波状の交番電圧の周波数を順次上昇させたときの、上記駆動電圧発生部から上記変換回路へ流れる第1の電流の変化を示す図である。図5(B)、図5(D)は、それぞれ図5(A)、図5(C)に対応して、上記駆動電圧発生部が発生する矩形波状の交番電圧の周波数を順次上昇させたときの、上記変換回路から上記ホーン振動子へ流れる第2の電流の変化を示す図である。FIG. 5A and FIG. 5C show a first flow from the drive voltage generator to the conversion circuit when the frequency of the rectangular-wave alternating voltage generated by the drive voltage generator is sequentially increased. It is a figure which shows the change of an electric current. 5 (B) and 5 (D) correspond to FIGS. 5 (A) and 5 (C), respectively, and the frequency of the rectangular-wave alternating voltage generated by the drive voltage generator is sequentially increased. It is a figure which shows the change of the 2nd electric current which flows from the said conversion circuit to the said horn vibrator at the time. 図6(A)、図6(C)は、上記駆動電圧発生部が発生する矩形波状の交番電圧の周波数を順次上昇させたときの、上記駆動電圧発生部から上記変換回路へ流れる第1の電流の変化を示す図である。図6(B)、図6(D)は、それぞれ図6(A)、図6(C)に対応して、上記駆動電圧発生部が発生する矩形波状の交番電圧の周波数を順次上昇させたときの、上記変換回路から上記ホーン振動子へ流れる第2の電流の変化を示す図である。FIGS. 6A and 6C show a first flow from the drive voltage generator to the conversion circuit when the frequency of the rectangular-wave alternating voltage generated by the drive voltage generator is sequentially increased. It is a figure which shows the change of an electric current. 6B and 6D respectively correspond to FIGS. 6A and 6C, in which the frequency of the rectangular-wave alternating voltage generated by the drive voltage generator is sequentially increased. It is a figure which shows the change of the 2nd electric current which flows from the said conversion circuit to the said horn vibrator at the time. 図7(A)は、上記駆動電圧発生部が発生する矩形波状の交番電圧の周波数をさらに上昇させたときの、上記駆動電圧発生部から上記変換回路へ流れる第1の電流の変化を示す図である。図7(B)は、図7(A)に対応して、上記駆動電圧発生部が発生する矩形波状の交番電圧の周波数をさらに上昇させたときの、上記変換回路から上記ホーン振動子へ流れる第2の電流の変化を示す図である。FIG. 7A is a diagram showing a change in the first current flowing from the drive voltage generator to the conversion circuit when the frequency of the rectangular-wave alternating voltage generated by the drive voltage generator is further increased. It is. FIG. 7B corresponds to FIG. 7A, and flows from the conversion circuit to the horn vibrator when the frequency of the rectangular-wave alternating voltage generated by the drive voltage generator is further increased. It is a figure which shows the change of a 2nd electric current. 駆動電圧の周波数の変化に伴う、ホーン振動子のインピーダンス(実線で示す)と位相(破線で示す)の変化を示す図である。It is a figure which shows the change of the impedance (it shows with a continuous line) and the phase (it shows with a broken line) of a horn vibrator | oscillator accompanying the change of the frequency of a drive voltage. 或るホーン振動子(共振周波数をfrとする。)について、駆動電圧の周波数の実用的な範囲を示す図である。It is a figure which shows the practical range of the frequency of a drive voltage about a certain horn vibrator | oscillator (resonance frequency is set to fr). 製造ばらつきにより共振周波数が異なる3つのホーン振動子サンプルについて、駆動電圧の周波数を変化させたときの単位時間当たりの噴霧量の変化を示す図である。It is a figure which shows the change of the spray quantity per unit time when the frequency of a drive voltage is changed about the three horn vibrator | oscillator samples from which resonance frequency differs by manufacturing dispersion | variation.

以下、この発明の実施の形態を、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図2は、この発明の一実施形態の超音波振動子駆動装置を搭載したメッシュ式ネブライザ(全体を符号1で表す。)の霧化部の構成を示している。このメッシュ式ネブライザ1は、上部に開口18を有する本体10と、この本体10内に内蔵された超音波振動子としてのホーン振動子40を備えている。本体10の外面には、図示しない電源スイッチが設けられている。   FIG. 2 shows a configuration of an atomizing section of a mesh type nebulizer (the whole is denoted by reference numeral 1) equipped with the ultrasonic transducer driving device of one embodiment of the present invention. The mesh nebulizer 1 includes a main body 10 having an opening 18 at an upper portion thereof, and a horn vibrator 40 as an ultrasonic vibrator built in the main body 10. A power switch (not shown) is provided on the outer surface of the main body 10.

ホーン振動子40は、上方の開口18に対向して水平に配された振動面43と、この振動面43から下方に離間した位置に配された圧電素子41と、圧電素子41と振動面43との間に配され、圧電素子41の振動を増幅するとともに振動面43へ伝達するホーン42とが、一体に組み合わされて構成されている。ホーン振動子40(正確には、圧電素子41)に対する駆動電圧は、後述する超音波振動子駆動装置60によって供給されるようになっている。このホーン振動子40は、図8、図9中に例示したような固有の共振周波数frを有している。   The horn vibrator 40 includes a vibrating surface 43 disposed horizontally facing the upper opening 18, a piezoelectric element 41 disposed at a position spaced downward from the vibrating surface 43, and the piezoelectric element 41 and the vibrating surface 43. And a horn 42 that amplifies the vibration of the piezoelectric element 41 and transmits it to the vibration surface 43 is integrally combined. A driving voltage for the horn vibrator 40 (more precisely, the piezoelectric element 41) is supplied by an ultrasonic vibrator driving device 60 described later. The horn vibrator 40 has a unique resonance frequency fr as exemplified in FIGS.

開口18と振動面43との間には、交換部材20が着脱可能に装着されて配置されている。この交換部材20は、振動面43に対向する平坦なシートとしてのフィルム21と、このフィルム21の周縁を支持する略円環状の底板部22とを含んでいる。フィルム21は、底板部22の上面に接着または溶着により取り付けられている。フィルム21のうち略中央の領域がメッシュ部21aを構成している。メッシュ部21aには、フィルム21を貫通する多数の微細な貫通孔(図示せず)が形成されている。底板部22は、位置決めのために、この例では振動面43の縁部43eに1箇所で当接している。交換部材20は、振動面43に対して少し傾斜した状態で、ホーン振動子40とともに、本体10内の図示しない要素によって支持されている。なお、メッシュ部21aは、フィルム21に代えて、平板に多数の微細な貫通孔を形成して構成されていてもよい。   The replacement member 20 is detachably mounted between the opening 18 and the vibration surface 43. The replacement member 20 includes a film 21 as a flat sheet facing the vibration surface 43, and a substantially annular bottom plate portion 22 that supports the periphery of the film 21. The film 21 is attached to the upper surface of the bottom plate portion 22 by adhesion or welding. A substantially central region of the film 21 forms a mesh portion 21a. A large number of fine through holes (not shown) penetrating the film 21 are formed in the mesh portion 21a. In this example, the bottom plate portion 22 is in contact with the edge portion 43e of the vibration surface 43 at one location for positioning. The replacement member 20 is supported by elements (not shown) in the main body 10 together with the horn vibrator 40 in a state where the replacement member 20 is slightly inclined with respect to the vibration surface 43. In addition, it replaces with the film 21 and the mesh part 21a may be comprised by forming many fine through-holes in a flat plate.

このメッシュ式ネブライザ1の動作時には、ユーザが鉛直方向に対して本体10を少しだけ傾ける。これにより、本体10内の給液部17から、矢印Fで示すようにホーン振動子40の振動面43上へ向けて液体(この例では、薬液)が供給される。つまり、振動面43とメッシュ部21aとの間に薬液が供給される。そして、ユーザが電源スイッチをオンすると、ホーン振動子40の圧電素子41に駆動電圧が印加されて、ホーン42を介して振動面43が振動される。これにより、メッシュ部21a(より正確には、フィルム21を貫通する複数の貫通孔)を通して薬液が霧化され、開口18を通して噴霧される。   When the mesh nebulizer 1 operates, the user tilts the main body 10 slightly with respect to the vertical direction. As a result, the liquid (in this example, a chemical) is supplied from the liquid supply unit 17 in the main body 10 toward the vibration surface 43 of the horn vibrator 40 as indicated by an arrow F. That is, the chemical solution is supplied between the vibration surface 43 and the mesh portion 21a. When the user turns on the power switch, a driving voltage is applied to the piezoelectric element 41 of the horn vibrator 40, and the vibration surface 43 is vibrated via the horn 42. Thereby, the chemical liquid is atomized through the mesh portion 21 a (more precisely, a plurality of through holes penetrating the film 21) and sprayed through the opening 18.

図1は、メッシュ式ネブライザ1に搭載された超音波振動子駆動装置60のブロック構成を示している。   FIG. 1 shows a block configuration of an ultrasonic transducer driving device 60 mounted on the mesh nebulizer 1.

この超音波振動子駆動装置60は、駆動電圧発生部62と、駆動電圧発生部62からホーン振動子40へ延びる配線経路としての一対の配線67,68と、これらの配線67,68に介挿された変換回路63とを含んでいる。また、この超音波振動子駆動装置60は、第1の電流検出部65と、第2の電流検出部66と、これらの第1の電流検出部65、第2の電流検出部66の出力に基づいて上述の駆動電圧発生部62を制御する制御部61とを含んでいる。   The ultrasonic transducer driving device 60 includes a drive voltage generator 62, a pair of wires 67 and 68 as a wiring path extending from the drive voltage generator 62 to the horn transducer 40, and the wires 67 and 68. The conversion circuit 63 is included. In addition, the ultrasonic transducer driving device 60 outputs the first current detection unit 65, the second current detection unit 66, and the outputs of the first current detection unit 65 and the second current detection unit 66. And a control unit 61 that controls the drive voltage generation unit 62 described above.

駆動電圧発生部62は、例えば市販のファンクション・ジェネレータ用IC(集積回路)を含み、駆動電圧の元になる矩形波状の交番電圧Vgを、ホーン振動子40の共振周波数frを含む周波数範囲で周波数可変に発生する。この例では、駆動電圧発生部62は、少なくとも175kHz〜185kHzの範囲で0.05kHzずつ周波数fを可変できる機能を有するものとする。また、交番電圧Vgのプラス電圧期間とマイナス電圧期間との比は、可変であるが、この例では1対1(デューティ50%)であるものとする。この駆動電圧発生部62は、増幅部を含み、ホーン振動子40を駆動するのに十分な振幅をもつ交番電圧Vgを出力する。   The drive voltage generator 62 includes, for example, a commercially available function generator IC (integrated circuit). The drive voltage generator 62 generates a rectangular wave-shaped alternating voltage Vg, which is a source of the drive voltage, in a frequency range including the resonance frequency fr of the horn vibrator 40. It occurs variably. In this example, it is assumed that the drive voltage generator 62 has a function capable of varying the frequency f by 0.05 kHz in the range of at least 175 kHz to 185 kHz. Further, the ratio between the positive voltage period and the negative voltage period of the alternating voltage Vg is variable, but in this example, it is assumed to be 1: 1 (duty 50%). The drive voltage generator 62 includes an amplifier, and outputs an alternating voltage Vg having an amplitude sufficient to drive the horn vibrator 40.

変換回路63は、一方の配線67に介挿された誘導性リアクタンス素子としてのコイルL1と、その配線67のうちコイルL1よりもホーン振動子40側(図1において右側を指す。以下、単に「右側」という。)の箇所67cと接地GND(図1中に▽印で示す。以下同様。)との間に接続された容量性リアクタンス素子としてのコンデンサC1と、他方の配線68に介挿された誘導性リアクタンス素子としてのコイルL2と、その配線68のうちコイルL2よりも右側の箇所68cと接地GNDとの間に接続された容量性リアクタンス素子としてのコンデンサC2とを含んでいる。この変換回路63は、例えば図5(A)中に示すように、駆動電圧発生部62が発生した矩形波状の交番電圧Vgを、正弦波状の交番電圧Vaに変換する。この正弦波状の交番電圧Vaが駆動電圧として図1中に示すホーン振動子40に印加される。したがって、駆動電圧の周波数fがホーン振動子40の共振周波数frを少し外れたとしても、駆動効率の低下を抑制できる。   The conversion circuit 63 is a coil L1 as an inductive reactance element inserted in one wiring 67, and the horn vibrator 40 side of the wiring 67 from the coil L1 (refer to the right side in FIG. 1). (Referred to as “right side”) and a ground GND (indicated by ▽ in FIG. 1; the same shall apply hereinafter) and a capacitor C1 serving as a capacitive reactance element and the other wiring 68. In addition, a coil L2 as an inductive reactance element and a capacitor C2 as a capacitive reactance element connected between a portion 68c on the right side of the coil L2 of the wiring 68 and the ground GND are included. For example, as shown in FIG. 5A, the conversion circuit 63 converts the rectangular-wave alternating voltage Vg generated by the drive voltage generator 62 into a sine-wave alternating voltage Va. This sinusoidal alternating voltage Va is applied as a drive voltage to the horn vibrator 40 shown in FIG. Therefore, even if the frequency f of the drive voltage slightly deviates from the resonance frequency fr of the horn vibrator 40, a decrease in drive efficiency can be suppressed.

この例では、ホーン振動子40の共振周波数frを含む175kHz〜185kHzの周波数範囲で変換回路63が示すインピーダンスは、ホーン振動子40のインピーダンスの最小値Zmin(この例では、約100Ω)に略一致するように設定されている。具体的には、L1=L2=47μH、C1=C2=4700pFに設定されている。これにより、周波数f=179kHz近傍で、L1とC1との直列インピーダンス、L2とC2との直列インピーダンスは、それぞれ約136Ωになっている。   In this example, the impedance shown by the conversion circuit 63 in the frequency range of 175 kHz to 185 kHz including the resonance frequency fr of the horn vibrator 40 is substantially equal to the minimum impedance value Zmin of the horn vibrator 40 (in this example, about 100Ω). It is set to be. Specifically, L1 = L2 = 47 μH and C1 = C2 = 4700 pF are set. Thereby, in the vicinity of the frequency f = 179 kHz, the series impedance of L1 and C1 and the series impedance of L2 and C2 are each about 136Ω.

第1の電流検出部65は、上述の配線68のうち駆動電圧発生部62とコイルL2との間に介挿された電流検出用の抵抗素子R2と、この抵抗素子R2に降下した電圧を増幅する演算増幅器(オペレーショナル・アンプリファイア)U1とを含んでいる。その配線68のうち抵抗素子R2の駆動電圧発生部62側(図1において左側を指す。以下、単に「左側」という。)の箇所68aと接地GNDとの間に、分圧用の抵抗素子R5,R6が直列に接続されている。これらの抵抗素子R5,R6の間の接続点の電位が演算増幅器U1の非反転入力端子(+)に入力される。また、その配線68のうち抵抗素子R2の右側の箇所68bと接地GNDとの間に、分圧用の抵抗素子R7,R8が直列に接続されている。これらの抵抗素子R7,R8の間の接続点の電位が演算増幅器U1の反転入力端子(−)に入力される。演算増幅器U1の出力端子(OUT)と反転入力端子(−)との間には、帰還用の抵抗素子R9が接続されている。この構成により、第1の電流検出部65は、駆動電圧発生部62から抵抗素子R2を通して変換回路63へ流れる第1の電流i1を検出する。第1の電流検出部65の出力i1aは、制御部61に入力される。   The first current detector 65 amplifies the current detecting resistor R2 inserted between the drive voltage generator 62 and the coil L2 in the wiring 68 and the voltage dropped to the resistor R2. And an operational amplifier (operational amplifier) U1. Of the wiring 68, the voltage dividing resistor element R 5, between the portion 68 a of the resistor element R 2 on the side of the drive voltage generator 62 (referring to the left side in FIG. 1; hereinafter simply referred to as “left side”) and the ground GND. R6 is connected in series. The potential at the connection point between the resistance elements R5 and R6 is input to the non-inverting input terminal (+) of the operational amplifier U1. In addition, voltage dividing resistance elements R7 and R8 are connected in series between a portion 68b on the right side of the resistance element R2 in the wiring 68 and the ground GND. The potential at the connection point between the resistance elements R7 and R8 is input to the inverting input terminal (−) of the operational amplifier U1. A feedback resistive element R9 is connected between the output terminal (OUT) and the inverting input terminal (−) of the operational amplifier U1. With this configuration, the first current detection unit 65 detects the first current i1 that flows from the drive voltage generation unit 62 to the conversion circuit 63 through the resistance element R2. The output i1a of the first current detection unit 65 is input to the control unit 61.

同様に、第2の電流検出部66は、上述の配線68のうちコイルL2とホーン振動子40との間に介挿された電流検出用の抵抗素子R4と、この抵抗素子R4に降下した電圧を増幅する演算増幅器U2とを含んでいる。その配線68のうち抵抗素子R4の左側の箇所68dと接地GNDとの間に、分圧用の抵抗素子R10,R11が直列に接続されている。これらの抵抗素子R10,R11の間の接続点の電位が演算増幅器U2の非反転入力端子(+)に入力される。また、その配線68のうち抵抗素子R4の右側の箇所68eと接地GNDとの間に、分圧用の抵抗素子R12,R13が直列に接続されている。これらの抵抗素子R12,R13の間の接続点の電位が演算増幅器U2の反転入力端子(−)に入力される。演算増幅器U1の出力端子(OUT)と反転入力端子(−)との間には、帰還用の抵抗素子R14が接続されている。この構成により、第2の電流検出部66は、変換回路63からホーン振動子40へ流れる第2の電流i2を検出する。第2の電流検出部66の出力i2aは、制御部61に入力される。   Similarly, the second current detection unit 66 includes a current detection resistance element R4 inserted between the coil L2 and the horn vibrator 40 in the above-described wiring 68, and a voltage dropped to the resistance element R4. And an operational amplifier U2. The voltage dividing resistor elements R10 and R11 are connected in series between the left portion 68d of the resistor element R4 in the wiring 68 and the ground GND. The potential at the connection point between the resistance elements R10 and R11 is input to the non-inverting input terminal (+) of the operational amplifier U2. In addition, voltage dividing resistance elements R12 and R13 are connected in series between a portion 68e on the right side of the resistance element R4 in the wiring 68 and the ground GND. The potential at the connection point between the resistance elements R12 and R13 is input to the inverting input terminal (−) of the operational amplifier U2. A resistive element R14 for feedback is connected between the output terminal (OUT) and the inverting input terminal (−) of the operational amplifier U1. With this configuration, the second current detector 66 detects the second current i <b> 2 flowing from the conversion circuit 63 to the horn vibrator 40. The output i2a of the second current detection unit 66 is input to the control unit 61.

この例では、R2=R4=100mΩ、R5=R6=R7=R8=R9=R10=R11=R12=R13=R14=100kΩにそれぞれ設定されている。   In this example, R2 = R4 = 100 mΩ and R5 = R6 = R7 = R8 = R9 = R10 = R11 = R12 = R13 = R14 = 100 kΩ are set.

なお、配線67,68間のインピーダンスのバランスをとるために、配線67のうち駆動電圧発生部62とコイルL1との間には抵抗素子R1が介挿されている。また、配線67のうちコイルL1とホーン振動子40との間には抵抗素子R3が介挿されている。この例では、R1,R3の値はR2,R4に等しく、R1=R3=100mΩに設定されている。   In order to balance the impedance between the wirings 67 and 68, a resistance element R1 is interposed between the driving voltage generator 62 and the coil L1 in the wiring 67. In addition, a resistance element R3 is interposed between the coil L1 and the horn vibrator 40 in the wiring 67. In this example, the values of R1 and R3 are equal to R2 and R4, and R1 = R3 = 100 mΩ is set.

制御部61は、CPU(Central Processing Unit;中央演算処理装置)を含み、周波数制御部として働いて、第1の電流検出部65の出力i1aと第2の電流検出部66の出力i2aとに基づいて、制御信号Cnt1fによって駆動電圧発生部62の動作を制御する。そのほか、制御部61は、メッシュ式ネブライザ1の動作全体を制御する。   The control unit 61 includes a CPU (Central Processing Unit) and operates as a frequency control unit, based on the output i1a of the first current detection unit 65 and the output i2a of the second current detection unit 66. Thus, the operation of the drive voltage generator 62 is controlled by the control signal Cnt1f. In addition, the control unit 61 controls the entire operation of the mesh nebulizer 1.

図3に示すように、メッシュ式ネブライザ1の電源スイッチがオンされると、制御部61が周波数制御部として働いて、次に述べるような周波数制御の処理を行う(図3のステップS11)。ユーザが電源スイッチをオンしてから一定期間(例えば10分間)が経過したとき、または、ユーザが電源スイッチをオフしたとき、制御部61は処理を終了する(図3のステップS12)。   As shown in FIG. 3, when the power switch of the mesh nebulizer 1 is turned on, the control unit 61 operates as a frequency control unit and performs the frequency control process as described below (step S11 in FIG. 3). When a certain period (for example, 10 minutes) has elapsed since the user turned on the power switch, or when the user turned off the power switch, the control unit 61 ends the process (step S12 in FIG. 3).

制御部61による周波数制御の処理は、図4に示すフローに従って行われる。   The frequency control process by the control unit 61 is performed according to the flow shown in FIG.

すなわち、図4のステップS21に示すように、制御部61は、まず、駆動電圧発生部62が発生する矩形波状の交番電圧Vgの周波数fを、予め定められたスタート周波数foに設定する。このスタート周波数foは、例えば、個々のホーン振動子40毎に予め定められていても良いし、または、共振周波数の製造ばらつきを考慮して、ホーン振動子40のロット毎に例えば共振周波数の代表値(平均値)に一致するように予め定められていても良い。   That is, as shown in step S21 of FIG. 4, the control unit 61 first sets the frequency f of the rectangular-wave alternating voltage Vg generated by the drive voltage generation unit 62 to a predetermined start frequency fo. The start frequency fo may be determined in advance for each individual horn vibrator 40 or, for example, representative of the resonance frequency for each lot of the horn vibrator 40 in consideration of manufacturing variations in the resonance frequency. It may be determined in advance to match the value (average value).

次に、図4のステップS22に示すように、制御部61は、第1の電流検出部65の出力i1aに基づいて、駆動電圧発生部62から変換回路63へ流れる第1の電流i1を検出するとともに、第2の電流検出部66の出力i2aに基づいて、変換回路63からホーン振動子40へ流れる第2の電流i2を検出する。この例では、例えば図5(A)中に示すように、第1の電流i1のピーク・ツー・ピーク値i1ppを検出するとともに、図5(B)中に示すように、第2の電流i2のピーク・ツー・ピーク値i2ppを検出する。 Next, as shown in step S <b> 22 of FIG. 4, the control unit 61 detects the first current i <b> 1 flowing from the drive voltage generation unit 62 to the conversion circuit 63 based on the output i <b> 1 a of the first current detection unit 65. At the same time, based on the output i2a of the second current detector 66, the second current i2 flowing from the conversion circuit 63 to the horn vibrator 40 is detected. In this example, for example, as shown in FIG. 5A, the peak-to-peak value i1p - p of the first current i1 is detected, and as shown in FIG. The peak-to-peak value i2p - p of the current i2 is detected.

次に、図4のステップS23に示すように、制御部61は、第1の電流i1と第2の電流i2との間の差、この例では第1の電流i1のピーク・ツー・ピーク値i1ppと第2の電流i2のピーク・ツー・ピーク値i2ppとの間の差(i1pp−i2pp)が極小値近傍にあるか否かを判断する。ここで、極小値近傍にあるか否かは、差(i1pp−i2pp)が予め定められた閾値以下であるか否かに応じて判断してもよい。 Next, as shown in step S23 of FIG. 4, the controller 61 determines the difference between the first current i1 and the second current i2, in this example, the peak-to-peak value of the first current i1. i1p - p and peak-to-peak value of the second current i2 i2p - the difference between p (i1p - p-i2p - p) to determine whether the neighborhood minimum. Here, whether or not it is in the vicinity of the minimum value may be determined according to whether or not the difference (i1p p−i2p p) is equal to or less than a predetermined threshold value.

ここで、差(i1pp−i2pp)が極小値近傍にあれば(図4のステップS23でYES)、制御部61は、駆動電圧発生部62に対して矩形波状の交番電圧Vgの周波数fを維持させる制御を行う。そして、ステップS22〜S24の処理を繰り返す。 Here, if the difference (i1p p−i2p p) is in the vicinity of the minimum value (YES in step S23 in FIG. 4), the control unit 61 sets the rectangular wave-like alternating voltage Vg to the drive voltage generation unit 62. Control to maintain the frequency f is performed. Then, the processes in steps S22 to S24 are repeated.

一方、差(i1pp−i2pp)が極小値近傍になければ(図4のステップS23でNO)、制御部61は、差(i1pp−i2pp)が極小値近傍に近づくように、駆動電圧発生部62に対して矩形波状の交番電圧Vgの周波数fを高く又は低く変更させる制御を行う(図4のステップS25)。そして、制御部61は、差(i1pp−i2pp)が極小値近傍にくるまで、ステップS22〜S23、S25の処理を繰り返す。 On the other hand, if the difference (i1p p−i2p p) is not in the vicinity of the minimum value (NO in step S23 in FIG. 4), the control unit 61 causes the difference (i1p p−i2p p) to approach the minimum value. In this manner, the drive voltage generator 62 is controlled to change the frequency f of the alternating voltage Vg having a rectangular wave shape to be higher or lower (step S25 in FIG. 4). And the control part 61 repeats the process of step S22-S23, S25 until a difference (i1p - p-i2p - p) comes in minimum value vicinity.

このようにした場合、上述の制御によってi1ppとi2ppとの間の差(i1pp−i2pp)が極小値近傍になったとき、変換回路63のインピーダンスとホーン振動子40のインピーダンスとが整合する。したがって、第1の電流i1と第2の電流i2との間の差、すなわち、変換回路63を介した接地GNDへのリーク電流が抑制される。この結果、消費電流の増大を抑制できる。 In such a case, i1p the control of the above - the difference between the p - p and i2p when (i1p - - p-i2p p ) becomes near minimum value, the impedance and the horn vibrator 40 of converter 63 Match the impedance. Therefore, the difference between the first current i1 and the second current i2, that is, the leakage current to the ground GND via the conversion circuit 63 is suppressed. As a result, an increase in current consumption can be suppressed.

検証のために、図5(A)、図5(C)、図6(A)、図6(C)、図7(A)は、或るホーン振動子40について、駆動電圧発生部62が発生する矩形波状の交番電圧Vgの周波数fを、f=178.85kHzから0.1kHzずつ順次上昇させたときの、駆動電圧発生部62から変換回路63へ流れる第1の電流i1の変化を示している。これらの図中には、第1の電流i1のピーク・ツー・ピーク値i1ppが図示されている。また、図5(B)、図5(D)、図6(B)、図6(D)、図7(B)は、それぞれ図5(A)、図5(C)、図6(A)、図6(C)、図7(A)に対応して、駆動電圧発生部62が発生する矩形波状の交番電圧Vgの周波数fを、f=178.85kHzから0.1kHzずつ順次上昇させたときの、変換回路63からホーン振動子40へ流れる第2の電流i2の変化を示している。これらの図中には、第2の電流i2のピーク・ツー・ピーク値i2ppが図示されている。さらに、これらの図中には、駆動電圧発生部62が発生した矩形波状の交番電圧Vg、変換回路63による変換後の正弦波状の交番電圧Vaが、理解の容易のためにゼロレベルをシフトして図示されている。 For verification, FIG. 5A, FIG. 5C, FIG. 6A, FIG. 6C, and FIG. 7A show the drive voltage generator 62 for a certain horn vibrator 40. A change in the first current i1 flowing from the drive voltage generator 62 to the conversion circuit 63 when the frequency f of the generated rectangular-wave alternating voltage Vg is sequentially increased by 0.1 kHz from f = 178.85 kHz is shown. ing. In these figures, the peak-to-peak value i1p - p of the first current i1 is shown. 5 (B), FIG. 5 (D), FIG. 6 (B), FIG. 6 (D), and FIG. 7 (B) are respectively shown in FIG. 5 (A), FIG. 5 (C), and FIG. 6 (C) and FIG. 7 (A), the frequency f of the rectangular-wave alternating voltage Vg generated by the drive voltage generator 62 is sequentially increased by 0.1 kHz from f = 178.85 kHz. The change of the 2nd electric current i2 which flows into the horn vibrator | oscillator 40 from the conversion circuit 63 at the time is shown. In these figures, the peak-to-peak value i2p - p of the second current i2 is shown. Further, in these figures, the rectangular waveform alternating voltage Vg generated by the drive voltage generator 62 and the sine waveform alternating voltage Va converted by the conversion circuit 63 shift the zero level for easy understanding. Is shown.

これらの図中の第1の電流i1のピーク・ツー・ピーク値i1pp、第2の電流i2のピーク・ツー・ピーク値i2ppを読み取ると、それぞれ次の表1の左から第2欄、第3欄に記載の通りであった。また、これらのi1ppとi2ppとの間の差(i1pp−i2pp)を算出すると、表1の最右欄に記載の通りであった。なお、i1pp、i2ppの読み取り、差(i1pp−i2pp)の算出は、共通の単位(CPUがデジタル処理に用いる任意単位)で行われた。この結果では、矩形波状の交番電圧Vgの周波数fが、f=178.85kHzから0.1kHzずつ順次上昇するにつれて、差(i1pp−i2pp)は、109、80、24、56、68というように変化している。すなわち、周波数f=179.05kHzで、差(i1pp−i2pp)が24となり、極小値またはその近傍になっている。
(表1)

Figure 2018050821
These peak-to-peak value i1p the first current i1 in Fig - p, a peak-to-peak value of the second current i2 i2p - Reading the p, respectively second from the left in the following Table 1 Column and column 3. Further, when the difference between these i1p - p and i2p - p (i1p - p-i2p - p) was calculated, it was as described in the rightmost column of Table 1. Incidentally, i1p - p, i2p - p readings, the difference calculation of (i1p - - p-i2p p ), was performed in a common unit (arbitrary units by the CPU used in the digital processing). In this result, the difference (i1p p−i2p p) is 109, 80, 24, 56, as the frequency f of the alternating voltage Vg having a rectangular wave shape sequentially increases from f = 178.85 kHz by 0.1 kHz. 68 and so on. That is, at the frequency f = 179.05 kHz, the difference (i1p p−i2p p) is 24, which is at or near the minimum value.
(Table 1)
Figure 2018050821

したがって、このホーン振動子40の場合、制御部61は、上述の周波数制御によって、駆動電圧発生部62が矩形波状の交番電圧Vgの周波数fを、f=179.05kHzに制御(維持)することになる。この結果、変換回路63を介した接地GNDへのリーク電流を抑制して、消費電流の増大を抑制できる。   Therefore, in the case of the horn vibrator 40, the control unit 61 controls (maintains) the frequency f of the rectangular-wave alternating voltage Vg to f = 179.05 kHz by the above-described frequency control. become. As a result, leakage current to the ground GND via the conversion circuit 63 can be suppressed, and an increase in current consumption can be suppressed.

また、既述のように、ホーン振動子40の共振周波数frを含む175kHz〜185kHzの周波数範囲で変換回路63が示すインピーダンスは、ホーン振動子40のインピーダンスの最小値Zmin(この例では、約100Ω)に略一致するように設定されている。ここで、上述の周波数制御によってi1ppとi2ppとの間の差(i1pp−i2pp)が極小値近傍になったとき、変換回路63のインピーダンスとホーン振動子40のインピーダンスとが整合する。したがって、そのとき、矩形波状の交番電圧Vgの周波数fがホーン振動子40の共振周波数fr(ホーン振動子40のインピーダンスの最小値Zmin≒100Ωを与える周波数)に略一致する。この結果、ホーン振動子40の駆動効率が高まる。 Further, as described above, the impedance shown by the conversion circuit 63 in the frequency range of 175 kHz to 185 kHz including the resonance frequency fr of the horn vibrator 40 is the minimum impedance Zmin of the horn vibrator 40 (in this example, about 100Ω). ). Here, i1p by the frequency control described above - the difference between the p - p and i2p when (i1p - - p-i2p p ) becomes near minimum value, the impedance converter circuit 63 and the impedance of the horn vibrator 40 And are consistent. Accordingly, at that time, the frequency f of the rectangular-wave alternating voltage Vg substantially coincides with the resonance frequency fr of the horn vibrator 40 (frequency that gives the minimum impedance value Zmin≈100Ω of the horn vibrator 40). As a result, the driving efficiency of the horn vibrator 40 is increased.

したがって、このメッシュ式ネブライザ1によれば、液体を効率良く霧化して噴霧でき、また、消費電流の増大を抑制できる。   Therefore, according to this mesh nebulizer 1, the liquid can be efficiently atomized and sprayed, and an increase in current consumption can be suppressed.

なお、上の例では、第1の電流i1と第2の電流i2との間の差は、第1の電流i1のピーク・ツー・ピーク値i1ppと第2の電流i2のピーク・ツー・ピーク値i2ppとの間の差(i1p−p−i2p−p)であるものとした。しかしながら、これに限られるものではない。第1の電流i1と第2の電流i2との間の差は、第1の電流i1の振幅と第2の電流i2の振幅との間の差、または、第1の電流i1の実効値と第2の電流i2の実効値との間の差であるものとしてもよい。いずれの場合も、第1の電流i1、第2の電流i2第1、第2の電流の位相にかかわらず、上記「差」を簡単に求めることができる。 In the above example, the difference between the first current i1 and the second current i2 is the peak-to-peak value i1p - p of the first current i1 and the peak-to-peak of the second current i2. peak value i2p - were assumed to be the difference between p (i1p-p-i2p- p). However, the present invention is not limited to this. The difference between the first current i1 and the second current i2 is the difference between the amplitude of the first current i1 and the amplitude of the second current i2, or the effective value of the first current i1. It may be a difference between the effective value of the second current i2. In any case, the “difference” can be easily obtained regardless of the phases of the first current i1, the second current i2, and the first and second currents.

以上の実施形態は例示であり、この発明の範囲から離れることなく様々な変形が可能である。上述した複数の実施の形態は、それぞれ単独で成立し得るものであるが、実施の形態同士の組みあわせも可能である。また、異なる実施の形態の中の種々の特徴も、それぞれ単独で成立し得るものであるが、異なる実施の形態の中の特徴同士の組みあわせも可能である。   The above embodiments are merely examples, and various modifications can be made without departing from the scope of the present invention. The plurality of embodiments described above can be established independently, but combinations of the embodiments are also possible. In addition, various features in different embodiments can be established independently, but the features in different embodiments can be combined.

1 メッシュ式ネブライザ
10 本体
20 交換部材
21a メッシュ部
40 ホーン振動子
41 圧電素子
42 ホーン
43 振動面
60 超音波振動子駆動装置
61 制御部
62 駆動電圧発生部
63 変換回路
65 第1の電流検出部
66 第2の電流検出部
DESCRIPTION OF SYMBOLS 1 Mesh type nebulizer 10 Main body 20 Replacement member 21a Mesh part 40 Horn vibrator 41 Piezoelectric element 42 Horn 43 Vibration surface 60 Ultrasonic vibrator drive device 61 Control part 62 Drive voltage generation part 63 Conversion circuit 65 1st electric current detection part 66 Second current detection unit

Claims (5)

圧電素子を含み固有の共振周波数をもつ超音波振動子に対して、駆動電圧を印加して駆動する超音波振動子駆動装置であって、
上記駆動電圧の元になる矩形波状の交番電圧を、上記超音波振動子の共振周波数を含む周波数範囲で周波数可変に発生する駆動電圧発生部と、
上記駆動電圧発生部から上記超音波振動子への配線経路に介挿され、誘導性リアクタンス素子と容量性リアクタンス素子とによって、上記駆動電圧発生部が発生した矩形波状の交番電圧を正弦波状の交番電圧に変換する変換回路とを備え、この正弦波状の交番電圧が上記駆動電圧として上記超音波振動子に印加され、
上記駆動電圧発生部から上記変換回路へ流れる第1の電流を検出する第1の電流検出部と、
上記変換回路から上記超音波振動子へ流れる第2の電流を検出する第2の電流検出部と、
上記第1の電流と上記第2の電流との間の差が極小値に近づくように、上記駆動電圧発生部に対して上記矩形波状の交番電圧の周波数を変更させる制御を行う周波数制御部と
を備えたことを特徴とする超音波振動子駆動装置。
An ultrasonic transducer driving apparatus that drives by applying a driving voltage to an ultrasonic transducer including a piezoelectric element and having a specific resonance frequency,
A drive voltage generator that generates a rectangular wave-shaped alternating voltage that is a source of the drive voltage in a frequency range that includes a resonance frequency of the ultrasonic transducer; and
A rectangular wave-shaped alternating voltage generated by the driving voltage generating unit is inserted into a wiring path from the driving voltage generating unit to the ultrasonic transducer and is generated by the inductive reactance element and the capacitive reactance element. A conversion circuit that converts the voltage into a voltage, and this sinusoidal alternating voltage is applied to the ultrasonic transducer as the drive voltage,
A first current detector for detecting a first current flowing from the drive voltage generator to the conversion circuit;
A second current detection unit for detecting a second current flowing from the conversion circuit to the ultrasonic transducer;
A frequency control unit that controls the drive voltage generation unit to change the frequency of the rectangular-wave alternating voltage so that the difference between the first current and the second current approaches a minimum value; An ultrasonic transducer driving device comprising:
請求項1に記載の超音波振動子駆動装置において、
上記第1の電流と上記第2の電流との間の差は、上記第1の電流のピーク・ツー・ピーク値と上記第2の電流のピーク・ツー・ピーク値との間の差、上記第1の電流の振幅と上記第2の電流の振幅との間の差、または、上記第1の電流の実効値と上記第2の電流の実効値との間の差であることを特徴とする超音波振動子駆動装置。
The ultrasonic transducer driving apparatus according to claim 1,
The difference between the first current and the second current is the difference between the peak-to-peak value of the first current and the peak-to-peak value of the second current, The difference between the amplitude of the first current and the amplitude of the second current, or the difference between the effective value of the first current and the effective value of the second current, An ultrasonic transducer driving device.
請求項1または2に記載の超音波振動子駆動装置において、
上記超音波振動子の共振周波数を含む周波数範囲で上記変換回路が示すインピーダンスは、上記超音波振動子のインピーダンスの最小値に実質的に一致するように設定されていることを特徴とする超音波振動子駆動装置。
In the ultrasonic transducer drive device according to claim 1 or 2,
An ultrasonic wave characterized in that an impedance indicated by the conversion circuit in a frequency range including a resonance frequency of the ultrasonic vibrator is set to substantially coincide with a minimum impedance value of the ultrasonic vibrator. Vibrator driving device.
請求項1から3までのいずれか一つに記載の超音波振動子駆動装置において、
上記超音波振動子は、上記圧電素子とこの圧電素子の振動を伝えるホーンとが一体に組み合わされて構成されたホーン振動子であることを特徴とする超音波振動子駆動装置。
In the ultrasonic transducer drive device according to any one of claims 1 to 3,
The ultrasonic transducer driving apparatus according to claim 1, wherein the ultrasonic transducer is a horn transducer configured by integrally combining the piezoelectric element and a horn that transmits vibration of the piezoelectric element.
請求項4に記載の超音波振動子駆動装置と、
上記ホーン振動子の振動面に対向して配置された平板状またはシート状のメッシュ部とを備え、
上記振動面と上記メッシュ部との間に供給された液体を、上記メッシュ部を通して霧化して噴霧することを特徴とするメッシュ式ネブライザ。
The ultrasonic transducer driving device according to claim 4,
A flat plate-like or sheet-like mesh portion arranged to face the vibration surface of the horn vibrator,
A mesh-type nebulizer characterized in that the liquid supplied between the vibrating surface and the mesh part is atomized and sprayed through the mesh part.
JP2016188717A 2016-09-27 2016-09-27 Ultrasonic transducer drive and mesh nebulizer Active JP6711225B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016188717A JP6711225B2 (en) 2016-09-27 2016-09-27 Ultrasonic transducer drive and mesh nebulizer
PCT/JP2017/028912 WO2018061494A1 (en) 2016-09-27 2017-08-09 Ultrasonic oscillator driving device and mesh-type nebulizer
DE112017004833.8T DE112017004833B4 (en) 2016-09-27 2017-08-09 Mesh type nebulizer
CN201780055140.0A CN109689229B (en) 2016-09-27 2017-08-09 Ultrasonic vibrator driving device and mesh type sprayer
US16/351,569 US10603683B2 (en) 2016-09-27 2019-03-13 Ultrasonic vibrator driving apparatus and mesh nebulizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016188717A JP6711225B2 (en) 2016-09-27 2016-09-27 Ultrasonic transducer drive and mesh nebulizer

Publications (3)

Publication Number Publication Date
JP2018050821A true JP2018050821A (en) 2018-04-05
JP2018050821A5 JP2018050821A5 (en) 2019-09-26
JP6711225B2 JP6711225B2 (en) 2020-06-17

Family

ID=61762672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016188717A Active JP6711225B2 (en) 2016-09-27 2016-09-27 Ultrasonic transducer drive and mesh nebulizer

Country Status (5)

Country Link
US (1) US10603683B2 (en)
JP (1) JP6711225B2 (en)
CN (1) CN109689229B (en)
DE (1) DE112017004833B4 (en)
WO (1) WO2018061494A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220013160A (en) * 2020-07-24 2022-02-04 주식회사 케이티앤지 Apparatus for calibrating ultrasonic vibrator and method thereof
DE112022001479T5 (en) 2021-06-25 2024-01-11 Omron Healthcare Co., Ltd. inhaler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111438026B (en) * 2020-03-25 2022-03-11 广州厚达电子科技有限公司 Driving method of ultrasonic atomizer

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105812A (en) * 1975-03-14 1976-09-20 Stanley Electric Co Ltd KOSHUHADENGEN SOCHI
EP0340470A1 (en) 1988-05-06 1989-11-08 Satronic Ag Method and circuit for driving an ultrasonic transducer, and their use in atomizing a liquid
JPH099652A (en) * 1995-06-16 1997-01-10 Olympus Optical Co Ltd Driving apparatus for ultrasonic motor
US6296196B1 (en) * 1999-03-05 2001-10-02 S. C. Johnson & Son, Inc. Control system for atomizing liquids with a piezoelectric vibrator
US6539937B1 (en) 2000-04-12 2003-04-01 Instrumentarium Corp. Method of maximizing the mechanical displacement of a piezoelectric nebulizer apparatus
JP2003038646A (en) 2001-08-02 2003-02-12 Olympus Optical Co Ltd Medical atomizer
US6752327B2 (en) * 2002-10-16 2004-06-22 S. C. Johnson & Son, Inc. Atomizer with tilted orifice plate and replacement reservoir for same
CN102230457B (en) * 2004-02-23 2014-05-07 日本电气株式会社 Drive circuit for piezoelectric pump and cooling system that uses this drive circuit
DE102011118644A1 (en) * 2011-11-15 2013-05-16 Valeo Schalter Und Sensoren Gmbh Ultrasonic transducer and corresponding device for detecting surroundings in a vehicle
CN102526848B (en) * 2012-01-12 2014-03-19 利佳精密科技股份有限公司 Adjusting method and structure for resonance frequency of demounting type spray head of atomizer
DE102012001342A1 (en) * 2012-01-24 2013-07-25 Nebu-Tec Gmbh Inhaler with breathable piezocrystal
JP2014000525A (en) * 2012-06-19 2014-01-09 Olympus Corp Ultrasonic treatment device and ultrasonic treatment system
JP2014004211A (en) * 2012-06-26 2014-01-16 Omron Healthcare Co Ltd Liquid spray apparatus
DE102012109035A1 (en) 2012-09-25 2014-03-27 Adolf Würth GmbH & Co. KG Transformer-free ultrasonic generator for a handheld device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220013160A (en) * 2020-07-24 2022-02-04 주식회사 케이티앤지 Apparatus for calibrating ultrasonic vibrator and method thereof
KR102402071B1 (en) 2020-07-24 2022-05-24 주식회사 케이티앤지 Apparatus for calibrating ultrasonic vibrator and method thereof
DE112022001479T5 (en) 2021-06-25 2024-01-11 Omron Healthcare Co., Ltd. inhaler

Also Published As

Publication number Publication date
DE112017004833B4 (en) 2022-11-24
CN109689229B (en) 2021-02-19
CN109689229A (en) 2019-04-26
DE112017004833T5 (en) 2019-06-13
US10603683B2 (en) 2020-03-31
JP6711225B2 (en) 2020-06-17
WO2018061494A1 (en) 2018-04-05
US20190210055A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2018061494A1 (en) Ultrasonic oscillator driving device and mesh-type nebulizer
JP6801335B2 (en) Ultrasonic oscillator drive and mesh nebulizer
CN102025339B (en) Piezoelectric actuator driver circuit
JP4572789B2 (en) Ultrasonic generator and ultrasonic beauty device
JP2006217716A (en) Ultrasonic actuator driving unit and ultrasonic actuator driving method
JP2017500687A5 (en)
JP4088665B2 (en) Ultrasonic wave generation method and apparatus
JPWO2019030982A1 (en) Driving method of vibration device and vibration device
CN105682812A (en) Scale treatment apparatus
JP7313567B2 (en) Hookah device
US9450520B2 (en) Space vector pulse modulation based motor driver
CN108366901B (en) Beauty device
JP2016095227A (en) Physical quantity detection device and physical quantity detection method
JP6571064B2 (en) Detection device and sensor device
JP5833658B2 (en) Method and apparatus for electrically exciting an actuator for an ultrasonic motor
JP7210253B2 (en) fluid control valve
KR100972085B1 (en) Method for suppling maximum efficiency power of ultrasonic cleaner
JPH05277413A (en) Ultrasonic atomizing device
JP2020037085A (en) Ultrasonic atomization device
JP2009233625A (en) Method and apparatus for driving ultrasonic vibrator
JP2008219420A (en) Ultrasonic oscillator
JP2007313463A5 (en)
JPH07116574A (en) Ultrasonic atomizer
RU2023125389A (en) AEROSOL GENERATING DEVICE USING A VIBRATION CONVERTER AND CONTROLLED LIQUID SUPPLY
JP2013233528A (en) Ultrasonic cleaning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6711225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150