JP2018050510A - Powder containing phospholipid derived from milk and method for producing the same - Google Patents

Powder containing phospholipid derived from milk and method for producing the same Download PDF

Info

Publication number
JP2018050510A
JP2018050510A JP2016189063A JP2016189063A JP2018050510A JP 2018050510 A JP2018050510 A JP 2018050510A JP 2016189063 A JP2016189063 A JP 2016189063A JP 2016189063 A JP2016189063 A JP 2016189063A JP 2018050510 A JP2018050510 A JP 2018050510A
Authority
JP
Japan
Prior art keywords
derived
milk
powder
phospholipid
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016189063A
Other languages
Japanese (ja)
Other versions
JP6935180B2 (en
Inventor
朋樹 高橋
Tomoki Takahashi
朋樹 高橋
仁美 十亀
Hitomi Toki
仁美 十亀
娟 李
Chi Tao
娟 李
光太郎 伊藤
Kotaro Ito
光太郎 伊藤
章 富澤
Akira Tomizawa
章 富澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP2016189063A priority Critical patent/JP6935180B2/en
Publication of JP2018050510A publication Critical patent/JP2018050510A/en
Application granted granted Critical
Publication of JP6935180B2 publication Critical patent/JP6935180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for improving a yield of phospholipid by inhibiting an aggregate of protein from remaining in a powder containing phospholipid derived from milk produced using a milk product as a starting material.SOLUTION: The powder containing phospholipid derived from milk contains 45 to 70 wt% of lipid in a dry matter, has a content of phospholipid derived from milk contained in lipid of 20 wt% or more in a dry matter and has a median diameter of insoluble components of 10 μm or less when prepared as a 5% aqueous solution. The method for producing the powder containing phospholipid derived from milk comprises the steps of: decomposing a protein by adding a proteolytic enzyme to a starting material including a milk product; deactivating the proteolytic enzyme after decomposing the protein; separating the protein decomposed by membrane treatment after inactivating the proteolytic enzyme to produce a concentrated liquid; and drying the concentrated liquid.SELECTED DRAWING: None

Description

本発明は、乳由来リン脂質含有粉末、およびその製造方法に関する。   The present invention relates to milk-derived phospholipid-containing powder and a method for producing the same.

大豆レシチンや卵黄レシチンは、天然物由来のリン脂質粗製物として、食品製造における乳化剤等として広く利用されているが、近年、ホスファチジルセリン、ホスファチジルコリン、スフィンゴミエリンのような乳由来リン脂質が種々の生理機能を有することが報告され、注目されている。
ホスファチジルセリンやホスファチジルコリンは神経機能や運動機能の発達・維持に深くかかわること、スフィンゴミエリンは乳幼児の腸管成熟化機能を有することが報告されている。スフィンゴミエリンは、スフィンゴシンと脂肪酸からなるセラミド骨格にホスホコリンが結合した構造を有する物質で、脳や神経組織に大量に存在する。また、スフィンゴミエリンは大豆リン脂質や卵黄リン脂質には僅かにしか含まれていないが、乳中には豊富に含まれており、牛乳中のリン脂質の約30%を占める。
このようなことから、ホスファチジルセリン、ホスファチジルコリン、スフィンゴミエリンのような、乳由来リン脂質を高濃度で含有する乳由来リン脂質高含有粉末は、機能性食品、母乳代替品又は医薬品の原料として広く利用することができる。
Soy lecithin and egg yolk lecithin are widely used as a natural product-derived phospholipid crude product as an emulsifier in food production. In recent years, milk-derived phospholipids such as phosphatidylserine, phosphatidylcholine, and sphingomyelin have various physiological properties. It has been reported and attracted attention.
It has been reported that phosphatidylserine and phosphatidylcholine are deeply involved in the development and maintenance of nerve function and motor function, and sphingomyelin has an intestinal maturation function in infants. Sphingomyelin is a substance having a structure in which phosphocholine is bound to a ceramide skeleton composed of sphingosine and a fatty acid, and is present in large amounts in the brain and nerve tissues. Sphingomyelin is only slightly contained in soybean phospholipid and egg yolk phospholipid, but is abundant in milk and accounts for about 30% of phospholipid in milk.
Therefore, milk-derived phospholipid-rich powders that contain milk-derived phospholipids at high concentrations, such as phosphatidylserine, phosphatidylcholine, and sphingomyelin, are widely used as functional foods, breast milk substitutes, or pharmaceutical raw materials. can do.

乳由来のリン脂質を含有する粉末としては、バターゼラムを原料として製造された粉末が知られている(例えば、特許文献1)。特許文献1記載の方法では、バターゼラム又はバターゼラム粉還元液をpH 4.0〜5.0の酸性に調整し、塩化カルシウムを添加して生成したタンパク質の等電点沈殿を遠心分離等により除去し、その後、pHを中性に調整してから上清を限外濾過又は精密濾過して得られた濃縮液を乾燥することによって、乳由来のリン脂質を含有する乳由来複合脂質含有粉末を得ている。   As a powder containing milk-derived phospholipid, a powder produced using butaselam as a raw material is known (for example, Patent Document 1). In the method described in Patent Document 1, the reducing solution of Batase lam or Batase rum powder is adjusted to an acidity of pH 4.0 to 5.0, and the isoelectric point precipitation of the protein produced by adding calcium chloride is removed by centrifugation or the like. Then, after adjusting the pH to neutral, and drying the concentrated solution obtained by ultrafiltration or microfiltration of the supernatant, a milk-derived complex lipid-containing powder containing milk-derived phospholipids is obtained. ing.

また、バターミルク粉をはじめとした乳製品をクロロホルム/メタノール/水(4/8/3)の溶媒やアセトン等の有機溶媒を用いて、乳製品中のリン脂質を抽出する方法が知られている(特許文献2)。この方法では、リン脂質を90%以上の高純度まで濃縮することができる。   In addition, dairy products such as buttermilk powder are known to extract phospholipids in dairy products using chloroform / methanol / water (4/8/3) solvents or organic solvents such as acetone. (Patent Document 2). In this method, phospholipids can be concentrated to a purity of 90% or higher.

特開2007−89535号公報JP 2007-89535 A 特開平3−47192号公報JP-A-3-47192

特許文献1のように、pH調整して出発原料中に含まれるタンパク質を凝集沈殿させてから遠心分離等を行う場合、粒子径の小さい凝集沈殿物は遠心分離等でも取りきれず、遠心上清を酸性のまま保持している間に再び凝集が発生する。このため、得られる粉末にはタンパク質の凝集物が残存してしまう。この粉末を食品素材として利用すると、粉末に含まれる脂質は油滴になり、乳糖やミネラルは水に溶けるが、残存したタンパク質凝集物は不溶成分となる。これらの不溶成分のメディアン径は30μm以上と比較的大きいため、食品素材を含む食品を食した際に「ざらつき」食感を感じてしまう。
また、タンパク質が凝集沈殿するときに出発原料に含まれるリン脂質の約30%が沈殿中に取り込まれてしまい、タンパク質凝集物の沈殿を除去する工程でリン脂質も除去されてしまうため、乳由来リン脂質含有粉末として回収する歩留まりが低くなってしまう。
一方で、特許文献2の有機溶媒を用いる方法では、食品素材の調製には認められていない有機溶媒を使用する方法であるため、得られる乳由来リン脂質含有粉末の食品への利用が困難である。
本発明は、これらの問題点を解決しようとするものであり、乳製品を出発原料として製造される乳由来リン脂質含有粉末において、タンパク質の凝集物が残存することを抑制し、リン脂質の歩留まりを向上させることを課題とする。
When the pH is adjusted and the protein contained in the starting material is agglomerated and precipitated, as in Patent Document 1, the centrifugation or the like is performed. Agglomeration occurs again while keeping the solution acidic. For this reason, protein aggregates remain in the obtained powder. When this powder is used as a food material, lipid contained in the powder becomes oil droplets and lactose and minerals dissolve in water, but the remaining protein aggregates become insoluble components. Since the median diameter of these insoluble components is as relatively large as 30 μm or more, when a food containing a food material is eaten, a “grainy” texture is felt.
In addition, when protein is aggregated and precipitated, about 30% of the phospholipid contained in the starting material is taken into the precipitate, and the phospholipid is also removed in the step of removing the protein aggregate precipitate. The yield collected as a phospholipid-containing powder will be low.
On the other hand, in the method using the organic solvent of Patent Document 2, since it is a method using an organic solvent that is not approved for the preparation of food materials, it is difficult to use the obtained milk-derived phospholipid-containing powder for food. is there.
The present invention is intended to solve these problems, and suppresses protein aggregates remaining in a milk-derived phospholipid-containing powder produced using a dairy product as a starting material, thereby improving the yield of phospholipids. It is an object to improve.

本発明は、乾燥物中に脂質45〜70重量%を含有し、脂質に含まれる乳由来のリン脂質の乾燥物中の含量が20重量%以上であり、5%水溶液としたときの不溶成分のメディアン径が10μm以下である乳由来リン脂質含有粉末である。
また、本発明は、乳製品を含む出発原料の水溶液にタンパク質分解酵素を添加してタンパク質を分解する工程と、タンパク質を分解した後に酵素を失活させる工程と、酵素を失活させた後に、分解されたタンパク質を膜処理によって分離して濃縮液を得る工程と、濃縮液を乾燥する工程とを含むことを特徴とする乳由来リン脂質含有粉末の製造方法である。
さらに、本発明は、乳製品を含む出発原料の水溶液を酸性化する工程と、塩化カルシウムを添加して生成した凝集物を遠心分離等により除去して上清を得る工程と、上清を膜処理によって濃縮する工程と、濃縮液をアルカリ化して残存した凝集物を可溶化する工程と、濃縮液を乾燥する工程を含むことを特徴とする乳由来リン脂質含有粉末の製造方法である。
The present invention contains 45 to 70% by weight of lipid in the dried product, the content of the phospholipid derived from milk contained in the lipid in the dried product is 20% by weight or more, and is an insoluble component in a 5% aqueous solution. Is a milk-derived phospholipid-containing powder having a median diameter of 10 μm or less.
The present invention also includes a step of degrading protein by adding a proteolytic enzyme to an aqueous starting material solution containing dairy products, a step of deactivating the enzyme after degrading the protein, and after deactivating the enzyme, A method for producing milk-derived phospholipid-containing powder, comprising a step of separating a degraded protein by membrane treatment to obtain a concentrated solution, and a step of drying the concentrated solution.
Furthermore, the present invention includes a step of acidifying an aqueous solution of a starting material containing dairy products, a step of removing aggregates produced by adding calcium chloride by centrifugation or the like, and obtaining a supernatant; A method for producing a milk-derived phospholipid-containing powder, comprising a step of concentrating by treatment, a step of solubilizing a remaining aggregate by alkalizing the concentrate, and a step of drying the concentrate.

本発明によれば、乳由来リン脂質含有粉末を水溶液にしたときの不溶成分のメディアン径を小さくしたため、食品素材に利用した場合であっても、「ざらつき」食感を抑えることができる。
また、本発明の製造方法によれば、出発原料に含まれるタンパク質を酵素分解により低分子化させてから除去することでタンパク質凝集物が粉末中に残存することを抑制し、タンパク質とともにリン脂質が除去されることを防いでリン脂質の歩留まりを向上させることができる。本発明によれば、原料中のリン脂質の回収率を90%以上にすることができ、最終産物の歩留まりを原料固形分の15%以上にすることができる。
また、従来の製法では、除去されたタンパク質凝集沈殿物が半固形状の副産物として発生したため、その処理が別途必要となっていた。これに対し、本製法で副産物として発生する膜透過液は液体であるため、従来の半固形状の副産物に比べて扱いが容易である。さらに、この液体には、原料中のタンパク質が酵素で分解されたペプチドやアミノ酸などのタンパク質分解物、および乳糖やミネラルが含まれており、食品等の乳固形源として利用することもできる。
本発明の乳由来リン脂質含有粉末、または本発明の製造方法によって得られた乳由来リン脂質含有粉末および副産物は、機能性食品、母乳代替品又は医薬品の原料として使用することができる。
According to the present invention, since the median diameter of the insoluble component when the milk-derived phospholipid-containing powder is made into an aqueous solution is reduced, the “roughness” texture can be suppressed even when used as a food material.
Further, according to the production method of the present invention, the protein contained in the starting material is reduced in molecular weight by enzymatic degradation and then removed, so that protein aggregates are prevented from remaining in the powder. It can be prevented from being removed and the yield of phospholipids can be improved. According to the present invention, the recovery rate of the phospholipid in the raw material can be 90% or more, and the yield of the final product can be 15% or more of the solid content of the raw material.
Moreover, in the conventional manufacturing method, since the removed protein aggregate precipitate was generated as a semi-solid by-product, the treatment was separately required. On the other hand, since the membrane permeate generated as a by-product in the present production method is a liquid, it is easier to handle than the conventional semi-solid by-product. Further, this liquid contains protein degradation products such as peptides and amino acids obtained by degrading proteins in the raw material with enzymes, lactose and minerals, and can also be used as a milk solid source for foods and the like.
The milk-derived phospholipid-containing powder of the present invention, or the milk-derived phospholipid-containing powder and by-products obtained by the production method of the present invention can be used as functional foods, breast milk substitutes or pharmaceutical raw materials.

以下、本発明の乳由来リン脂質高含有粉末を製造する方法について説明する。
バターゼラム粉中のリン脂質の含有量は5重量%以上であり、バターミルク粉中の0.5重量%に比べて10倍高い。また、バターゼラムはAMF(Anhydrous Milk Fat,バターオイル)製造における副産物として生成するため安価である。このため、バターゼラムやバターゼラム粉は乳由来リン脂質含有粉末の原料とすることができる。
バターゼラム粉を用いる場合は、10重量%程度の濃度となるように水に溶解して還元した後に、タンパク質分解酵素であるプロテアーゼを添加し、バターゼラム中のタンパク質を低分子化する。
酵素処理に用いるプロテアーゼとしては、ペプシン、キモトリプシン、トリプシン、パンクレアチンなどの動物由来プロテアーゼ、パパイン、ブロメライン、フィシンなどの植物由来プロテアーゼ、細菌(乳酸菌、枯草菌、放線菌)、菌類(キノコ、酵母、カビ)などの微生物や藻類が産生するエンドプロテアーゼ、エキソプロテアーゼ等、いずれのプロテアーゼでも用いることができる。特にBacillus属やAspergillus属の産生する中性/アルカリ性プロテアーゼのタンパク質分解能が高く好ましい。また、酵素は、精製酵素、半精製酵素、粗製酵素、破砕菌体など液体または粉体を問わず、いずれの形態でもよい。酵素溶液を調製する際の溶媒は特に限定されず、酵素が変性や失活せず、食品衛生上問題ないものであればよい。
使用可能なプロテアーゼの具体例として、例えば、スミチーム FP-G(新日本化学工業社製)、スミチームLP-50D(新日本化学工業社製)、スミチーム MP(新日本化学工業社製)、プロチン SD-AY10(天野エンザイム社製)、プロチン NY100(天野エンザイム社製)、ペプチダーゼR(天野エンザイム社製)、プロテアックス(天野エンザイム社製)、プロテアーゼM「アマノ」SD(天野エンザイム社製)、プロテアーゼP「アマノ」6SD(天野エンザイム社製)、ブロメラインF(天野エンザイム社製)、サモアーゼPC10F(天野エンザイム社製)、パンチダーゼ NP-2(ヤクルト薬品工業社製)、アロアーゼ NP-10(ヤクルト薬品化学工業社製)、オリエンターゼ 22BF(エイチビイアイ社製)、オリエンターゼ OP(エイチビイアイ社製)、ヌクレイシン(エイチビイアイ社製)、マルチフェクト PR 6L(デュポン社製)、マルチフェクト PR 7L(デュポン社)、アクチナーゼ AS(科研ファルマ社製)、デナチーム AP(ナガセケムテックス社製)、マキシプロPSP(DSM社製)、マキシプロ FPC(DSM社製)、エンチロン NBS-100(洛東化成社製)、アルカラーゼ(ノボザイムズ社製)、プロタメックス(ノボザイムズ社製)、フレーバーザイム(ノボザイムズ社製)がある。
酵素処理の条件について、酵素反応温度およびpHは必ずしも酵素の至適温度・pHで反応させる必要はなく、風味劣化や腐敗を防止できるような温度、pHで反応させることが好ましい場合もある。反応時間は5分〜24時間であるが、微生物増殖の観点から5時間以内が好ましい。
なお、添加する酵素は1種でもよいが、2種以上を組み合わせて使用することも可能である。
Hereinafter, a method for producing the milk-derived phospholipid-rich powder of the present invention will be described.
The content of phospholipid in butter lamb flour is 5% by weight or more, which is 10 times higher than 0.5% by weight in buttermilk powder. In addition, butaselam is inexpensive because it is produced as a by-product in the production of AMF (Anhydrous Milk Fat, butter oil). For this reason, Batase lamb and Batase lamb powder can be used as a raw material for milk-derived phospholipid-containing powder.
In the case of using butase lamb flour, the protein in protease is reduced in molecular weight by adding protease, which is a proteolytic enzyme, after dissolving in water and reducing it to a concentration of about 10% by weight.
Proteases used in the enzyme treatment include proteases derived from animals such as pepsin, chymotrypsin, trypsin and pancreatin, proteases derived from plants such as papain, bromelain and ficin, bacteria (lactic acid bacteria, Bacillus subtilis, actinomycetes), fungi (mushrooms, yeast, Any protease such as endoprotease and exoprotease produced by microorganisms such as mold) and algae can be used. The neutral / alkaline protease produced by the genus Bacillus and Aspergillus is particularly preferable because of its high protein resolution. The enzyme may be in any form regardless of liquid or powder such as purified enzyme, semi-purified enzyme, crude enzyme, and crushed cells. The solvent for preparing the enzyme solution is not particularly limited as long as the enzyme is not denatured or inactivated and does not cause any problem in food hygiene.
Specific examples of proteases that can be used include, for example, Sumiteam FP-G (manufactured by Shin Nippon Chemical Industry Co., Ltd.), Sumiteam LP-50D (manufactured by Shin Nippon Chemical Industry Co., Ltd.), Sumiteam MP (manufactured by Shin Nippon Chemical Industry Co., Ltd.), Protin SD -AY10 (Amano Enzyme), Protin NY100 (Amano Enzyme), Peptidase R (Amano Enzyme), Proteax (Amano Enzyme), Protease M `` Amano '' SD (Amano Enzyme), Protease P "Amano" 6SD (Amano Enzyme), Bromelain F (Amano Enzyme), Samoaze PC10F (Amano Enzyme), Pandidase NP-2 (Yakult Yakuhin Kogyo), Aroase NP-10 (Yakult Yakuhin Chemical) Kogyo Co., Ltd., Orientase 22BF (manufactured by HIBI), Orientase OP (manufactured by HIBI), Nucleicin (manufactured by HI), Multifect PR 6L (Du Pon), Multifect PR 7L (DuPont), Actinase AS (Kaken Pharma), Denateam AP (Nagase ChemteX), Maxipro PSP (DSM), Maxipro FPC (DSM), Entilon There are NBS-100 (manufactured by Toto Kasei), Alcalase (manufactured by Novozymes), Protamex (manufactured by Novozymes), and flavorzyme (manufactured by Novozymes).
Regarding the enzyme treatment conditions, the enzyme reaction temperature and pH do not necessarily have to be reacted at the optimum temperature and pH of the enzyme, and it may be preferable to carry out the reaction at a temperature and pH that can prevent flavor deterioration and spoilage. The reaction time is 5 minutes to 24 hours, but preferably within 5 hours from the viewpoint of microbial growth.
One enzyme may be added, but two or more enzymes may be used in combination.

得られた酵素分解バターゼラムには、タンパク質、ペプチド、アミノ酸、乳糖、ミネラル、さらに対象とするリン脂質を含む脂質成分が存在する。リン脂質以外の成分の除去及び低減のために、膜分離技術を応用する。バターゼラム中に含まれるタンパク質および脂質は限外濾過膜又は精密濾過膜を透過することはできない。一方でタンパク質を低分子化することで生じたペプチド、アミノ酸やその他の成分である乳糖、ミネラルは限外濾過膜又は精密濾過膜を透過することができる。このため、プロテアーゼ処理したバターゼラムを限外濾過膜又は精密濾過膜で濃縮および透析濾過をおこなうことで、脂質以外の成分を透過液側に除去し、リン脂質の濃縮をおこなうことができる。得られる濃縮液の固形分中に占める脂質成分の割合は45〜70重量%と高いが、食品工業で通常利用されている噴霧乾燥装置で容易に粉末化することができ、リン脂質含量20重量%以上となる粉末を得ることができる。
なお、膜処理に用いる膜種は有機膜、無機膜を問わず、ポリフッ化ビニリデン、ポリスルホン、ポリエーテルスルホン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイミド、ポリエーテルイミド、ポリカーボネート、高分子量ポリビニルアルコールなどのポリマーからなるものでも、セラミックス、ゼオライト、ジルコニア、シリカ、アルミナ等の無機物からなるものでも構わない。また、分離膜の形状は、平膜、中空糸膜、スパイラル膜、セラミックス膜などいずれの形状のものも用いることができる。
分離膜は限外濾過膜又は精密濾過膜のいずれかまたは両方を用いることができるが、酵素分解バターゼラム中のペプチド、アミノ酸、乳糖、ミネラルをできるだけ除去し、かつ脂質画分をできるだけ濃縮液側に残存させるために、望ましくは精密濾過膜、より望ましくは分画粒子径0.1〜1.4μmの精密濾過膜を用いることが好ましい。
乾燥手段としては、例えば、凍結乾燥、真空乾燥、熱風乾燥等を適宜用いることができる。
得られた本発明の粉末は、タンパク質、糖質含量、ミネラル含量が低く、乾燥物中脂質を45〜70重量%含有し、かつ脂質のうちリン脂質を乾燥物中20重量%以上含有しており、5%水溶液としたときの不溶成分のメディアン径が10μm以下である乳由来リン脂質含有粉末である。
なお、バターゼラム又はバターゼラム粉還元液をpH 4.0〜5.0の酸性に調整し、塩化カルシウムを添加して生成したタンパク質の等電点沈殿を遠心分離等により除去して得られた上清を、限外濾過又は精密濾過して膜濃縮し、得られた濃縮液をpH9.0〜10.0のアルカリ性にpH調整することによりたんぱく質の凝集物を可溶化し、乾燥することによっても、上記と同様の乳由来リン脂質含有粉末を得ることが可能であるが、リン脂質の回収率や得られる粉末の歩留まりの点で前述の方法に劣る。
The obtained enzyme-degraded batase lam contains proteins, peptides, amino acids, lactose, minerals, and lipid components including the target phospholipid. Membrane separation technology is applied to remove and reduce components other than phospholipids. Proteins and lipids contained in Bataselam cannot permeate the ultrafiltration membrane or microfiltration membrane. On the other hand, peptides, amino acids and other components such as lactose and minerals produced by reducing the molecular weight of proteins can permeate the ultrafiltration membrane or microfiltration membrane. For this reason, by concentrating and diafiltering the protease-treated bathase lam with an ultrafiltration membrane or a microfiltration membrane, components other than lipids can be removed to the permeate side and phospholipids can be concentrated. The proportion of the lipid component in the solid content of the resulting concentrate is as high as 45 to 70% by weight, but it can be easily pulverized with a spray drying apparatus normally used in the food industry, and the phospholipid content is 20%. % Of powder can be obtained.
The type of membrane used for membrane treatment is not limited to organic membranes and inorganic membranes. Polyvinylidene fluoride, polysulfone, polyethersulfone, polytetrafluoroethylene, polyethylene, polypropylene, polyimide, polyetherimide, polycarbonate, high molecular weight polyvinyl alcohol, etc. It may be made of an inorganic polymer such as ceramics, zeolite, zirconia, silica, or alumina. The shape of the separation membrane may be any shape such as a flat membrane, a hollow fiber membrane, a spiral membrane, and a ceramic membrane.
The separation membrane can be either an ultrafiltration membrane or a microfiltration membrane, or both, but removes peptides, amino acids, lactose and minerals in the enzymatic degradation batchase ram as much as possible and the lipid fraction as close to the concentrate as possible. In order to make it remain, it is desirable to use a microfiltration membrane, more preferably a microfiltration membrane having a fractional particle size of 0.1 to 1.4 μm.
As the drying means, for example, freeze drying, vacuum drying, hot air drying and the like can be used as appropriate.
The obtained powder of the present invention has a low protein, carbohydrate content and mineral content, contains 45 to 70% by weight of lipid in the dried product, and contains 20% by weight or more of phospholipid in the dried product. And a milk-derived phospholipid-containing powder having a median diameter of 10 μm or less as an insoluble component in a 5% aqueous solution.
It should be noted that the supernatant obtained by adjusting Batase lamb or Batase lamb powder reduced solution to an acidity of pH 4.0 to 5.0 and removing the isoelectric point precipitate of the protein produced by adding calcium chloride by centrifugation or the like The membrane is concentrated by ultrafiltration or microfiltration, and the resulting concentrate is adjusted to an alkaline pH of 9.0 to 10.0, solubilizing the protein aggregates and drying. It is possible to obtain a milk-derived phospholipid-containing powder similar to the above, but it is inferior to the above-mentioned method in terms of the recovery rate of phospholipid and the yield of the obtained powder.

次に実施例を挙げて、本発明を具体的に説明する。   Next, an Example is given and this invention is demonstrated concretely.

原料のバターゼラム粉(TATUA社) 20kg(うち脂質3.0kg、リン脂質1.6kg)に対して50℃に加温した水180kgを加えて攪拌・溶解することにより、固形分10重量%のバターゼラム還元液を調製した。このバターゼラム還元液に対して、Aspergillus oryzae由来のプロテアーゼ(スミチームLP-50D、新日本化学工業社)をバターゼラム粉のタンパク質重量の1重量%添加し、50℃、5時間反応させ、酵素分解バターゼラム液を得た。得られた酵素分解バターゼラム液については、酵素を失活させた後、分画粒子径1.4μmの精密濾過膜処理を行い、濃縮液を回収し、凍結乾燥処理により乾燥を行って、実施例の乳由来リン脂質粉末を得た。
得られた粉末の重量は5.0kgで、うち脂質は2.9kg、リン脂質は1.5kgであり、得られた粉末の乾燥物中の脂質は58重量%、乳由来のリン脂質は乾燥物中30重量%であった。また、原料バターゼラム粉から得られた粉末へのリン脂質の回収率は94%、歩留まりは25%であり、得られた粉末を5%水溶液としたときの不溶成分のメディアン径(体積基準の累積50%粒子径)をレーザー回折式粒度分布計によって測定したところ、5.1μmであった。
なお、本発明の乳由来リン脂質粉末の脂質およびリン脂質含量は以下の方法で定量した。
乳由来リン脂質粉末1gを1.25wt%シュウ酸カリウム水溶液5mLに溶解した後に、エタノール6mL、ジエチルエーテル15mL、石油エーテル15mLを順次加えて水平振とうして脂質を溶媒相に抽出し、溶媒相を回収後に溶媒を揮発させて残った油分の重量より脂質含量を算出した。上記油分25mgに過塩素酸 0.5 mL、硝酸 2.0 mLを添加して100℃、60分で加熱後、硝酸を3 mL加え、120℃〜140℃まで10℃刻みで10分間、150℃〜170℃までは10℃刻みで30分間それぞれ加熱して湿式灰化し、その後、ホスファC-テストワコーを用いて無機リンの定量をおこなった。得られた無機リン量にフォスファチジルセリン換算係数25.4を乗じてリン脂質量に換算した。
Bataselam flour (TATUA) 20kg (of which 3.0kg of lipid, 1.6kg of phospholipid) is added to 180kg of water heated to 50 ° C, stirred and dissolved, and reduced to 10% solids by weight. Was prepared. Aspergillus oryzae-derived protease (Sumiteam LP-50D, Shinnippon Chemical Co., Ltd.) is added to this Bataselam reduced solution at 1% by weight of the protein weight of Bataselam flour, and reacted at 50 ° C. for 5 hours. Got. About the obtained enzyme-degraded butase ram solution, after inactivating the enzyme, a microfiltration membrane treatment with a fractional particle size of 1.4 μm was performed, the concentrated solution was recovered, and dried by freeze-drying treatment. Milk-derived phospholipid powder was obtained.
The weight of the obtained powder is 5.0 kg, of which the lipid is 2.9 kg and the phospholipid is 1.5 kg, the lipid in the dried powder of the obtained powder is 58 wt%, and the milk-derived phospholipid is 30 in the dried material. % By weight. In addition, the recovery rate of phospholipids in the powder obtained from the raw material butase lamb powder was 94%, the yield was 25%, and the median diameter of the insoluble component when the obtained powder was made into a 5% aqueous solution (accumulation on a volume basis). 50% particle diameter) was measured by a laser diffraction particle size distribution analyzer and found to be 5.1 μm.
The lipid and phospholipid content of the milk-derived phospholipid powder of the present invention were quantified by the following method.
After dissolving 1g of milk-derived phospholipid powder in 5mL of 1.25wt% potassium oxalate aqueous solution, add 6mL of ethanol, 15mL of diethyl ether and 15mL of petroleum ether sequentially and shake horizontally to extract the lipid into the solvent phase. The lipid content was calculated from the weight of oil remaining after volatilization of the solvent after recovery. Add 0.5 mL of perchloric acid and 2.0 mL of nitric acid to 25 mg of the above oil, heat at 100 ° C for 60 minutes, add 3 mL of nitric acid, and increase in temperature from 120 ° C to 140 ° C in 10 ° C increments for 10 minutes, 150 ° C to 170 ° C. Until then, each was heated at 10 ° C for 30 minutes to make wet ash, and then inorganic phosphorus was quantified using Phospha C-Test Wako. The obtained amount of inorganic phosphorus was multiplied by a phosphatidylserine conversion factor of 25.4 to convert it to a phospholipid amount.

〔比較例1〕
原料のバターゼラム粉(TATUA社)20kg(うち脂質3.0kg、リン脂質1.6kg)に対して50℃に加温した水180kgを加えて撹拌・溶解することにより、固形分10重量%のバターゼラム還元液を調製した。このバターゼラム還元液に対して10%塩酸を添加することでpH4.4となるように調整した。同時に塩化カルシウムを全体量の0.02重量%となるように添加し、次いで50℃で30分間保持することでカゼインを凝集させた。生成したカゼインの沈殿は遠心分離機で処理することにより完全に除去して上清を得た。この上清を回収し、凍結乾燥処理により粉末を得た。
得られた粉末の重量は2.4kgで、うち脂質は1.4kg、リン脂質は0.7kgであり、得られた粉末の乾燥物中の脂質は58重量%、乳由来のリン脂質は乾燥物中29重量%であった。また、原料バターゼラム粉から得られた粉末へのリン脂質の回収率は44%、歩留まりは12%で、実施例1と比較してリン脂質の回収率と歩留まりが悪かった。
得られた粉末を5%水溶液としたときの不溶成分のメディアン径(体積基準の累積50%粒子径)をレーザー回折式粒度分布計によって測定したところ、32.6μmと実施例1に比べて大きかった。
〔比較例2〕
原料のバターゼラム粉(TATUA社) 20kg(うち脂質3.0kg、リン脂質1.6kg)に対して50℃に加温した水180kgを加えて攪拌・溶解することにより、固形分10重量%のバターゼラム還元液を調製した。得られたバターゼラム粉還元液については分画粒子径1.4μmの精密濾過膜処理を行い、濃縮液を回収し、凍結乾燥処理により乾燥を行って、乳由来リン脂質粉末を得た。
得られた粉末8.5kgのうち、脂質は2.9kg、リン脂質は1.5kg、タンパク質は3.9kgであり、得られた粉末の乾燥物中の脂質は34重量%、乳由来のリン脂質は乾燥物中18重量%と実施例1と比較して低くなった。これは原料中のタンパク質が透過液側に十分に除去できておらず、相対的に脂質およびリン脂質含量が低くなったと考えられる。原料バターゼラム粉から得られた粉末へのリン脂質の回収率は94%、歩留まりは43%であった。
得られた粉末を5%水溶液としたときの不溶成分のメディアン径(体積基準の累積50%粒子径)をレーザー回折式粒度分布計によって測定したところ、0.44μmであった。
〔比較例3〕
原料のバターゼラム粉(TATUA社) 20kg(うち脂質3.0kg、リン脂質1.6g)に対して50℃に加温した水180kgを加えて攪拌・溶解することにより、固形分10重量%のバターゼラム還元液を調製した。このバターゼラム還元液に対して、Aspergillus oryzae由来のプロテアーゼ(スミチームLP-50D、新日本化学工業社)をバターゼラム粉のタンパク質重量の1重量%添加し、50℃、一時間反応させ、酵素分解バターゼラム液を得た。得られた酵素分解バターゼラム液については、酵素を失活させた後、分画粒子径1.4μmの精密濾過膜処理を行い、濃縮液を回収し、凍結乾燥処理により乾燥を行って、実施例の乳由来リン脂質粉末を得た。
得られた粉末7.8kgのうち、脂質は2.9kg、リン脂質は1.5kg、タンパク質は3.2kgであり、得られた粉末の乾燥物中の脂質は37重量%、乳由来のリン脂質は乾燥物中19重量%と実施例1と比較して低くなった。これは原料中のタンパク質の分解が不十分なために透過液側への除去が不十分になり、相対的に脂質およびリン脂質含量が低くなったと考えられる。原料バターゼラム粉から得られた粉末へのリン脂質の回収率は94%、歩留まりは39%であった。
得られた粉末を5%水溶液としたときの不溶成分のメディアン径(体積基準の累積50%粒子径)をレーザー回折式粒度分布計によって測定したところ、0.42μmであった。
[Comparative Example 1]
Batatarum reducing solution with a solid content of 10% by weight by adding 180 kg of water heated to 50 ° C to 20 kg of raw material butase lamb powder (TATUA) (of which 3.0 kg of lipid and 1.6 kg of phospholipid) Was prepared. The pH was adjusted to 4.4 by adding 10% hydrochloric acid to the Bataselam reducing solution. At the same time, calcium chloride was added to 0.02% by weight of the total amount, and then the casein was aggregated by maintaining at 50 ° C. for 30 minutes. The produced casein precipitate was completely removed by treating with a centrifuge to obtain a supernatant. The supernatant was recovered and powder was obtained by freeze-drying.
The weight of the obtained powder is 2.4 kg, of which the lipid is 1.4 kg, the phospholipid is 0.7 kg, the lipid in the dried product is 58% by weight, and the milk-derived phospholipid is 29 in the dried product. % By weight. Moreover, the recovery rate of phospholipids in the powder obtained from the raw material butase lamb powder was 44%, and the yield was 12%. Compared with Example 1, the recovery rate and yield of phospholipids were poor.
When the median diameter of the insoluble component (volume-based cumulative 50% particle diameter) was measured with a laser diffraction particle size distribution meter when the obtained powder was made into a 5% aqueous solution, it was 32.6 μm, which was larger than Example 1. .
[Comparative Example 2]
Bataselam flour (TATUA) 20kg (of which 3.0kg of lipid, 1.6kg of phospholipid) is added to 180kg of water heated to 50 ° C, stirred and dissolved, and reduced to 10% solids by weight. Was prepared. The obtained Batase lamb powder reduced solution was subjected to a microfiltration membrane treatment with a fractional particle size of 1.4 μm, and the concentrated solution was collected and dried by freeze-drying to obtain milk-derived phospholipid powder.
Of the 8.5 kg powder obtained, the lipid was 2.9 kg, the phospholipid was 1.5 kg, and the protein was 3.9 kg. The obtained powder was 34% by weight of the lipid and the milk-derived phospholipid was the dried product. The content was 18% by weight, which was lower than that in Example 1. This is probably because the protein in the raw material was not sufficiently removed to the permeate side, and the lipid and phospholipid contents were relatively low. The recovery rate of phospholipids in the powder obtained from the raw material butase lamb powder was 94%, and the yield was 43%.
When the obtained powder was made into a 5% aqueous solution, the median diameter of the insoluble component (volume-based cumulative 50% particle diameter) was measured by a laser diffraction particle size distribution analyzer and found to be 0.44 μm.
[Comparative Example 3]
Bataselam powder (TATUA) 20 kg (of which 3.0 kg of lipid, 1.6 g of phospholipid) is added with 180 kg of water heated to 50 ° C. and stirred and dissolved to obtain a 10% by weight solid content of Bataselam reducing solution. Was prepared. Aspergillus oryzae-derived protease (Sumiteam LP-50D, Shinnippon Chemical Co., Ltd.) is added to this Bataselam reduced solution at 1% by weight of the protein weight of Bataselam flour and reacted at 50 ° C. for 1 hour, followed by enzymatic degradation Bataselam solution Got. About the obtained enzyme-degraded butase ram solution, after inactivating the enzyme, a microfiltration membrane treatment with a fractional particle size of 1.4 μm was performed, the concentrated solution was recovered, and dried by freeze-drying treatment. Milk-derived phospholipid powder was obtained.
Of the obtained powder 7.8 kg, the lipid is 2.9 kg, the phospholipid is 1.5 kg, the protein is 3.2 kg, the lipid in the dried product is 37% by weight, the milk-derived phospholipid is the dried product Among them, 19% by weight was lower than that in Example 1. This is thought to be because the protein in the raw material was not sufficiently decomposed, so that the removal to the permeate side was insufficient, and the lipid and phospholipid contents were relatively low. The recovery rate of phospholipids in the powder obtained from the raw material butase lamb powder was 94%, and the yield was 39%.
The median diameter (volume-based cumulative 50% particle diameter) of the insoluble component when the obtained powder was made into a 5% aqueous solution was measured by a laser diffraction particle size distribution analyzer and found to be 0.42 μm.

原料のバターゼラム(Uelzena社) 50kg(固形5kgうち脂質0.65kg、リン脂質0.33kg) に対して50℃に加温した水450kgを加えて攪拌・溶解することにより、固形分10重量%のバターゼラム粉還元液を調製した。このバターゼラム粉還元液に対して、Aspergillus oryzae由来のプロテアーゼ(スミチームFP-G、新日本化学工業社)をバターゼラム粉のタンパク質重量の1重量%添加し、50℃、5時間反応させ、酵素分解バターゼラム液を得た。得られた酵素分解バターゼラム液については、酵素を失活させた後、分画分子量10kDaの限外濾過膜処理を行い、濃縮液を回収し、凍結乾燥処理により乾燥を行って、本実施例の乳由来リン脂質粉末を得た。
得られた粉末の重量は1.1kgで、うち脂質は0.61kg、リン脂質は0.31.kgであり、得られた粉末の乾燥物中の脂質は55重量%、乳由来のリン脂質は乾燥物中28重量%含有し、原料バターゼラム粉のリン脂質の回収率は91%であり、歩留まりは22.0%であった。
得られた粉末を5%水溶液としたときの不溶成分のメディアン径(体積基準の累積50%粒子径)をレーザー回折式粒度分布計によって測定したところ、7.3μmであった。
By adding 450kg of water heated to 50 ° C to 50kg of raw material butase ram (Uelzena) (0.65kg of lipid, 0.33kg of solid 5kg solids) A reducing solution was prepared. Aspergillus oryzae-derived protease (Sumiteam FP-G, Shin Nippon Chemical Industry Co., Ltd.) is added to this bathase lam flour reducing solution at 1% by weight of the protein weight of the bathase lam flour and reacted at 50 ° C. for 5 hours. A liquid was obtained. The obtained enzyme-degraded Batase ram solution was subjected to ultrafiltration membrane treatment with a fractional molecular weight of 10 kDa after the enzyme was deactivated, and the concentrated solution was collected and dried by freeze-drying treatment. Milk-derived phospholipid powder was obtained.
The weight of the obtained powder is 1.1 kg, of which the lipid is 0.61 kg, the phospholipid is 0.31.kg, the lipid in the dried product is 55% by weight, and the milk-derived phospholipid is in the dried product. It contained 28% by weight, the phospholipid recovery rate of the raw material bathase lamb powder was 91%, and the yield was 22.0%.
The median diameter (volume-based cumulative 50% particle diameter) of the insoluble component when the obtained powder was made into a 5% aqueous solution was 7.3 μm as measured by a laser diffraction particle size distribution meter.

〔試験例1〕
得られた乳由来リン脂質粉末のメディアン径の違いが、喫食時の「ざらつき」食感に及ぼす影響を確認するため、実施例1、実施例2、比較例1、比較例2および比較例3で得られた粉末の5%水溶液を調製して官能評価を実施した。表1に官能評価結果を示す。併せて、得られた粉末の乾燥物中の脂質含量と、乳由来のリン脂質含量を示す。
実施例1および実施例2で得られた乳由来リン脂質粉末の5%水溶液は、不溶成分のメディアン径が10μm以下になるので、ざらつきを感じなかった。一方、比較例1で得られた乳由来リン脂質粉末の5%水溶液には、メディアン径が30μm以上の不溶成分が残存してしまうため、ざらつきを感じた。また、比較例2、3で得られた乳由来リン脂質粉末の5%水溶液は、ざらつきを感じなかった。
[Test Example 1]
Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3 to confirm the effect of the difference in median diameter of the obtained milk-derived phospholipid powder on the “roughness” texture during eating A 5% aqueous solution of the powder obtained in 1 above was prepared and subjected to sensory evaluation. Table 1 shows the sensory evaluation results. In addition, the lipid content in the dried product of the obtained powder and the phospholipid content derived from milk are shown.
The 5% aqueous solution of milk-derived phospholipid powder obtained in Example 1 and Example 2 did not feel rough because the median diameter of insoluble components was 10 μm or less. On the other hand, in the 5% aqueous solution of the milk-derived phospholipid powder obtained in Comparative Example 1, an insoluble component having a median diameter of 30 μm or more remained, so that roughness was felt. Further, the 5% aqueous solution of milk-derived phospholipid powder obtained in Comparative Examples 2 and 3 did not feel rough.

Figure 2018050510
Figure 2018050510

原料のバターゼラム(Uelzena社) 50kg(固形5kgうち脂質0.65kg、リン脂質0.33kg) に対して50℃に加温した水450kgを加えて攪拌・溶解することにより、固形分10重量%のバターゼラム粉還元液を調製した。このバターゼラム粉還元液に対して、由来の異なる4種類のプロテアーゼをタンパク質重量の1重量%添加し、50℃、5時間反応させ、酵素分解バターゼラム液を得た。得られた酵素分解バターゼラム液については、酵素を失活させた後、分画粒子径1.4μmの精密濾過膜処理を行い、濃縮液を回収し、凍結乾燥処理により乾燥を行って、本実施例の乳由来リン脂質粉末を得た。
表2に、酵素処理に用いたプロテアーゼ、および得られた粉末それぞれを5%水溶液としたときの不溶成分のメディアン径(体積基準の累積50%粒子径)をレーザー回折式粒度分布計によって測定した結果を示す。本実施例で調製した乳由来リン脂質粉末は、酵素処理に使用したプロテアーゼ種によらず、5%水溶液としたときの不溶成分のメディアン径が10μm以下となった。これらの粉末の5%水溶液を調整して官能評価を実施したところ、実施例1および実施例2の結果と同様に、ざらつきを感じなかった。
By adding 450kg of water heated to 50 ° C to 50kg of raw material butase ram (Uelzena) (0.65kg of lipid, 0.33kg of solid 5kg solids) A reducing solution was prepared. Four types of proteases having different origins were added to the reduced solution of this bathase lam powder, and reacted at 50 ° C. for 5 hours to obtain an enzyme-decomposed bathase ram solution. For the obtained enzyme-degraded batase ram solution, after inactivating the enzyme, a microfiltration membrane treatment with a fractional particle size of 1.4 μm was performed, and the concentrated solution was collected and dried by freeze-drying treatment. Milk-derived phospholipid powder was obtained.
Table 2 shows the median diameter (cumulative volume-based 50% particle diameter) of the insoluble component when the protease used in the enzyme treatment and each of the obtained powders in a 5% aqueous solution were measured by a laser diffraction particle size distribution meter. Results are shown. The milk-derived phospholipid powder prepared in this example had a median diameter of insoluble components of 10 μm or less when it was made into a 5% aqueous solution, regardless of the protease species used for the enzyme treatment. Sensory evaluation was carried out by adjusting 5% aqueous solutions of these powders, and as with the results of Example 1 and Example 2, no roughness was felt.

Figure 2018050510
Figure 2018050510

原料のバターゼラム粉(TATUA社)20kg(うち脂質3.0kg、リン脂質1.6kg)に対して50℃に加温した水180kgを加えて撹拌・溶解することにより、固形分10重量%のバターゼラム還元液を調製した。このバターゼラム還元液に対して10%塩酸を添加することでpH4.4となるように調整した。同時に塩化カルシウムを全体量の0.02重量%となるように添加し、次いで50℃で30分間保持することでカゼインを凝集させた。生成したカゼインの沈殿は遠心分離機で処理することにより完全に除去して上清を得た。この上清を分画粒子径1.4μmの精密濾過膜処理を行い、濃縮液を回収した。この濃縮液のpHが9.5となるように水酸化ナトリウムを加えて残存したたんぱく質凝集物を可溶解化し、凍結乾燥処理により粉末を得た。
得られた粉末の重量は2.5kgで、うち脂質は1.4kg、リン脂質は0.7kgであり、得られた粉末の乾燥物中の脂質は56重量%、乳由来のリン脂質は乾燥物中28重量%であった。また、原料バターゼラム粉から得られた粉末へのリン脂質の回収率は44%、歩留まりは12%であった。得られた粉末を5%水溶液としたときの不溶成分のメディアン径(体積基準の累積50%粒子径)をレーザー回折式粒度分布計によって測定したところ、9.6μmであった。
メディアン径は実施例1と同程度であったが、実施例1と比較してリン脂質の回収率と歩留まりが悪かった。
Batatarum reducing solution with a solid content of 10% by weight by adding 180 kg of water heated to 50 ° C to 20 kg of raw material butase lamb powder (TATUA) (of which 3.0 kg of lipid and 1.6 kg of phospholipid) Was prepared. The pH was adjusted to 4.4 by adding 10% hydrochloric acid to the Bataselam reducing solution. At the same time, calcium chloride was added to 0.02% by weight of the total amount, and then the casein was aggregated by maintaining at 50 ° C. for 30 minutes. The produced casein precipitate was completely removed by treating with a centrifuge to obtain a supernatant. The supernatant was subjected to a microfiltration membrane treatment with a fractional particle size of 1.4 μm, and the concentrated solution was recovered. Sodium hydroxide was added so that the pH of the concentrated solution was 9.5 to dissolve the remaining protein aggregates, and powder was obtained by lyophilization treatment.
The weight of the obtained powder is 2.5 kg, of which the lipid is 1.4 kg, the phospholipid is 0.7 kg, the lipid in the dried product is 56% by weight, and the milk-derived phospholipid is 28 in the dried product. % By weight. In addition, the recovery rate of phospholipids in the powder obtained from the raw material butase lamb powder was 44%, and the yield was 12%. The median diameter (volume-based cumulative 50% particle diameter) of the insoluble component when the obtained powder was made into a 5% aqueous solution was measured by a laser diffraction particle size distribution meter, and found to be 9.6 μm.
The median diameter was similar to that in Example 1, but the phospholipid recovery rate and yield were poor compared to Example 1.

Claims (10)

乾燥物中に脂質45〜70重量%を含有し、脂質に含まれる乳由来のリン脂質の乾燥物中の含量が20重量%以上であり、5%水溶液としたときの不溶成分のメディアン径が10μm以下であることを特徴とする乳由来リン脂質含有粉末。   The dry matter contains 45 to 70% by weight of lipid, the content of the phospholipid derived from milk contained in the lipid in the dry matter is 20% by weight or more, and the median diameter of the insoluble component when it is made into a 5% aqueous solution is Milk-derived phospholipid-containing powder, characterized by being 10 μm or less. 乳製品を含む出発原料をpH4.0〜5.0となるように調整し、塩化カルシウムを添加して生成した沈殿を除去して上清を得る工程と、
上清を膜処理により濃縮する工程と、
濃縮液のpHを9.0〜10.0に調整してたんぱく質凝集物を可溶解化し、乾燥する工程と、
を含むことを特徴とする乳由来リン脂質含有粉末の製造方法。
Adjusting the starting material containing the dairy product to pH 4.0 to 5.0, adding calcium chloride to remove the generated precipitate, and obtaining a supernatant;
Concentrating the supernatant by membrane treatment;
Adjusting the pH of the concentrate to 9.0 to 10.0 to solubilize protein aggregates and drying,
A method for producing a milk-derived phospholipid-containing powder, comprising:
乳製品を含む出発原料にタンパク質分解酵素を添加してタンパク質を分解する工程と、
タンパク質を分解した後、前記タンパク質分解酵素を失活させる工程と、
前記タンパク質分解酵素を失活させた後、膜処理により前記分解されたタンパク質を分離して濃縮液を得る工程と、
前記濃縮液を乾燥する工程と
を含むことを特徴とする乳由来リン脂質含有粉末の製造方法。
Adding a proteolytic enzyme to the starting material containing the dairy product to break down the protein;
A step of deactivating the proteolytic enzyme after degrading the protein;
After deactivating the proteolytic enzyme, separating the degraded protein by membrane treatment to obtain a concentrated solution;
And a step of drying the concentrated solution. A method for producing a milk-derived phospholipid-containing powder.
前記膜処理は、分画粒子径1.4μ以下の精密ろ過による処理であることを特徴とする請求項3の製造方法。   4. The method according to claim 3, wherein the membrane treatment is a treatment by microfiltration with a fractional particle size of 1.4 [mu] m or less. 前記膜処理は、分画分子量10kDa以上の限外ろ過による処理であることを特徴とする請求項3の製造方法。   The method according to claim 3, wherein the membrane treatment is a treatment by ultrafiltration having a molecular weight cut off of 10 kDa or more. 前記タンパク質分解酵素が、動物由来プロテアーゼ、植物由来プロテアーゼ、細菌由来プロテアーゼ、菌類由来プロテアーゼ、および藻類由来プロテアーゼから選ばれる少なくとも一つの酵素であることを特徴とする請求項3〜5のいずれかに記載の製造方法。   6. The proteolytic enzyme is at least one enzyme selected from animal-derived proteases, plant-derived proteases, bacterial-derived proteases, fungal-derived proteases, and algal-derived proteases. Manufacturing method. 前記タンパク質分解酵素が、Bacillus属由来であることを特徴とする請求項3〜6のいずれかに記載の製造方法。   The method according to claim 3, wherein the proteolytic enzyme is derived from the genus Bacillus. 前記タンパク質分解酵素がAspergillus属由来であることを特徴とする請求項3〜6のいずれかに記載の製造方法。   The production method according to claim 3, wherein the proteolytic enzyme is derived from the genus Aspergillus. 前記タンパク質分解酵素が、中性またはアルカリ性酵素であることを特徴とする請求項3〜8のいずれかに記載の製造方法。   The production method according to claim 3, wherein the proteolytic enzyme is a neutral or alkaline enzyme. 前記乳製品が、バターミルク、バターミルク粉還元液、バターゼラム、およびバターゼラム粉還元液のうち少なくとも一つであることを特徴とする請求項2〜9のいずれかに記載の製造方法。   The production method according to any one of claims 2 to 9, wherein the dairy product is at least one of buttermilk, buttermilk powder reducing solution, butterlam, and butterlam powder reducing solution.
JP2016189063A 2016-09-28 2016-09-28 Milk-derived phospholipid-containing powder and its manufacturing method Active JP6935180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016189063A JP6935180B2 (en) 2016-09-28 2016-09-28 Milk-derived phospholipid-containing powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189063A JP6935180B2 (en) 2016-09-28 2016-09-28 Milk-derived phospholipid-containing powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018050510A true JP2018050510A (en) 2018-04-05
JP6935180B2 JP6935180B2 (en) 2021-09-15

Family

ID=61833660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189063A Active JP6935180B2 (en) 2016-09-28 2016-09-28 Milk-derived phospholipid-containing powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6935180B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068664A (en) * 2018-10-29 2020-05-07 株式会社Adeka Milk-derived phospholipid-containing composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251143A (en) * 1990-02-28 1991-11-08 Kyodo Nyugyo Kk Production of cow's milk fat globule membrane
JPH0787886A (en) * 1993-09-27 1995-04-04 Meiji Milk Prod Co Ltd Removal of salt from fat globule skin substance in whey and separation of various components
JP2003339326A (en) * 2002-05-27 2003-12-02 Morinaga Milk Ind Co Ltd Whey protein hydrolyzate and method for producing the same
JP2004081192A (en) * 2002-07-03 2004-03-18 Morinaga Milk Ind Co Ltd Method for producing milk protein hydrolysate of which odor is reduced and the milk protein hydrolysate
JP2007089535A (en) * 2005-09-30 2007-04-12 Snow Brand Milk Prod Co Ltd Powder highly containing compound lipid derived from milk
JP2009167646A (en) * 2008-01-15 2009-07-30 Snow Brand Milk Prod Co Ltd Liver function protective agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251143A (en) * 1990-02-28 1991-11-08 Kyodo Nyugyo Kk Production of cow's milk fat globule membrane
JPH0787886A (en) * 1993-09-27 1995-04-04 Meiji Milk Prod Co Ltd Removal of salt from fat globule skin substance in whey and separation of various components
JP2003339326A (en) * 2002-05-27 2003-12-02 Morinaga Milk Ind Co Ltd Whey protein hydrolyzate and method for producing the same
JP2004081192A (en) * 2002-07-03 2004-03-18 Morinaga Milk Ind Co Ltd Method for producing milk protein hydrolysate of which odor is reduced and the milk protein hydrolysate
JP2007089535A (en) * 2005-09-30 2007-04-12 Snow Brand Milk Prod Co Ltd Powder highly containing compound lipid derived from milk
JP2009167646A (en) * 2008-01-15 2009-07-30 Snow Brand Milk Prod Co Ltd Liver function protective agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068664A (en) * 2018-10-29 2020-05-07 株式会社Adeka Milk-derived phospholipid-containing composition
JP7350476B2 (en) 2018-10-29 2023-09-26 株式会社Adeka Milk-derived phospholipid-containing composition

Also Published As

Publication number Publication date
JP6935180B2 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
US8728556B2 (en) Hydrolysed protein-polysaccharide complexes
Liu et al. Review on the release mechanism and debittering technology of bitter peptides from protein hydrolysates
JP4852684B2 (en) Milk-derived complex lipid-rich powder
AR034855A1 (en) SUPPLEMENT OF PROTEINS FOR FOOD
US20180317520A1 (en) Insect products and methods of manufacture thereof
TWI689255B (en) Ph adjusted pulse protein product
WO2013159192A1 (en) Improved production of soluble protein products from pulses
MX2011006268A (en) Processing of macronutrients.
US11702447B2 (en) Methods for producing collagen
KR20050027267A (en) Method for production of peptides/amino acids produced by said method and use of the same
RU2662977C2 (en) Novel casein protein product
JP2018050510A (en) Powder containing phospholipid derived from milk and method for producing the same
JPS62262998A (en) Production of material containing lysophospholipid essentially free from residual enzymatic activity
JP4839040B2 (en) Method for producing highly clear egg white hydrolyzate
JPS6070037A (en) Biomass treating method
JP2004215521A (en) Method for producing calcium complex
WO2022168413A1 (en) Method for producing deprestatin-containing composition
JP3213453B2 (en) Method for removing salts from fat globule membrane material in whey and method for separating various components
JP5447372B2 (en) Method for producing defatted soymilk peptide
KR20130004284A (en) Protein synthesis promoter
KR20120102600A (en) Fat accumulation suppressor
CA3122781A1 (en) Methods of separating phosvitin and hdl from an egg yolk product and resulting compositions
JPH05344847A (en) Low antigenic decomposed protein free from disagreeable taste and its production
JP4548339B2 (en) High glutamine / glutamic acid-containing polypeptide mixture and process for producing the same
RU2541789C2 (en) Method for manufacture of functional protein product for patients with histidinemia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200710

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210825

R150 Certificate of patent or registration of utility model

Ref document number: 6935180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250