JP2018049824A - Collector member for lithium ion secondary battery, collector for lithium ion secondary battery and high-power tab for lithium ion secondary battery using the same, and method of manufacturing collector member for lithium ion secondary battery - Google Patents

Collector member for lithium ion secondary battery, collector for lithium ion secondary battery and high-power tab for lithium ion secondary battery using the same, and method of manufacturing collector member for lithium ion secondary battery Download PDF

Info

Publication number
JP2018049824A
JP2018049824A JP2017176784A JP2017176784A JP2018049824A JP 2018049824 A JP2018049824 A JP 2018049824A JP 2017176784 A JP2017176784 A JP 2017176784A JP 2017176784 A JP2017176784 A JP 2017176784A JP 2018049824 A JP2018049824 A JP 2018049824A
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
secondary battery
resistance value
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017176784A
Other languages
Japanese (ja)
Other versions
JP7029258B2 (en
Inventor
勇輔 中嶋
Yusuke Nakajima
勇輔 中嶋
大澤 康彦
Yasuhiko Osawa
康彦 大澤
雄樹 草地
Takeki Kusachi
雄樹 草地
佐藤 一
Hajime Sato
一 佐藤
赤間 弘
Hiroshi Akama
弘 赤間
堀江 英明
Hideaki Horie
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Original Assignee
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Sanyo Chemical Industries Ltd filed Critical Nissan Motor Co Ltd
Publication of JP2018049824A publication Critical patent/JP2018049824A/en
Application granted granted Critical
Publication of JP7029258B2 publication Critical patent/JP7029258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a collector member for a lithium ion secondary battery, capable of obtaining a lithium ion secondary battery which is excellent in durability without causing a deterioration in battery performance even if a micro-short circuit occurs temporarily at the inside of the lithium ion secondary battery.SOLUTION: A collector member for a lithium ion secondary battery comprises a conductive film containing a conductive material and a polymer compound, and is characterized in that an electric resistance value (R) in a first direction of directions perpendicular to a thickness direction of the conductive film, an electric resistance value being minimum in the first direction, is smaller than an electric resistance value (R) in a second direction perpendicular to the thickness direction and the first direction.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池用集電部材、それを用いたリチウムイオン二次電池用集電体及びリチウムイオン二次電池用強電タブ、並びに、リチウムイオン二次電池用集電部材の製造方法に関する。 The present invention relates to a current collector for a lithium ion secondary battery, a current collector for a lithium ion secondary battery using the same, a high voltage tab for a lithium ion secondary battery, and a current collector for a lithium ion secondary battery Regarding the method.

近年、電子機器、ハイブリッド自動車、電気自動車、さらには家庭用電源設備の電源装置としては、リチウムイオン二次電池等の二次電池及び電気二重層キャパシタ等が利用される。特に、リチウムイオン二次電池はそのエネルギー密度の高さや繰り返し充放電に対する耐久性の高さから、電動車両に好適と考えられ、各種の開発が鋭意進められている。 In recent years, secondary devices such as lithium ion secondary batteries, electric double layer capacitors, and the like are used as power devices for electronic devices, hybrid vehicles, electric vehicles, and household power supply facilities. In particular, lithium ion secondary batteries are considered suitable for electric vehicles because of their high energy density and high durability against repeated charging and discharging, and various developments have been intensively advanced.

なかでも双極型電池の電池性能を向上させる方法として、特定の高分子材料を含む集電体を用いるという技術が開示されている(特許文献1参照)。 In particular, as a method for improving the battery performance of a bipolar battery, a technique of using a current collector containing a specific polymer material is disclosed (see Patent Document 1).

しかしながら、従来の高分子材料を含む集電体はリチウムイオン二次電池の内部に一時的に微小短絡が発生した場合に集電体表面から微小短絡部に向けて電流が流れるため、短絡部が極めて小さな短絡であっても電池性能が劣化する等、電池性能の耐久性に課題があった。 However, current collectors containing conventional polymer materials cause current to flow from the current collector surface toward the micro short circuit when a short circuit occurs temporarily inside the lithium ion secondary battery. There was a problem in the durability of the battery performance, for example, the battery performance deteriorated even with an extremely small short circuit.

特開2012−150905号公報JP 2012-150905 A

本発明は、リチウムイオン二次電池内部に一時的に微小短絡が発生した場合であっても電池性能の劣化がなく、耐久性に優れたリチウムイオン二次電池を得ることが出来るリチウムイオン二次電池用集電部材を提供することを目的とする。 The present invention provides a lithium ion secondary battery that is capable of obtaining a lithium ion secondary battery that is excellent in durability without degradation of battery performance even when a short-circuit occurs temporarily inside the lithium ion secondary battery. It aims at providing the current collection member for batteries.

本発明者らは、上記課題を解決するために鋭意検討した結果、本発明に到達した。
すなわち、本発明は、導電材料と高分子化合物とを含んでなる導電性フィルムからなり、上記導電性フィルムの厚さ方向に対して直交する方向のうち、電気抵抗値が最小となる第1の方向における電気抵抗値(R)が、上記厚さ方向と上記第1の方向とに対して直交する第2の方向における電気抵抗値(R)よりも小さいことを特徴とするリチウムイオン二次電池用集電部材;本発明のリチウムイオン二次電池用集電部材を用いたリチウムイオン二次電池用集電体;本発明のリチウムイオン二次電池用集電部材を用いたリチウムイオン二次電池用強電タブ;導電材料と高分子化合物を混合した混合物をフィルム状に延伸し上記導電材料の配向を延伸方向に揃えることにより、導電性フィルムの厚さ方向に対して直交する第1の方向における電気抵抗値(R)が、上記厚さ方向と上記第1の方向とに対して直交する第2の方向における電気抵抗値(R)よりも小さい導電性フィルムを得ることを特徴とする、リチウムイオン二次電池用集電部材の製造方法;である。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have reached the present invention.
That is, this invention consists of an electroconductive film containing an electroconductive material and a high molecular compound, and among the directions orthogonal to the thickness direction of the said electroconductive film, electric resistance value becomes the 1st which becomes the minimum. An electric resistance value (R 1 ) in a direction is smaller than an electric resistance value (R 2 ) in a second direction orthogonal to the thickness direction and the first direction. Current collector for secondary battery; current collector for lithium ion secondary battery using current collector for lithium ion secondary battery of the present invention; lithium ion secondary using current collector for lithium ion secondary battery of the present invention High-voltage tab for secondary battery; a first mixture orthogonal to the thickness direction of the conductive film by stretching the mixture of the conductive material and the polymer compound into a film and aligning the orientation of the conductive material in the stretching direction. In the direction Kicking electric resistance value (R 1) is a feature to obtain a small conductive film than the electric resistance value (R 2) in a second direction perpendicular to the above thickness direction and the first direction A method for producing a current collecting member for a lithium ion secondary battery.

本発明のリチウムイオン二次電池用集電部材を使用すると、リチウムイオン二次電池内部に一時的に微小短絡が発生した場合であっても電流が流れる方向に制限がかけられているため、短絡部に向かって流れる電流が小さくなり、電池性能の劣化がなく、耐久性に優れたリチウムイオン二次電池を得ることができる。 When the current collector member for a lithium ion secondary battery according to the present invention is used, even if a micro short circuit is temporarily generated inside the lithium ion secondary battery, the direction in which the current flows is limited. As a result, the current flowing toward the portion is reduced, the battery performance is not deteriorated, and a lithium ion secondary battery excellent in durability can be obtained.

図1は、本発明のリチウムイオン二次電池用集電部材を構成する導電性フィルムを模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a conductive film constituting a current collecting member for a lithium ion secondary battery of the present invention. 図2は、リチウムイオン二次電池用強電タブとして用いることができるリチウムイオン二次電池用集電部材の一例を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an example of a current collecting member for a lithium ion secondary battery that can be used as a high voltage tab for a lithium ion secondary battery. 図3(a)及び図3(b)は、積層型電池において本発明のリチウムイオン二次電池用集電部材をリチウムイオン二次電池用集電体及びリチウムイオン二次電池用強電タブとして使用した場合の構成の一例を模式的に示す斜視図である。3 (a) and 3 (b) show that the current collecting member for a lithium ion secondary battery of the present invention is used as a current collector for a lithium ion secondary battery and a high voltage tab for a lithium ion secondary battery in a stacked battery. It is a perspective view showing typically an example of composition at the time of having done. 図4(a)及び図4(b)は、織物を加熱プレスすることにより導電性フィルムを製造する方法を模式的に示す工程図である。FIG. 4A and FIG. 4B are process diagrams schematically showing a method for producing a conductive film by hot pressing a woven fabric.

本発明のリチウムイオン二次電池用集電部材は、導電材料と高分子化合物とを含んでなる導電性フィルムからなり、上記導電性フィルムの厚さ方向に対して直交する方向のうち、電気抵抗値が最小となる第1の方向における電気抵抗値(R)が、上記厚さ方向と上記第1の方向とに対して直交する第2の方向における電気抵抗値(R)よりも小さいことを特徴とする。 The current collecting member for a lithium ion secondary battery of the present invention is composed of a conductive film containing a conductive material and a polymer compound, and has an electric resistance among the directions orthogonal to the thickness direction of the conductive film. The electric resistance value (R 1 ) in the first direction where the value is minimum is smaller than the electric resistance value (R 2 ) in the second direction orthogonal to the thickness direction and the first direction. It is characterized by that.

導電性フィルムを構成する導電材料としては、導電性を有する材料から選択されるが、集電体内のイオン透過を抑制する観点から、電荷移動媒体として用いられるリチウムイオンに関して伝導性を有さない材料を用いるのが好ましい。 The conductive material constituting the conductive film is selected from conductive materials, but from the viewpoint of suppressing ion permeation in the current collector, a material that does not have conductivity with respect to lithium ions used as a charge transfer medium Is preferably used.

導電材料の材質としては、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。
これらの導電材料は1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物が用いられてもよい。電気的安定性の観点から、好ましくはニッケル、アルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、さらに好ましくはニッケル、銀、アルミニウム、ステンレス及びカーボンであり、特に好ましくはニッケル及びカーボンである。またこれらの導電材料は、粒子系セラミック材料や樹脂材料の周りに導電材料(上記した導電材料のうち金属のもの)をめっき等でコーティングしたものでもよい。
導電材料の電気伝導度は1〜1×1010mS/cmであることが好ましい。
なお、導電材料の電気伝導度は、内径が5mmであるガラス製円筒の内部に、導電材料を30mg入れ、50回タップし、さらに直径5mmのSUS316製円柱で両端を挟み、250kNの圧力をかけながら、電気化学測定装置(ソーラトロン社製1280C)の測定端子クリップで両端のSUS316製円柱を挟むことにより測定される値である。
Conductive materials include metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.) And the like, and mixtures thereof, but are not limited thereto.
These conductive materials may be used alone or in combination of two or more. Moreover, these alloys or metal oxides may be used. From the viewpoint of electrical stability, preferably nickel, aluminum, stainless steel, carbon, silver, copper, titanium and mixtures thereof, more preferably nickel, silver, aluminum, stainless steel and carbon, particularly preferably nickel and Carbon. In addition, these conductive materials may be obtained by coating a conductive material (a metal material among the above-described conductive materials) by plating or the like around a particle ceramic material or a resin material.
The electric conductivity of the conductive material is preferably 1 to 1 × 10 10 mS / cm.
The electrical conductivity of the conductive material is as follows: 30 mg of the conductive material is placed in a glass cylinder having an inner diameter of 5 mm, tapped 50 times, and sandwiched between SUS316 cylinders with a diameter of 5 mm, and a pressure of 250 kN is applied. However, it is a value measured by sandwiching SUS316 cylinders at both ends with a measurement terminal clip of an electrochemical measuring device (Solartron 1280C).

導電材料は、導電性フィルムを構成する高分子化合物との親和性および導電性フィルムの電気抵抗値の異方性等の観点から、その径に対する長さの比率(長さ/径。以下、アスペクト比と記載する。)が大きいもの(好ましくは2以上)が好ましく、その形状がチューブ状又は繊維状であることがさらに好ましい。好ましいものとしてはカーボンナノチューブ又は導電性繊維等が挙げられ、導電性繊維としては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維の中では炭素繊維が好ましい。また、グラフェンを練りこんだポリプロピレン樹脂も好ましい。
導電材料が2以上のアスペクト比を有する材料である場合、その平均長が0.2〜10000μmであることが好ましく、その平均径が0.1〜10μmであることが好ましい。この範囲であると、導電性フィルムを作製したときにフィルムの延伸方向や導電性フィルムを構成する高分子化合物の結晶方向に沿って導電材料が並びやすく、電気抵抗値によりハッキリした異方性が発現しやすくなり好ましい。
The conductive material has a ratio of the length to the diameter (length / diameter; hereinafter referred to as aspect) from the viewpoint of affinity with the polymer compound constituting the conductive film and anisotropy of the electrical resistance value of the conductive film. (Preferably 2 or more) is preferable, and the shape is more preferably tubular or fibrous. Preferable examples include carbon nanotubes or conductive fibers. As conductive fibers, carbon fibers such as PAN-based carbon fibers, pitch-based carbon fibers, and synthetic fibers are uniformly made of highly conductive metal or graphite. Conductive fiber dispersed, metal fiber made of metal such as stainless steel, conductive fiber with organic fiber surface coated with metal, conductive fiber surface coated with resin containing conductive material Examples thereof include fibers. Among these conductive fibers, carbon fibers are preferable. A polypropylene resin in which graphene is kneaded is also preferable.
When the conductive material is a material having an aspect ratio of 2 or more, the average length is preferably 0.2 to 10,000 μm, and the average diameter is preferably 0.1 to 10 μm. Within this range, when the conductive film is produced, the conductive material is easy to line up along the stretching direction of the film and the crystal direction of the polymer compound constituting the conductive film, and the anisotropy clearly defined by the electrical resistance value is present. It is preferable because it is easily expressed.

導電性フィルムを構成する高分子化合物としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂及びこれらの混合物等が挙げられる。
電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。
Examples of the polymer compound constituting the conductive film include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), poly Tetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin and mixtures thereof Etc.
From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).

図1は、本発明のリチウムイオン二次電池用集電部材を構成する導電性フィルムを模式的に示す斜視図である。以下、この図面を参照して導電性フィルムの厚さ方向、第1の方向、第2の方向等について説明する。
図1に示す導電性フィルム10において、導電性フィルムの厚さ方向を両矢印Tで示す方向とする。そして、この方向に対して直交する方向のうち、電気抵抗値が最小となる1つの方向を第1の方向(図1において両矢印Xで示す方向)とし、厚さ方向及び第1の方向に対して直交する方向(図1において両矢印Yで示す方向)を第2の方向とする。
第1の方向及び第2の方向は導電性フィルムの主面に平行な方向である。
FIG. 1 is a perspective view schematically showing a conductive film constituting a current collecting member for a lithium ion secondary battery of the present invention. Hereinafter, the thickness direction, the first direction, the second direction, and the like of the conductive film will be described with reference to this drawing.
In the conductive film 10 shown in FIG. 1, the thickness direction of the conductive film is the direction indicated by the double arrow T. Of the directions orthogonal to this direction, one direction having the smallest electrical resistance value is defined as a first direction (a direction indicated by a double-headed arrow X in FIG. 1), and the thickness direction and the first direction are A direction orthogonal to the direction (a direction indicated by a double-headed arrow Y in FIG. 1) is defined as a second direction.
The first direction and the second direction are directions parallel to the main surface of the conductive film.

本発明のリチウムイオン二次電池用集電部材を構成する導電性フィルムでは、導電性フィルムの第1の方向における電気抵抗値(R)が、第2の方向における電気抵抗値(R)よりも小さい。すなわち、導電性フィルムの主面において導電性に異方性があるフィルムであるといえる。
集電部材を構成する導電性フィルムが導電性に異方性があるフィルムであるということは、導電性フィルムにおいて電流が流れにくい方向が存在しており、導電性フィルム内の電流の流れが自由ではなくある程度制限されていることを意味している。そのため、リチウムイオン二次電池内部に一時的に微小短絡が発生した場合であっても導電性フィルム内を電流が自由に流れることがある程度制限される。そして、電流の流れる方向がその異方性に従って特定の方向に偏る。そのため、導電性フィルムの主面において電流が集中して流れることが防止されるので、電池性能の劣化がなく、耐久性に優れたリチウムイオン二次電池を得ることができる。
また、導電性フィルムの主面において電流が流れないわけではないので、導電性フィルムに接触する活物質の分布に偏りがあって電圧の分布がばらついた場合に、導電性フィルム主面に電流が流れることによって電圧の分布のバラツキを抑えることができる。
In the conductive film constituting the current collecting member for the lithium ion secondary battery of the present invention, the electrical resistance value (R 1 ) in the first direction of the conductive film is the electrical resistance value (R 2 ) in the second direction. Smaller than. That is, it can be said that the film has anisotropy in conductivity on the main surface of the conductive film.
The fact that the conductive film constituting the current collecting member is an anisotropic film has a direction in which it is difficult for current to flow in the conductive film, and the current flow in the conductive film is free. It means rather limited. Therefore, even if a micro short-circuit occurs temporarily inside the lithium ion secondary battery, it is limited to some extent that current freely flows in the conductive film. The direction in which the current flows is biased in a specific direction according to the anisotropy. As a result, current is prevented from concentrating and flowing on the main surface of the conductive film, so that a lithium ion secondary battery with no deterioration in battery performance and excellent durability can be obtained.
In addition, since the current does not flow on the main surface of the conductive film, when the distribution of the active material in contact with the conductive film is uneven and the voltage distribution varies, the current flows on the main surface of the conductive film. The variation in the voltage distribution can be suppressed by flowing.

図1に示す導電性フィルム10では、高分子化合物11のマトリックスに導電材料としての導電性繊維12が含まれており、導電性フィルム10内で導電性繊維12が第1の方向に沿った方向に配向している。
導電性繊維がこのように配向していると、第1の方向においては導電性が良く電気抵抗値(R)が最小になる。一方、第2の方向においては導電性が悪く電気抵抗値(R)は大きくなる。すなわち、RがRよりも小さくなっている。
In the conductive film 10 shown in FIG. 1, a conductive fiber 12 as a conductive material is included in the matrix of the polymer compound 11, and the conductive fiber 12 is in the direction along the first direction in the conductive film 10. Oriented.
When the conductive fibers are oriented in this way, in the first direction, the conductivity is good and the electric resistance value (R 1 ) is minimized. On the other hand, in the second direction, the electrical conductivity is poor and the electric resistance value (R 2 ) is large. That is, R 1 is smaller than R 2 .

本発明のリチウムイオン二次電池用集電部材では、第1の方向に対する電気抵抗値(R)と第2の方向に対する電気抵抗値(R)との比率(R/R)が0.5以下であることが好ましい。第1の方向に対する電気抵抗値(R)と第2の方向に対する電気抵抗値(R)との比率(R/R)が0.5以下であると、リチウムイオン二次電池内部に一時的に微小短絡が発生した場合であっても導電性フィルム内の電流は、より電気抵抗値の小さい第1の方向に優先的に流れ、その結果電流の流れが制限されるため、電池性能の劣化が少なくなり、より耐久性に優れたリチウムイオン二次電池を得ることができる。
また、第1の方向に対する電気抵抗値(R)が1×10−10〜1×10Ω・mであることが好ましく、第2の方向に対する電気抵抗値(R)が2×10−10〜1×1010Ω・mであることが好ましく、2×10−4〜5×10Ω・mであることが更に好ましい。電気抵抗値(R)がこの範囲にあると、導電性フィルムに接触する活物質との接触抵抗を低減でき、サイクル特性が良好となり好ましく、また電気抵抗値(R)がこの範囲にあると、導電性フィルムに接触する活物質の電圧の分布のバラツキを抑えることができ、サイクル特性が良好となり好ましい。
なお、電気抵抗値は以下の方法に従って算出される。
導電性フィルムから1cm幅×23cm長さで第1の方向に対して長手方向にカットされた第1の短冊と第2の方向に対して長手方向にカットされた第2の短冊をそれぞれ用意する。第1の短冊と第2の短冊のそれぞれについて短冊の端から1.5cmの点を起点(0cm測定点)にして、そこから5cm間隔でそれぞれ5cm測定点、10cm測定点、15cm測定点および20cm測定点とする。第1の短冊および第2の短冊のそれぞれについて起点を含めた5点それぞれの膜厚を測定し、その値を平均してそれぞれt(μm)、t(μm)とする。
続いて、第1の短冊および第2の短冊のそれぞれについて、電気化学測定装置(ソーラトロン社製1280C)の測定端子の一方を0cm測定点に接触させたまま、他方の測定端子を5cm測定点、10cm測定点、15cm測定点および20cm測定点にそれぞれ接触させて各測定点での抵抗値(Ω)を読み取る。測定した4つの抵抗値を、縦軸が抵抗値であり、横軸が測定点間距離(起点から測定点までの距離)であるグラフにプロットし、プロットした点を最小二乗法で直線近似して得た直線の傾きを求める。第1の短冊および第2の短冊のそれぞれの傾きをa(Ω/cm)およびa(Ω/cm)とし、第1の短冊および第2の短冊の電気抵抗値RおよびRを次の式から求める。
=a×(t/10000×1)
=a×(t/10000×1)
In the current collecting member for a lithium ion secondary battery of the present invention, the ratio (R 1 / R 2 ) between the electric resistance value (R 1 ) in the first direction and the electric resistance value (R 2 ) in the second direction is It is preferable that it is 0.5 or less. When the ratio (R 1 / R 2 ) between the electric resistance value (R 1 ) with respect to the first direction and the electric resistance value (R 2 ) with respect to the second direction is 0.5 or less, the inside of the lithium ion secondary battery Even if a short-circuit occurs temporarily in the battery, the current in the conductive film flows preferentially in the first direction having a smaller electrical resistance value, and as a result, the current flow is limited. Performance deterioration is reduced, and a lithium ion secondary battery with more excellent durability can be obtained.
The electrical resistance value (R 1 ) with respect to the first direction is preferably 1 × 10 −10 to 1 × 10 1 Ω · m, and the electrical resistance value (R 2 ) with respect to the second direction is 2 × 10. It is preferably −10 to 1 × 10 10 Ω · m, and more preferably 2 × 10 −4 to 5 × 10 0 Ω · m. When the electrical resistance value (R 1 ) is in this range, the contact resistance with the active material that contacts the conductive film can be reduced, cycle characteristics are favorable, and the electrical resistance value (R 2 ) is in this range. Therefore, variation in the voltage distribution of the active material in contact with the conductive film can be suppressed, and cycle characteristics are improved, which is preferable.
The electrical resistance value is calculated according to the following method.
A first strip that is 1 cm wide × 23 cm long and cut in the longitudinal direction with respect to the first direction and a second strip that is cut in the longitudinal direction with respect to the second direction are respectively prepared from the conductive film. . For each of the first strip and the second strip, a point 1.5 cm from the end of the strip is used as a starting point (0 cm measurement point), and from there, 5 cm measurement points, 10 cm measurement points, 15 cm measurement points, and 20 cm, respectively. The measurement point. For each of the first strip and the second strip, the film thicknesses at five points including the starting point are measured, and the values are averaged to be t 1 (μm) and t 2 (μm), respectively.
Subsequently, for each of the first strip and the second strip, one of the measurement terminals of the electrochemical measurement device (Solartron 1280C) is kept in contact with the 0 cm measurement point, and the other measurement terminal is moved to the 5 cm measurement point. The resistance value (Ω) at each measurement point is read by contacting the 10 cm measurement point, the 15 cm measurement point, and the 20 cm measurement point. The four measured resistance values are plotted on a graph where the vertical axis is the resistance value and the horizontal axis is the distance between measurement points (distance from the starting point to the measurement point), and the plotted points are linearly approximated by the least square method. Find the slope of the straight line obtained. The inclinations of the first strip and the second strip are defined as a 1 (Ω / cm) and a 2 (Ω / cm), respectively, and the electric resistance values R 1 and R 2 of the first strip and the second strip are expressed as follows. Obtained from the following formula.
R 1 = a 1 × (t 1/10000 × 1)
R 2 = a 2 × (t 2/10000 × 1)

導電性フィルムは、その厚さが5〜400μmであることが好ましい。また、厚さ方向における電気抵抗値(R)は特に限定されるものではないが、積層型電池とした際に厚さ方向の導電性が高いことが好ましいため、1×10−3〜1×10−1Ω・mであることが好ましい。 The conductive film preferably has a thickness of 5 to 400 μm. In addition, the electric resistance value (R 3 ) in the thickness direction is not particularly limited, but since it is preferable that the conductivity in the thickness direction is high when a stacked battery is formed, 1 × 10 −3 to 1 It is preferably × 10 −1 Ω · m.

導電性フィルム中の導電材料の含有量は、厚さ方向の導電性の観点から、導電性フィルム100重量部中5〜90重量部であることが好ましく、より好ましくは15〜80重量部である。
導電性フィルム中の高分子化合物の含有量は、フィルム強度の観点から、導電性フィルム100重量部中10〜95重量部であることが好ましく、より好ましくは20〜80重量部である。
The content of the conductive material in the conductive film is preferably 5 to 90 parts by weight, more preferably 15 to 80 parts by weight in 100 parts by weight of the conductive film, from the viewpoint of conductivity in the thickness direction. .
From the viewpoint of film strength, the content of the polymer compound in the conductive film is preferably 10 to 95 parts by weight, more preferably 20 to 80 parts by weight, based on 100 parts by weight of the conductive film.

導電性フィルムには、導電材料及び高分子化合物の他に、さらに必要に応じ、その他の成分[分散剤、架橋促進剤(アルデヒド・アンモニア−アミン骨格含有化合物、チオウレア骨格含有化合物、グアニジン骨格含有化合物、チアゾール骨格含有化合物、スルフェンアミド骨格含有化合物、チウラム骨格含有化合物、ジチオカルバミン酸塩骨格含有化合物、キサントゲン酸塩骨格含有化合物及びジチオリン酸塩骨格含有化合物等)、架橋剤(イオウ等)、着色剤、紫外線吸収剤、汎用の可塑剤(フタル酸骨格含有化合物、トリメリット酸骨格含有化合物、リン酸基含有化合物及びエポキシ骨格含有化合物等)]等を適宜添加することができる。その他の成分の合計添加量は、電気的安定性の観点から、導電性フィルム100重量部中0.001〜5重量部であることが好ましく、さらに好ましくは0.001〜3重量部である。 For the conductive film, in addition to the conductive material and the polymer compound, if necessary, other components [dispersing agent, crosslinking accelerator (aldehyde / ammonia-amine skeleton-containing compound, thiourea skeleton-containing compound, guanidine skeleton-containing compound] , Thiazole skeleton-containing compound, sulfenamide skeleton-containing compound, thiuram skeleton-containing compound, dithiocarbamate skeleton-containing compound, xanthate skeleton-containing compound and dithiophosphate skeleton-containing compound), cross-linking agent (sulfur, etc.), colorant , Ultraviolet absorbers, general-purpose plasticizers (phthalic acid skeleton-containing compounds, trimellitic acid skeleton-containing compounds, phosphoric acid group-containing compounds, epoxy skeleton-containing compounds, etc.)] and the like can be appropriately added. From the viewpoint of electrical stability, the total amount of other components added is preferably 0.001 to 5 parts by weight, more preferably 0.001 to 3 parts by weight, based on 100 parts by weight of the conductive film.

本発明のリチウムイオン二次電池用集電部材は、リチウムイオン二次電池用集電体、又は、リチウムイオン二次電池用強電タブとして使用することができる。
本発明のリチウムイオン二次電池用集電部材を使用すると、リチウムイオン二次電池内部に一時的に微小短絡が発生した場合であっても電流が流れる方向に制限がかけられているため、短絡部に向かって流れる電流を小さくすることができる。そのため、本発明のリチウムイオン二次電池用集電部材は、特に電流値が大きくなる積層型電池の安全性を向上させることができる集電体及び強電タブとして好ましく使用することができる。
積層型電池では、正極側集電体、正極、セパレータ、負極及び負極側集電体を単セルとして、単セルが積層された構成を有している。
多く用いられている積層型電池では、集電体としてアルミニウム箔や銅箔等の金属箔が用いられるが、本発明のリチウムイオン二次電池用集電体は導電材料と高分子化合物を含んでなる導電性フィルムからなる樹脂集電体である。
また、本発明のリチウムイオン二次電池用強電タブは、集電体から電池の外部への電流の取り出し、及び外部電源からの充電に用いる部材(端子)であり、導電材料と高分子化合物を含んでなる導電性フィルムからなる樹脂集電体である。
すなわち、積層型電池において、正極側集電体、負極側集電体、強電タブのいずれか又は全てが図1に示す導電性フィルム10であってよい。
The current collecting member for a lithium ion secondary battery of the present invention can be used as a current collector for a lithium ion secondary battery or a high voltage tab for a lithium ion secondary battery.
When the current collector member for a lithium ion secondary battery according to the present invention is used, even if a micro short circuit is temporarily generated inside the lithium ion secondary battery, the direction in which the current flows is limited. The current flowing toward the part can be reduced. Therefore, the current collecting member for a lithium ion secondary battery according to the present invention can be preferably used as a current collector and a high current tab capable of improving the safety of a laminated battery having a particularly large current value.
The stacked battery has a configuration in which single cells are stacked using the positive electrode side current collector, the positive electrode, the separator, the negative electrode, and the negative electrode side current collector as a single cell.
In a stacked battery that is often used, a metal foil such as an aluminum foil or a copper foil is used as a current collector. The current collector for a lithium ion secondary battery of the present invention includes a conductive material and a polymer compound. A resin current collector made of a conductive film.
Further, the high-power tab for a lithium ion secondary battery of the present invention is a member (terminal) used for taking out current from the current collector to the outside of the battery and charging from an external power source, and comprising a conductive material and a polymer compound. A resin current collector made of a conductive film.
That is, in the stacked battery, any or all of the positive electrode side current collector, the negative electrode side current collector, and the high voltage tab may be the conductive film 10 shown in FIG.

積層型電池における正極活物質、負極活物質、セパレータ等の材料としては公知の材料を使用することができる。正極活物質及び負極活物質は、アクリル系樹脂等の樹脂で被覆された被覆活物質であってもよい。 Known materials can be used as the positive electrode active material, the negative electrode active material, the separator and the like in the stacked battery. The positive electrode active material and the negative electrode active material may be a coated active material coated with a resin such as an acrylic resin.

図2は、リチウムイオン二次電池用強電タブとして用いることができるリチウムイオン二次電池用集電部材の一例を模式的に示す斜視図である。
図2に示すリチウムイオン二次電池用強電タブ120は、図1に示す導電性フィルム10上に、第1の方向に沿った方向に伸びたストライプ状の金属薄膜20を設けてなる。
このような金属薄膜20が設けられていると、第1の方向に沿って設けられた金属薄膜20を電流が流れることができ、電気抵抗値は小さくなる。一方、第2の方向に沿った電流の流れには金属薄膜は寄与しない。
そのため、リチウムイオン二次電池用集電部材の異方性を確保することができる。
そして、金属薄膜から電流を電池の外に取り出すことができるので強電タブとしての機能も好ましく発揮される。
FIG. 2 is a perspective view schematically showing an example of a current collecting member for a lithium ion secondary battery that can be used as a high voltage tab for a lithium ion secondary battery.
A high voltage tab 120 for a lithium ion secondary battery shown in FIG. 2 is formed by providing a striped metal thin film 20 extending in a direction along the first direction on the conductive film 10 shown in FIG.
When such a metal thin film 20 is provided, current can flow through the metal thin film 20 provided along the first direction, and the electrical resistance value becomes small. On the other hand, the metal thin film does not contribute to the current flow along the second direction.
Therefore, the anisotropy of the current collecting member for the lithium ion secondary battery can be ensured.
And since an electric current can be taken out of a battery from a metal thin film, the function as a high electric power tab is exhibited preferably.

金属薄膜は、導電性フィルムの上にスパッタリング、蒸着、めっき等の公知の金属薄膜形成法により形成することができる。
ストライプ状の金属薄膜を形成する方法としては、金属薄膜を形成しない部位をマスキングしてスパッタリング等により薄膜を形成する方法や、導電性フィルム全体に薄膜を形成した後に、金属薄膜を形成する部位にマスキングをして、エッチングによりマスキングした部位以外の金属薄膜を除去する方法が挙げられる。
The metal thin film can be formed on the conductive film by a known metal thin film forming method such as sputtering, vapor deposition, or plating.
As a method of forming a stripe-shaped metal thin film, a part where a metal thin film is not formed is masked and a thin film is formed by sputtering or the like, or after a thin film is formed on the entire conductive film, a part where the metal thin film is formed is formed. A method of removing the metal thin film other than the portion masked by etching and masking by etching is mentioned.

上記リチウムイオン二次電池用集電部材を含む本発明のリチウムイオン二次電池用強電タブは、PTCサーミスタ及びヒューズ等の電流制限素子を更に有することが好ましい。電流制限素子としては、特許第5540588号等に記載された電流抑制手段又は電流遮断手段を用いることができる。
強電タブは電池内部にエネルギーを電流として出し入れするために用いる部材(端子)として用いるため、金属薄膜を相互に接続した接続部を設けることが好ましい。
電流制限素子を設けることで、一時的に微小短絡した場合に接続部を介して電流が微小短絡部に回り込み、結果として大きな電流が微小短絡部に流れることを防ぐことが出来る。
It is preferable that the high voltage tab for the lithium ion secondary battery of the present invention including the current collecting member for the lithium ion secondary battery further includes a current limiting element such as a PTC thermistor and a fuse. As the current limiting element, current suppressing means or current interrupting means described in Japanese Patent No. 5540588 can be used.
Since the high voltage tab is used as a member (terminal) used for taking energy into and out of the battery as a current, it is preferable to provide a connection part in which metal thin films are connected to each other.
By providing the current limiting element, it is possible to prevent a current from flowing into the minute short-circuited portion via the connecting portion when temporarily short-circuited, and as a result, a large current from flowing to the minute short-circuited portion.

本発明のリチウムイオン二次電池用集電部材をリチウムイオン二次電池用集電体及びリチウムイオン二次電池用強電タブとして使用する場合、リチウムイオン二次電池用集電体としてのリチウムイオン二次電池用集電部材と強電タブとしてのリチウムイオン二次電池用集電部材とを積層して用いることができる。この場合、リチウムイオン二次電池用集電体及びリチウムイオン二次電池用強電タブの第1の方向が同じ向きになるように配置して積層してもよく、リチウムイオン二次電池用集電体及びリチウムイオン二次電池用強電タブの第1の方向が直行する向きに配置して積層してもよい。集電効率の観点等から、リチウムイオン二次電池用集電体及びリチウムイオン二次電池用強電タブの第1の方向が同じ向きになるように配置して積層することが好ましい。 When the current collector for a lithium ion secondary battery according to the present invention is used as a current collector for a lithium ion secondary battery and a high voltage tab for a lithium ion secondary battery, the lithium ion secondary as a current collector for the lithium ion secondary battery is used. A secondary battery current collecting member and a lithium ion secondary battery current collecting member as a high voltage tab can be laminated and used. In this case, the current collector for the lithium ion secondary battery and the high voltage tab for the lithium ion secondary battery may be arranged and laminated so that the first direction is the same direction. The first and second high-voltage tabs for the body and the lithium ion secondary battery may be arranged in a direction perpendicular to each other and stacked. From the viewpoint of current collection efficiency and the like, it is preferable to arrange and laminate the current collector for the lithium ion secondary battery and the high voltage tab for the lithium ion secondary battery in the same direction.

図3(a)及び図3(b)は、積層型電池において本発明のリチウムイオン二次電池用集電部材をリチウムイオン二次電池用集電体及びリチウムイオン二次電池用強電タブとして使用した場合の構成の一例を模式的に示す斜視図である。
積層型電池では、正極31、セパレータ32、負極33が集電体を介して繰り返し積層されており、強電タブは最も外側に配置される。
図3(a)ではリチウムイオン二次電池用強電タブ120の第1の方向とリチウムイオン二次電池用集電体10の第1の方向が同じ向きとなっている例を示している。
一方、図3(b)ではリチウムイオン二次電池用強電タブ120の第1の方向とリチウムイオン二次電池用集電体10の第1の方向が直行する向きとなっている例を示している。
なお、図3(a)及び図3(b)では積層型電池における最も上端の単セルの周辺のみを図示しており、リチウムイオン二次電池用集電体10よりも下の構造については省略している。
3 (a) and 3 (b) show that the current collecting member for a lithium ion secondary battery of the present invention is used as a current collector for a lithium ion secondary battery and a high voltage tab for a lithium ion secondary battery in a stacked battery. It is a perspective view showing typically an example of composition at the time of having done.
In the stacked battery, the positive electrode 31, the separator 32, and the negative electrode 33 are repeatedly stacked via a current collector, and the high-power tab is disposed on the outermost side.
FIG. 3A shows an example in which the first direction of the high voltage tab 120 for the lithium ion secondary battery and the first direction of the current collector 10 for the lithium ion secondary battery are in the same direction.
On the other hand, FIG. 3B shows an example in which the first direction of the high-voltage tab 120 for the lithium ion secondary battery and the first direction of the current collector 10 for the lithium ion secondary battery are perpendicular to each other. Yes.
3A and 3B show only the periphery of the uppermost single cell in the stacked battery, and the structure below the current collector 10 for the lithium ion secondary battery is omitted. doing.

本発明のリチウムイオン二次電池用集電部材は、例えば以下の方法で製造することができる。なお、以下の方法は、本発明のリチウムイオン二次電池用集電部材の製造方法であり、導電材料と高分子化合物を混合した混合物をフィルム状に延伸し上記導電材料の配向を延伸方向に揃えることにより、導電性フィルムの厚さ方向に対して直交する第1の方向における電気抵抗値(R)が、上記厚さ方向と上記第1の方向とに対して直交する第2の方向における電気抵抗値(R)よりも小さい導電性フィルムを得ることを特徴とする、リチウムイオン二次電池用集電部材の製造方法である。 The current collector for a lithium ion secondary battery of the present invention can be produced, for example, by the following method. The following method is a method for producing a current collecting member for a lithium ion secondary battery according to the present invention. A mixture obtained by mixing a conductive material and a polymer compound is stretched into a film and the orientation of the conductive material is set in the stretching direction. By aligning, the electric resistance value (R 1 ) in the first direction orthogonal to the thickness direction of the conductive film is the second direction orthogonal to the thickness direction and the first direction. characterized in that to obtain a small conductive film than the electric resistance value (R 2) in a method for producing a lithium ion secondary battery current collector member.

まず、導電材料と高分子化合物、及び、必要に応じてその他の成分を混合する。混合の方法としては、公知のマスターバッチの製造方法、及び熱可塑性樹脂組成物(分散剤、フィラー及び熱可塑性樹脂からなる組成物、又はマスターバッチと熱可塑性樹脂からなる組成物)の製造方法等において公知の混合方法が用いられ、ペレット状又は粉体状の成分を適切な混合機、例えばニーダー、インターナルミキサー、バンバリーミキサー、及びロール等を用いて加熱溶融混合して混合することができる。 First, a conductive material, a polymer compound, and other components are mixed as necessary. As a mixing method, a known masterbatch production method and a thermoplastic resin composition (a composition comprising a dispersant, a filler and a thermoplastic resin, or a composition comprising a masterbatch and a thermoplastic resin), etc. A known mixing method is used, and the pellet-like or powder-like components can be mixed by heating, melting and mixing using an appropriate mixer such as a kneader, an internal mixer, a Banbury mixer, and a roll.

混合時の各成分の添加順序には特に限定はない。
得られた混合物は、さらにペレタイザーなどによりペレット化または粉末化してもよい。
There is no particular limitation on the order of addition of each component during mixing.
The obtained mixture may be further pelletized or powdered with a pelletizer or the like.

本発明のリチウムイオン二次電池用集電部材は、上記混合によって得られた混合物に物理的な圧力をかけて一定の方向に延伸してフィルム状に成形することにより得られる。延伸してフィルム状に成形する成形方法としては、Tダイ法、インフレーション法及びカレンダー法等の公知のフィルム成形法が挙げられる。一般にフィルムを形成する材料は、その構造が固定化される前に一定の方向に延伸することでフィルムを構成する樹脂の結晶構造やフィルムに含まれるフィラー等が延伸方向に並ぶ性質を有する。構成材料として導電材料を含む場合には、フィルムを延伸することで導電材料が延伸方向に配向し、その結果、リチウムイオン二次電池用集電部材の電気抵抗値が異方性[第1の方向における電気抵抗値(R)が、第2の方向における電気抵抗値(R)よりも小さいことを意味する]を発現する。 The current collecting member for a lithium ion secondary battery of the present invention can be obtained by applying a physical pressure to the mixture obtained by the above mixing and stretching it in a certain direction to form a film. Examples of the forming method for drawing into a film by stretching include known film forming methods such as a T-die method, an inflation method, and a calendar method. In general, a material for forming a film has a property that a crystal structure of a resin constituting the film and a filler contained in the film are aligned in the stretching direction by stretching in a certain direction before the structure is fixed. When a conductive material is included as a constituent material, the conductive material is oriented in the stretching direction by stretching the film. As a result, the electrical resistance value of the current collector for the lithium ion secondary battery is anisotropic [first It means that the electric resistance value (R 1 ) in the direction is smaller than the electric resistance value (R 2 ) in the second direction].

上記の成形方法では、混合物に物理的な圧力をかけて延伸することで、溶融された上記混合物が一定の方向に流動する工程を経てからフィルム状に成形される。混合物が一定の方向に流動する際に上記混合物に含まれる導電材料が流動する方向に配向して、導電材料の配向を揃えることができるので、導電性フィルム内で導電材料が特定の方向に配向している導電性フィルムを製造することができる。
そして、導電材料が特定の方向に配向していることに起因して、導電性フィルムの厚さ方向に対して直交する第1の方向における電気抵抗値(R)が、厚さ方向と第1の方向とに対して直交する第2の方向における電気抵抗値(R)よりも小さい導電性フィルムを得ることができる。
In the above molding method, the mixture is stretched by applying physical pressure, and then the melted mixture is formed into a film after passing through a step of flowing in a certain direction. When the mixture flows in a certain direction, the conductive material contained in the mixture is oriented in the direction of flow and the orientation of the conductive material can be aligned, so the conductive material is oriented in a specific direction within the conductive film. The conductive film can be manufactured.
Then, because the conductive material is oriented in a specific direction, the electric resistance value (R 1 ) in the first direction orthogonal to the thickness direction of the conductive film is equal to the thickness direction and the first direction. A conductive film smaller than the electrical resistance value (R 2 ) in the second direction orthogonal to the direction of 1 can be obtained.

また、本発明のリチウムイオン二次電池用集電部材の製造方法としては、導電性を有さない樹脂繊維を縦糸、導電性繊維を横糸とした織物を使用し、この織物を高分子化合物と共に加熱プレスする方法がある。
図4(a)及び図4(b)は、織物を加熱プレスすることにより導電性フィルムを製造する方法を模式的に示す工程図である。
図4(a)には、導電性を有さない樹脂繊維を縦糸、導電性繊維を横糸とした織物を示している。例えば、織物50はポリプロピレン製の樹脂繊維51を縦糸、グラフェンを練りこんだポリプロピレン製の樹脂繊維からなる導電性繊維52を横糸とした織物である。そして、織物50をポリプロピレン樹脂のペレットと混ぜて型に入れて加熱プレスし、ポリプロピレン樹脂のペレット、縦糸としての樹脂繊維51を構成するポリプロピレン樹脂、横糸としての導電性繊維52を構成するポリプロピレン樹脂を溶融させてフィルムを成形する。
Further, as a method for producing a current collecting member for a lithium ion secondary battery according to the present invention, a woven fabric having a non-conductive resin fiber as a warp and a conductive fiber as a weft is used together with a polymer compound. There is a method of heat pressing.
FIG. 4A and FIG. 4B are process diagrams schematically showing a method for producing a conductive film by hot pressing a woven fabric.
FIG. 4A shows a woven fabric in which resin fibers having no conductivity are warp yarns and the conductive fibers are weft yarns. For example, the fabric 50 is a fabric using warp yarns made of polypropylene resin fibers 51 and weft yarns made of polypropylene resin fibers kneaded with graphene. Then, the woven fabric 50 is mixed with polypropylene resin pellets, put into a mold, and heated and pressed. Polypropylene resin pellets, polypropylene resin constituting the resin fibers 51 as warp yarns, and polypropylene resin constituting the conductive fibers 52 as weft yarns. Melt to form a film.

図4(b)は図4(a)に示す織物を加熱プレスして得られる導電性フィルムを模式的に示している。
得られた導電性フィルム60では、溶融した樹脂が高分子化合物61となり、導電性繊維52に含まれていたグラフェンが導電性繊維52が存在していた位置に従って線状に残っているので、これが導電材料62となる。
図4(b)には導電材料62としてのグラフェンが第1の方向に沿って残っている様子を示しており、このように導電材料が残っていることにより、導電性フィルムの第1の方向における電気抵抗値(R)は最小値となり、第1の方向における電気抵抗値(R)が第2の方向における電気抵抗値(R)よりも小さく、導電性フィルムの主面において導電性に異方性があるフィルムとなる。
FIG.4 (b) has shown typically the electroconductive film obtained by heat-pressing the textile fabric shown to Fig.4 (a).
In the obtained conductive film 60, the melted resin becomes the polymer compound 61, and the graphene contained in the conductive fiber 52 remains linear according to the position where the conductive fiber 52 was present. A conductive material 62 is formed.
FIG. 4B shows a state in which graphene as the conductive material 62 remains in the first direction, and the conductive material remains in this way, so that the first direction of the conductive film is shown. The electric resistance value (R 1 ) in the first direction is the minimum value, the electric resistance value (R 1 ) in the first direction is smaller than the electric resistance value (R 2 ) in the second direction, It becomes a film having anisotropy in properties.

次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。 EXAMPLES Next, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples without departing from the gist of the present invention. Unless otherwise specified, “part” means “part by weight” and “%” means “% by weight”.

<製造例1>
<被覆用樹脂溶液の作製>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにN,N−ジメチルホルムアミド(以下、DMFと記載)407.9部を仕込み75℃に昇温した。次いで、メタクリル酸242.8部、メチルメタクリレート97.1部、2−エチルヘキシルメタクリレート242.8部及びDMF116.5部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)1.7部及び2,2’−アゾビス(2−メチルブチロニトリル)4.7部をDMF58.3部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂濃度50%の共重合体溶液を得た。これにDMFを789.8部加えて、樹脂固形分濃度30重量%である樹脂溶液を得た。
<Production Example 1>
<Preparation of coating resin solution>
A 4-necked flask equipped with a stirrer, thermometer, reflux condenser, dropping funnel and nitrogen gas inlet tube was charged with 407.9 parts of N, N-dimethylformamide (hereinafter referred to as DMF) and heated to 75 ° C. . Next, a monomer compounded solution containing 242.8 parts of methacrylic acid, 97.1 parts of methyl methacrylate, 242.8 parts of 2-ethylhexyl methacrylate and 116.5 parts of DMF, and 2,2′-azobis (2,4-dimethylvalero) Nitrile) 1.7 parts and 2,2′-azobis (2-methylbutyronitrile) 4.7 parts dissolved in 58.3 parts of DMF and an initiator solution were stirred while nitrogen was blown into a four-necked flask. Then, radical polymerization was carried out by continuously dropping with a dropping funnel over 2 hours. After completion of dropping, the reaction was continued at 75 ° C. for 3 hours. Subsequently, the temperature was raised to 80 ° C., and the reaction was continued for 3 hours to obtain a copolymer solution having a resin concentration of 50%. To this, 789.8 parts of DMF was added to obtain a resin solution having a resin solid content concentration of 30% by weight.

<製造例2>
<被覆正極活物質の作製>
正極活物質として、樹脂で被覆した被覆正極活物質を用いた。
LiCoO粉末1578gを万能混合機に入れ、室温、150rpmで撹拌した状態で、製造例1で得た樹脂溶液(樹脂固形分濃度30重量%)146gを60分かけて滴下混合し、さらに30分撹拌した。次いで、撹拌した状態でアセチレンブラック[電気化学工業(株)製]44gを3回に分けて混合し、30分撹拌したままで70℃に昇温し、0.01MPaまで減圧し30分保持した。上記操作により被覆正極活物質1666gを得た。
<Production Example 2>
<Production of coated positive electrode active material>
As the positive electrode active material, a coated positive electrode active material coated with a resin was used.
Into a universal mixer, 1578 g of LiCoO 2 powder was stirred at room temperature and 150 rpm, and 146 g of the resin solution (resin solid content concentration 30 wt%) obtained in Production Example 1 was added dropwise over 60 minutes, and further 30 minutes. Stir. Next, 44 g of acetylene black [manufactured by Denki Kagaku Kogyo Co., Ltd.] was mixed in three portions with stirring, the temperature was raised to 70 ° C. while stirring for 30 minutes, the pressure was reduced to 0.01 MPa and held for 30 minutes. . By the above operation, 1666 g of a coated positive electrode active material was obtained.

<製造例3>
<被覆負極活物質の作製>
負極活物質として、樹脂で被覆した被覆負極活物質を用いた。
黒鉛粉末[日本黒鉛工業(株)製]1578gを万能混合機に入れ、室温、150rpmで撹拌した状態で、製造例1で得た樹脂溶液(樹脂固形分濃度30重量%)292gを60分かけて滴下混合し、さらに30分撹拌した。次いで、撹拌した状態でアセチレンブラック[電気化学工業(株)製]88gを3回に分けて混合し、30分撹拌したままで70℃に昇温し、0.01MPaまで減圧し30分保持した。上記操作により被覆負極活物質1754gを得た。
<Production Example 3>
<Preparation of coated negative electrode active material>
As the negative electrode active material, a coated negative electrode active material coated with a resin was used.
Put 1578 g of graphite powder [manufactured by Nippon Graphite Industry Co., Ltd.] in a universal mixer and stir at 150 rpm at room temperature and apply 292 g of the resin solution (resin solid content concentration 30 wt%) obtained in Production Example 1 over 60 minutes. The mixture was added dropwise and stirred for another 30 minutes. Next, 88 g of acetylene black [manufactured by Denki Kagaku Kogyo Co., Ltd.] was mixed in three portions with stirring, the temperature was raised to 70 ° C. while stirring for 30 minutes, the pressure was reduced to 0.01 MPa and held for 30 minutes. . By the above operation, 1754 g of a coated negative electrode active material was obtained.

<実施例1>
2軸押出機にて、ポリプロピレン[商品名「サンアロマーPL500A」、サンアロマー(株)製]70部、カーボンナノチューブ[商品名:「FloTube9000」、CNano社製]25部(平均長さ10μm、平均直径15nm、アスペクト比約670)、及び分散剤[商品名「ユーメックス1001」、三洋化成工業(株)製]5部を200℃、200rpmの条件で溶融混練して樹脂混合物(Z−1)を得た。
得られた樹脂混合物(Z−1)を、Tダイ押出しフィルム成形機に通して、それを延伸することで、膜厚100μmの本発明のリチウムイオン二次電池用集電部材[樹脂集電体(X−1)]を得た。樹脂集電体(X−1)について直交する2つの方向における電気抵抗値及びその比率を以下の方法で測定し、表1に記載した。
<Example 1>
In a twin-screw extruder, 70 parts of polypropylene [trade name “Sun Allomer PL500A”, manufactured by Sun Allomer Co., Ltd.], 25 parts of carbon nanotube [trade name: “FloTube 9000”, manufactured by CNano Inc.] (average length 10 μm, average diameter 15 nm) , An aspect ratio of about 670), and 5 parts of a dispersant [trade name “Yumex 1001”, manufactured by Sanyo Chemical Industries, Ltd.] were melt-kneaded at 200 ° C. and 200 rpm to obtain a resin mixture (Z-1). .
The obtained resin mixture (Z-1) is passed through a T-die extrusion film molding machine and stretched to obtain a current collecting member for a lithium ion secondary battery having a film thickness of 100 μm [resin current collector (X-1)] was obtained. The electrical resistance values and the ratios thereof in two directions orthogonal to the resin current collector (X-1) were measured by the following method and listed in Table 1.

<電気抵抗値の比率の測定>
樹脂集電体において、1cm幅×23cm長さでフィルム延伸方向(第1の方向とする)に対して長手方向にカットされた第1の短冊と、第1の方向に垂直の方向(第2の方向とする)に対して長手方向にカットされた第2の短冊をそれぞれ用意する。第1の短冊と第2の短冊のそれぞれについて短冊の端から1.5cmの点を起点(0cm測定点)にして、そこから5cm間隔でそれぞれ5cm測定点、10cm測定点、15cm測定点および20cm測定点とする。第1の短冊および第2の短冊のそれぞれについて起点を含めた5点それぞれの膜厚を測定し、その値を平均してそれぞれt(μm)、t(μm)とした。
続いて、第1の短冊および第2の短冊のそれぞれについて、電気化学測定装置(ソーラトロン社製1280C)の測定端子の一方を0cm測定点に接触させたまま、他方の測定端子を5cm測定点、10cm測定点、15cm測定点および20cm測定点にそれぞれ接触させて各測定点での抵抗値(Ω)を読み取った。測定し読み取った4つの抵抗値を縦軸が抵抗値、横軸が測定点間距離(起点から測定点までの距離)であるグラフにプロットし、プロットした点を最小二乗法で直線近似して得た直線の傾きを求めた。第1の短冊および第2の短冊のそれぞれについて、直線の傾きをa(Ω/cm)およびa(Ω/cm)として求め、第1の短冊および第2の短冊の電気抵抗値RおよびRを次の式から求め、その比率を算出した。
=a×(t/10000×1)
=a×(t/10000×1)
<Measurement of electrical resistance ratio>
In the resin current collector, a first strip which is 1 cm wide × 23 cm long and cut in the longitudinal direction with respect to the film stretching direction (referred to as the first direction), and a direction perpendicular to the first direction (second 2nd strips cut in the longitudinal direction with respect to the first direction). For each of the first strip and the second strip, a point 1.5 cm from the end of the strip is used as a starting point (0 cm measurement point), and from there, 5 cm measurement points, 10 cm measurement points, 15 cm measurement points, and 20 cm, respectively. The measurement point. For each of the first strip and the second strip, the film thicknesses at 5 points including the starting point were measured, and the values were averaged to be t 1 (μm) and t 2 (μm), respectively.
Subsequently, for each of the first strip and the second strip, one of the measurement terminals of the electrochemical measurement device (Solartron 1280C) is kept in contact with the 0 cm measurement point, and the other measurement terminal is moved to the 5 cm measurement point. The 10 cm measurement point, 15 cm measurement point, and 20 cm measurement point were brought into contact with each other, and the resistance value (Ω) at each measurement point was read. The measured and read four resistance values are plotted on a graph where the vertical axis is the resistance value and the horizontal axis is the distance between measurement points (distance from the starting point to the measurement point), and the plotted points are linearly approximated by the least squares method. The slope of the obtained straight line was determined. For each of the first and second strips, the slopes of the straight lines are determined as a 1 (Ω / cm) and a 2 (Ω / cm), and the electric resistance values R 1 of the first and second strips are obtained. and it obtains the R 2 from the following equation was calculated the ratio.
R 1 = a 1 × (t 1/10000 × 1)
R 2 = a 2 × (t 2/10000 × 1)

<実施例2>
国際公開第2015/125916号の実施例と同様にして得られたポリプロピレンとグラフェンの混練物を紡糸して得られた繊維からなる縦糸とポリプロピレン製繊維からなる横糸の布を180℃、50MPaで熱プレスすることにより、繊維同士が溶融一体化したフィルム状である本発明のリチウムイオン二次電池用集電部材[樹脂集電体(X−2)]が得られた。このとき、縦糸の繊維はほぼ形状をとどめており、目視でも確認できる。実施例1と同様に樹脂集電体(X−2)について直交する2つの方向における電気抵抗値及びその比率を測定し、表1に記載した。
<Example 2>
A warp yarn made of fibers obtained by spinning a kneaded product of polypropylene and graphene obtained in the same manner as in the examples of WO2015 / 125916 and a weft yarn made of polypropylene fibers were heated at 180 ° C. and 50 MPa. By pressing, the current collecting member [resin current collector (X-2)] for a lithium ion secondary battery of the present invention in the form of a film in which fibers were fused and integrated was obtained. At this time, the fibers of the warp yarn are almost in shape and can be confirmed visually. The electrical resistance values and the ratios in two directions orthogonal to the resin current collector (X-2) were measured in the same manner as in Example 1, and are shown in Table 1.

<実施例3>
<実施例1>において、カーボンナノチューブ25部をニッケル粉(ヴァーレ製 Type255)71部に変え、ポリプロピレン70部を27部に変え、分散剤5部を2部に変えたこと以外は実施例1と同様にすることで、膜厚100μmの本発明のリチウムイオン二次電池用集電部材[樹脂集電体(X−3)]を得た。実施例1と同様に樹脂集電体(X−3)について直交する2つの方向における電気抵抗値及びその比率を測定し、表1に記載した。
<Example 3>
<Example 1> In Example 1 except that 25 parts of carbon nanotubes were changed to 71 parts of nickel powder (Type 255 manufactured by Vale), 70 parts of polypropylene were changed to 27 parts, and 5 parts of dispersant were changed to 2 parts. By carrying out similarly, the current collection member [resin current collector (X-3)] for lithium ion secondary batteries of the present invention with a film thickness of 100 μm was obtained. The electrical resistance values and the ratios in two directions orthogonal to the resin current collector (X-3) were measured in the same manner as in Example 1, and are shown in Table 1.

<実施例4>
<実施例1>で得られたリチウムイオン二次電池用集電部材を基材として、さらに第1の方向に沿って、線幅5mm、 線間隔1mmのストライプ状に膜厚1μmでニッケル蒸着して、膜厚100μmの本発明のリチウムイオン二次電池用集電部材[強電タブ(X−4)]を得た。実施例1と同様に強電タブ(X−4)について直交する2つの方向における電気抵抗値及びその比率を測定し、表1に記載した。
<Example 4>
Using the current collecting member for a lithium ion secondary battery obtained in <Example 1> as a base material, nickel was deposited in a stripe shape with a line width of 5 mm and a line interval of 1 mm along the first direction with a thickness of 1 μm. Thus, a current collecting member for a lithium ion secondary battery of the present invention having a film thickness of 100 μm [high voltage tab (X-4)] was obtained. As in Example 1, the electrical resistance values and the ratios thereof in two directions perpendicular to the high voltage tab (X-4) were measured and listed in Table 1.

<比較例1>
<実施例1>において、カーボンナノチューブ25部をニッケル粉(ヴァーレ製 Type255)71部に変え、ポリプロピレン70部を27部に変え、分散剤5部を2部に変えたこと以外は実施例1と同様に2軸押出機を用いて溶融混練して樹脂混合物(Z−2)を得た。さらに樹脂混合物(Z−2)を溶液流延法により成形することで、膜厚100μmの比較用のリチウムイオン二次電池用集電部材[樹脂集電体(H−1)]を得た。実施例1と同様に樹脂集電体(H−1)について直交する2つの方向における電気抵抗値及びその比率を測定し、表1に記載した。
<Comparative Example 1>
<Example 1> In Example 1 except that 25 parts of carbon nanotubes were changed to 71 parts of nickel powder (Type 255 manufactured by Vale), 70 parts of polypropylene were changed to 27 parts, and 5 parts of dispersant were changed to 2 parts. Similarly, it melt-kneaded using the biaxial extruder, and obtained the resin mixture (Z-2). Further, the resin mixture (Z-2) was molded by a solution casting method to obtain a comparative current collector for a lithium ion secondary battery [resin current collector (H-1)] having a thickness of 100 μm. The electrical resistance values and the ratios thereof in two directions orthogonal to the resin current collector (H-1) were measured in the same manner as in Example 1, and are shown in Table 1.

<比較例2>
<比較例1>で得られたリチウムイオン二次電池用集電部材を基材として、基材の全面に膜厚1μmでニッケル蒸着して、膜厚100μmの比較用のリチウムイオン二次電池用集電部材[強電タブ(H−2)]を得た。実施例1と同様に強電タブ(H−2)について直交する2つの方向における電気抵抗値及びその比率を測定し、表1に記載した。
<Comparative example 2>
Using the current collecting member for lithium ion secondary battery obtained in <Comparative Example 1> as a base material, nickel was deposited on the entire surface of the base material with a film thickness of 1 μm, and a comparative lithium ion secondary battery with a film thickness of 100 μm was used. A current collecting member [high power tab (H-2)] was obtained. As in Example 1, the electrical resistance values and the ratios in the two directions perpendicular to the high voltage tab (H-2) were measured and listed in Table 1.

<実施例5〜10、比較例3>
<サイクル充放電試験>
作製した集電部材を正極側集電体、負極側集電体及び強電タブとして用いてラミネートセルを下記の方法で作製し、下記の方法でサイクル充放電試験を行い、結果を表2に記載した。
<Examples 5 to 10, Comparative Example 3>
<Cycle charge / discharge test>
A laminate cell was prepared by the following method using the prepared current collecting member as a positive electrode side current collector, a negative electrode side current collector and a high voltage tab, and a cycle charge / discharge test was performed by the following method. did.

<評価用セルの作製>
外形が幅105mm×長さ205mmの長方形のガラスエポキシ基板(日光化成製 ニコライト NL−EG−23N)を2枚準備し、それぞれその内側を15mm幅の外周部を残してくりぬき、その両面にガラスエポキシ基板の外周部と同じ形状のヒートシール用フィルム(三井化学製 アドマー QE−060)を固定した。次いで幅95mm×長さ195mmの長方形のPE製セパレータ(セルガード製)をガラスエポキシ基板の一方の面にヒートシールすることで固定し、セパレータの片面に枠状のガラスエポキシ基板を固定した単セル用枠部材を作製した。
実施例1〜2及び比較例1で作製したリチウムイオン二次電池用集電部材をそれぞれ外形が幅105mm×長さ205mmの長方形に切断し、その上に、製造例2で得た被覆正極活物質粒子をN−メチルピロリドン(以下、NMP)と混合して得られた正極活物質組成物(被覆正極活物質濃度:95%)をスキージにて幅66mm×長さ166mmの長方形状に外周部を残して塗布し、その後NMPを蒸発させて正極活物質層を形成した。この時の正極被覆活物質相当の目付量は130mg/cmである。
実施例3及び比較例1で作製したリチウムイオン二次電池用集電部材をそれぞれ外形が幅105mm×長さ205mmの長方形に切断し、その上に製造例3で得た被覆負極活物質粒子をNMPと混合して得られた負極活物質組成物(被覆負極活物質濃度:95%)をスキージにて幅70mm×長さ170mmの長方形状に外周部を残して塗布し、その後NMPを蒸発させて負極活物質層を形成した。この時の負極被覆活物質相当の目付量は53mg/cmである。
正極集電体及び負極集電体が表2に記載されたリチウムイオン二次電池用集電部材の組み合わせとなるように、正極活物質層を前記単セル用枠部材が有する枠状ガラスエポキシ基板の内側にセパレータと活物質層が接触する向きで収め、負極活物質層を、セパレータを介して活物質層同士が対向する向きに配置した。なお、正極活物質層を収める前の単セル用枠部材の枠状ガラスエポキシ基板の内側には、事前にそれぞれに電解液[エチレンカーボネートとジエチレンカーボネートの混合溶液(EC/DEC=3/7(体積比))のLiPF1M溶液]を注液しておいた。その後、正極側集電体/ガラスエポキシ基板/負極側集電体が重なった部分をヒートシールして単セルを作製し、この単セルを正極側集電体と負極側集電体とが接する向きに8積層して積層セルを作製した。さらに最外層にある正極側集電体と負極側集電体のそれぞれに実施例4又は比較例2で作製した強電タブ(X−4又はH−2)をそれぞれ表2に記載された組み合わせとなるように貼り付けた。さらに、強電タブ(X−4)にはストライプ状のNi層に直交する一辺に集電用の帯状のニッケル箔を導電性接着剤で貼り付け、強電タブ(H−2)にはいずれかの一辺に集電用の帯状のニッケル箔を導電性接着剤で貼り付けた。次いで、貼り付けたニッケル箔が外部に出る様に配置しながら積層セルをラミネート容器に収容し密閉し評価用セルを作製した。
次いで、以下のサイクル充放電試験を行った。
<Production of evaluation cell>
Prepare two rectangular glass epoxy boards (Nikko Kasei Nicolite NL-EG-23N) with an outer shape of width 105mm x length 205mm, and leave the inner periphery of each 15mm width, and glass epoxy on both sides. A film for heat sealing (Admer QE-060 manufactured by Mitsui Chemicals) having the same shape as the outer periphery of the substrate was fixed. Next, a rectangular PE separator (manufactured by Celgard) with a width of 95 mm and a length of 195 mm is fixed by heat-sealing to one side of the glass epoxy substrate, and a frame-shaped glass epoxy substrate is fixed to one side of the separator. A frame member was produced.
The current collectors for lithium ion secondary batteries produced in Examples 1 and 2 and Comparative Example 1 were cut into rectangles each having an outer shape of width 105 mm × length 205 mm, and the coated positive electrode active material obtained in Production Example 2 was further formed thereon. A positive electrode active material composition (coated positive electrode active material concentration: 95%) obtained by mixing material particles with N-methylpyrrolidone (hereinafter referred to as NMP) in a rectangular shape having a width of 66 mm and a length of 166 mm using a squeegee Was applied, and then NMP was evaporated to form a positive electrode active material layer. At this time, the basis weight corresponding to the positive electrode covering active material is 130 mg / cm 2 .
The lithium ion secondary battery current collector produced in Example 3 and Comparative Example 1 was cut into rectangles each having an outer shape of 105 mm in width and 205 mm in length, and the coated negative electrode active material particles obtained in Production Example 3 were formed thereon. A negative electrode active material composition (coated negative electrode active material concentration: 95%) obtained by mixing with NMP was applied in a rectangular shape with a width of 70 mm and a length of 170 mm with a squeegee, leaving the outer periphery, and then NMP was evaporated. Thus, a negative electrode active material layer was formed. The basis weight corresponding to the negative electrode-coated active material at this time is 53 mg / cm 2 .
A frame-shaped glass epoxy substrate having the positive electrode active material layer in the single cell frame member so that the positive electrode current collector and the negative electrode current collector are a combination of the current collector members for lithium ion secondary batteries described in Table 2. The separator and the active material layer were placed inside such that the negative electrode active material layer was opposed to each other with the separator interposed therebetween. In addition, inside the frame-shaped glass epoxy substrate of the single-cell frame member before containing the positive electrode active material layer, an electrolyte solution [mixed solution of ethylene carbonate and diethylene carbonate (EC / DEC = 3/7 ( The volume ratio)) LiPF 6 1M solution] was poured. Thereafter, a portion where the positive electrode side current collector / glass epoxy substrate / negative electrode side current collector overlap is heat-sealed to produce a single cell, and this single cell is in contact with the positive electrode side current collector and the negative electrode side current collector. A laminated cell was produced by stacking 8 layers in the direction. Furthermore, the high current tabs (X-4 or H-2) produced in Example 4 or Comparative Example 2 were respectively combined with the positive electrode side current collector and the negative electrode side current collector in the outermost layer, as shown in Table 2, respectively. Pasted to be. Further, a strip-shaped nickel foil for current collection is attached to one side perpendicular to the striped Ni layer on the high voltage tab (X-4) with a conductive adhesive, and either one of the high voltage tab (H-2) A strip-shaped nickel foil for current collection was attached to one side with a conductive adhesive. Next, the laminated cell was accommodated in a laminate container and sealed while being arranged so that the adhered nickel foil was exposed to the outside, and an evaluation cell was produced.
Next, the following cycle charge / discharge test was performed.

<サイクル充放電試験>
作製した評価用セルを45℃の環境で定電流定電圧方式(電流値:4mA/cm)により33Vまで充電した後、定電流方式(電流値4mA/cm)で22Vまで放電した。前記の充電操作及び放電操作をもう一度行い、これを1サイクル目の充放電とし、更に50サイクル目の充放電操作が完了するまでの前記の操作を繰り返した。
評価用セルの50サイクル目の放電容量を1サイクル目の放電容量で割った値(容量維持率)を算出した。同じ構成の評価用セルを3個ずつ用意し、各組み合わせにおいて容量維持率の平均値を表2に記載した。50サイクル後容量維持率が高い方が、劣化による性能低下がないことを意味する。
<Cycle charge / discharge test>
The fabricated evaluation cell was charged to 33 V by a constant current constant voltage method (current value: 4 mA / cm 2 ) in an environment of 45 ° C., and then discharged to 22 V by a constant current method (current value 4 mA / cm 2 ). The above-described charging operation and discharging operation were performed once again, which was designated as charge / discharge at the first cycle, and the above-described operations were repeated until the charge / discharge operation at 50th cycle was completed.
A value (capacity maintenance ratio) obtained by dividing the discharge capacity at the 50th cycle of the evaluation cell by the discharge capacity at the first cycle was calculated. Three evaluation cells having the same configuration were prepared, and the average value of the capacity retention ratio in each combination is shown in Table 2. A higher capacity retention ratio after 50 cycles means that there is no performance degradation due to deterioration.

Figure 2018049824
表1中、PPはポリプロピレン、CNTはカーボンナノチューブ、Niはニッケルをそれぞれ表す。
Figure 2018049824
In Table 1, PP represents polypropylene, CNT represents carbon nanotube, and Ni represents nickel.

Figure 2018049824
Figure 2018049824

実施例5〜10においては、50サイクル後容量維持率が80%以上と高かったのに対し、比較例3においては、50サイクル後容量維持率が本発明のリチウムイオン二次電池用集電部材を用いた場合よりも低く、充放電による評価用セルの劣化が確認された。 In Examples 5 to 10, the capacity retention rate after 50 cycles was as high as 80% or more, whereas in Comparative Example 3, the capacity retention rate after 50 cycles was the current collecting member for the lithium ion secondary battery of the present invention. The deterioration of the evaluation cell due to charge / discharge was confirmed.

本発明により得られるリチウムイオン二次電池用集電部材は、特に、携帯電話、パーソナルコンピューター及びハイブリッド自動車、電気自動車用に用いられるリチウムイオン二次電池用の集電体等として有用である。 The current collecting member for a lithium ion secondary battery obtained by the present invention is particularly useful as a current collector for a lithium ion secondary battery used for a mobile phone, a personal computer, a hybrid vehicle, and an electric vehicle.

10、60 導電性フィルム(リチウムイオン二次電池用集電体)
11、61 高分子化合物
12、52 導電性繊維
20 金属薄膜
31 正極
32 セパレータ
33 負極
50 織物
51 樹脂繊維
62 導電材料
120 リチウムイオン二次電池用強電タブ
10, 60 Conductive film (current collector for lithium ion secondary battery)
11, 61 Polymer compound 12, 52 Conductive fiber 20 Metal thin film 31 Positive electrode 32 Separator 33 Negative electrode 50 Fabric 51 Resin fiber 62 Conductive material 120 High-power tab for lithium ion secondary battery

Claims (8)

導電材料と高分子化合物とを含んでなる導電性フィルムからなり、
前記導電性フィルムの厚さ方向に対して直交する方向のうち、電気抵抗値が最小となる第1の方向における電気抵抗値(R)が、前記厚さ方向と前記第1の方向とに対して直交する第2の方向における電気抵抗値(R)よりも小さいことを特徴とするリチウムイオン二次電池用集電部材。
A conductive film comprising a conductive material and a polymer compound,
Of the directions orthogonal to the thickness direction of the conductive film, the electric resistance value (R 1 ) in the first direction where the electric resistance value is the smallest is the thickness direction and the first direction. A current collecting member for a lithium ion secondary battery, wherein the current collecting member is smaller than an electric resistance value (R 2 ) in a second direction orthogonal thereto.
前記第1の方向に対する電気抵抗値(R)と前記第2の方向に対する電気抵抗値(R)との比率(R/R)が0.5以下である請求項1に記載のリチウムイオン二次電池用集電部材。 2. The ratio (R 1 / R 2 ) between the electric resistance value (R 1 ) with respect to the first direction and the electric resistance value (R 2 ) with respect to the second direction is 0.5 or less. A current collecting member for a lithium ion secondary battery. 前記第1の方向に対する電気抵抗値(R)が1×10−10〜1×10Ω・mである請求項1又は2に記載のリチウムイオン二次電池用集電部材。 3. The current collector for a lithium ion secondary battery according to claim 1, wherein an electric resistance value (R 1 ) with respect to the first direction is 1 × 10 −10 to 1 × 10 1 Ω · m. 前記導電材料のアスペクト比が2以上であり、前記導電性フィルム内で導電材料が第1の方向に沿った方向に配向している請求項1〜3のいずれかに記載のリチウムイオン二次電池用集電部材。 The lithium ion secondary battery according to any one of claims 1 to 3, wherein an aspect ratio of the conductive material is 2 or more, and the conductive material is oriented in a direction along the first direction in the conductive film. Current collecting member. 請求項1〜4のいずれかに記載のリチウムイオン二次電池用集電部材を用いたリチウムイオン二次電池用集電体。 The collector for lithium ion secondary batteries using the current collection member for lithium ion secondary batteries in any one of Claims 1-4. 請求項1〜4のいずれかに記載のリチウムイオン二次電池用集電部材を用いたリチウムイオン二次電池用強電タブ。 A high voltage tab for a lithium ion secondary battery using the current collecting member for a lithium ion secondary battery according to claim 1. 前記導電性フィルム上に、前記第1の方向に沿った方向に伸びたストライプ状の金属薄膜を設けてなる、請求項6に記載のリチウムイオン二次電池用強電タブ。 The high voltage tab for a lithium ion secondary battery according to claim 6, wherein a stripe-shaped metal thin film extending in a direction along the first direction is provided on the conductive film. 導電材料と高分子化合物を混合した混合物をフィルム状に延伸し前記導電材料の配向を延伸方向に揃えることにより、導電性フィルムの厚さ方向に対して直交する第1の方向における電気抵抗値(R)が、前記厚さ方向と前記第1の方向とに対して直交する第2の方向における電気抵抗値(R)よりも小さい導電性フィルムを得ることを特徴とする、リチウムイオン二次電池用集電部材の製造方法。 An electrical resistance value in a first direction perpendicular to the thickness direction of the conductive film is obtained by stretching a mixture of the conductive material and the polymer compound into a film and aligning the orientation of the conductive material in the stretching direction ( R 1 ) obtains a conductive film having a smaller electrical resistance value (R 2 ) in a second direction perpendicular to the thickness direction and the first direction. The manufacturing method of the current collection member for secondary batteries.
JP2017176784A 2016-09-15 2017-09-14 A method for manufacturing a current collecting member for a lithium ion secondary battery, a current collecting body for a lithium ion secondary battery using the current collecting member, a strong current tab for a lithium ion secondary battery, and a current collecting member for a lithium ion secondary battery. Active JP7029258B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016180716 2016-09-15
JP2016180716 2016-09-15

Publications (2)

Publication Number Publication Date
JP2018049824A true JP2018049824A (en) 2018-03-29
JP7029258B2 JP7029258B2 (en) 2022-03-03

Family

ID=61766431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017176784A Active JP7029258B2 (en) 2016-09-15 2017-09-14 A method for manufacturing a current collecting member for a lithium ion secondary battery, a current collecting body for a lithium ion secondary battery using the current collecting member, a strong current tab for a lithium ion secondary battery, and a current collecting member for a lithium ion secondary battery.

Country Status (1)

Country Link
JP (1) JP7029258B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207838A (en) * 2018-05-30 2019-12-05 三洋化成工業株式会社 Resin collector and lithium ion battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310261A (en) * 2005-01-14 2006-11-09 Sumitomo Electric Ind Ltd Current collector and electrode base plate for battery and their manufacturing method
JP2010067580A (en) * 2008-09-12 2010-03-25 Nissan Motor Co Ltd Bipolar secondary battery
WO2010103874A1 (en) * 2009-03-12 2010-09-16 日産自動車株式会社 Bipolar battery current collector and bipolar battery
WO2011138920A1 (en) * 2010-05-07 2011-11-10 日産自動車株式会社 Electrode structure, method for producing same, and bipolar battery
JP2011233277A (en) * 2010-04-26 2011-11-17 Panasonic Corp Power storage device
WO2014034758A1 (en) * 2012-08-30 2014-03-06 株式会社カネカ Current collector for battery and battery using same
JP2014053158A (en) * 2012-09-06 2014-03-20 Nissan Motor Co Ltd Collector, bipolar electrode, and bipolar secondary battery
WO2014080853A1 (en) * 2012-11-22 2014-05-30 株式会社カネカ Collector for bipolar lithium ion secondary batteries, and bipolar lithium ion secondary battery
WO2016031688A1 (en) * 2014-08-25 2016-03-03 日産自動車株式会社 Stacked cell and production method for same
JP2016519399A (en) * 2013-05-03 2016-06-30 ジェナックス インコーポレイテッド Nonwoven fabric current collector, battery manufacturing method and system using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310261A (en) * 2005-01-14 2006-11-09 Sumitomo Electric Ind Ltd Current collector and electrode base plate for battery and their manufacturing method
JP2010067580A (en) * 2008-09-12 2010-03-25 Nissan Motor Co Ltd Bipolar secondary battery
WO2010103874A1 (en) * 2009-03-12 2010-09-16 日産自動車株式会社 Bipolar battery current collector and bipolar battery
JP2011233277A (en) * 2010-04-26 2011-11-17 Panasonic Corp Power storage device
WO2011138920A1 (en) * 2010-05-07 2011-11-10 日産自動車株式会社 Electrode structure, method for producing same, and bipolar battery
WO2014034758A1 (en) * 2012-08-30 2014-03-06 株式会社カネカ Current collector for battery and battery using same
JP2014053158A (en) * 2012-09-06 2014-03-20 Nissan Motor Co Ltd Collector, bipolar electrode, and bipolar secondary battery
WO2014080853A1 (en) * 2012-11-22 2014-05-30 株式会社カネカ Collector for bipolar lithium ion secondary batteries, and bipolar lithium ion secondary battery
JP2016519399A (en) * 2013-05-03 2016-06-30 ジェナックス インコーポレイテッド Nonwoven fabric current collector, battery manufacturing method and system using the same
WO2016031688A1 (en) * 2014-08-25 2016-03-03 日産自動車株式会社 Stacked cell and production method for same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207838A (en) * 2018-05-30 2019-12-05 三洋化成工業株式会社 Resin collector and lithium ion battery
JP7148275B2 (en) 2018-05-30 2022-10-05 三洋化成工業株式会社 Method for manufacturing resin current collector

Also Published As

Publication number Publication date
JP7029258B2 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
JP6346291B2 (en) Electrical connection structure
TWI475738B (en) A collector for a bipolar lithium ion secondary battery
JP7190314B2 (en) bipolar secondary battery
JP2019216035A (en) Resin collector, lamination type resin collector, and lithium ion battery
JP5418088B2 (en) Current collector for lithium ion secondary battery
KR20160114587A (en) Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
JP6785110B2 (en) Current collectors for lithium-ion batteries and lithium-ion batteries
JP7246140B2 (en) RESIN CURRENT COLLECTOR AND METHOD FOR MANUFACTURING RESIN CURRENT COLLECTOR
CN112688022A (en) Quick charge-discharge lithium ion battery and preparation method thereof
JP2010092606A (en) Current collector for bipolar secondary battery
EP3624243B1 (en) Bipolar secondary battery
JP2011103277A (en) Sodium secondary battery
JP2019160789A (en) Negative electrode for lithium ion battery and lithium ion battery
JP5515257B2 (en) Bipolar secondary battery
JP6989265B2 (en) Battery manufacturing method
JP7029258B2 (en) A method for manufacturing a current collecting member for a lithium ion secondary battery, a current collecting body for a lithium ion secondary battery using the current collecting member, a strong current tab for a lithium ion secondary battery, and a current collecting member for a lithium ion secondary battery.
US11652241B2 (en) Battery manufacturing method
WO2019198453A1 (en) Battery manufacturing method
US11837691B2 (en) Battery manufacturing method
JP6652813B2 (en) Stacked battery module
JP7148489B2 (en) Current collector for lithium ion battery, method for producing current collector for lithium ion battery, and electrode for lithium ion battery
JP2020087863A (en) Method for manufacturing electrode for battery, and device for manufacturing electrode for battery
CN111937211B (en) Method for manufacturing battery
WO2021171999A1 (en) Conductive substrate and secondary battery
JP7105166B2 (en) Current collector for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20171004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220218

R150 Certificate of patent or registration of utility model

Ref document number: 7029258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150