JP2011103277A - Sodium secondary battery - Google Patents

Sodium secondary battery Download PDF

Info

Publication number
JP2011103277A
JP2011103277A JP2009258746A JP2009258746A JP2011103277A JP 2011103277 A JP2011103277 A JP 2011103277A JP 2009258746 A JP2009258746 A JP 2009258746A JP 2009258746 A JP2009258746 A JP 2009258746A JP 2011103277 A JP2011103277 A JP 2011103277A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
sodium
negative electrode
porous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009258746A
Other languages
Japanese (ja)
Inventor
Tetsuri Nakayama
哲理 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009258746A priority Critical patent/JP2011103277A/en
Publication of JP2011103277A publication Critical patent/JP2011103277A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sodium secondary battery which has large discharge capacity in comparison with a conventional secondary battery at the time of performing of quick charge and discharge, namely, is excellent in rate characteristics. <P>SOLUTION: The sodium secondary battery has a positive electrode capable of doping and dedoping sodium ions, a negative electrode capable of doping and dedoping sodium ions, and an electrolyte. An inorganic porous layer including an alumina filler where a sodium content is 0.01-15 wt.% in terms of oxide is formed on at least one surface of the electrode selected from the positive electrode and the negative electrode. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ナトリウム二次電池に関する。   The present invention relates to a sodium secondary battery.

二次電池としては、リチウム二次電池が代表的であり、携帯電話やノートパソコンなどの小型電源として既に実用化され、さらに、電気自動車、ハイブリッド自動車等の自動車用電源や分散型電力貯蔵用電源等の大型電源として使用可能であることから、その需要は増大しつつある。しかしながら、リチウム二次電池においては、その正極を構成する複合金属酸化物に、リチウム等の稀少金属元素が多く含有されており、大型電源の需要の増大に対応するための前記原料の供給が懸念されている。   Secondary batteries are typically lithium secondary batteries, which have already been put into practical use as compact power sources for mobile phones and notebook computers, and are also used as power sources for automobiles and distributed power storage such as electric vehicles and hybrid vehicles. Therefore, the demand is increasing. However, in the lithium secondary battery, the composite metal oxide constituting the positive electrode contains a large amount of rare metal elements such as lithium, and there is a concern about the supply of the raw materials to cope with the increase in demand for large-scale power sources. Has been.

これに対し、上記の供給懸念を解決することのできる二次電池として、ナトリウム二次電池の検討がなされている。ナトリウム二次電池は、資源量が豊富でしかも安価な材料により構成することができ、これを実用化することにより、大型電源を大量に供給可能になるものと期待されている。   On the other hand, a sodium secondary battery has been studied as a secondary battery that can solve the above supply concerns. Sodium secondary batteries can be made of abundant and inexpensive materials, and it is expected that large-scale power supplies can be supplied in large quantities by putting them into practical use.

そして、ナトリウム二次電池として、例えば特許文献1には、正極としてNa0.7Ni0.3Co0.72を用い、負極としてナトリウム・鉛合金を用い、セパレータとしてポリプロピレン製マイクロポーラスフィルムを用いて、該セパレータを正極・負極間に配置させたナトリウム二次電池が開示されている。 As a sodium secondary battery, for example, in Patent Document 1, Na 0.7 Ni 0.3 Co 0.7 O 2 is used as a positive electrode, a sodium / lead alloy is used as a negative electrode, and a polypropylene microporous film is used as a separator. A sodium secondary battery in which is disposed between a positive electrode and a negative electrode is disclosed.

特開平3−291863号公報(実施例1)JP-A-3-291863 (Example 1)

上述した従来のナトリウム二次電池においては、セパレータが、正極・負極間に、該正極および該負極の双方に接するように配置されて構成されているが、このような二次電池については、急速に充放電を行った場合の放電容量の点で、未だ改善の余地がある。本発明の目的は、従来に比し、急速に充放電を行った場合の放電容量が大きいナトリウム二次電池、すなわちレート特性に優れるナトリウム二次電池を提供することにある。   In the conventional sodium secondary battery described above, the separator is arranged between the positive electrode and the negative electrode so as to be in contact with both of the positive electrode and the negative electrode. There is still room for improvement in terms of discharge capacity when charging and discharging are performed. An object of the present invention is to provide a sodium secondary battery having a large discharge capacity when rapidly charged and discharged as compared with the prior art, that is, a sodium secondary battery excellent in rate characteristics.

本発明者らは、種々検討した結果、本発明が上記目的に合致することを見出し、本発明に至った。   As a result of various studies, the present inventors have found that the present invention meets the above object, and have reached the present invention.

すなわち本発明は、次の発明を提供する。
<1>ナトリウムイオンをドープ・脱ドープすることのできる正極と、ナトリウムイオンをドープ・脱ドープすることのできる負極と、電解質とを備え、前記正極および前記負極から選ばれる電極の少なくとも一方の表面に、ナトリウム含有率が酸化物換算で0.01重量%以上15重量%以下のアルミナフィラーを含む無機多孔層が形成されていることを特徴とするナトリウム二次電池。
<2>前記無機多孔層が、前記アルミナフィラーおよび結着剤を含む層である前記<1>記載のナトリウム二次電池。
<3>前記アルミナフィラーの平均粒径が0.01〜2μmの範囲である前記<1>または<2>に記載のナトリウム二次電池。
<4>前記アルミナフィラーおよび前記結着剤の合計重量に対する前記アルミナフィラーの重量が、80〜99重量%の範囲である前記<2>または<3>記載のナトリウム二次電池。
<5>前記無機多孔層の空隙率が、20〜80体積%の範囲である前記<1>〜<4>のいずれかに記載のナトリウム二次電池。
<6>前記無機多孔層の厚みが、1〜10μmの範囲である前記<1>〜<5>のいずれかに記載のナトリウム二次電池。
<7>セパレータを有する前記<1>〜<6>のいずれかに記載のナトリウム二次電池。
That is, the present invention provides the following inventions.
<1> A positive electrode capable of doping / de-doping sodium ions, a negative electrode capable of doping / de-doping sodium ions, and an electrolyte, and at least one surface of an electrode selected from the positive electrode and the negative electrode Further, an inorganic porous layer containing an alumina filler having a sodium content of 0.01% by weight to 15% by weight in terms of oxide is formed.
<2> The sodium secondary battery according to <1>, wherein the inorganic porous layer is a layer containing the alumina filler and a binder.
<3> The sodium secondary battery according to <1> or <2>, wherein an average particle diameter of the alumina filler is in a range of 0.01 to 2 μm.
<4> The sodium secondary battery according to <2> or <3>, wherein the weight of the alumina filler with respect to the total weight of the alumina filler and the binder is in the range of 80 to 99% by weight.
<5> The sodium secondary battery according to any one of <1> to <4>, wherein the porosity of the inorganic porous layer is in the range of 20 to 80% by volume.
<6> The sodium secondary battery according to any one of <1> to <5>, wherein the inorganic porous layer has a thickness in the range of 1 to 10 μm.
<7> The sodium secondary battery according to any one of <1> to <6>, including a separator.

本発明によれば、従来のナトリウム二次電池に比して、レート特性に優れるナトリウム二次電池を与えることができる。しかも、本発明のナトリウム二次電池は、安価な材料により構成することもでき、本発明は、極めて実用性に富む。   ADVANTAGE OF THE INVENTION According to this invention, compared with the conventional sodium secondary battery, the sodium secondary battery excellent in a rate characteristic can be given. Moreover, the sodium secondary battery of the present invention can be made of an inexpensive material, and the present invention is extremely practical.

本発明のナトリウム二次電池は、ナトリウムイオンをドープ・脱ドープすることのできる正極と、ナトリウムイオンをドープ・脱ドープすることのできる負極と、電解質とを備え、前記正極および前記負極から選ばれる電極の少なくとも一方の表面に、ナトリウム含有率が酸化物換算で0.01重量%以上15重量%以下のアルミナフィラーを含む無機多孔層が形成されていることを特徴とする。本発明のこの構成により、正極と負極の間の抵抗を下げることができ、ナトリウム二次電池のレート特性を向上させることができる。   The sodium secondary battery of the present invention includes a positive electrode capable of doping and dedoping sodium ions, a negative electrode capable of doping and dedoping sodium ions, and an electrolyte, and is selected from the positive electrode and the negative electrode An inorganic porous layer containing an alumina filler having a sodium content of 0.01 wt% or more and 15 wt% or less in terms of oxide is formed on at least one surface of the electrode. With this configuration of the present invention, the resistance between the positive electrode and the negative electrode can be lowered, and the rate characteristics of the sodium secondary battery can be improved.

<正極>
本発明において、正極は、ナトリウムイオンをドープ・脱ドープすることができる。正極としては、正極活物質、結着剤及び導電剤等を含む正極合剤が、正極集電体に担持されているものを挙げることができる。具体的な製造方法としては、正極活物質、結着剤及び導電剤等に溶剤を添加してなる正極合剤を、正極集電体に、ドクターブレード法などで塗工、又は浸漬し乾燥する方法、正極活物質、結着剤及び導電剤等に溶剤を添加して混練、成形し、乾燥して得たシートを正極集電体表面に導電性接着剤等を介して接合した後にプレス及び熱処理乾燥する方法、正極活物質、結着剤、導電剤及び液状潤滑剤等からなる混合物を正極集電体上に成形した後、液状潤滑剤を除去し、次いで、得られたシート状の成形物を一軸又は多軸方向に延伸処理する方法などが挙げられる。正極がシート状である場合、その厚みは、通常、5〜500μm程度である。
<Positive electrode>
In the present invention, the positive electrode can be doped / undoped with sodium ions. Examples of the positive electrode include those in which a positive electrode mixture containing a positive electrode active material, a binder, a conductive agent, and the like is supported on a positive electrode current collector. As a specific production method, a positive electrode mixture formed by adding a solvent to a positive electrode active material, a binder, a conductive agent, and the like is applied to a positive electrode current collector by a doctor blade method or the like, or dipped and dried. A method, a positive electrode active material, a binder, a conductive agent and the like added with a solvent, kneaded, molded, dried, and joined to the surface of the positive electrode current collector via a conductive adhesive or the like after pressing and After forming a mixture comprising a method of heat treatment drying, a positive electrode active material, a binder, a conductive agent and a liquid lubricant on the positive electrode current collector, the liquid lubricant is removed, and then the obtained sheet-like molding The method of extending | stretching a thing to a uniaxial or multiaxial direction etc. is mentioned. When the positive electrode has a sheet shape, the thickness is usually about 5 to 500 μm.

正極活物質としては、ナトリウムイオンをドープ・脱ドープすることのできる正極材料を用いることができる。得られるナトリウム二次電池のサイクル性の観点では、該材料としては、ナトリウム無機化合物を用いることが好ましい。ナトリウム無機化合物としては、次の化合物を挙げることができる。すなわち、NaFeO2、NaMnO2、NaNiO2およびNaCoO2等のNaM1 a2で表される酸化物、Na0.44Mn1-a1 a2で表される酸化物、Na0.7Mn1-a1 a2.05で表される酸化物(M1は1種以上の遷移金属元素、0≦a<1);Na6Fe2Si1230およびNa2Fe5Si1230等のNab2 cSi1230で表される酸化物(M2は1種以上の遷移金属元素、2≦b≦6、2≦c≦5);Na2Fe2Si618およびNa2MnFeSi618等のNad3 eSi618で表される酸化物(M3は1種以上の遷移金属元素、3≦d≦6、1≦e≦2);Na2FeSiO6等のNaf4 gSi26で表される酸化物(M4は遷移金属元素、MgおよびAlからなる群より選ばれる1種以上の元素、1≦f≦2、1≦g≦2);NaFePO4、Na3Fe2(PO43等のリン酸塩;NaFeBO4、Na3Fe2(BO43等のホウ酸塩;Na3FeF6およびNa2MnF6等のNah56で表されるフッ化物(M5は1種以上の遷移金属元素、2≦h≦3);等が挙げられる。 As the positive electrode active material, a positive electrode material that can be doped / undoped with sodium ions can be used. From the viewpoint of the cycleability of the obtained sodium secondary battery, it is preferable to use a sodium inorganic compound as the material. Examples of the sodium inorganic compound include the following compounds. That, NaFeO 2, NaMnO 2, NaNiO 2 and NaCoO oxide represented by NaM 1 a O 2, such as 2, oxide represented by Na 0.44 Mn 1-a M 1 a O 2, Na 0.7 Mn 1- a oxide represented by M 1 a O 2.05 (M 1 is one or more transition metal elements, 0 ≦ a <1); Na 6 Fe 2 Si 12 O 30 and Na 2 Fe 5 Si 12 O 30 Oxides represented by Na b M 2 c Si 12 O 30 (M 2 is one or more transition metal elements, 2 ≦ b ≦ 6, 2 ≦ c ≦ 5); Na 2 Fe 2 Si 6 O 18 and Na Na d M 3 e Si 6 oxide represented by O 18, such as 2 MnFeSi 6 O 18 (M 3 is one or more transition metal elements, 3 ≦ d ≦ 6,1 ≦ e ≦ 2); Na 2 FeSiO Na f M 4 g Si 2 oxide represented by O 6 (M 4 is at least one element selected from the group consisting of transition metal elements, Mg and Al, such as 6, 1 ≦ f ≦ 2, 1 ≦ g ≦ 2); phosphates such as NaFePO 4 and Na 3 Fe 2 (PO 4 ) 3 ; borate salts such as NaFeBO 4 and Na 3 Fe 2 (BO 4 ) 3 ; Na 3 FeF Na h M 5 fluoride represented by F 6 (M 5 is one or more transition metal elements, 2 ≦ h ≦ 3) such as 6 and Na 2 MnF 6; and the like.

本発明において、上記のナトリウム無機化合物の中では、Feを含有する化合物を好ましく用いることができる。本発明においては、無機多孔層が負極の表面に形成されている場合、正極側において、電解質、特に後述の非水電解液が加熱された状態になったとしても、Feイオン等の遷移金属元素のイオンの溶出を抑制することができ、遷移金属元素のイオンの錯体化を抑制することができ、ナトリウム二次電池のサイクル性、すなわち、充放電を繰り返した際の放電容量維持率をより高めることができる。また、Feを含有する化合物を使用することは、資源量が豊富で安価な材料により、二次電池を構成する観点でも、非常に重要なことである。   In the present invention, among the above-mentioned sodium inorganic compounds, compounds containing Fe can be preferably used. In the present invention, when the inorganic porous layer is formed on the surface of the negative electrode, even if the electrolyte, particularly a nonaqueous electrolyte described later, is heated on the positive electrode side, a transition metal element such as Fe ion is used. Of ions of transition metal elements can be suppressed, and the cycle performance of the sodium secondary battery, that is, the discharge capacity retention rate when charging and discharging are repeated is further increased. be able to. In addition, the use of a compound containing Fe is very important from the viewpoint of configuring a secondary battery with abundant and inexpensive materials.

また、負極が後述のナトリウム金属またはナトリウム合金を主としてなる場合には、正極活物質として、この負極よりも高い電位でナトリウムイオンをドープ・脱ドープすることのできる硫化物等のカルコゲン化合物を用いることもできる。硫化物としてはTiS2、ZrS2、VS2、V25、TaS2、FeS2およびNiS2等のM62で表される化合物(M6は1種以上の遷移金属元素)等が挙げられる。 Also, when the negative electrode is mainly composed of sodium metal or sodium alloy described later, a chalcogen compound such as sulfide that can be doped / undoped with sodium ions at a higher potential than the negative electrode is used as the positive electrode active material. You can also. As sulfides, compounds represented by M 6 S 2 such as TiS 2 , ZrS 2 , VS 2 , V 2 S 5 , TaS 2 , FeS 2 and NiS 2 (M 6 is one or more transition metal elements), etc. Is mentioned.

前記の正極に用いられる導電剤としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラックなどの炭素材料などを挙げることができる。   Examples of the conductive agent used for the positive electrode include natural graphite, artificial graphite, cokes, carbon materials such as carbon black, and the like.

前記の正極に用いられる結着剤としては、例えば、フッ素化合物の重合体が挙げられる。フッ素化合物としては、例えば、フッ素化アルキル(炭素数1〜18)(メタ)アクリレート、パーフルオロアルキル(メタ)アクリレート[例えば、パーフルオロドデシル(メタ)アクリレート、パーフルオロn−オクチル(メタ)アクリレート、パーフルオロn−ブチル(メタ)アクリレート]、パーフルオロアルキル置換アルキル(メタ)アクリレート[例えばパーフルオロヘキシルエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート]、パーフルオロオキシアルキル(メタ)アクリレート[例えば、パーフルオロドデシルオキシエチル(メタ)アクリレート及びパーフルオロデシルオキシエチル(メタ)アクリレートなど]、フッ素化アルキル(炭素数1〜18)クロトネート、フッ素化アルキル(炭素数1〜18)マレート及びフマレート、フッ素化アルキル(炭素数1〜18)イタコネート、フッ素化アルキル置換オレフィン(炭素数2〜10程度、フッ素原子数1〜17程度)、例えばパーフロオロヘキシルエチレン、炭素数2〜10程度、及びフッ素原子の数1〜20程度の二重結合炭素にフッ素原子が結合したフッ素化オレフィン、テトラフルオロエチレン、トリフルオロエチレン、フッ化ビニリデン又はヘキサフルオロプロピレンなどが挙げられる。   Examples of the binder used for the positive electrode include a polymer of a fluorine compound. Examples of the fluorine compound include fluorinated alkyl (C1-18) (meth) acrylate, perfluoroalkyl (meth) acrylate [for example, perfluorododecyl (meth) acrylate, perfluoro n-octyl (meth) acrylate, Perfluoro n-butyl (meth) acrylate], perfluoroalkyl-substituted alkyl (meth) acrylate [for example, perfluorohexylethyl (meth) acrylate, perfluorooctylethyl (meth) acrylate], perfluorooxyalkyl (meth) acrylate [ For example, perfluorododecyloxyethyl (meth) acrylate and perfluorodecyloxyethyl (meth) acrylate, etc.], fluorinated alkyl (C1-C18) crotonate, fluorinated alkyl (carbon Number 1-18) Malate and fumarate, fluorinated alkyl (carbon number 1-18) itaconate, fluorinated alkyl-substituted olefin (about 2-10 carbon atoms, about 1-17 fluorine atoms) such as perfluorohexylethylene, carbon Examples thereof include fluorinated olefins, tetrafluoroethylene, trifluoroethylene, vinylidene fluoride, hexafluoropropylene and the like in which fluorine atoms are bonded to double bond carbons of about 2 to 10 and about 1 to 20 fluorine atoms.

結着剤のその他の例示としては、フッ素原子を含まないエチレン性二重結合を含む単量体の付加重合体が挙げられる。かかる単量体としては、例えば、(シクロ)アルキル(炭素数1〜22)(メタ)アクリレート[例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレート等];芳香環含有(メタ)アクリレート[例えば、ベンジル(メタ)アクリレート、フェニルエチル(メタ)アクリレート等];アルキレングリコールもしくはジアルキレングリコール(アルキレン基の炭素数2〜4)のモノ(メタ)アクリレート[例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート];(ポリ)グリセリン(重合度1〜4)モノ(メタ)アクリレート;多官能(メタ)アクリレート[例えば、(ポリ)エチレングリコール(重合度1〜100)ジ(メタ)アクリレート、(ポリ)プロピレングリコール(重合度1〜100)ジ(メタ)アクリレート、2,2−ビス(4−ヒドロキシエチルフェニル)プロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等]などの(メタ)アクリル酸エステル系単量体;(メタ)アクリルアミド、(メタ)アクリルアミド系誘導体[例えば、N−メチロール(メタ)アクリルアミド、ダイアセトンアクリルアミド等]などの(メタ)アクリルアミド系単量体;(メタ)アクリロニトリル、2−シアノエチル(メタ)アクリレート、2−シアノエチルアクリルアミド等のシアノ基含有単量体;スチレン及び炭素数7〜18のスチレン誘導体[例えば、α−メチルスチレン、ビニルトルエン、p−ヒドロキシスチレン及びジビニルベンゼン等]などのスチレン系単量体;炭素数4〜12のアルカジエン[例えば、ブタジエン、イソプレン、クロロプレン等]などのジエン系単量体;カルボン酸(炭素数2〜12)ビニルエステル[例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル及びオクタン酸ビニル等]、カルボン酸(炭素数2〜12)(メタ)アリルエステル[例えば、酢酸(メタ)アリル、プロピオン酸(メタ)アリル及びオクタン酸(メタ)アリル等]などのアルケニルエステル系単量体;グリシジル(メタ)アクリレート、(メタ)アリルグリシジルエーテル等のエポキシ基含有単量体;炭素数2〜12のモノオレフィン[例えば、エチレン、プロピレン、1−ブテン、1−オクテン及び1−ドデセン等]のモノオレフィン類;塩素、臭素又はヨウ素原子含有単量体、塩化ビニル及び塩化ビニリデンなどのフッ素以外のハロゲン原子含有単量体;アクリル酸、メタクリル酸などの(メタ)アクリル酸;ブタジエン、イソプレンなどの共役二重結合含有単量体などが挙げられる。
また、付加重合体として、例えば、エチレン・酢酸ビニル共重合体、スチレン・ブタジエン共重合体又はエチレン・プロピレン共重合体などの共重合体でもよい。また、カルボン酸ビニルエステル重合体は、ポリビニルアルコールなどのように、部分的又は完全にケン化されていてもよい。結着剤はフッ素化合物とフッ素原子を含まないエチレン性二重結合を含む単量体との共重合体であってもよい。
Other examples of the binder include monomer addition polymers containing an ethylenic double bond that does not contain a fluorine atom. Examples of such monomers include (cyclo) alkyl (C1-22) (meth) acrylate [for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (Meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, octadecyl (meth) acrylate, etc.]; aromatic ring-containing (meth) acrylate [for example, benzyl (Meth) acrylate, phenylethyl (meth) acrylate, etc.]; mono (meth) acrylate of alkylene glycol or dialkylene glycol (alkylene group having 2 to 4 carbon atoms) [for example, 2-hydroxyethyl (meth) acrylate, 2- Hi Roxypropyl (meth) acrylate, diethylene glycol mono (meth) acrylate]; (poly) glycerin (degree of polymerization 1 to 4) mono (meth) acrylate; polyfunctional (meth) acrylate [for example, (poly) ethylene glycol (degree of polymerization 1) ~ 100) di (meth) acrylate, (poly) propylene glycol (degree of polymerization 1-100) di (meth) acrylate, 2,2-bis (4-hydroxyethylphenyl) propane di (meth) acrylate, trimethylolpropane tri ( (Meth) acrylate monomers such as (meth) acrylate]; (meth) acrylamide (meth) acrylamide, (meth) acrylamide derivatives [eg, N-methylol (meth) acrylamide, diacetone acrylamide, etc.] Acrylamide monomer; ) Cyano group-containing monomers such as acrylonitrile, 2-cyanoethyl (meth) acrylate, 2-cyanoethylacrylamide; styrene and styrene derivatives having 7 to 18 carbon atoms [for example, α-methylstyrene, vinyltoluene, p-hydroxystyrene and Styrene monomers such as divinylbenzene] Diene monomers such as alkadienes having 4 to 12 carbon atoms [for example, butadiene, isoprene, chloroprene, etc.]; Carboxylic acid (2 to 12 carbon atoms) vinyl esters [for example, , Vinyl acetate, vinyl propionate, vinyl butyrate and vinyl octoate, etc.], carboxylic acid (2 to 12 carbon atoms) (meth) allyl ester [for example, (meth) allyl acetate, (meth) allyl propionate and octanoic acid ( Alkenyl ester monomers such as (meth) allyl etc.]; Epoxy group-containing monomers such as zir (meth) acrylate and (meth) allyl glycidyl ether; monoolefins having 2 to 12 carbon atoms [for example, ethylene, propylene, 1-butene, 1-octene and 1-dodecene, etc.] Monoolefins; chlorine, bromine or iodine atom-containing monomers, halogen atom-containing monomers other than fluorine such as vinyl chloride and vinylidene chloride; (meth) acrylic acid such as acrylic acid and methacrylic acid; butadiene, isoprene, etc. Examples thereof include a conjugated double bond-containing monomer.
Further, as the addition polymer, for example, a copolymer such as an ethylene / vinyl acetate copolymer, a styrene / butadiene copolymer, or an ethylene / propylene copolymer may be used. Moreover, the carboxylic acid vinyl ester polymer may be partially or completely saponified, such as polyvinyl alcohol. The binder may be a copolymer of a fluorine compound and a monomer containing an ethylenic double bond not containing a fluorine atom.

結着剤のその他の例示としては、例えば、デンプン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルヒドロキシエチルセルロース、ニトロセルロースなどの多糖類及びその誘導体;フェノール樹脂;メラミン樹脂;ポリウレタン樹脂;尿素樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリアミドイミド樹脂;石油ピッチ;石炭ピッチなどが挙げられる。   Other examples of the binder include, for example, polysaccharides and derivatives thereof such as starch, methylcellulose, carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylhydroxyethylcellulose, nitrocellulose; phenol resin; melamine resin; Polyurethane resin; urea resin; polyamide resin; polyimide resin; polyamideimide resin; petroleum pitch;

結着剤としては、特に、フッ素化合物の重合体が好ましく、とりわけ、テトラフルオロエチレンの重合体であるポリテトラフルオロエチレンが好ましい。また、結着剤としては上記の複数種の結着剤を使用してもよい。また、結着剤が増粘する場合には、正極集電体への塗布を容易にするために、可塑剤を使用してもよい。   As the binder, a polymer of a fluorine compound is particularly preferable, and polytetrafluoroethylene which is a polymer of tetrafluoroethylene is particularly preferable. Moreover, you may use said multiple types of binder as a binder. Further, when the binder is thickened, a plasticizer may be used to facilitate application to the positive electrode current collector.

前記の正極に用いられる溶剤としては、例えば、N−メチル−2−ピロリドンなどの非プロトン性極性溶媒、イソプロピルアルコール、エチルアルコール若しくはメチルアルコールなどのアルコール類、プロピレングリコールジメチルエーテルなどのエーテル類、アセトン、メチルエチルケトン又はメチルイソブチルケトンなどのケトン類などが挙げられる。   Examples of the solvent used for the positive electrode include aprotic polar solvents such as N-methyl-2-pyrrolidone, alcohols such as isopropyl alcohol, ethyl alcohol or methyl alcohol, ethers such as propylene glycol dimethyl ether, acetone, Examples thereof include ketones such as methyl ethyl ketone and methyl isobutyl ketone.

導電性接着剤とは、導電剤と結着剤との混合物であり、特に、カーボンブラックとポリビニルアルコールとの混合物が溶剤を用いる必要もなく、調製が容易であり、さらに保存性にも優れることから好適である。   A conductive adhesive is a mixture of a conductive agent and a binder. In particular, the mixture of carbon black and polyvinyl alcohol does not require the use of a solvent, is easy to prepare, and has excellent storage stability. To preferred.

また、正極合剤において、その構成材料の配合量としては、適宜設定すればよいが、結着剤の配合量としては、正極活物質100重量部に対し、通常、0.5〜30重量部程度、好ましくは2〜30重量部程度であり、導電剤の配合量としては、正極活物質100重量部に対し、通常、1〜50重量部程度、好ましくは1〜30重量部程度であり、溶剤の配合量としては、正極活物質100重量部に対し、通常、50〜500重量部程度、好ましくは100〜200重量部程度である。   Further, in the positive electrode mixture, the amount of the constituent material may be set as appropriate, but the amount of the binder is usually 0.5 to 30 parts by weight with respect to 100 parts by weight of the positive electrode active material. The amount of the conductive agent is usually about 1 to 50 parts by weight, preferably about 1 to 30 parts by weight, with respect to 100 parts by weight of the positive electrode active material. As a compounding quantity of a solvent, it is about 50-500 weight part normally with respect to 100 weight part of positive electrode active materials, Preferably it is about 100-200 weight part.

前記の正極に用いられる正極集電体としては、例えば、ニッケル、アルミニウム、チタン、銅、金、銀、白金、アルミニウム合金又はステンレス等の金属、例えば、炭素素材、活性炭繊維、ニッケル、アルミニウム、亜鉛、銅、スズ、鉛又はこれらの合金をプラズマ溶射、アーク溶射することによって形成されたもの、例えば、ゴム又はスチレン−エチレン−ブチレン−スチレン共重合体(SEBS)など樹脂に導電剤を分散させた導電性フィルムなどが挙げられる。特に、アルミニウム、ニッケル又はステンレスなどが好ましく、とりわけ、薄膜に加工しやすく、安価であるという点でアルミニウムが好ましい。正極集電体の形状としては、例えば、箔状、平板状、メッシュ状、ネット状、ラス状、パンチングメタル状若しくはエンボス状であるもの又はこれらを組み合わせたもの(例えば、メッシュ状平板など)等が挙げられる。正極集電体表面にエッチング処理による凹凸を形成させてもよい。   Examples of the positive electrode current collector used for the positive electrode include metals such as nickel, aluminum, titanium, copper, gold, silver, platinum, aluminum alloys, and stainless steel, such as carbon materials, activated carbon fibers, nickel, aluminum, and zinc. A conductive agent is dispersed in a resin formed by plasma spraying or arc spraying of copper, tin, lead or an alloy thereof, for example, rubber or a resin such as styrene-ethylene-butylene-styrene copolymer (SEBS). Examples include conductive films. In particular, aluminum, nickel, stainless steel, and the like are preferable. In particular, aluminum is preferable because it can be easily processed into a thin film and is inexpensive. Examples of the shape of the positive electrode current collector include a foil shape, a flat plate shape, a mesh shape, a net shape, a lath shape, a punching metal shape, an embossed shape, or a combination thereof (for example, a mesh flat plate). Is mentioned. Concavities and convexities by etching treatment may be formed on the surface of the positive electrode current collector.

<負極>
本発明において、負極は、ナトリウムイオンをドープ・脱ドープすることができる。負極は、正極よりも低い電位でナトリウムイオンをドープ・脱ドープする。負極としては、負極活物質、結着剤及び必要に応じて導電剤等を含む負極合剤が、負極集電体に担持されているものを挙げることができる。具体的な製造方法としては、負極活物質及び結着剤等に溶剤を添加してなる負極合剤を、負極集電体に、ドクターブレード法などで塗工又は浸漬し乾燥する方法、負極活物質及び結着剤等に溶剤を添加して混練、成形し、乾燥して得たシートを負極集電体表面に導電性接着剤等を介して接合した後にプレス及び熱処理乾燥する方法、負極活物質、結着剤及び液状潤滑剤等からなる混合物を負極集電体上に成形した後、液状潤滑剤を除去し、次いで、得られたシート状の成形物を一軸又は多軸方向に延伸処理する方法などが挙げられる。また、ナトリウム金属またはナトリウム合金を負極として用いることもできる。負極がシート状である場合、その厚みは、通常、5〜500μm程度である。また、負極合剤における結着剤および溶剤としては、正極合剤におけるそれらと同様のものを例示することができる。また、溶剤として、水を用いることも可能である。
<Negative electrode>
In the present invention, the negative electrode can be doped / undoped with sodium ions. The negative electrode is doped / undoped with sodium ions at a lower potential than the positive electrode. Examples of the negative electrode include those in which a negative electrode active material, a binder, and, if necessary, a negative electrode mixture containing a conductive agent and the like are supported on a negative electrode current collector. As a specific production method, a negative electrode mixture formed by adding a solvent to a negative electrode active material, a binder, and the like is applied to or dipped in a negative electrode current collector by a doctor blade method or the like, and dried. A method in which a sheet obtained by adding a solvent to a substance and a binder, kneading, forming, and drying is bonded to the surface of the negative electrode current collector via a conductive adhesive, followed by pressing and heat treatment drying, After forming a mixture comprising a substance, a binder and a liquid lubricant on the negative electrode current collector, the liquid lubricant is removed, and then the obtained sheet-like molded product is stretched in a uniaxial or multiaxial direction. The method of doing is mentioned. Moreover, sodium metal or a sodium alloy can also be used as a negative electrode. When the negative electrode has a sheet shape, the thickness is usually about 5 to 500 μm. Moreover, as a binder and a solvent in a negative electrode mixture, the thing similar to those in a positive electrode mixture can be illustrated. Also, water can be used as the solvent.

負極活物質としては、ナトリウムイオンをドープ・脱ドープすることのできる負極材料を用いることができる。該材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体、難黒鉛化炭素材料などの炭素材料で、ナトリウムイオンをドープ・脱ドープすることのできる材料を用いることができる。ナトリウム二次電池のレート特性を高める意味では、難黒鉛化炭素材料を用いることが好ましい。特に、この負極における難黒鉛化炭素材料と無機多孔層との組み合わせは、ナトリウム二次電池のレート特性を高める意味で、優れた組み合わせである。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、または微粉末の凝集体などのいずれでもよい。結着剤及び導電剤は正極で用いられるものと同様のものを用いることができる。負極においては、炭素材料は、導電剤としての役割を果たす場合もある。   As the negative electrode active material, a negative electrode material that can be doped / undoped with sodium ions can be used. Examples of the material include carbon materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fiber, organic polymer compound fired body, non-graphitizable carbon material, and doped / undoped sodium ions. Materials that can be used can be used. In order to improve the rate characteristics of the sodium secondary battery, it is preferable to use a non-graphitizable carbon material. In particular, the combination of the non-graphitizable carbon material and the inorganic porous layer in this negative electrode is an excellent combination in terms of enhancing the rate characteristics of the sodium secondary battery. The shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder. The same binder and conductive agent as those used for the positive electrode can be used. In the negative electrode, the carbon material may serve as a conductive agent.

また、正極における正極活物質が上述のナトリウム無機化合物である場合には、負極活物質として、この正極よりも低い電位でナトリウムイオンをドープ・脱ドープすることのできる硫化物等のカルコゲン化合物を用いることもできる。ここで硫化物としてはTiS2、ZrS2、VS2、V25、TaS2、FeS2、NiS2、およびM62(ただし、M6は1種以上の遷移金属元素である。)で示される化合物等が挙げられる。 When the positive electrode active material in the positive electrode is the above-described sodium inorganic compound, a chalcogen compound such as sulfide that can be doped / undoped with sodium ions at a lower potential than the positive electrode is used as the negative electrode active material. You can also Here, as sulfides, TiS 2 , ZrS 2 , VS 2 , V 2 S 5 , TaS 2 , FeS 2 , NiS 2 , and M 6 S 2 (where M 6 is one or more transition metal elements). ) And the like.

負極集電体としては、Cu、Ni、ステンレスなどを挙げることができ、ナトリウムと合金を作り難い点、薄膜に加工しやすいという点で、Cuが好ましい。負極集電体の形状としては、例えば、箔状、平板状、メッシュ状、ネット状、ラス状、パンチングメタル状若しくはエンボス状であるもの又はこれらを組み合わせたもの(例えば、メッシュ状平板など)等が挙げられる。負極集電体表面にエッチング処理による凹凸を形成させてもよい。   Examples of the negative electrode current collector include Cu, Ni, and stainless steel, and Cu is preferable because it is difficult to form an alloy with sodium and it can be easily processed into a thin film. Examples of the shape of the negative electrode current collector include a foil shape, a flat plate shape, a mesh shape, a net shape, a lath shape, a punching metal shape, an embossed shape, or a combination thereof (for example, a mesh flat plate). Is mentioned. Concavities and convexities by etching treatment may be formed on the surface of the negative electrode current collector.

<無機多孔層>
本発明において、無機多孔層は、正極および負極から選ばれる電極の少なくとも一方の表面に形成され、ナトリウム含有率が酸化物換算で0.01重量%以上15重量%以下のアルミナフィラーを含む層である。無機多孔層は、電極と一体化している。ナトリウム二次電池において、無機多孔層は、正極および負極の間に配置され、正極−負極間を絶縁する役割を果たす。無機多孔層は、正極および負極の双方の表面に形成されていてもよい。また、無機多孔層は、各電極の両面に形成されていてもよい。
<Inorganic porous layer>
In the present invention, the inorganic porous layer is a layer including an alumina filler formed on at least one surface of an electrode selected from a positive electrode and a negative electrode and having a sodium content of 0.01 wt% or more and 15 wt% or less in terms of oxide. is there. The inorganic porous layer is integrated with the electrode. In the sodium secondary battery, the inorganic porous layer is disposed between the positive electrode and the negative electrode, and plays a role of insulating between the positive electrode and the negative electrode. The inorganic porous layer may be formed on both surfaces of the positive electrode and the negative electrode. Moreover, the inorganic porous layer may be formed on both surfaces of each electrode.

本発明において、アルミナフィラーは、そのナトリウム含有率が酸化物(NaO)換算で、0.01重量%以上15重量%以下である。アルミナフィラーにおける酸化物(NaO)換算のナトリウム含有率が0.01重量%未満では、ナトリウム二次電池をより安価に得る目的では好ましくなく、また、15重量%を超えると、ナトリウム二次電池のレート特性の観点で、好ましくない。アルミナフィラーは、ナトリウム含有率が酸化物換算で0.01重量%以上10重量%以下であることが好ましく、より好ましくは、0.01重量%以上1重量%以下、さらにより好ましくは、0.01重量%以上0.5重量%以下、とりわけ好ましくは、0.02重量%以上0.3重量%以下、特に好ましくは、ナトリウム含有率が酸化物換算で0.02重量%以上0.1重量%以下である。このような範囲にすることで、ナトリウム二次電池のレート特性がより一層向上する。また、アルミナフィラーは、その一部または全部が、略球状のアルミナ粒子から構成されることが好ましい。 In the present invention, the alumina filler has a sodium content of 0.01 wt% or more and 15 wt% or less in terms of oxide (Na 2 O). If the sodium content in terms of oxide (Na 2 O) in the alumina filler is less than 0.01% by weight, it is not preferable for the purpose of obtaining a sodium secondary battery at a lower cost. If it exceeds 15% by weight, sodium secondary From the viewpoint of the rate characteristics of the battery, it is not preferable. The alumina filler preferably has a sodium content of 0.01% by weight or more and 10% by weight or less in terms of oxide, more preferably 0.01% by weight or more and 1% by weight or less, and even more preferably, 0.1% by weight or less. 01 wt% or more and 0.5 wt% or less, particularly preferably 0.02 wt% or more and 0.3 wt% or less, particularly preferably, the sodium content is 0.02 wt% or more and 0.1 wt% in terms of oxide. % Or less. By setting it as such a range, the rate characteristic of a sodium secondary battery further improves. Moreover, it is preferable that a part or all of the alumina filler is composed of substantially spherical alumina particles.

本発明において、無機多孔層は、スパッタリング法、蒸着法、化学的気相成長(CVD)法などの手法を用いて形成することもできるし、前記アルミナフィラーおよび結着剤を用いて電極の表面に塗工することにより形成することもできる。簡易的な操作で形成することができるのは、前記アルミナフィラーおよび結着剤を用いて電極の表面に塗工する方法である。ここで、無機多孔層は、前記アルミナフィラーおよび結着剤を含む。また、前記アルミナフィラーおよび結着剤は、電極の表面への塗工前に、溶剤に分散または溶解させて用いてもよい。溶剤を用いる場合には、電極の表面に塗工した後、乾燥などにより溶剤を除去して、無機多孔層を得る。   In the present invention, the inorganic porous layer can be formed by using a sputtering method, a vapor deposition method, a chemical vapor deposition (CVD) method, or the like, or the surface of the electrode using the alumina filler and the binder. It can also be formed by coating. What can be formed by a simple operation is a method of coating the surface of the electrode using the alumina filler and the binder. Here, the inorganic porous layer contains the alumina filler and the binder. Further, the alumina filler and the binder may be used by being dispersed or dissolved in a solvent before coating on the electrode surface. When using a solvent, after coating on the surface of the electrode, the solvent is removed by drying or the like to obtain an inorganic porous layer.

無機多孔層が、前記アルミナフィラーおよび結着剤を含む場合には、結着剤により電極との結着性が向上し、無機多孔層の電極からの脱落が更に抑制されるため、好ましい。さらに、前記アルミナフィラーおよび結着剤から実質的になることが好ましい。   In the case where the inorganic porous layer contains the alumina filler and the binder, the binding property of the inorganic porous layer from the electrode is further suppressed by the binder, and this is preferable. Furthermore, it is preferable to consist essentially of the alumina filler and the binder.

前記塗工液に用いる結着剤、溶剤としては正極、負極で用いられるものと同様のものを用いることができる。結着剤としては、フッ素化合物の重合体を好適に使用することができ、また、溶剤としてはN−メチルピロリドン(以下、NMPともいう。)、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、ヘキサン等が好適に使用できる。塗工液には、分散安定化や塗工性の向上のために、界面活性剤等の分散剤;増粘剤;湿潤剤;消泡剤;酸、アルカリを含むPH調製剤等の各種添加剤等を加えてもよい。これらの添加剤は、溶剤除去の際に除去できるものが好ましいが、ナトリウム二次電池の使用範囲において電気化学的に安定で、電池反応を阻害せず、かつ200℃程度まで安定であるものならば無機多孔層内に残存してもよい。なお、無機多孔層が、前記アルミナフィラーおよび結着剤から実質的になる場合においても、塗工の際に用いる溶剤の残存成分や結着剤に含まれる添加物等その他成分は含有されていてもよい。   As the binder and the solvent used in the coating solution, the same ones as those used for the positive electrode and the negative electrode can be used. As the binder, a polymer of a fluorine compound can be preferably used, and as the solvent, N-methylpyrrolidone (hereinafter also referred to as NMP), N, N-dimethylformamide, N, N-dimethyl is used. Acetamide, water, ethanol, toluene, hot xylene, hexane and the like can be suitably used. Various additions such as surfactants, dispersants, thickeners, wetting agents, antifoaming agents, PH preparations containing acids and alkalis are added to the coating solution in order to stabilize dispersion and improve coating properties. An agent or the like may be added. These additives are preferably those that can be removed when the solvent is removed. However, if they are electrochemically stable in the range of use of the sodium secondary battery, do not inhibit the battery reaction, and are stable up to about 200 ° C For example, it may remain in the inorganic porous layer. Even when the inorganic porous layer is substantially composed of the alumina filler and the binder, other components such as residual components of the solvent used in the coating and additives contained in the binder are contained. Also good.

前記アルミナフィラーの平均粒径は、無機多孔層の形成のしやすさ、層厚みの制御のしやすさなどを考慮して適宜選択される。好ましいアルミナフィラーの平均粒径は0.01〜2μmの範囲である。アルミナフィラーの平均粒径を前記のように設定することで、無機多孔層を、より均一な層厚みで、しかも効率的に形成することが可能となる。ここで、本発明において、アルミナフィラーの平均粒径は、レーザー回折式粒度分布測定装置を用いて得られる体積基準のD50の値を用いる。 The average particle diameter of the alumina filler is appropriately selected in consideration of the ease of forming the inorganic porous layer and the ease of controlling the layer thickness. The average particle size of the preferred alumina filler is in the range of 0.01 to 2 μm. By setting the average particle diameter of the alumina filler as described above, the inorganic porous layer can be efficiently formed with a more uniform layer thickness. Here, in the present invention, the average particle size of the alumina filler is a volume-based D 50 value obtained using a laser diffraction particle size distribution measuring device.

前記アルミナフィラーおよび結着剤の合計重量に対するアルミナフィラーの重量割合は、アルミナフィラーの平均粒径の値を考慮して適宜設定すればよいが、無機多孔層の孔が結着剤で完全に塞がれてしまわないよう留意する必要がある。好ましいアルミナフィラーおよび結着剤の合計重量に対するアルミナフィラーの重量は、80〜99重量%の範囲である。   The weight ratio of the alumina filler to the total weight of the alumina filler and the binder may be appropriately set in consideration of the value of the average particle diameter of the alumina filler, but the pores of the inorganic porous layer are completely blocked with the binder. It is necessary to be careful not to lose it. The weight of the alumina filler relative to the total weight of the preferred alumina filler and binder is in the range of 80 to 99% by weight.

前記アルミナフィラーの形状については、略球状、板状、柱状、針状、ウィスカー状、繊維状等が挙げられ、いずれの粒子を用いることもできるが、略球状粒子を用いることにより、より均一な孔を形成することができる。略球状粒子としては、粒子のアスペクト比(粒子の長径/粒子の短径)が1以上1.5以下の範囲の値である粒子が挙げられる。粒子のアスペクト比は、電子顕微鏡写真により測定することができる。   Examples of the shape of the alumina filler include a substantially spherical shape, a plate shape, a columnar shape, a needle shape, a whisker shape, and a fiber shape, and any particle can be used. Holes can be formed. Examples of the substantially spherical particles include particles having a particle aspect ratio (particle major axis / particle minor axis) in the range of 1 to 1.5. The aspect ratio of the particles can be measured by an electron micrograph.

無機多孔層の空隙率は、無機多孔層の耐熱性、機械的強度、ナトリウムイオン伝導性などを考慮して適宜設定することができ、20〜80体積%の範囲であることが好ましい。なお、無機多孔層の空隙率は、以下の式(1)により求めることができる。
Pv(%)={(Va−Vt)/Va}×100 (1)
The porosity of the inorganic porous layer can be appropriately set in consideration of the heat resistance, mechanical strength, sodium ion conductivity, etc. of the inorganic porous layer, and is preferably in the range of 20 to 80% by volume. In addition, the porosity of an inorganic porous layer can be calculated | required by the following formula | equation (1).
Pv (%) = {(Va−Vt) / Va} × 100 (1)

Pv(%):無機多孔層の空隙率(体積%)
Va:無機多孔層の見かけ体積
Vt:無機多孔層の理論体積
Pv (%): Porosity of inorganic porous layer (volume%)
Va: apparent volume of the inorganic porous layer Vt: theoretical volume of the inorganic porous layer

ここで、Vaは無機多孔層の縦、横、および厚みの値により算出することができ、Vtは無機多孔層の重量、構成材料の重量割合および構成材料それぞれの真比重の値により算出することができる。   Here, Va can be calculated from the vertical, horizontal, and thickness values of the inorganic porous layer, and Vt is calculated from the weight of the inorganic porous layer, the weight ratio of the constituent materials, and the true specific gravity values of the constituent materials. Can do.

また、無機多孔層の厚みは、層の割れ抑制を考慮すれば、1〜10μmの範囲であることが好ましい。   In addition, the thickness of the inorganic porous layer is preferably in the range of 1 to 10 μm in consideration of suppression of cracking of the layer.

<電解質>
本発明において、電解質は、通常、有機溶媒に溶解させて、非水電解液として用いる。電解質としては、NaClO4、NaPF6、NaAsF6、NaSbF6、NaBF4、NaCF3SO3、NaN(SO2CF32、低級脂肪族カルボン酸ナトリウム塩、NaAlCl4などが挙げられ、これらの2種以上の混合物を使用されてもいてもよい。これらの中でもフッ素を含むNaPF6、NaAsF6、NaSbF6、NaBF4、NaCF3SO3およびNaN(SO2CF32からなる群から選ばれた少なくとも1種を含むものを用いることが好ましい。
<Electrolyte>
In the present invention, the electrolyte is usually dissolved in an organic solvent and used as a non-aqueous electrolyte. Examples of the electrolyte include NaClO 4 , NaPF 6 , NaAsF 6 , NaSbF 6 , NaBF 4 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 , lower aliphatic carboxylic acid sodium salt, NaAlCl 4, and the like. A mixture of two or more kinds may be used. Among these, it is preferable to use those containing at least one selected from the group consisting of NaPF 6 , NaAsF 6 , NaSbF 6 , NaBF 4 , NaCF 3 SO 3 and NaN (SO 2 CF 3 ) 2 containing fluorine.

非水電解液における有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、イソプロピルメチルカーボネート、ビニレンカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物;または上記の有機溶媒にさらにフッ素置換基を導入したものを用いることができる。有機溶媒として、これらのうちの二種以上を混合して用いてもよい。   Examples of the organic solvent in the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, Carbonates such as 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether , Ethers such as tetrahydrofuran and 2-methyltetrahydrofuran; esters such as methyl formate, methyl acetate and γ-butyrolactone; nitriles such as acetonitrile and butyronitrile; N Amides such as N-dimethylformamide and N, N-dimethylacetamide; Carbamates such as 3-methyl-2-oxazolidone; Sulfur-containing compounds such as sulfolane, dimethyl sulfoxide and 1,3-propane sultone; What further introduce | transduced the fluorine substituent into the solvent can be used. Two or more of these may be mixed and used as the organic solvent.

非水電解液において、電解質の濃度は、有機溶媒に対する電解質の溶解度を考慮して、適宜設定すればよく、通常、0.1モル(電解質)/L(非水電解液)〜2モル(電解質)/L(非水電解液)程度であり、好ましくは、0.3モル(電解質)/L(非水電解液)〜1.5モル(電解質)/L(非水電解液)程度である。   In the non-aqueous electrolyte, the concentration of the electrolyte may be appropriately set in consideration of the solubility of the electrolyte in the organic solvent, and is usually 0.1 mol (electrolyte) / L (non-aqueous electrolyte) to 2 mol (electrolyte). ) / L (non-aqueous electrolyte), preferably about 0.3 mol (electrolyte) / L (non-aqueous electrolyte) to 1.5 mol (electrolyte) / L (non-aqueous electrolyte). .

<セパレータ>
本発明において、セパレータは、樹脂から構成される多孔質フィルムからなる。本発明においては、セパレータを有さなくとも、二次電池として、十分に機能することは可能であるが、セパレータを有することにより、二次電池は、正極−負極間の短絡等が原因で電池内に異常電流が流れた際に、電流を遮断して、過大電流が流れることを阻止(シャットダウン)する機能を有することができる。本発明においては、セパレータを有する場合においても、セパレータの厚みをより薄くすることができることから、正極と負極の間の抵抗を下げ、それにより、ナトリウム二次電池のレート特性をより高めることが可能となる。
<Separator>
In the present invention, the separator is made of a porous film made of resin. In the present invention, even if it does not have a separator, it can function sufficiently as a secondary battery, but by having a separator, the secondary battery is a battery due to a short circuit between the positive electrode and the negative electrode. When an abnormal current flows, the current can be cut off and the function of blocking (shutting down) an excessive current can be provided. In the present invention, even when a separator is provided, since the thickness of the separator can be made thinner, the resistance between the positive electrode and the negative electrode can be lowered, thereby further improving the rate characteristics of the sodium secondary battery. It becomes.

多孔質フィルムを構成する樹脂は、前記有機溶媒に溶解しないものを選択すればよい。具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、熱可塑性ポリウレタン樹脂を挙げることができ、これらの2種以上の混合物を用いてもよい。より低温で軟化してシャットダウンさせる意味で、多孔質フィルムは、ポリオレフィン樹脂を含有することが好ましく、より好ましくは、ポリエチレンを含有することである。ポリエチレンとして、具体的には、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン等のポリエチレンを挙げることができ、超高分子量ポリエチレンを挙げることもできる。多孔質フィルムの突刺し強度をより高める意味では、それを構成する樹脂は、少なくとも超高分子量ポリエチレンを含有することが好ましい。また、多孔質フィルムの製造面において、低分子量(重量平均分子量1万以下)のポリオレフィンからなるワックスを含有することが好ましい場合もある。また、多孔質フィルムの厚みは、通常、3〜30μmであり、さらに好ましくは3〜20μmである。   What is necessary is just to select what does not melt | dissolve in the said organic solvent as resin which comprises a porous film. Specific examples include polyolefin resins such as polyethylene and polypropylene, and thermoplastic polyurethane resins, and a mixture of two or more of these may be used. In terms of softening and shutting down at a lower temperature, the porous film preferably contains a polyolefin resin, and more preferably contains polyethylene. Specific examples of polyethylene include polyethylene such as low density polyethylene, high density polyethylene, and linear polyethylene, and also include ultrahigh molecular weight polyethylene. In the sense of further increasing the puncture strength of the porous film, the resin constituting it preferably contains at least ultra high molecular weight polyethylene. Moreover, it may be preferable to contain the wax which consists of polyolefin of a low molecular weight (weight average molecular weight 10,000 or less) in the manufacture surface of a porous film. Moreover, the thickness of a porous film is 3-30 micrometers normally, More preferably, it is 3-20 micrometers.

また、セパレータとして多孔質フィルムの片面または両面に耐熱樹脂からなる耐熱多孔層が積層された積層フィルムを用いてもよい。積層フィルムの厚みとしては、通常40μm以下、好ましくは、20μm以下である。また、耐熱多孔層の合計厚みをA(μm)、多孔質フィルムの厚みをB(μm)としたときには、A/Bの値が、0以上1以下であることが好ましい。耐熱樹脂としては、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリアセタール、ポリサルホン、ポリフェニレンサルファイド、ポリエーテルケトン、芳香族ポリエステル、ポリエーテルサルホン、ポリエーテルイミドを挙げることができ、耐熱性をより高める観点で、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルホン、ポリエーテルイミドが好ましく、より好ましくは、ポリアミド、ポリイミド、ポリアミドイミドである。さらにより好ましくは、芳香族ポリアミド(パラ配向芳香族ポリアミド、メタ配向芳香族ポリアミド)、芳香族ポリイミド、芳香族ポリアミドイミド等の含窒素芳香族重合体である。また、耐熱樹脂として、ポリ−4−メチルペンテン−1、環状オレフィン系重合体を挙げることもできる。耐熱多孔層は、フィラーを含有することもできる。フィラーは、その材質として、有機粉末、無機粉末またはこれらの混合物のいずれから選ばれるものであってもよい。フィラーを構成する粒子は、その平均粒子径が、0.01μm以上1μm以下であることが好ましい。   Moreover, you may use the laminated | multilayer film by which the heat resistant porous layer which consists of heat resistant resin was laminated | stacked on the single side | surface or both surfaces of the porous film as a separator. The thickness of the laminated film is usually 40 μm or less, preferably 20 μm or less. Further, when the total thickness of the heat-resistant porous layer is A (μm) and the thickness of the porous film is B (μm), the value of A / B is preferably 0 or more and 1 or less. Examples of the heat resistant resin include polyamide, polyimide, polyamideimide, polycarbonate, polyacetal, polysulfone, polyphenylene sulfide, polyetherketone, aromatic polyester, polyethersulfone, and polyetherimide, from the viewpoint of further improving heat resistance. , Polyamide, polyimide, polyamideimide, polyethersulfone, and polyetherimide are preferable, and polyamide, polyimide, and polyamideimide are more preferable. Even more preferred are nitrogen-containing aromatic polymers such as aromatic polyamide (para-oriented aromatic polyamide, meta-oriented aromatic polyamide), aromatic polyimide, aromatic polyamideimide and the like. Further, examples of the heat resistant resin include poly-4-methylpentene-1 and cyclic olefin polymers. The heat resistant porous layer can also contain a filler. The filler may be selected from organic powder, inorganic powder, or a mixture thereof as the material thereof. The particles constituting the filler preferably have an average particle size of 0.01 μm or more and 1 μm or less.

本発明のナトリウム二次電池において、無機多孔層は、正極および負極の間に配置される。本発明のナトリウム二次電池は、正極、無機多孔層、負極の順となるように積層、または積層・巻回することによって電極群を得て、この電極群を電池缶などの電池ケース内に収納し、非水電解液を電極群に含浸させることによって、製造することができる。また、本発明のナトリウム二次電池がセパレータを有する場合には、セパレータは、正極に形成された無機多孔層−負極間、正極−負極に形成された無機多孔層間、または正極に形成された無機多孔層−負極に形成された無機多孔層間に配置される。   In the sodium secondary battery of the present invention, the inorganic porous layer is disposed between the positive electrode and the negative electrode. The sodium secondary battery of the present invention obtains an electrode group by laminating or laminating and winding the positive electrode, the inorganic porous layer, and the negative electrode in this order, and this electrode group is placed in a battery case such as a battery can. It can be manufactured by storing and impregnating the electrode group with a non-aqueous electrolyte. Further, when the sodium secondary battery of the present invention has a separator, the separator is an inorganic porous layer formed between the positive electrode and the negative electrode, an inorganic porous layer formed between the positive electrode and the negative electrode, or an inorganic layer formed on the positive electrode. It arrange | positions between the inorganic porous layers formed in the porous layer-negative electrode.

電極群の形状としては例えば、この電極群を巻回の軸と垂直方向に切断したときの断面が、円、楕円、長方形、角がとれたような長方形等となるような形状を挙げることができる。また、二次電池の形状としては、例えば、ペーパー型、コイン型、円筒型、角型などの形状を挙げることができる。   Examples of the shape of the electrode group include a shape in which a cross section when the electrode group is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, a rectangle with rounded corners, or the like. it can. In addition, examples of the shape of the secondary battery include a paper shape, a coin shape, a cylindrical shape, and a square shape.

次に、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものでもない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.

比較例1
(1)正極の作製
金属含有化合物として、炭酸ナトリウム(Na2CO3:和光純薬工業株式会社製:純度99.8%)、酸化マンガン(IV)(MnO2:株式会社高純度化学研究所製:純度99.9%)、酸化鉄(II、III)(Fe34:株式会社高純度化学研究所製:純度99%)、および酸化ニッケル(II)(NiO:株式会社高純度化学研究所製:純度99%)を用いて、Na:Mn:Fe:Niのモル比が0.8:0.333:0.333:0.333となるように秤量し、乾式ボールミルで4時間にわたって混合して金属含有化合物の混合物を得た。得られた金属含有化合物の混合物を、アルミナボートに充填し、電気炉を用いて空気雰囲気において加熱して800℃で2時間にわたって保持することによって、複合金属酸化物C1を得た。また、導電材としてアセチレンブラック(電気化学工業株式会社製)、バインダーとしてPVdF(株式会社クレハ製、PolyVinylideneDiFluoride)を用いて、複合金属酸化物C1、導電材、およびバインダーを、複合金属酸化物C1:導電材:バインダー=85:10:5(重量比)の組成となるようにそれぞれ秤量した。その後、まず複合金属酸化物C1と導電材をメノウ乳鉢で十分に混合し、この混合物に、N−メチル−2−ピロリドン(NMP:東京化成工業株式会社製)を適量加え、さらにPVdFを加えて引き続き均一になるように混合して、スラリー化した。得られたスラリーを、集電体である厚さ40μmのアルミ箔上に、アプリケータを用いて100μmの厚さで塗布し、これを乾燥機に入れ、NMPを除去させながら、十分に乾燥することによって正極シートを得た。この正極シートを電極打ち抜き機で直径1.5cmに打ち抜いた後、ハンドプレスにて十分に圧着し、正極D1を得た。
Comparative Example 1
(1) Preparation of positive electrode As metal-containing compounds, sodium carbonate (Na 2 CO 3 : Wako Pure Chemical Industries, Ltd .: purity 99.8%), manganese oxide (IV) (MnO 2 : High Purity Chemical Laboratory Co., Ltd.) Manufactured: purity 99.9%), iron oxide (II, III) (Fe 3 O 4 : manufactured by High Purity Chemical Laboratory Co., Ltd .: purity 99%), and nickel (II) oxide (NiO: high purity chemical Co., Ltd.) (Made by Laboratories: 99% purity), and the molar ratio of Na: Mn: Fe: Ni is 0.8: 0.333: 0.333: 0.333, and the dry ball mill is used for 4 hours. To obtain a mixture of metal-containing compounds. The obtained metal-containing compound mixture was filled in an alumina boat, heated in an air atmosphere using an electric furnace, and held at 800 ° C. for 2 hours to obtain a composite metal oxide C1. Further, using acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as the conductive material and PVdF (manufactured by Kureha Co., Ltd., PolyVinylideneDiFluoride) as the conductive material, the composite metal oxide C1, the conductive material, and the binder are combined into the composite metal oxide C1: Each was weighed to have a composition of conductive material: binder = 85: 10: 5 (weight ratio). After that, first, the mixed metal oxide C1 and the conductive material are sufficiently mixed in an agate mortar, and an appropriate amount of N-methyl-2-pyrrolidone (NMP: manufactured by Tokyo Chemical Industry Co., Ltd.) is added to this mixture, and PVdF is further added. Subsequently, the mixture was mixed so as to be uniform and slurried. The obtained slurry is applied to an aluminum foil having a thickness of 40 μm, which is a current collector, with a thickness of 100 μm using an applicator, and this is put into a dryer and sufficiently dried while removing NMP. Thus, a positive electrode sheet was obtained. This positive electrode sheet was punched to a diameter of 1.5 cm using an electrode punching machine, and then sufficiently pressed by a hand press to obtain a positive electrode D1.

(2)負極の作製
四つ口フラスコに、窒素気流下でレゾルシノール200g、メチルアルコール1.5L、ベンズアルデヒド194gを入れ氷冷し、攪拌しながら36%塩酸36.8gを滴下した。滴下終了後65℃に昇温し、その後同温度で5時間保温した。得られた重合反応混合物に水1Lを加え、沈殿を濾取し、濾液が中性になるまで水で洗浄し、乾燥して、有機高分子化合物であるテトラフェニルカリックス[4]レゾルシナレーン(PCRA)294gを得た。PCRAを、ロータリーキルン内に入れ、雰囲気を空気雰囲気として、300℃で1時間加熱し、次いでロータリーキルンの雰囲気をアルゴンに置換して、1000℃で4時間加熱した。次いで、ボールミル(メノウ製ボール、28rpm、5分間)で粉砕することによって有機高分子化合物焼成体である炭素材料A1を得た。この炭素材料A1とバインダーとしてのPVdFとを、炭素材料A1:バインダー=95:5(重量比)の組成となるように秤量し、バインダーをNMPに溶解した後、炭素材料を加えてスラリー化したものを集電体である厚さ10μmの銅箔上にアプリケータを用いて、100μmの厚さで塗布し、これを乾燥機に入れ、NMPを除去させながら、十分に乾燥することによって負極シートを得た。この負極シートを電極打ち抜き機で直径1.5cmに打ち抜いた後、ハンドプレスにて十分に圧着し、負極B1を得た。
(2) Production of negative electrode In a four-necked flask, 200 g of resorcinol, 1.5 L of methyl alcohol and 194 g of benzaldehyde were placed in a nitrogen stream and cooled with ice, and 36.8 g of 36% hydrochloric acid was added dropwise with stirring. After completion of dropping, the temperature was raised to 65 ° C., and then kept at that temperature for 5 hours. 1 L of water was added to the resulting polymerization reaction mixture, the precipitate was collected by filtration, washed with water until the filtrate became neutral, dried, and then the organic polymer compound tetraphenylcalix [4] resorcinarene (PCRA). 294 g was obtained. The PCRA was placed in a rotary kiln and heated at 300 ° C. for 1 hour under an air atmosphere. Then, the rotary kiln atmosphere was replaced with argon and heated at 1000 ° C. for 4 hours. Subsequently, carbon material A1 which is an organic polymer compound fired body was obtained by grinding with a ball mill (agate ball, 28 rpm, 5 minutes). The carbon material A1 and PVdF as a binder were weighed so as to have a composition of carbon material A1: binder = 95: 5 (weight ratio), the binder was dissolved in NMP, and then the carbon material was added to form a slurry. The negative electrode sheet was obtained by applying a 100 μm thickness of the current collector on a 10 μm thick copper foil as a current collector, putting it in a dryer, and thoroughly drying it while removing NMP. Got. This negative electrode sheet was punched to a diameter of 1.5 cm using an electrode punching machine, and then sufficiently pressed by a hand press to obtain a negative electrode B1.

(3)電池の作製
コインセル(宝泉株式会社製)の下側パーツの窪みに、アルミ箔を下に向けて正極D1を置き、そして非水電解液としての1MのNaClO4/プロピレンカーボネート、セパレータとしてのポリプロピレン多孔質膜(厚み20μm)、銅箔を上に向けた負極B1、およびコインセル上側パーツを組み合わせて、ナトリウム二次電池E1を作製した。なお、試験電池の組み立てはアルゴン雰囲気のグローブボックス内で行った。
(3) Production of battery In the recess of the lower part of the coin cell (made by Hosen Co., Ltd.), the positive electrode D1 is placed with the aluminum foil facing downward, and 1M NaClO 4 / propylene carbonate as a non-aqueous electrolyte, separator A polypropylene porous membrane (thickness 20 μm), a negative electrode B1 with a copper foil facing upward, and a coin cell upper part were combined to produce a sodium secondary battery E1. The test battery was assembled in a glove box in an argon atmosphere.

ナトリウム二次電池については、以下の条件で定電流充放電試験を実施した。
充放電条件1:
充電は、4.0Vまで0.1Cレート(10時間で完全充電する速度)でCC(コンスタントカレント:定電流)充電を行った。放電は、該充電速度と同じ速度で、CC放電を行い、電圧1.5Vでカットオフして、放電容量1を測定した。
充放電条件2:
充電は、4.0Vまで1Cレート(1時間で完全充電する速度)でCC(コンスタントカレント:定電流)充電を行った。放電は、該充電速度と同じ速度で、CC放電を行い、電圧1.5Vでカットオフして、放電容量2を測定した。
About the sodium secondary battery, the constant current charging / discharging test was implemented on condition of the following.
Charging / discharging condition 1:
Charging was performed by CC (Constant Current: constant current) at a rate of 0.1 C up to 4.0 V (speed of complete charging in 10 hours). For discharging, CC discharge was performed at the same rate as the charging rate, cut off at a voltage of 1.5 V, and the discharge capacity 1 was measured.
Charging / discharging condition 2:
Charging was performed by CC (Constant Current) at a 1C rate (speed of complete charging in 1 hour) up to 4.0V. Discharge performed CC discharge at the same speed as this charge rate, cut off with the voltage of 1.5V, and measured the discharge capacity 2. FIG.

上記により得られた放電容量1および放電容量2の値を用いて、下記式により、放電容量維持率を求めた。この放電容量維持率の値が大きいほど、二次電池のレート特性がより優れることを示す。
放電容量維持率(%)=放電容量2/放電容量1×100
Using the values of the discharge capacity 1 and the discharge capacity 2 obtained as described above, the discharge capacity retention rate was obtained by the following formula. It shows that the rate characteristic of a secondary battery is more excellent, so that the value of this discharge capacity maintenance factor is large.
Discharge capacity maintenance rate (%) = Discharge capacity 2 / Discharge capacity 1 × 100

ナトリウム二次電池E1について、上記定電流充放電試験を行い、放電容量維持率を求めたところ、放電容量維持率は50%であった。   About the sodium secondary battery E1, the said constant current charging / discharging test was done and the discharge capacity maintenance factor was calculated | required, The discharge capacity maintenance factor was 50%.

実施例1
(1)正極の作製
比較例1と同様にして、正極D1を作製した。次いで、アルミナフィラー(平均粒径0.45μm、住友化学株式会社製、製品名AES−12、ナトリウム含有率が酸化物換算で0.04重量%)とPVdFとを、重量比で99:1になるように秤量して、混合し、NMPを用いてスラリーを作製し、このスラリーを正極D1の表面に塗布し、60℃で2時間乾燥して、正極D1の表面に無機多孔層を形成し、これを正極D2とした。ここで、無機多孔層の厚みは、4μmであり、無機多孔層の空隙率は、48体積%であった。
Example 1
(1) Production of positive electrode A positive electrode D1 was produced in the same manner as in Comparative Example 1. Next, the alumina filler (average particle size 0.45 μm, manufactured by Sumitomo Chemical Co., Ltd., product name AES-12, sodium content is 0.04 wt% in terms of oxide) and PVdF in a weight ratio of 99: 1. Weigh and mix so that a slurry is produced using NMP, and this slurry is applied to the surface of the positive electrode D1 and dried at 60 ° C. for 2 hours to form an inorganic porous layer on the surface of the positive electrode D1. This was designated as positive electrode D2. Here, the thickness of the inorganic porous layer was 4 μm, and the porosity of the inorganic porous layer was 48% by volume.

(2)負極の作製
比較例1と同様にして、負極B1を作製した。
(2) Production of negative electrode A negative electrode B1 was produced in the same manner as in Comparative Example 1.

(3)電池の作製
コインセル(宝泉株式会社製)の下側パーツの窪みに、アルミ箔を下に向けて正極D2を置き、そして非水電解液としての1MのNaClO4/プロピレンカーボネート、セパレータとしてのポリプロピレン多孔質膜(厚み13μm)、銅箔を上に向けた負極B1、およびコインセル上側パーツを組み合わせて、ナトリウム二次電池E2を作製した。なお、試験電池の組み立てはアルゴン雰囲気のグローブボックス内で行った。
(3) Production of battery In the recess of the lower part of the coin cell (made by Hosen Co., Ltd.), the positive electrode D2 is placed with the aluminum foil facing downward, and 1M NaClO 4 / propylene carbonate as a non-aqueous electrolyte, separator A sodium secondary battery E2 was produced by combining the polypropylene porous film (thickness 13 μm), the negative electrode B1 with the copper foil facing upward, and the coin cell upper part. The test battery was assembled in a glove box in an argon atmosphere.

ナトリウム二次電池E2について、比較例1と同様にして定電流充放電試験を行い、放電容量維持率を求めたところ、放電容量維持率は62%であり、比較例1に比べて、レート特性に優れる二次電池であることがわかった。   The sodium secondary battery E2 was subjected to a constant current charge / discharge test in the same manner as in Comparative Example 1 and the discharge capacity retention rate was determined. As a result, the discharge capacity retention rate was 62%. It was found that the secondary battery is excellent in.

実施例2
(1)正極の作製
比較例1と同様にして、正極D1を作製した。次いで、ナトリウムの含有率が酸化物換算で0.1重量%のアルミナフィラーを用意し(前記アルミナフィラー(住友化学株式会社製、製品名AES−12)と酸化ナトリウムを混合し、1200℃で焼成し、粉砕して用意した。平均粒径は、0.8μmであった。)、これとPVdFとを、重量比で99:1になるように秤量して、混合し、NMPを用いてスラリーを作製し、このスラリーを正極D1の表面に塗布し、60℃で2時間乾燥して、正極D1の表面に無機多孔層を形成し、これを正極D3とした。ここで、無機多孔層の厚みは、5μmであり、無機多孔層の空隙率は、50体積%であった。
Example 2
(1) Production of positive electrode A positive electrode D1 was produced in the same manner as in Comparative Example 1. Next, an alumina filler having a sodium content of 0.1% by weight in terms of oxide is prepared (the alumina filler (manufactured by Sumitomo Chemical Co., Ltd., product name AES-12)) and sodium oxide are mixed and fired at 1200 ° C. The average particle diameter was 0.8 μm.) And PVdF were weighed to a weight ratio of 99: 1, mixed, and slurried using NMP. The slurry was applied to the surface of the positive electrode D1, dried at 60 ° C. for 2 hours to form an inorganic porous layer on the surface of the positive electrode D1, and this was used as the positive electrode D3. Here, the thickness of the inorganic porous layer was 5 μm, and the porosity of the inorganic porous layer was 50% by volume.

(2)負極の作製
比較例1と同様にして、負極B1を作製した。
(2) Production of negative electrode A negative electrode B1 was produced in the same manner as in Comparative Example 1.

(3)電池の作製
コインセル(宝泉株式会社製)の下側パーツの窪みに、アルミ箔を下に向けて正極D3を置き、そして非水電解液としての1MのNaClO4/プロピレンカーボネート、セパレータとしてのポリプロピレン多孔質膜(厚み12μm)、銅箔を上に向けた負極B1、およびコインセル上側パーツを組み合わせて、ナトリウム二次電池E3を作製した。なお、試験電池の組み立てはアルゴン雰囲気のグローブボックス内で行った。
(3) Production of battery In the recess of the lower part of the coin cell (made by Hosen Co., Ltd.), the positive electrode D3 is placed with the aluminum foil facing down, and 1M NaClO 4 / propylene carbonate as a non-aqueous electrolyte, separator A polypropylene porous membrane (thickness: 12 μm), a negative electrode B1 with a copper foil facing upward, and a coin cell upper part were combined to produce a sodium secondary battery E3. The test battery was assembled in a glove box in an argon atmosphere.

ナトリウム二次電池E3について、比較例1と同様にして定電流充放電試験を行い、放電容量維持率を求めたところ、放電容量維持率は59%であり、比較例1に比べて、レート特性に優れる二次電池であることがわかった。   The sodium secondary battery E3 was subjected to a constant current charge / discharge test in the same manner as in Comparative Example 1 and the discharge capacity retention rate was determined. As a result, the discharge capacity retention rate was 59%. It was found that the secondary battery is excellent in.

実施例3
(1)正極の作製
比較例1と同様にして、正極D1を作製した。次いで、ナトリウムの含有率が酸化物換算で1重量%のアルミナフィラーを用意し(前記アルミナフィラー(住友化学株式会社製、製品名AES−12)と酸化ナトリウムを混合し、1200℃で焼成し、粉砕して用意した。平均粒径は、0.9μmであった。)、これとPVdFとを、重量比で99:1になるように秤量して、混合し、NMPを用いてスラリーを作製し、このスラリーを正極D1の表面に塗布し、60℃で2時間乾燥して、正極D1の表面に無機多孔層を形成し、これを正極D4とした。ここで、無機多孔層の厚みは、5μmであり、無機多孔層の空隙率は、50体積%であった。
Example 3
(1) Production of positive electrode A positive electrode D1 was produced in the same manner as in Comparative Example 1. Next, an alumina filler having a sodium content of 1% by weight in terms of oxide was prepared (the alumina filler (manufactured by Sumitomo Chemical Co., Ltd., product name AES-12)) and sodium oxide were mixed and fired at 1200 ° C. The average particle size was 0.9 μm.) And PVdF were weighed to a weight ratio of 99: 1 and mixed to prepare a slurry using NMP. The slurry was applied to the surface of the positive electrode D1, and dried at 60 ° C. for 2 hours to form an inorganic porous layer on the surface of the positive electrode D1, and this was used as the positive electrode D4. Here, the thickness of the inorganic porous layer was 5 μm, and the porosity of the inorganic porous layer was 50% by volume.

(2)負極の作製
比較例1と同様にして、負極B1を作製した。
(2) Production of negative electrode A negative electrode B1 was produced in the same manner as in Comparative Example 1.

(3)電池の作製
コインセル(宝泉株式会社製)の下側パーツの窪みに、アルミ箔を下に向けて正極D4を置き、そして非水電解液としての1MのNaClO4/プロピレンカーボネート、セパレータとしてのポリプロピレン多孔質膜(厚み12μm)、銅箔を上に向けた負極B1、およびコインセル上側パーツを組み合わせて、ナトリウム二次電池E4を作製した。なお、試験電池の組み立てはアルゴン雰囲気のグローブボックス内で行った。
(3) Production of Battery In the lower part of the coin cell (made by Hosen Co., Ltd.), the positive electrode D4 is placed with the aluminum foil facing downward, and 1M NaClO 4 / propylene carbonate as a non-aqueous electrolyte, separator A polypropylene porous membrane (thickness: 12 μm), a negative electrode B1 with a copper foil facing upward, and a coin cell upper part were combined to produce a sodium secondary battery E4. The test battery was assembled in a glove box in an argon atmosphere.

ナトリウム二次電池E4について、比較例1と同様にして定電流充放電試験を行い、放電容量維持率を求めたところ、放電容量維持率は55%であり、比較例1に比べて、レート特性に優れる二次電池であることがわかった。   The sodium secondary battery E4 was subjected to a constant current charge / discharge test in the same manner as in Comparative Example 1 and the discharge capacity retention rate was determined. As a result, the discharge capacity retention rate was 55%. It was found that the secondary battery is excellent in.

実施例4
(1)正極の作製
比較例1と同様にして、正極D1を作製した。次いで、ナトリウムの含有率が酸化物換算で10重量%のアルミナフィラーを用意し(前記アルミナフィラー(住友化学株式会社製、製品名AES−12)と酸化ナトリウムを混合し、1200℃で焼成し、粉砕して用意した。平均粒径は、0.9μmであった。)、これとPVdFとを、重量比で99:1になるように秤量して、混合し、NMPを用いてスラリーを作製し、このスラリーを正極D1の表面に塗布し、60℃で2時間乾燥して、正極D1の表面に無機多孔層を形成し、これを正極D5とした。ここで、無機多孔層の厚みは、5μmであり、無機多孔層の空隙率は、50体積%であった。
Example 4
(1) Production of positive electrode A positive electrode D1 was produced in the same manner as in Comparative Example 1. Next, an alumina filler having a sodium content of 10% by weight in terms of oxide is prepared (the alumina filler (manufactured by Sumitomo Chemical Co., Ltd., product name AES-12) and sodium oxide are mixed and fired at 1200 ° C., The average particle size was 0.9 μm.) And PVdF were weighed to a weight ratio of 99: 1 and mixed to prepare a slurry using NMP. The slurry was applied to the surface of the positive electrode D1, and dried at 60 ° C. for 2 hours to form an inorganic porous layer on the surface of the positive electrode D1, and this was used as the positive electrode D5. Here, the thickness of the inorganic porous layer was 5 μm, and the porosity of the inorganic porous layer was 50% by volume.

(2)負極の作製
比較例1と同様にして、負極B1を作製した。
(2) Production of negative electrode A negative electrode B1 was produced in the same manner as in Comparative Example 1.

(3)電池の作製
コインセル(宝泉株式会社製)の下側パーツの窪みに、アルミ箔を下に向けて正極D5を置き、そして非水電解液としての1MのNaClO4/プロピレンカーボネート、セパレータとしてのポリプロピレン多孔質膜(厚み12μm)、銅箔を上に向けた負極B1、およびコインセル上側パーツを組み合わせて、ナトリウム二次電池E5を作製した。なお、試験電池の組み立てはアルゴン雰囲気のグローブボックス内で行った。
(3) Production of Battery In the lower part of the coin cell (made by Hosen Co., Ltd.), the positive electrode D5 is placed with the aluminum foil facing downward, and 1M NaClO 4 / propylene carbonate as a non-aqueous electrolyte, separator A polypropylene porous membrane (thickness: 12 μm), a negative electrode B1 with a copper foil facing upward, and a coin cell upper part were combined to produce a sodium secondary battery E5. The test battery was assembled in a glove box in an argon atmosphere.

ナトリウム二次電池E5について、比較例1と同様にして定電流充放電試験を行い、放電容量維持率を求めたところ、放電容量維持率は52%であり、比較例1に比べて、レート特性に優れる二次電池であることがわかった。   The sodium secondary battery E5 was subjected to a constant current charge / discharge test in the same manner as in Comparative Example 1 and the discharge capacity retention rate was determined. As a result, the discharge capacity retention rate was 52%. It was found that the secondary battery is excellent in.

Claims (7)

ナトリウムイオンをドープ・脱ドープすることのできる正極と、ナトリウムイオンをドープ・脱ドープすることのできる負極と、電解質とを備え、前記正極および前記負極から選ばれる電極の少なくとも一方の表面に、ナトリウム含有率が酸化物換算で0.01重量%以上15重量%以下のアルミナフィラーを含む無機多孔層が形成されていることを特徴とするナトリウム二次電池。   A positive electrode that can be doped / undoped with sodium ions, a negative electrode that can be doped / undoped with sodium ions, and an electrolyte, and at least one surface of an electrode selected from the positive electrode and the negative electrode, sodium A sodium secondary battery, wherein an inorganic porous layer containing an alumina filler having a content of 0.01% by weight to 15% by weight in terms of oxide is formed. 前記無機多孔層が、前記アルミナフィラーおよび結着剤を含む層である請求項1記載のナトリウム二次電池。   The sodium secondary battery according to claim 1, wherein the inorganic porous layer is a layer containing the alumina filler and a binder. 前記アルミナフィラーの平均粒径が0.01〜2μmの範囲である請求項1または2に記載のナトリウム二次電池。   The sodium secondary battery according to claim 1 or 2, wherein an average particle diameter of the alumina filler is in a range of 0.01 to 2 µm. 前記アルミナフィラーおよび前記結着剤の合計重量に対する前記アルミナフィラーの重量が、80〜99重量%の範囲である請求項2または3記載のナトリウム二次電池。   The sodium secondary battery according to claim 2 or 3, wherein a weight of the alumina filler with respect to a total weight of the alumina filler and the binder is in a range of 80 to 99 wt%. 前記無機多孔層の空隙率が、20〜80体積%の範囲である請求項1〜4のいずれかに記載のナトリウム二次電池。   The sodium secondary battery according to any one of claims 1 to 4, wherein a porosity of the inorganic porous layer is in a range of 20 to 80% by volume. 前記無機多孔層の厚みが、1〜10μmの範囲である請求項1〜5のいずれかに記載のナトリウム二次電池。   The sodium secondary battery according to claim 1, wherein the inorganic porous layer has a thickness in a range of 1 to 10 μm. セパレータを有する請求項1〜6のいずれかに記載のナトリウム二次電池。   The sodium secondary battery in any one of Claims 1-6 which has a separator.
JP2009258746A 2009-11-12 2009-11-12 Sodium secondary battery Pending JP2011103277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258746A JP2011103277A (en) 2009-11-12 2009-11-12 Sodium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258746A JP2011103277A (en) 2009-11-12 2009-11-12 Sodium secondary battery

Publications (1)

Publication Number Publication Date
JP2011103277A true JP2011103277A (en) 2011-05-26

Family

ID=44193525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258746A Pending JP2011103277A (en) 2009-11-12 2009-11-12 Sodium secondary battery

Country Status (1)

Country Link
JP (1) JP2011103277A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062121A (en) * 2011-09-13 2013-04-04 Toyota Motor Corp Active material for sodium ion battery and sodium ion battery
JP2014002953A (en) * 2012-06-20 2014-01-09 Sumitomo Chemical Co Ltd Coating liquid, laminated porous film, and nonaqueous electrolyte secondary battery
JP2014239006A (en) * 2013-06-10 2014-12-18 住友電気工業株式会社 Molten salt battery
JP2015022903A (en) * 2013-07-19 2015-02-02 日本電信電話株式会社 Sodium secondary battery
WO2017213462A1 (en) * 2016-06-09 2017-12-14 한양대학교 산학협력단 Positive electrode active material for sodium secondary battery, and method for preparing same
WO2022267538A1 (en) * 2021-06-26 2022-12-29 宁德时代新能源科技股份有限公司 Negative electrode plate for sodium-ion battery, electrochemical apparatus, and electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062121A (en) * 2011-09-13 2013-04-04 Toyota Motor Corp Active material for sodium ion battery and sodium ion battery
JP2014002953A (en) * 2012-06-20 2014-01-09 Sumitomo Chemical Co Ltd Coating liquid, laminated porous film, and nonaqueous electrolyte secondary battery
US10177361B2 (en) 2012-06-20 2019-01-08 Sumitomo Chemical Company, Limited Coating fluid, laminated porous film, and non-aqueous electrolyte secondary battery
JP2014239006A (en) * 2013-06-10 2014-12-18 住友電気工業株式会社 Molten salt battery
JP2015022903A (en) * 2013-07-19 2015-02-02 日本電信電話株式会社 Sodium secondary battery
WO2017213462A1 (en) * 2016-06-09 2017-12-14 한양대학교 산학협력단 Positive electrode active material for sodium secondary battery, and method for preparing same
WO2022267538A1 (en) * 2021-06-26 2022-12-29 宁德时代新能源科技股份有限公司 Negative electrode plate for sodium-ion battery, electrochemical apparatus, and electronic device

Similar Documents

Publication Publication Date Title
JP5158027B2 (en) Sodium secondary battery
JP5493301B2 (en) Sodium secondary battery
JP5359442B2 (en) Sodium ion battery
KR102263059B1 (en) Electrolyte Membrane for energy storage device, energy storage device including the same, and method for preparing the lectrolyte membrane for energy storage device
KR102201335B1 (en) An active material for an anode, an anode comprising the same and an electrochemical device comprising the same
Yan et al. Superstretchable, thermostable and ultrahigh-loading lithium–sulfur batteries based on nanostructural gel cathodes and gel electrolytes
CN105794018B (en) Protective film, spacer using the same, and rechargeable battery
JP6723074B2 (en) Lithium ion secondary battery
JP2012212648A (en) Electrode for sodium secondary battery, and sodium secondary battery
JP2010113804A (en) Nonaqueous electrolyte secondary battery
KR20150045336A (en) Anode active material, anode including the anode active material, and lithium secondary battery including the anode
KR102144996B1 (en) cathode active material and cathode and sodium secondary battery using the same
US20180026269A1 (en) Lithium ion battery electrode
JP5829091B2 (en) Sodium secondary battery electrode mixture, sodium secondary battery electrode and sodium secondary battery
WO2002052670A1 (en) Lithium ion polymer secondary cell
JP2011103277A (en) Sodium secondary battery
JP2013157318A (en) Anode, method for manufacturing the same, and lithium battery including the same
JP2012079687A (en) Battery pack
WO2007135973A1 (en) Nonaqueous electrolyte secondary battery
JP5440242B2 (en) Sodium secondary battery
JP2011081935A (en) Sodium secondary battery
JP2004327422A (en) Composite polymer electrolyte having different morphology for lithium secondary battery and method of manufacturing the same
TW202043413A (en) Binder for electrochemical devices, electrode mixture, electrode, electrochemical device and secondary battery
JP2023088317A (en) Electrode, lithium battery containing them, and manufacturing method thereof
KR101486649B1 (en) Negative Electrode Material for Sodium-Ion Batteries and Sodium-Ion Battery Having the Same