JP2018048814A - Received light responding device - Google Patents

Received light responding device Download PDF

Info

Publication number
JP2018048814A
JP2018048814A JP2016182510A JP2016182510A JP2018048814A JP 2018048814 A JP2018048814 A JP 2018048814A JP 2016182510 A JP2016182510 A JP 2016182510A JP 2016182510 A JP2016182510 A JP 2016182510A JP 2018048814 A JP2018048814 A JP 2018048814A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
crystal material
response device
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016182510A
Other languages
Japanese (ja)
Other versions
JP6950914B2 (en
Inventor
能子 武仲
Yoshiko Takenaka
能子 武仲
貴広 山本
Takahiro Yamamoto
貴広 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016182510A priority Critical patent/JP6950914B2/en
Publication of JP2018048814A publication Critical patent/JP2018048814A/en
Application granted granted Critical
Publication of JP6950914B2 publication Critical patent/JP6950914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel received light responding device that can be expected to prove useful, among other purposes, as a light sensor that senses the presence or absence of light reception and the intensity of received light and/or as an actuator activated by light reception.SOLUTION: A received light responding device, equipped with a liquid crystal material housing member that houses liquid crystal material and a received light temperature raising member that rises in temperature when receiving light and raises the temperature of adjoining liquid crystal material, is so configured as to cause particles contained in the liquid crystal material and/or causes the surface of the liquid crystal material to be shifted when the received light temperature raising member receives light. The liquid crystal material housing member can have a flat plate part containing two planes whose liquid crystal material housing members are substantially parallel to each other.SELECTED DRAWING: Figure 2

Description

本発明は、受光の有無や強度を感知する光センサ、受光により作動するアクチュエータなどとして利用することが期待できる受光応答装置に関するものである。   The present invention relates to a light receiving response device that can be expected to be used as an optical sensor that senses the presence or absence and intensity of light reception, an actuator that operates by light reception, and the like.

生活や医療現場などにロボットが進出するにあたって、アクチュエータの小型化、ソフト化が求められている。人や生体に親和性のあるアクチュエータとして、液晶、高分子、ゲルなどのソフトマテリアルを用いた新規アクチュエータの開発が望まれている。   As robots move into daily life and medical settings, actuators are required to be smaller and softer. Development of new actuators using soft materials such as liquid crystals, polymers, and gels is desired as actuators that are compatible with humans and living bodies.

そのうち液晶を利用したものとしては、液晶の熱特性を用い、温度勾配のある基板上に液晶フィルムを設置した場合に、高温側から低温側へと液晶内で微小物体を駆動できる技術が報告されている(特許文献1,2、非特許文献1参照)。   Among these, a technology that uses liquid crystal thermal characteristics, and when a liquid crystal film is installed on a substrate with a temperature gradient, a technology that can drive a minute object in the liquid crystal from the high temperature side to the low temperature side has been reported. (See Patent Documents 1 and 2 and Non-Patent Document 1).

特開2010−197685号公報JP 2010-197685 A 特開2012−071300号公報JP 2012-071300 A

Y.-K. Kim, B. Senyuk, O. D. Lavrentovich, Nature Comm., (2012) 3,1133.Y.-K. Kim, B. Senyuk, O. D. Lavrentovich, Nature Comm., (2012) 3,1133.

従来技術において熱特性を用いた液晶中での微粒子駆動では、サーモプレート上に液晶フィルムを配置し、外部からの温度制御によって液晶フィルム内に温度勾配を生じさせ、温度勾配による密度の空間勾配を生じさせることで、微粒子を駆動していた。そのため、駆動には外部温度制御装置が必要であるため小型化することが出来ず、また装置によって規定される一方向にしか微粒子を駆動できなかった。さらに微小領域で密度勾配を生じさせることが難しいため(サーモプレートを用いるため大域的な温度勾配/密度勾配になるため)、微小な運動を取り出すのは難しかった。   In the prior art, when driving fine particles in liquid crystal using thermal characteristics, a liquid crystal film is placed on the thermoplate, and a temperature gradient is generated in the liquid crystal film by controlling the temperature from the outside. The fine particles were driven by the generation. Therefore, since an external temperature control device is required for driving, the size cannot be reduced, and the fine particles can be driven only in one direction defined by the device. Furthermore, since it is difficult to generate a density gradient in a minute region (because of using a thermoplate, it becomes a global temperature gradient / density gradient), it was difficult to extract minute movements.

本発明は、上述のような従来技術やその問題点を背景としてなされたものであり、受光の有無や強度を感知する光センサや受光により作動するアクチュエータなどとして利用が期待できる新奇な受光応答装置を提供することを課題とする。   The present invention has been made against the background of the above-described prior art and its problems, and is a novel light-receiving response device that can be expected to be used as an optical sensor that senses the presence / absence or intensity of light reception or an actuator that operates by light reception. It is an issue to provide.

本発明者は、上記の課題の下、種々の液晶装置について検討した結果、液晶材料収容部材と受光昇温部材とを組み合わせ、受光昇温部材に光照射することにより液晶材料中の粒子や液晶材料の液面を移動させることが可能であることなどを知見して、本発明を完成するに至った。   As a result of studying various liquid crystal devices under the above-mentioned problems, the present inventor has combined a liquid crystal material housing member and a light receiving temperature raising member, and irradiates the light receiving temperature raising member with light so that particles and liquid crystals in the liquid crystal material can be obtained. Knowing that it is possible to move the liquid level of the material, the present invention has been completed.

本発明は、上記のような知見に基づくものであり、この出願によれば、以下の発明が提供される。
<1>ネマチック状態の液晶材料を収容する液晶材料収容部材と、受光して昇温し隣接する液晶材料を昇温する受光昇温部材とを具備し、前記受光昇温部材が受光した際に前記液晶材料中に含まれる粒子及び/又は前記液晶材料の表面が移動する受光応答装置。
<2>前記液晶材料収容部材が前記液晶材料を収容する主収容部と、前記主収容部と一端側が連通する細管とを備える<1>に記載の受光応答装置。
<3>前記細管内の液晶材料及び/又は粒子の主収容部側への移動を防ぐ逆方向移動防止手段を備える<2>に記載の受光応答装置。
<4>前記細管内の液晶材料表面と連動する物体を備える<2>に記載の受光応答装置。
<5>前記液晶材料収容部材の液晶材料収容部が略平行な2平面を含む平板状部を備えるものである<1>に記載の受光応答装置。
<6>前記受光昇温部材が前記液晶材料収容部材に設けられた受光昇温膜状物である<1>、<2>、<5>のいずれか1項に記載の受光応答装置。
<7>前記受光昇温部材が前記液晶材料収容部材の前記平面を形成する部材に設けられた受光昇温膜状物である<5>に記載の受光応答装置。
<8>前記受光昇温部材が前記液晶材料中に混合されたものである<1>、<2>、<5>のいずれか1項に記載の受光応答装置。
<9>前記粒子の移動又は前記液晶材料表面若しくは前記物体の移動により受光の有無及び/又は受光強度を感知する<1>〜<8>のいずれか1項に記載の受光応答装置。
<10><1>〜<9>のいずれか1項に記載の受光応答装置を含み、前記粒子の移動又は前記液面若しくは前記物体の移動により受光の有無及び/又は受光強度を感知する光センサ。
The present invention is based on the above knowledge, and according to this application, the following invention is provided.
<1> A liquid crystal material housing member that houses a liquid crystal material in a nematic state, and a light receiving temperature raising member that receives light to raise the temperature of an adjacent liquid crystal material, and when the light receiving temperature raising member receives light A light-receiving response device in which particles contained in the liquid crystal material and / or the surface of the liquid crystal material move.
<2> The light-receiving response device according to <1>, wherein the liquid crystal material housing member includes a main housing portion that houses the liquid crystal material, and a thin tube that communicates with the main housing portion at one end side.
<3> The light-receiving response device according to <2>, further comprising reverse movement prevention means for preventing movement of the liquid crystal material and / or particles in the narrow tube toward the main container.
<4> The light-receiving response device according to <2>, comprising an object that interlocks with a surface of the liquid crystal material in the thin tube.
<5> The light-receiving response device according to <1>, wherein the liquid crystal material housing portion of the liquid crystal material housing member includes a flat plate portion including two substantially parallel planes.
<6> The light-receiving response device according to any one of <1>, <2>, and <5>, wherein the light-receiving temperature rising member is a light-receiving temperature rising film-like material provided on the liquid crystal material housing member.
<7> The light reception response device according to <5>, wherein the light reception temperature rising member is a light reception temperature rising film-like material provided on a member forming the flat surface of the liquid crystal material housing member.
<8> The light reception response device according to any one of <1>, <2>, and <5>, wherein the light reception temperature raising member is mixed in the liquid crystal material.
<9> The light reception response device according to any one of <1> to <8>, wherein the presence or absence of light reception and / or the light reception intensity is sensed by the movement of the particles or the surface of the liquid crystal material or the object.
<10> Light that includes the light reception response device according to any one of <1> to <9>, and senses presence / absence of light reception and / or light reception intensity by the movement of the particles or the liquid surface or the object. Sensor.

本発明は、次のような態様を含むことができる。
<11>前記受光昇温膜状物がポリイミドフィルム又はITOである<6>又は<7>に記載の受光応答装置。
<12>前記液晶材料中に混合された受光昇温部材が色素、遷移金属窒化物ナノ粒子、炭素ナノ粒子、金属ナノ粒子等から選択されるものである<8>に記載の受光応答装置。
<13>前記細管の他端側は、大気と連通するか、又は、密封されている<3>又は<4>に記載の受光応答装置。
<14>前記逆方向移動防止手段は、逆止弁又は細管通路の細径部からなる<4>に記載の受光応答装置。
<15>前記液面と連動する物体が水銀及び/又は摺動固体である<5>に記載の受光応答装置。
<16>前記摺動固体は、細管内面との接触及び/又は摩擦により前記液晶材料収容部側への移動が防止されるものである<15>に記載の受光応答装置。
<17>前記摺動固体は磁性材料を含むものである<16>に記載の受光応答装置。
<18>前記摺動固体は、柱状、球状、長球状、又は、樽状等である<16>又は<17>に記載の受光応答装置。
The present invention can include the following aspects.
<11> The light receiving response device according to <6> or <7>, wherein the light receiving temperature rising film-like material is a polyimide film or ITO.
<12> The light-receiving response device according to <8>, wherein the light-receiving temperature raising member mixed in the liquid crystal material is selected from a dye, transition metal nitride nanoparticles, carbon nanoparticles, metal nanoparticles, and the like.
<13> The light-receiving response device according to <3> or <4>, wherein the other end of the thin tube communicates with the atmosphere or is sealed.
<14> The light-receiving response device according to <4>, wherein the reverse movement prevention unit includes a check valve or a narrow diameter portion of a thin tube passage.
<15> The light-receiving response device according to <5>, wherein the object interlocked with the liquid surface is mercury and / or a sliding solid.
<16> The light-receiving response device according to <15>, wherein the sliding solid is prevented from moving toward the liquid crystal material housing portion by contact and / or friction with the inner surface of the thin tube.
<17> The light-receiving response device according to <16>, wherein the sliding solid includes a magnetic material.
<18> The light-receiving response device according to <16> or <17>, wherein the sliding solid has a columnar shape, a spherical shape, an oblong shape, a barrel shape, or the like.

本発明によって提供される受光応答装置は、液晶材料を収容する液晶材料収容部材と、受光して昇温し隣接する液晶材料を昇温する受光昇温部材とを具備し、前記受光昇温部材が受光した際に、前記液晶材料中に含まれる粒子及び/又は前記液晶材料の表面が移動するという応答性を示す新奇のものである。
本発明の受光応答装置は、受光の有無や強度を感知する光センサや受光により作動するアクチュエータなどとして利用が期待できるものである。
The light-receiving response device provided by the present invention includes a liquid crystal material housing member that houses a liquid crystal material, and a light-receiving temperature raising member that receives light and raises the temperature of an adjacent liquid crystal material. When the light is received, the particles are contained in the liquid crystal material and / or the surface of the liquid crystal material moves to be novel.
The light-receiving response device of the present invention can be expected to be used as an optical sensor that senses the presence or absence and intensity of light reception, an actuator that operates by light reception, and the like.

本発明の実施例1の受光応答装置例1(sample)において、水平の粒子移動を観察するためのセッティング概略図。FIG. 5 is a setting schematic diagram for observing horizontal particle movement in the light reception response device example 1 (sample) according to the first embodiment of the present invention. 本発明の実施例1の受光応答装置例1の拡大図。上下の基板に挟まれた部分が液晶材料を示す。液晶材料中の粒子をわかりやすいようにスケールアップして描画している。The enlarged view of the light reception response apparatus example 1 of Example 1 of this invention. The portion sandwiched between the upper and lower substrates shows the liquid crystal material. The particles in the liquid crystal material are scaled up for easy understanding. 本発明の実施例2の受光応答装置例2において、液晶材料液面又は粒子の垂直の移動を観察するためのセッティング概略図。FIG. 6 is a setting schematic diagram for observing vertical movement of a liquid surface of liquid crystal material or particles in a light reception response device example 2 of Example 2 of the present invention. 本発明の実施例5の受光応答装置例4において、830nmの赤外光レーザーを照射した時の粒子の動きを1秒ごとのスナップショットとして上から下へ順に示す写真。上から1番目は照射開始直後を、上から6番目は照射停止直後を、それぞれ示す。スケールバーは10μm。In the light-receiving response apparatus example 4 of Example 5 of this invention, the photograph which shows the motion of the particle | grains at the time of irradiating an infrared laser of 830 nm in order from the top to the bottom as a snapshot for every second. The first from the top indicates immediately after the start of irradiation, and the sixth from the top indicates immediately after the stop of irradiation. Scale bar is 10μm.

本発明の受光応答装置は、液晶材料を収容する液晶材料収容部材と、受光して昇温し隣接する液晶材料を昇温する受光昇温部材とを具備し、前記受光昇温部材が受光した際に、前記液晶材料中に含まれる粒子及び/又は前記液晶材料の表面が移動するという応答性を示す新奇のものである。   The light receiving and responding device of the present invention includes a liquid crystal material housing member that contains a liquid crystal material, and a light receiving temperature raising member that receives light to raise the temperature of the adjacent liquid crystal material, and the light receiving temperature raising member receives light. In this case, it is a novel one that shows responsiveness that particles contained in the liquid crystal material and / or the surface of the liquid crystal material move.

前記液晶材料中に含まれる粒子及び/又は前記液晶材料の表面が移動するという応答性を利用することにより、本発明の受光応答装置は、受光の有無や強度を感知する光センサや受光により作動するアクチュエータなどとして利用することが期待できる。   By utilizing the responsiveness that the particles contained in the liquid crystal material and / or the surface of the liquid crystal material move, the light reception response device of the present invention operates by an optical sensor that senses the presence or intensity of light reception or light reception. It can be expected that it will be used as an actuator.

本発明の受光応答装置に用いる液晶材料は、作動時の環境温度においてネマチック(nematic)状態にあるものであれば良く、限定するものではないが、例えば、5CB(4-Cyano-4’-pentylbiphenyl)、MBBA(N-(4-Methoxybenzylidene)-4- butylaniline)、7CB(4-Cyano-4'-heptylbiphenyl)、5-OCB(4-Pentyloxy-[1,1'-biphenyl]-4'-carbonitrile)等を用いることができる。Weissら(S. Weiss, G. Ahlers, J. Fluid Mech. 2013, 737, 308-328.)の知見によれば、液晶材料は、熱による体積膨張率がネマチック−アイソトロピック転移点に向かって発散するような挙動を示すので、効果的な受光応答性を得るには、ネマチックーアイソトロピック転移点が作動時の環境温度より1〜30℃(好ましくは5〜20℃)程度高いものを選択するのが望ましい。液晶材料がネマチックである作動時の環境温度は、室温(10〜30度程度)であることが好ましいが、室温に限定されない。
なお、本発明において、「ネマチック状態の液晶材料」とは、ネマチック相が存在する液晶材料を意味する。そして、ネマチック状態である限り、パラレル配向、ランダム配向、垂直配向などに配向していても良い。また、本発明において、「ネマチック−アイソトロピック転移点」とは、ネマチック性が消失し液晶材料が全体的にアイソトロピック性となる温度を意味し、光学顕微鏡や示差走査熱量測定(DSC)、X線散乱等を用いてその温度を測定することができる。
The liquid crystal material used in the light-receiving response device of the present invention is not particularly limited as long as it is in a nematic state at the environmental temperature during operation.For example, 5CB (4-Cyano-4'-pentylbiphenyl) ), MBBA (N- (4-Methoxybenzylidene) -4-butylaniline), 7CB (4-Cyano-4'-heptylbiphenyl), 5-OCB (4-Pentyloxy- [1,1'-biphenyl] -4'-carbonitrile ) Etc. can be used. According to the findings of Weiss et al. (S. Weiss, G. Ahlers, J. Fluid Mech. 2013, 737, 308-328.), Liquid crystal materials have a volume expansion coefficient due to heat toward the nematic-isotropic transition point. Since it shows a diverging behavior, in order to obtain an effective light-receiving response, select a nematic-isotropic transition point that is 1-30 ° C (preferably 5-20 ° C) higher than the operating ambient temperature. It is desirable to do. The environmental temperature during operation in which the liquid crystal material is nematic is preferably room temperature (about 10 to 30 degrees), but is not limited to room temperature.
In the present invention, the “nematic liquid crystal material” means a liquid crystal material having a nematic phase. As long as it is in a nematic state, it may be aligned in parallel alignment, random alignment, vertical alignment, or the like. Further, in the present invention, the “nematic-isotropic transition point” means a temperature at which the nematic property disappears and the liquid crystal material becomes totally isotropic, and an optical microscope, differential scanning calorimetry (DSC), X The temperature can be measured using line scattering or the like.

本発明の受光応答装置において、受光により液晶材料中に含まれる粒子を移動させる場合には、分散、混合等の適宜の手段により粒子を液晶材料中に含ませる必要がある。粒子は、液晶材料中に均一に分散、混合しても良いが、一部の液晶材料中(例えば、細管内部の液晶材料中)にだけ分散、混合しても良い。粒子は、受光昇温部材の受光昇温による隣接する液晶材料の昇温に伴って移動可能で、かつ、液晶材料収容部材の外部から観察可能なものであれば良い。また、粒子は、重力作用下で液晶材料中を沈降や浮上しないように、使用する液晶材料と大きく比重が異ならないものが好ましい(液晶材料に対し比重の値が0.5〜3.5倍程度、より好ましくは0.8〜3倍程度のもの)。そのような粒子としては、限定するものではないが、直径が1〜50μm(好ましくは5〜30μm)程度の好ましくは球状で、シリカ、ポリエチレン等の無機材料、PDMS(dimethylpolysiloxane)等の樹脂材料、などの材料から形成されたものが挙げられる。   In the light-receiving response device of the present invention, when the particles contained in the liquid crystal material are moved by light reception, the particles need to be contained in the liquid crystal material by an appropriate means such as dispersion or mixing. The particles may be uniformly dispersed and mixed in the liquid crystal material, but may be dispersed and mixed only in a part of the liquid crystal material (for example, in the liquid crystal material inside the narrow tube). The particles may be any particles as long as they can move as the temperature of the adjacent liquid crystal material rises due to the light receiving temperature rise of the light receiving temperature raising member and can be observed from the outside of the liquid crystal material housing member. In addition, the particles preferably have a specific gravity that is not significantly different from the liquid crystal material used so that the particles do not settle or float under the action of gravity (the specific gravity value is about 0.5 to 3.5 times that of the liquid crystal material, more preferably Is about 0.8 to 3 times). Such particles include, but are not limited to, preferably spherical with a diameter of about 1 to 50 μm (preferably 5 to 30 μm), inorganic materials such as silica and polyethylene, resin materials such as PDMS (dimethylpolysiloxane), And those formed from such materials.

本発明の受光応答装置における液晶材料収容部材は、限定するものではないが、液晶材料収容部が略平行な2平面を含む平板状部を備えるもの、液晶材料を収容する主収容部と、前記主収容部と一端側が連通する細管とを備えるもの、などとすることができる。前記主収容部は、形状、構造が限定されず、円柱状、角柱状等の柱状、平板状などのどのような形状であっても良い。主収容部と一端側が連通する細管は、該細管内の液晶材料及び/又は粒子の主収容部側への移動を防ぐ逆方向移動防止手段を備えることもできる。そのような逆方向移動防止手段を備えることにより、受光を受けたことや受けた最大の受光強度を保存することが出来る。該逆方向移動防止手段としては、逆止弁、所定以下の圧力では液晶材料が通過できない細径部(留点)、液晶材料が通過可能で粒子が通過できない粒子止め細径部などとすることができる。該逆方向移動防止手段は、その防止機能を一時的に無効化して細管内の液晶材料及び/又は粒子が主収容部側へ戻るように構成することが繰り返し使用の点で望ましい。例えば、逆止弁や細径部(留点)を構成する材料を加熱変形性材料製(例えば、PNIPAAm(Poly(N-isopropylacrylamide))などの樹脂材料)とすることにより加熱時に一時的に弁を開放変形したり、細径部の径を拡大変形するようにしたりして細管内の液晶材料及び/又は粒子を主収容部側へ戻すように構成することができる。
また、細管内の液晶材料の表面と連動する物体の移動により受光の有無や強度を感知する場合、そのような物体としては、水銀及び/又は摺動固体が挙げられる。水銀と摺動固体を併用する場合、細管内壁と摺動固体周面との間に多少の間隙が存在しても、液晶材料と摺動固体の間の水銀は、液晶材料が摺動固体側へ移動するのを防止するとともに、液晶材料の表面とともに連動し、摺動固体を摺動、移動させることができる。
細管内の液晶材料表面と連動する物体として、水銀を用いずに摺動固体だけを用いる場合、液晶材料が細管内壁と摺動固体周面との間を通り抜けないような構造(例えば、周面にシール部を有するピストン状構造など)とする必要がある。
細管内の液晶材料が主収容部側へ戻る際、摺動固体が液晶材料の表面と連動して主収容部側へ戻らないように、細管内壁と摺動固体周面との接触乃至接触摩擦を設定することができる。その場合、細管内壁と摺動固体周面との接触乃至接触摩擦にも拘らず摺動固体を磁力等の外力で液晶材料の表面側へ移動させるようにすることもできる。磁力による外力で摺動固体を移動させる場合、摺動固体は磁性材料を含む構造とすることができる。
前記摺動個体は、その形状は限定されず、例えば、柱状、球状、長球状、樽状(バレル状)などとすることができる。
The liquid crystal material housing member in the light-receiving response device of the present invention is not limited, but the liquid crystal material housing portion includes a flat plate portion including two parallel planes, the main housing portion for housing the liquid crystal material, It can be a thing provided with the main accommodating part and the thin tube which an end side communicates. The shape and structure of the main housing portion are not limited, and may be any shape such as a columnar shape, a columnar shape such as a prismatic shape, or a flat plate shape. The narrow tube whose one end communicates with the main housing part can also be provided with reverse movement preventing means for preventing the liquid crystal material and / or particles in the thin tube from moving to the main housing part side. By providing such reverse movement preventing means, it is possible to store the received light and the maximum received light intensity. The reverse movement preventing means includes a check valve, a small diameter portion (stationary point) through which the liquid crystal material cannot pass at a pressure below a predetermined pressure, a particle stop thin diameter portion through which the liquid crystal material can pass and particles cannot pass, and the like. Can do. It is desirable in terms of repeated use that the reverse movement prevention means is configured so that the prevention function is temporarily disabled so that the liquid crystal material and / or particles in the narrow tube return to the main housing portion side. For example, the material constituting the check valve and the small diameter part (residue point) is made of a heat-deformable material (for example, a resin material such as PNIPAAm (Poly (N-isopropylacrylamide))) to temporarily The liquid crystal material and / or the particles in the narrow tube can be returned to the main housing part side by opening and deforming the liquid crystal or by enlarging and deforming the diameter of the narrow diameter part.
In the case where the presence or absence of light reception or the intensity is sensed by the movement of an object interlocking with the surface of the liquid crystal material in the narrow tube, examples of such an object include mercury and / or a sliding solid. When mercury and sliding solids are used in combination, even if there is a slight gap between the inner wall of the thin tube and the peripheral surface of the sliding solid, the mercury between the liquid crystal material and the sliding solid is And the sliding solid can be slid and moved in conjunction with the surface of the liquid crystal material.
When using only sliding solids without using mercury as an object linked to the surface of the liquid crystal material in the narrow tube, a structure that prevents the liquid crystal material from passing between the inner wall of the thin tube and the peripheral surface of the sliding solid (for example, the peripheral surface) A piston-like structure having a seal portion on the surface).
When the liquid crystal material in the narrow tube returns to the main housing part, contact or contact friction between the inner wall of the thin tube and the peripheral surface of the sliding solid prevents the sliding solid from returning to the main housing part in conjunction with the surface of the liquid crystal material. Can be set. In this case, the sliding solid can be moved to the surface side of the liquid crystal material by an external force such as a magnetic force regardless of the contact or contact friction between the inner wall of the thin tube and the sliding solid peripheral surface. When the sliding solid is moved by an external force due to a magnetic force, the sliding solid can have a structure including a magnetic material.
The shape of the sliding object is not limited, and may be, for example, a columnar shape, a spherical shape, an oval shape, a barrel shape (barrel shape), or the like.

本発明の受光応答装置における受光して昇温し隣接する液晶材料を昇温する受光昇温部材は、所定の波長の光を吸収する光熱変換機能を有する材料を含む。そのような光熱変換機能を有する材料としては、限定するものではないが、紫外光を吸収するポリイミド、赤外光を吸収する酸化インジウムスズ(ITO)、遷移金属窒化物や炭素のナノ粒子、金属ナノ粒子などが挙げられる。受光昇温部材は、光熱変換機能を有する材料のみから形成されたものでも良いが、これらから選択される1種以上の材料を含む複合材料であっても良い。
前記受光昇温部材は、前記液晶収容部の前記平面を形成する部材などの液晶材料収容部材に設けられる膜状物、前記液晶材料中に分散した分散質(分散粒子)、等の形態とすることができる。上述のように、受光昇温膜状物の受光により液晶材料中の粒子を移動するよう構成する場合、該粒子の外部からの観察が容易となるように、受光昇温膜状物を透視可能な材料製とすることが望ましい。前記液晶収容部を平板状とし、その対面する両平面を一対の受光昇温膜状物で構成する場合、前記液晶材料と接する面を予めラビングしておいて、収容する液晶材料をパラレル配向状態とすることが効果的な粒子移動のために好ましい。
前記受光昇温部材としての前記分散質(分散粒子)は、液晶収容部材の外部から観察可能なものから選択すると、移動が観察される粒子として利用(兼用)することもできる。
The light receiving temperature raising member that receives light and raises the temperature of an adjacent liquid crystal material in the light receiving response device of the present invention includes a material having a photothermal conversion function that absorbs light of a predetermined wavelength. Materials having such a photothermal conversion function include, but are not limited to, polyimide that absorbs ultraviolet light, indium tin oxide (ITO) that absorbs infrared light, transition metal nitride and carbon nanoparticles, metal Examples include nanoparticles. The light receiving temperature raising member may be formed only from a material having a photothermal conversion function, but may be a composite material including one or more materials selected from these materials.
The light receiving temperature raising member is in the form of a film-like material provided in a liquid crystal material housing member such as a member forming the flat surface of the liquid crystal housing portion, a dispersoid (dispersed particles) dispersed in the liquid crystal material, and the like. be able to. As described above, when the particles in the liquid crystal material are moved by receiving the light-receiving temperature rising film-like material, the light-receiving temperature rising film-like material can be seen through so that the particles can be easily observed from the outside. It is desirable to make it from a new material. In the case where the liquid crystal container is formed in a flat plate shape, and both facing flat surfaces are formed of a pair of light-receiving and heating film-like materials, the surface in contact with the liquid crystal material is rubbed in advance, and the liquid crystal material to be stored is in a parallel alignment state Is preferable for effective particle movement.
When the dispersoid (dispersed particles) as the light receiving temperature raising member is selected from those that can be observed from the outside of the liquid crystal storage member, it can be used (also used) as particles for which movement is observed.

以下、実施例により本発明を更に詳細に説明する。本発明の内容はこの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The content of the present invention is not limited to this embodiment.

(実施例1:平板状の液晶材料収容部を備えた受光応答装置例1)
液晶材料としての5CB(4-Cyano-4’-pentylbiphenyl, ネマチック-アイソトロピック転移点は約35℃、和光純薬)中に粒子としての直径10μmのシリカ(SiO2)ビーズ(和光純薬)を混合し、これを自作液晶セルに挿入した。自作液晶セルの作製法は以下のとおりである。2枚のカバーガラス(22×40mm, Matsunami)のそれぞれの片面に、ポリアミック酸(Poly(pyromellitic dianhydride-co-4,4’-oxydianiline), シグマアルドリッチ)のNMP(N-methylpyrrolidone, シグマアルドリッチ)溶液をスピンコート(4000rpm, 90s)して、薄膜を形成した。次に、このガラスを180℃で3時間インキュベートし、ポリアミック酸を重合させて受光昇温膜状物としてのポリイミド膜とした。このようにしてできたポリイミド膜をラビングし、反平行(anti-parallel、ラビング処理方向が平行でかつ向きが反対)に上下に対面させて組み合わせ、厚さ80μmのスペーサーをはさんで固定した。
約25℃の室温下、この自作液晶セル(図1中においてsampleとして表示)に、粒子を混合した液晶材料を挿入し、デジタル顕微鏡(VW9000, キーエンス、図1中において、camera、lenseとして表示)を用いて観察した(図1参照)。観察光は光源(light source)からの可視光をデジタル顕微鏡と反対側から自作液晶セルに対しほぼ垂直に透過させ、この透過光によっては液晶材料内に分散した粒子が動かないことを確認した。次に、この液晶セルの斜め上方から波長が365nmのLED光(150mW/cm2, 浜松ホトニクス)を5秒間照射し、粒子の動きを上記デジタル顕微鏡(30fps)で観察した。その結果、図2に示すように、5秒間のLED光照射により粒子が矢印のようにLED光から遠ざかる方向へ並進移動したこと、光照射を停止すると元の位置に戻ろうとしたことが観察された(なお、粒子はわかりやすいようにスケールアップして描画している。)。また、粒子の移動距離は、LED光の光強度に比例して変化した。
(Example 1: Light receiving response device example 1 including a flat liquid crystal material container)
5CB (4-Cyano-4'-pentylbiphenyl, a nematic-isotropic transition point is about 35 ° C, Wako Pure Chemical Industries) as a liquid crystal material, and silica (SiO 2 ) beads (Wako Pure Chemical Industries) with a diameter of 10 μm as particles. This was mixed and inserted into a self-made liquid crystal cell. The production method of the self-made liquid crystal cell is as follows. NMP (N-methylpyrrolidone) solution of polyamic acid (Poly (pyromellitic dianhydride-co-4,4'-oxydianiline), Sigma-Aldrich) on each side of two cover glasses (22 × 40mm, Matsunami) Was spin-coated (4000 rpm, 90 s) to form a thin film. Next, this glass was incubated at 180 ° C. for 3 hours to polymerize polyamic acid to obtain a polyimide film as a light-receiving temperature rising film. The polyimide film thus formed was rubbed, combined with anti-parallel (anti-parallel, parallel rubbing direction and opposite direction) facing up and down, and fixed with a spacer of 80 μm in thickness.
Insert a liquid crystal material mixed with particles into this self-made liquid crystal cell (shown as sample in FIG. 1) at room temperature of about 25 ° C., and digital microscope (VW9000, Keyence, shown as camera and lens in FIG. 1) (See FIG. 1). As the observation light, visible light from a light source was transmitted almost perpendicularly to the self-made liquid crystal cell from the opposite side of the digital microscope, and it was confirmed that the particles dispersed in the liquid crystal material did not move by this transmitted light. Next, LED light (150 mW / cm 2 , Hamamatsu Photonics) having a wavelength of 365 nm was irradiated for 5 seconds from obliquely above the liquid crystal cell, and the movement of the particles was observed with the digital microscope (30 fps). As a result, as shown in Fig. 2, it was observed that the particles moved in a direction away from the LED light as indicated by the arrow by 5 seconds of LED light irradiation, and that they tried to return to their original positions when the light irradiation was stopped. (Note that the particles are scaled up for clarity.) Moreover, the moving distance of the particles changed in proportion to the light intensity of the LED light.

(実施例2:液晶材料の主収容部に一端が連通した細管を備えた受光応答装置例2)
液晶材料主収容部を構成するものとしてのポリイミド大径チューブ(内径1mm, 長さ約3cm,古川電工)を用意し、その一端側に細管としてのポリイミド小径チューブ(内径0.2mm,長さ10cm, 古川電工)の一端を挿入し、接着剤で固定した。液晶材料5CB(4-Cyano-4’-pentylbiphenyl, 和光純薬)中に粒子としての直径10μmのシリカ(SiO2)ビーズ(和光純薬)を混合したものを、ポリイミド大径チューブに挿入した。その後、ポリイミド小径チューブが挿入されていない方のポリイミド大径チューブの端をPDMSと硬化剤を混合して作製したPDMSエラストマーに差し込んで固定して受光応答装置例2を作製した。用いたPDMSは、シルポット(ダウコーニング社)と硬化剤を10:1の比で混合したものである。
約25℃の室温下、真横から受光昇温部材としてのポリイミド大径チューブ部分に365nmのLED光(150mW/cm2, 浜松ホトニクス)を20秒照射し、ポリイミド小径チューブ部分を上昇してくる液晶/空気界面(液晶材料の表面)の動きを観察した。その結果、LED光照射によりポリイミド小径チューブ内の液晶/空気界面が上方へ約1cm移動したこと、光照射を停止すると元の位置に戻ろうとしたことが観察された。
(Example 2: Light receiving response device example 2 provided with a thin tube having one end communicating with the main housing portion of the liquid crystal material)
Prepare a large-diameter polyimide tube (inner diameter: 1 mm, length: about 3 cm, Furukawa Electric) as the main component of the liquid crystal material, and a polyimide small-diameter tube (inner diameter: 0.2 mm, length: 10 cm, as a thin tube) at one end. One end of Furukawa Electric was inserted and fixed with an adhesive. A liquid crystal material 5CB (4-Cyano-4′-pentylbiphenyl, Wako Pure Chemical Industries) mixed with 10 μm diameter silica (SiO 2 ) beads (Wako Pure Chemical Industries) as particles was inserted into a polyimide large diameter tube. Thereafter, the end of the polyimide large-diameter tube into which the polyimide small-diameter tube is not inserted is inserted into a PDMS elastomer prepared by mixing PDMS and a curing agent and fixed to produce a light receiving response device example 2. The PDMS used was a mixture of Sylpot (Dow Corning) and a curing agent in a ratio of 10: 1.
A liquid crystal that rises from the polyimide small-diameter tube part by irradiating the polyimide large-diameter tube part as a light-receiving temperature rising member from the side with 365 nm LED light (150 mW / cm 2 , Hamamatsu Photonics) for 20 seconds at a room temperature of about 25 ° C. The movement of the / air interface (the surface of the liquid crystal material) was observed. As a result, it was observed that the liquid crystal / air interface in the polyimide small-diameter tube moved upward by about 1 cm due to LED light irradiation, and tried to return to the original position when the light irradiation was stopped.

(実施例3:異なる液晶材料を用いた受光応答装置例3)
実施例1で用いた5CBの代わりに、液晶材料としてMBBA(N-(4-Methoxybenzylidene)-4- butylaniline、ネマチック-アイソトロピック転移点は約45℃、)を用いて実験した。5CBの場合と同様に、MBBA中に粒子としての直径10μmのシリカ(SiO2)ビーズ(和光純薬)を混合し、これを市販の液晶セル(KSRP-50 / A107P1NSS, EHC)に挿入して、約25℃の室温下、実施例1と同様に波長が365nmのLED光を照射した際の粒子の移動を観察した。このセルでは、塗布により形成されたポリイミド膜は、液晶配向が平行配向となるようにラビングされている。また、表面に電極としてITOも塗布されている(ただし、このITOは今回の粒子運動には無関係である。実施例5参照)。その結果、5CBを用いた場合の平均移動距離は10.2 ± 2.7μmであったのに比べ、MBBAを用いた場合の平均移動距離は27.7 ± 5.3μmであり、MBBAを用いた場合の方が平均移動距離が長いことが分かった。
(Example 3: Light receiving response device example 3 using different liquid crystal materials)
In place of 5CB used in Example 1, an experiment was performed using MBBA (N- (4-Methoxybenzylidene) -4-butylaniline, nematic-isotropic transition point of about 45 ° C.) as a liquid crystal material. As in the case of 5CB, silica (SiO 2 ) beads (Wako Pure Chemical Industries) with a diameter of 10 μm are mixed in MBBA and this is inserted into a commercially available liquid crystal cell (KSRP-50 / A107P1NSS, EHC). At room temperature of about 25 ° C., particle movement was observed when LED light having a wavelength of 365 nm was irradiated in the same manner as in Example 1. In this cell, the polyimide film formed by coating is rubbed so that the liquid crystal alignment becomes parallel alignment. In addition, ITO is applied to the surface as an electrode (however, this ITO is irrelevant to the current particle motion. See Example 5). As a result, the average moving distance when MBCB was used was 27.7 ± 5.3 μm compared to the average moving distance when MBCB was 10.2 ± 2.7 μm. It turns out that the moving distance is long.

(実施例4: 異なる波長の光を照射した場合の受光応答装置例3における粒子の移動)
波長が365nmのLED光の代わりに、波長が385nmのLED光(150mW/cm2, 浜松ホトニクス)を用いた以外は実施例3と同様にして観察を行った。その結果、波長が365nmの光を用いた場合の平均移動距離は13.7 ± 5.0pixel、波長が385nmの光を用いた場合の平均移動距離は10.8 ± 3.4pixelであり、波長が365nmの光を用いた場合の方が、平均移動距離が長いことが分かった。
また、同程度の強度で、波長が470nm、525nm、590nm、625nm(いずれもHLV2-22-3W, CCS)の光を照射した場合には、粒子は動かなかった。
(Example 4: Movement of particles in light receiving response device example 3 when light of different wavelengths is irradiated)
Observation was carried out in the same manner as in Example 3 except that instead of LED light having a wavelength of 365 nm, LED light having a wavelength of 385 nm (150 mW / cm 2 , Hamamatsu Photonics) was used. As a result, the average moving distance when using light with a wavelength of 365 nm is 13.7 ± 5.0 pixels, the average moving distance when using light with a wavelength of 385 nm is 10.8 ± 3.4 pixels, and light with a wavelength of 365 nm is used. It was found that the average travel distance was longer when
In addition, the particles did not move when irradiated with light having the same intensity and wavelengths of 470 nm, 525 nm, 590 nm, and 625 nm (all HLV2-22-3W, CCS).

(実施例5:ITOを受光昇温膜状物として用いた受光応答装置例4)
液晶材料としての5CB(4-Cyano-4’-pentylbiphenyl, 和光純薬)中に粒子としての直径10μmのシリカ(SiO2)ビーズ(和光純薬)を混合し、これを実施例3と類似の市販の液晶セル(KSHH-50/A107N1NSS, EHC;ポリイミド膜を有さず、セチルトリメチルアンモニウム(CTAB)膜(ラビング無し)が形成され、電極としてITOも塗布されているもの)に挿入した。約25℃の室温下、このセルに実施例1と同じセッティングで波長が365nmのLED光の替わりに波長が830nmの赤外レーザー光を照射し、照射開始直後から照射停止1秒後まで粒子の動きを1秒ごとに撮影した。その結果を図4において上から下へ順に示す。照射開始後、粒子が液晶材料中で移動し、照射停止後、粒子が元の位置へ戻ろうとする様子を観察することが出来た。なお、実施例1で用いた自作液晶セル(ポリイミド膜のみ塗布)に波長が830nmの赤外レーザー光を照射しても微粒子が動かなかったことから、本実施例でみられた動きは、受光昇温膜状物としてのITOと波長が830nmの赤外レーザー光の組み合わせにより引き起こされたと考えられる。
(Example 5: Example 4 of light receiving response device using ITO as light receiving temperature rising film)
5CB (4-Cyano-4'-pentylbiphenyl, Wako Pure Chemical) as a liquid crystal material was mixed with silica (SiO 2 ) beads (Wako Pure Chemical) having a diameter of 10 μm as particles, and this was similar to Example 3. The product was inserted into a commercially available liquid crystal cell (KSHH-50 / A107N1NSS, EHC; having no polyimide film, a cetyltrimethylammonium (CTAB) film (without rubbing), and ITO applied as an electrode). At room temperature of about 25 ° C., this cell was irradiated with infrared laser light having a wavelength of 830 nm instead of LED light having a wavelength of 365 nm with the same setting as in Example 1, and from immediately after irradiation started to 1 second after irradiation stopped. The movement was filmed every second. The results are shown in order from top to bottom in FIG. After the start of irradiation, the particles moved in the liquid crystal material, and after stopping the irradiation, it was possible to observe how the particles tried to return to their original positions. In addition, since the fine particles did not move even when irradiating infrared laser light having a wavelength of 830 nm to the self-made liquid crystal cell (only the polyimide film applied) used in Example 1, the movement observed in this example is This is thought to be caused by the combination of ITO as the temperature rising film and infrared laser light having a wavelength of 830 nm.

(比較例1:アイソトロピック状態の液晶材料を用いる例)
環境温度を25℃の替わりに40℃とした以外は実施例1と同様にしたが、液晶材料が40℃のアイソトロピック状態では、波長が365nmのLED光を照射しても粒子移動は全く観察されなかった。
(Comparative Example 1: Example using liquid crystal material in isotropic state)
Except that the ambient temperature was set to 40 ° C instead of 25 ° C, the same operation as in Example 1 was performed. However, when the liquid crystal material was in an isotropic state at 40 ° C, particle movement was completely observed even when irradiated with 365 nm wavelength LED light. Was not.

本発明の受光応答装置は、受光の有無や強度を感知する光センサや受光により作動するアクチュエータなどとして利用が期待できる。   The light-receiving response device of the present invention can be expected to be used as an optical sensor that senses the presence / absence and intensity of light reception, an actuator that operates by light reception, and the like.

Claims (10)

ネマチック状態の液晶材料を収容する液晶材料収容部材と、受光して昇温し隣接する液晶材料を昇温する受光昇温部材とを具備し、前記受光昇温部材が受光した際に前記液晶材料中に含まれる粒子及び/又は前記液晶材料の表面が移動する受光応答装置。   A liquid crystal material containing member that contains a liquid crystal material in a nematic state; and a light receiving temperature raising member that receives light to raise the temperature of an adjacent liquid crystal material, and the liquid crystal material receives light when the light receiving temperature raising member receives light. A light-receiving response device in which particles contained therein and / or the surface of the liquid crystal material move. 前記液晶材料収容部材が前記液晶材料を収容する主収容部と、前記主収容部と一端側が連通する細管とを備える請求項1に記載の受光応答装置。   The light-receiving response device according to claim 1, wherein the liquid crystal material housing member includes a main housing portion that houses the liquid crystal material, and a thin tube that communicates with the main housing portion at one end side. 前記細管内の液晶材料及び/又は粒子の主収容部側への移動を防ぐ逆方向移動防止手段を備える請求項2に記載の受光応答装置。   The light-receiving response device according to claim 2, further comprising reverse movement preventing means for preventing movement of the liquid crystal material and / or particles in the narrow tube toward the main container. 前記細管内の液晶材料表面と連動する物体を備える請求項2に記載の受光応答装置。   The light-receiving response device according to claim 2, further comprising an object interlocking with a surface of the liquid crystal material in the narrow tube. 前記液晶材料収容部材の液晶材料収容部が略平行な2平面を含む平板状部を備えるものである請求項1に記載の受光応答装置。   The light-receiving response device according to claim 1, wherein the liquid crystal material housing portion of the liquid crystal material housing member includes a flat plate portion including two substantially parallel planes. 前記受光昇温部材が前記液晶材料収容部材に設けられた受光昇温膜状物である請求項1、2、5のいずれか1項に記載の受光応答装置。   6. The light receiving response device according to claim 1, wherein the light receiving temperature raising member is a light receiving temperature raising film provided on the liquid crystal material housing member. 前記受光昇温部材が前記液晶材料収容部材の前記平面を形成する部材に設けられた受光昇温膜状物である請求項5に記載の受光応答装置。   The light-receiving response device according to claim 5, wherein the light-receiving temperature rising member is a light-receiving temperature rising film-like material provided on a member forming the flat surface of the liquid crystal material housing member. 前記受光昇温部材が前記液晶材料中に混合されたものである請求項1、2、5のいずれか1項に記載の受光応答装置。   The light-receiving response device according to claim 1, wherein the light-receiving temperature raising member is mixed in the liquid crystal material. 前記粒子の移動又は前記液晶材料表面若しくは前記物体の移動により受光の有無及び/又は受光強度を感知する請求項1〜8のいずれか1項に記載の受光応答装置。   The light reception response device according to claim 1, wherein the presence or absence of light reception and / or the light reception intensity is sensed by the movement of the particles or the surface of the liquid crystal material or the object. 請求項1〜9のいずれか1項に記載の受光応答装置を含み、前記粒子の移動又は前記液面若しくは前記物体の移動により受光の有無及び/又は受光強度を感知する光センサ。   An optical sensor comprising the light reception response device according to any one of claims 1 to 9, wherein the optical sensor detects presence / absence of light reception and / or light reception intensity by movement of the particles or movement of the liquid surface or the object.
JP2016182510A 2016-09-20 2016-09-20 Light receiving response device Active JP6950914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016182510A JP6950914B2 (en) 2016-09-20 2016-09-20 Light receiving response device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016182510A JP6950914B2 (en) 2016-09-20 2016-09-20 Light receiving response device

Publications (2)

Publication Number Publication Date
JP2018048814A true JP2018048814A (en) 2018-03-29
JP6950914B2 JP6950914B2 (en) 2021-10-13

Family

ID=61767505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016182510A Active JP6950914B2 (en) 2016-09-20 2016-09-20 Light receiving response device

Country Status (1)

Country Link
JP (1) JP6950914B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520712A (en) * 1990-09-12 1993-01-29 Ricoh Co Ltd Recording medium, recording method and recorder
JPH0627059A (en) * 1992-07-13 1994-02-04 Hitachi Ltd Method and apparatus for opto-thermal conversion analysis
JP2002268029A (en) * 2001-03-14 2002-09-18 Ricoh Co Ltd Optical recording method and optical recording device for image indicating selective reflection color
JP2007071225A (en) * 2005-09-02 2007-03-22 Kochi Univ Of Technology Liquid-crystal flow formation mechanism and method utilizing liquid-crystal defects, and object movement mechanism and method utilizing liquid-crystal flow
JP2009185993A (en) * 2008-02-08 2009-08-20 Kochi Univ Of Technology Mechanism and method for forming hybrid liquid crystal flow and hybrid object moving mechanism using liquid crystal flow
JP2010197685A (en) * 2009-02-25 2010-09-09 Kochi Univ Of Technology Object moving mechanism using phase transition between liquid-liquid crystal, and method for moving object
WO2012029308A1 (en) * 2010-09-01 2012-03-08 公立大学法人高知工科大学 Object movement mechanism and object movement mechanism using interaction between liquid-liquid crystal phase transition and disturbance of orientation field
JP2012071300A (en) * 2010-09-01 2012-04-12 Kochi Univ Of Technology Object selection mechanism and object selection method using liquid-liquid crystal phase transition
JP2012072778A (en) * 2010-09-27 2012-04-12 Kochi Univ Of Technology Soft actuator using liquid crystal
JP2016124886A (en) * 2014-12-26 2016-07-11 国立研究開発法人産業技術総合研究所 Composite material, composition for composite material, production method of composite material, and use method of composite material
WO2016121651A1 (en) * 2015-01-27 2016-08-04 国立研究開発法人産業技術総合研究所 Photosensitive composite material, method for producing same, and method for using photosensitive composite material film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520712A (en) * 1990-09-12 1993-01-29 Ricoh Co Ltd Recording medium, recording method and recorder
JPH0627059A (en) * 1992-07-13 1994-02-04 Hitachi Ltd Method and apparatus for opto-thermal conversion analysis
JP2002268029A (en) * 2001-03-14 2002-09-18 Ricoh Co Ltd Optical recording method and optical recording device for image indicating selective reflection color
JP2007071225A (en) * 2005-09-02 2007-03-22 Kochi Univ Of Technology Liquid-crystal flow formation mechanism and method utilizing liquid-crystal defects, and object movement mechanism and method utilizing liquid-crystal flow
JP2009185993A (en) * 2008-02-08 2009-08-20 Kochi Univ Of Technology Mechanism and method for forming hybrid liquid crystal flow and hybrid object moving mechanism using liquid crystal flow
JP2010197685A (en) * 2009-02-25 2010-09-09 Kochi Univ Of Technology Object moving mechanism using phase transition between liquid-liquid crystal, and method for moving object
WO2012029308A1 (en) * 2010-09-01 2012-03-08 公立大学法人高知工科大学 Object movement mechanism and object movement mechanism using interaction between liquid-liquid crystal phase transition and disturbance of orientation field
JP2012071300A (en) * 2010-09-01 2012-04-12 Kochi Univ Of Technology Object selection mechanism and object selection method using liquid-liquid crystal phase transition
JP2012072778A (en) * 2010-09-27 2012-04-12 Kochi Univ Of Technology Soft actuator using liquid crystal
JP2016124886A (en) * 2014-12-26 2016-07-11 国立研究開発法人産業技術総合研究所 Composite material, composition for composite material, production method of composite material, and use method of composite material
WO2016121651A1 (en) * 2015-01-27 2016-08-04 国立研究開発法人産業技術総合研究所 Photosensitive composite material, method for producing same, and method for using photosensitive composite material film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. K. SHENOY ET AL.: "Carbon coated liquid crystal elastomer film for artificial muscle applications", SENSORS AND ACTUATORS A, vol. Volume 96, Issues 2-3, JPN6020024334, 28 February 2002 (2002-02-28), pages 184 - 188, ISSN: 0004302648 *

Also Published As

Publication number Publication date
JP6950914B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
Saeed et al. Recent advances in the polymer dispersed liquid crystal composite and its applications
Yang et al. Large-scale colloidal self-assembly by doctor blade coating
Lee et al. Thermochromic ionogel: a new class of stimuli responsive materials with super cyclic stability for solar modulation
Barai et al. Reduced graphene oxide-Fe3O4 nanocomposite based nanofluids: study on ultrasonic assisted synthesis, thermal conductivity, rheology, and convective heat transfer
Zheng et al. Z-scan measurement of the nonlinear refractive index of monolayer WS 2
Elim et al. Refractive index control and Rayleigh scattering properties of transparent TiO2 nanohybrid polymer
Baranov et al. Assembly of colloidal semiconductor nanorods in solution by depletion attraction
Kato et al. Liquid-crystalline physical gels
Asaumi et al. Effect of stabilizing particle size on the structure and properties of liquid marbles
Mushenheim et al. Effects of confinement, surface-induced orientations and strain on dynamical behaviors of bacteria in thin liquid crystalline films
Ueno et al. Thermosensitive, soft glassy and structural colored colloidal array in ionic liquid: colloidal glass to gel transition
TW201409143A (en) Light-enhancing structure for electrophoretic display
Shirk et al. Assembly of colloidal silica crystals inside double emulsion drops
TW200835954A (en) Liquid crystal device
Kanai et al. New route to produce dry colloidal crystals without cracks
Xu et al. Dynamic adhesion forces between microparticles and substrates in water
Yan et al. Polymer stabilized cholesteric liquid crystal particles with high thermal stability
Shahin et al. Interface-induced anisotropy and the nematic glass/gel state in jammed aqueous laponite suspensions
Yukioka et al. CO2-gas-responsive liquid marble
Liu et al. An Opto‐and Thermal‐Rewrite PCM/CNF‐IR 780 Energy Storage Nanopaper with Mechanical Regulated Performance
Amjadi et al. Durable perovskite UV sensor based on engineered size-tunable polydimethylsiloxane microparticles using a facile capillary microfluidic device from a high-viscosity precursor
Camerel et al. Combined SAXS− Rheological Studies of Liquid-Crystalline Colloidal Dispersions of Mineral Particles
JP2018048814A (en) Received light responding device
Kang et al. Analysis of particle movement by dielectrophoretic force for reflective electronic display
Berry Jr et al. Thermal dynamics of plasmonic nanoparticle composites

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200715

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210407

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6950914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150