JP2018048794A - Cooling circuit - Google Patents

Cooling circuit Download PDF

Info

Publication number
JP2018048794A
JP2018048794A JP2016186330A JP2016186330A JP2018048794A JP 2018048794 A JP2018048794 A JP 2018048794A JP 2016186330 A JP2016186330 A JP 2016186330A JP 2016186330 A JP2016186330 A JP 2016186330A JP 2018048794 A JP2018048794 A JP 2018048794A
Authority
JP
Japan
Prior art keywords
valve
circuit
cooler
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016186330A
Other languages
Japanese (ja)
Other versions
JP6228644B1 (en
Inventor
久行 大嶋
Hisayuki Oshima
久行 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Etatsuku Eng Kk
Original Assignee
Etatsuku Eng Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Etatsuku Eng Kk filed Critical Etatsuku Eng Kk
Priority to JP2016186330A priority Critical patent/JP6228644B1/en
Application granted granted Critical
Publication of JP6228644B1 publication Critical patent/JP6228644B1/en
Publication of JP2018048794A publication Critical patent/JP2018048794A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cooling circuit capable of utilizing hot gas.SOLUTION: A cooling circuit includes: a first circuit part for introducing a refrigerant by the cooling circuit into a cooling device so as to cut it off; a second circuit part for introducing a high temperature high pressure gas discharged from a compressor into a cooler so as to cut it off; and a third circuit part for introducing a high pressure liquid refrigerant discharged from a condenser into the cooler so as to cut it off. A control device includes: a cooling mode in which the refrigerant cooled by the first circuit part is introduced into the cooler, and the second circuit part and the third circuit part are cut off; and a temperature control mode in which the first circuit part is cut off, and one of the second circuit part and the third circuit part is selected and introduced into the cooler according to a predetermined temperature condition determined in advance.SELECTED DRAWING: Figure 1

Description

本発明は、温度サイクル試験などに用いられる冷却回路に設けられて、エバポレーターなどの冷却器にホットガスを導入して低温室の温度制御を図ることができる経済性に優れた冷却回路の改良に関するものである。   The present invention relates to an improvement in an economical cooling circuit that is provided in a cooling circuit used for a temperature cycle test and the like and can control the temperature of a low temperature chamber by introducing hot gas into a cooler such as an evaporator. Is.

従来、図4に示すように、冷却回路21は、圧縮機22と、凝縮器23と、減圧装置24と、低温室25A内の冷却器25とを有しており、冷媒を循環させて低温室25Aを冷却している。
前記低温室25A内には、低温室ヒーター26を設けており、これも同時に発熱させながら温度バランスを図っている。
また、例えば、特開2000−249455号の食品冷却庫では、庫内に食品が投入された後に、食品温度センサーの検出温度が設定温度に到達し、かつ前記冷媒温度センサーで検出された冷媒温度が前記設定温度以下の時、前記冷却器の温度を前記設定温度近くまで上昇させる手段を備え、該手段が前記圧縮機からのホットガスを前記冷却器に導く手段であることが開示されている。
しかし、凝縮器出口からの高圧液体のホットガスは利用されなかった。
また、特開2001−21241号の冷却システムでは、蒸発器に除霜用ホットガスを供給するホットガス除霜手段と、除霜運転時に蒸発器への冷媒の供給を停止するオフサイクル除霜手段と、所定条件下で前記2つの手段のうちのいずれか一方を選択して実行する手段とを備え、前記蒸発器の位置する庫内の設定温度が所定温度以下であり、蒸発器のコイル温度が氷点温度以上の時、オフサイクル除霜手段を選択し、蒸発器のコイル温度が氷点温度以下の時、ホットガス除霜手段を選択することを特徴とする冷却システムが開示されている。
上記構成では、ホットガスは、除霜を目的としてしか使用されなかった。
Conventionally, as shown in FIG. 4, the cooling circuit 21 includes a compressor 22, a condenser 23, a decompression device 24, and a cooler 25 in the low temperature chamber 25 </ b> A, and circulates a refrigerant to lower the temperature. The chamber 25A is cooled.
A low temperature chamber heater 26 is provided in the low temperature chamber 25A, and this also achieves a temperature balance while simultaneously generating heat.
Further, for example, in the food refrigerator of Japanese Patent Application Laid-Open No. 2000-249455, the temperature of the food temperature sensor reaches the set temperature after the food is put into the warehouse, and the refrigerant temperature detected by the refrigerant temperature sensor. Is provided with means for raising the temperature of the cooler to near the set temperature when the temperature is equal to or lower than the set temperature, and the means is means for guiding hot gas from the compressor to the cooler. .
However, high pressure liquid hot gas from the condenser outlet was not utilized.
Moreover, in the cooling system of Unexamined-Japanese-Patent No. 2001-21241, the hot-gas defrosting means which supplies the defrosting hot gas to an evaporator, and the off cycle defrosting means which stops supply of the refrigerant | coolant to an evaporator at the time of a defrost operation And a means for selecting and executing either one of the two means under a predetermined condition, the set temperature in the chamber where the evaporator is located is not more than a predetermined temperature, and the coil temperature of the evaporator A cooling system is disclosed that selects off-cycle defrosting means when the temperature is above the freezing point temperature, and selects hot gas defrosting means when the coil temperature of the evaporator is below the freezing point temperature.
In the said structure, hot gas was used only for the purpose of defrosting.

特開2000−249455号公報JP 2000-249455 A 特開2001−21241号公報JP 2001-21241 A

この発明は上記事情に鑑みて創案されたものであって、その主たる課題は、冷却回路の圧縮機から吐出された高温高圧のガス冷媒または凝縮器から吐出される高圧液冷媒を冷却回路から分岐して、減圧装置を通さずにエバポレーターなどの冷却器に導入して、低温室の温度上昇等の制御を図ることができるようにした冷却回路を提供することにある。   The present invention was devised in view of the above circumstances, and its main problem is that the high-temperature and high-pressure gas refrigerant discharged from the compressor of the cooling circuit or the high-pressure liquid refrigerant discharged from the condenser is branched from the cooling circuit. Thus, it is an object of the present invention to provide a cooling circuit that can be introduced into a cooler such as an evaporator without passing through a decompression device so as to control the temperature rise of the low temperature chamber.

本発明は、圧縮機と、凝縮器と、減圧装置と、低温室内の冷却器とを有する冷却回路において、
前記冷却回路によって減圧装置から吐出した冷媒を冷却器に導入する第1回路部と、前記圧縮機から吐出された高温高圧ガスの冷媒を凝縮器と減圧装置に通さずに冷却器に導入する第2回路部と、前記凝縮器から吐出された高圧の液冷媒を減圧装置に通さずに冷却器に導入する第3回路部とを有しており、
制御装置は、前記第1回路部により冷却された冷媒を冷却器に導入すると共に、前記第2回路部と第3回路部とを遮断する冷却モードと、前記第1回路部を遮断すると共に、予め定めた所定の温度条件に応じて前記第2回路部または第3回路部のいずれか一方を選択して開き他方を遮断して前記冷媒を冷却器に導入する温度制御モードとを有することを特徴とする。
The present invention relates to a cooling circuit having a compressor, a condenser, a pressure reducing device, and a cooler in a low temperature chamber.
A first circuit portion that introduces refrigerant discharged from the decompression device by the cooling circuit into the cooler; and a first circuit portion that introduces high-temperature and high-pressure gas refrigerant discharged from the compressor into the cooler without passing through the condenser and the decompression device. Two circuit parts, and a third circuit part for introducing the high-pressure liquid refrigerant discharged from the condenser into the cooler without passing through the decompression device,
The control device introduces the refrigerant cooled by the first circuit unit into a cooler, shuts off the second circuit unit and the third circuit unit, shuts off the first circuit unit, A temperature control mode in which either one of the second circuit unit or the third circuit unit is selected according to a predetermined temperature condition set in advance, the other is opened, the other is shut off, and the refrigerant is introduced into the cooler. Features.

本発明の冷却回路では、通常の冷却サイクルからなる冷却モードに加えて、温度制御モードでは圧縮機から吐出された高温高圧ガスまたは減圧装置から吐出された中温度で高圧の液体からなる冷媒を択一的に冷却器に供給することで温度を上昇させることができ、従来のようなヒーターを用いての温度上昇が不要となるので経済的であり、また冷却器の強固な霜付を防ぐことができる。
また、冷却器内には高温高圧のガス又は液媒体を流すのでオイル戻りが良<なる。
また、霜付がないので効率が上がり冷却器や圧縮機の小型化が可能になる。
更に、霜付がないので長期間連続運転が可能になり、霜取りが不要になる。
また、温度サイクル試験において、試験時間の短縮が可能になる。
温度調整用のヒーターが不要になり、必要な場合には、補助的に霜取り専用の小容量の霜取りヒーターを取り付ければよい。
また、簡単な構成であるので、衝撃試験などの環境試験器に限らず冷却器を搭載した冷却回路を有する製品に広く応用が可能になり、省エネを実現できる。
In the cooling circuit of the present invention, in addition to the cooling mode consisting of a normal cooling cycle, in the temperature control mode, a high-temperature high-pressure gas discharged from the compressor or a medium-high-pressure refrigerant discharged from the decompression device is selected. The temperature can be raised by supplying it to the cooler, which is economical because it does not require a temperature rise using a conventional heater, and prevents the cooler from having a strong frost. Can do.
In addition, since a high-temperature and high-pressure gas or liquid medium flows in the cooler, the oil return is good.
In addition, since there is no frosting, the efficiency increases and the cooler and the compressor can be miniaturized.
Furthermore, since there is no frosting, continuous operation for a long period of time is possible, and defrosting is unnecessary.
Also, the test time can be shortened in the temperature cycle test.
A heater for adjusting the temperature becomes unnecessary, and if necessary, a small-capacity defrosting heater dedicated to defrosting may be attached as an auxiliary.
In addition, since it has a simple configuration, it can be widely applied to products having a cooling circuit equipped with a cooler as well as an environmental tester such as an impact test, thereby realizing energy saving.

第1回路を使用する冷却回路の回路図である。It is a circuit diagram of the cooling circuit which uses a 1st circuit. 第2回路を使用する冷却回路の回路図である。It is a circuit diagram of the cooling circuit which uses a 2nd circuit. 第3回路を使用する冷却回路の回路図である。It is a circuit diagram of the cooling circuit which uses a 3rd circuit. 従来の冷却回路を示す回路図である。It is a circuit diagram which shows the conventional cooling circuit.

以下に、この発明の冷却回路に高温高圧のガス冷媒または高圧の液冷媒を供給する回路を設けた好適実施例を示す。   A preferred embodiment in which a circuit for supplying a high-temperature and high-pressure gas refrigerant or a high-pressure liquid refrigerant is provided in the cooling circuit of the present invention will be described below.

図1は、圧縮機2と、凝縮器3と、減圧装置の一例としての電子膨張弁4と、低温室5A内の冷却器の一例としてのエバポレーター5とを有する冷却回路1の概要を示す模式図であり、本実施例では温度サイクル試験を行う環境試験器に用いる冷却回路に適用した。
即ち、この冷却回路1では、圧縮機2で冷媒ガスを加圧して80〜90℃程度の高温高圧ガスとし、該高温高圧ガスを凝縮器3で熱交換して熱を逃がし、30〜40℃程度の中温度で高圧の冷媒液に凝縮液化する。
FIG. 1 is a schematic diagram showing an outline of a cooling circuit 1 having a compressor 2, a condenser 3, an electronic expansion valve 4 as an example of a decompression device, and an evaporator 5 as an example of a cooler in a low temperature chamber 5A. In this embodiment, the present invention is applied to a cooling circuit used in an environmental tester for performing a temperature cycle test.
That is, in this cooling circuit 1, the refrigerant gas is pressurized by the compressor 2 to be a high-temperature high-pressure gas of about 80 to 90 ° C., and the high-temperature high-pressure gas is heat-exchanged by the condenser 3 to release heat, and 30 to 40 ° C. It condenses into a high-pressure refrigerant liquid at a medium temperature.

液化した高圧の冷媒液は電子膨張弁4で減圧され低圧の冷却された冷媒液となり、エバポレーター5で前記低圧の冷媒液が蒸発して空気と熱交換し、低圧の冷媒ガスとなって圧縮機2へ戻るサイクルとなっている。
本実施例では、前記低温室5A内には補助的に霜取りヒーター6が設けられている。
また、前記凝縮器3と電子膨張弁4との間には第1開閉弁としての第1電磁弁11が設けられて第1回路部C1を形成している。
The liquefied high-pressure refrigerant liquid is decompressed by the electronic expansion valve 4 to become a low-pressure cooled refrigerant liquid, and the evaporator 5 evaporates the low-pressure refrigerant liquid and exchanges heat with air to form a low-pressure refrigerant gas. The cycle returns to 2.
In the present embodiment, a defrosting heater 6 is provided as an auxiliary in the low temperature chamber 5A.
A first electromagnetic valve 11 as a first on-off valve is provided between the condenser 3 and the electronic expansion valve 4 to form a first circuit portion C1.

この冷却回路1には、ホットガスによる温度制御用に第2回路部C2(ガスライン)および第3回路部C3(液ライン)とが接続されている(図1〜図3参照)。
即ち、第2回路部C2は、圧縮機2と凝縮器3との間で分岐し、第2開閉弁の一例としての第2電磁弁12を介して流量調整弁の一例として示すパルス電動弁14が設けられている。
該パルス電動弁14は、電子膨張弁4を経由せずにエバポレーター5に接続されている。
The cooling circuit 1 is connected to a second circuit part C2 (gas line) and a third circuit part C3 (liquid line) for temperature control using hot gas (see FIGS. 1 to 3).
That is, the second circuit portion C2 branches between the compressor 2 and the condenser 3, and the pulse motor operated valve 14 shown as an example of the flow rate adjusting valve via the second solenoid valve 12 as an example of the second on-off valve. Is provided.
The pulse motor operated valve 14 is connected to the evaporator 5 without passing through the electronic expansion valve 4.

同様に、第3回路部C3は、前記凝縮器3と電子膨張弁4との間、本実施例では凝縮器3と第1電磁弁11との間で分岐し、第3開閉弁の一例としての第3電磁弁13を介して前記パルス電動弁14に接続されている。   Similarly, the third circuit portion C3 branches between the condenser 3 and the electronic expansion valve 4, in this embodiment, between the condenser 3 and the first electromagnetic valve 11, and is an example of a third on-off valve. The third motor valve 13 is connected to the pulse motor operated valve 14.

上記回路構成からなっているので、冷却回路1のコントローラに設けられたバルブ制御部10では、環境試験器で設定された運転試験条件により、図示省略の温度センサーなどの測定値を基に前記第1回路部C1、第2回路部C2、または第3回路部C3を自動選択して温度制御を行っている。   Since the circuit configuration is as described above, the valve control unit 10 provided in the controller of the cooling circuit 1 is configured to perform the first operation based on the measured values of a temperature sensor or the like (not shown) according to the operation test conditions set by the environmental tester. The temperature control is performed by automatically selecting the first circuit unit C1, the second circuit unit C2, or the third circuit unit C3.

即ち、バルブ制御部10では、冷却モードと温度制御モードとを有しており、設定された運転試験条件(温度サイクル試験など)に基づいて、バルブ制御部10に接続された各部センサー群からの検出データを比較しながら、第1から第3電磁弁11〜13、パルス電動弁14の開閉制御を行う。   That is, the valve control unit 10 has a cooling mode and a temperature control mode. Based on the set operation test conditions (such as a temperature cycle test), the valve control unit 10 receives from each sensor group connected to the valve control unit 10. The opening / closing control of the first to third electromagnetic valves 11 to 13 and the pulse motor operated valve 14 is performed while comparing the detection data.

低温室5Aを所定温度まで冷却する冷却モードの場合には、図1で示すように、前記第1電磁弁11を開き、第2電磁弁12および第3電磁弁13を閉じて、冷媒を圧縮機2、凝縮器3、電子膨張弁4に順次通してエバポレーター5に供給する通常の冷却サイクルにより低温室5Aを冷却する。   In the cooling mode in which the low greenhouse 5A is cooled to a predetermined temperature, as shown in FIG. 1, the first electromagnetic valve 11 is opened, the second electromagnetic valve 12 and the third electromagnetic valve 13 are closed, and the refrigerant is compressed. The low temperature chamber 5 </ b> A is cooled by a normal cooling cycle that sequentially passes through the machine 2, the condenser 3, and the electronic expansion valve 4 and supplies it to the evaporator 5.

次に、低温室5Aの温度を上昇させる温度制御モードの場合には、図2、図3の実線で示すように、電子膨張弁4への冷媒の供給を遮断する。
即ち、第1電磁弁11を閉じる。
同時に、上昇させる温度に対応して、第2電磁弁12、または第3開閉弁13のいずれか一方を択一的に開き、他方を閉じる。
Next, in the temperature control mode in which the temperature of the low temperature chamber 5A is raised, the supply of the refrigerant to the electronic expansion valve 4 is shut off as shown by the solid lines in FIGS.
That is, the first electromagnetic valve 11 is closed.
At the same time, either the second solenoid valve 12 or the third on-off valve 13 is selectively opened and the other is closed in accordance with the temperature to be raised.

即ち、第2電磁弁12が開状態になると、第1電磁弁11と第3電磁弁13とは閉状態となり、圧縮機2から吐出された80〜90℃程度の高温高圧ガスの冷媒は凝縮器3に入らず、パルス電動弁14を介して、直接にエバポレーター5に供給される(図2参照)。   That is, when the second solenoid valve 12 is opened, the first solenoid valve 11 and the third solenoid valve 13 are closed, and the refrigerant of the high-temperature high-pressure gas of about 80 to 90 ° C. discharged from the compressor 2 is condensed. Instead of entering the vessel 3, it is supplied directly to the evaporator 5 via the pulse motor operated valve 14 (see FIG. 2).

また、第3電磁弁13が開状態になると、第1電磁弁11と第2電磁弁12とは閉状態となり、凝縮器3から吐出された30〜40℃程度の高圧液媒体は電子膨張弁4は通らず、パルス電動弁14を介して、直接にエバポレーター5に供給される(図3参照)。   When the third solenoid valve 13 is opened, the first solenoid valve 11 and the second solenoid valve 12 are closed, and the high-pressure liquid medium discharged from the condenser 3 is about 30 to 40 ° C. 4 does not pass through and is supplied directly to the evaporator 5 via the pulse motor operated valve 14 (see FIG. 3).

これによって、バルブ制御部10によって、温度サイクル試験などで予め設定された間隔で低温から温度上昇させるために、前記高温高圧のガス冷媒または高圧の液冷媒のいずれを使用するかを判定し、第2回路部C2または第3回路部C3を使用することで、効率よく温度を所定温度に上昇させることができる。   Thus, the valve control unit 10 determines whether to use the high-temperature / high-pressure gas refrigerant or the high-pressure liquid refrigerant in order to increase the temperature from a low temperature at a preset interval in a temperature cycle test or the like. By using the two circuit part C2 or the third circuit part C3, the temperature can be efficiently raised to a predetermined temperature.

この温度上昇等の制御に際しては、オペレータによる設定温度に対して、低温室の現在温度との温度差や、試料の負荷変動などを各部センサー群が検出したデータを基に、前記バブル制御部10が自動的に判断して、前記第2回路部C2の使用か第3回路部C3の使用かを選択し、また前記制御部10からの出力信号でパルス電動弁14を制御し、最適開度で流量調整を行う。   In controlling the temperature rise or the like, the bubble control unit 10 is based on the data detected by each sensor group for the temperature difference between the temperature set by the operator and the current temperature of the low temperature chamber, the sample load fluctuation, and the like. Automatically determines the use of the second circuit unit C2 or the third circuit unit C3, and controls the pulse motor operated valve 14 with the output signal from the control unit 10 to obtain the optimum opening degree. Adjust the flow rate with.

本実施例では、補助的に霜取りヒーター6を併用している。
この霜取りヒーター6は、温度サイクル試験などの温度制御用のヒーターとしては用いないので、通常はOFFのままとなっている。
そして、霜取り用として使用する場合だけに霜取りヒーター6を通電するので、小容量のヒーターで、電気の使用量も可及的に抑えることができる。
In this embodiment, a defrosting heater 6 is used in an auxiliary manner.
Since this defrosting heater 6 is not used as a heater for temperature control such as a temperature cycle test, it is normally kept OFF.
Since the defrost heater 6 is energized only when used for defrosting, the amount of electricity used can be suppressed as much as possible with a small capacity heater.

なお、パルス電動弁14とエバポレーター5との間の回路にはフレキシブル管15が設けられることが好ましい。
これは、通常の第1回路部C1では減圧された冷媒が通過する回路に、パルス電動弁14からの回路が接続されるので、上記接続個所からエバポレーター5までの回路には高圧のガスまたは液体の冷媒が通ることになり、振動による金属疲労の防止を図っている。
Note that a flexible pipe 15 is preferably provided in the circuit between the pulse motor operated valve 14 and the evaporator 5.
This is because the circuit from the pulse motor-operated valve 14 is connected to the circuit through which the decompressed refrigerant passes in the normal first circuit section C1, and therefore the high-pressure gas or liquid is connected to the circuit from the connection point to the evaporator 5. The refrigerant passes through and prevents metal fatigue due to vibration.

同様に電子膨張弁4とエバポレーター5との間で、パルス電動弁14の回路の接続位置と電子膨張弁4との間には、逆止弁16を設けて、高圧のガスや液体が逆流しないようにすることが好ましい。
即ち、逆止弁16は、前記第2電磁弁12または第3電磁弁13が開いて高温高圧のガス冷媒や高圧の液冷媒が流れる際に、電子膨張弁4への逆流を防止して電子膨張弁4の破損を防止するためである。
Similarly, a check valve 16 is provided between the electronic expansion valve 4 and the evaporator 5 between the connection position of the circuit of the pulse motor operated valve 14 and the electronic expansion valve 4 so that high-pressure gas or liquid does not flow backward. It is preferable to do so.
That is, the check valve 16 prevents the backflow to the electronic expansion valve 4 when the second solenoid valve 12 or the third solenoid valve 13 is opened and a high-temperature high-pressure gas refrigerant or a high-pressure liquid refrigerant flows. This is to prevent the expansion valve 4 from being damaged.

なお、前記バルブ制御部10は、第1電磁弁11を選択している場合は、温度調節計が低温ヒーターPID制御出力となり、第2電磁弁12または第3電磁弁13を選択した場合にはホットガスPID制御出力に切り替えて制御する。   In addition, when the said valve control part 10 has selected the 1st solenoid valve 11, when a temperature controller becomes a low temperature heater PID control output and the 2nd solenoid valve 12 or the 3rd solenoid valve 13 is selected, Control is switched to the hot gas PID control output.

上記構成からなるので、従来型(図4参照)では、圧縮機は連続運転になるため低温室ヒーターも同時に発熱させながら温度バランスをとり、設定温度を維持させる必要があったが、本実施例では、圧縮機2は冷却時は連続運転になるが、温度上昇等の制御時には低温室ヒーターの替わりに前記高温高圧のガス冷媒か高圧の液冷媒のいずれかを冷却器内に直接流して温度バランスをとり温度サイクル試験などの設定温度を維持させている。   With the above configuration, in the conventional type (see FIG. 4), since the compressor is operated continuously, it is necessary to maintain the set temperature while maintaining the temperature balance while simultaneously generating heat in the low temperature chamber heater. Then, the compressor 2 is continuously operated during cooling, but at the time of control such as temperature rise, instead of the low temperature chamber heater, either the high temperature / high pressure gas refrigerant or the high pressure liquid refrigerant is directly flowed into the cooler. Balance is maintained to maintain the set temperature for temperature cycling tests.

このように本実施例では、減圧装置(電子膨張弁4)と流量調整弁(パルス電動弁14)とが同期して同時に作動することはない。
そして霜取りヒーター6に通電するのは霜取り時のみとなり、前記従来構造よりも電力消費を抑えることができる。
Thus, in this embodiment, the pressure reducing device (electronic expansion valve 4) and the flow rate adjusting valve (pulse motor operated valve 14) do not operate simultaneously in synchronization.
The defrosting heater 6 is energized only at the time of defrosting, and the power consumption can be suppressed as compared with the conventional structure.

この発明は、上記実施例に限定されるものではなく、第1から第3の開閉弁の全部または一部は、電磁弁または電動弁からなるものでもよい。
また、流量調整弁はパルス電動弁に限らず流量を調整できるバルブであればよい。
また、第2開閉弁と第3開閉弁とを1つの流量調整弁に直列に接続したが、流量調整弁は省略し、前記第2、第3開閉弁を流量調整弁として冷却器に並列に接続してもよい。
その他、要するにこの発明の要旨を変更しない範囲で種々設計変更しうること勿論である。
The present invention is not limited to the above embodiment, and all or a part of the first to third on-off valves may be composed of electromagnetic valves or electric valves.
The flow rate adjusting valve is not limited to the pulse motor operated valve, but may be any valve that can adjust the flow rate.
Further, the second on-off valve and the third on-off valve are connected in series to one flow rate adjusting valve, but the flow rate adjusting valve is omitted, and the second and third on-off valves are used as flow rate adjusting valves in parallel with the cooler. You may connect.
In addition, it goes without saying that various design changes can be made without departing from the scope of the present invention.

1 冷却回路
2 圧縮機
3 凝縮器
4 電子膨張弁(減圧装置)
5 エバポレーター(冷却器)
6 霜取りヒーター
10 バルブ制御装置
11 第1電磁弁(第1開閉弁)
12 第2電磁弁(第2開閉弁)
13 第3電磁弁(第3開閉弁)
14 パルス電動弁(流量調整弁)
15 フレキシブル管
16 逆止弁
17 ドライヤ
C1 第1回路部
C2 第2回路部
C3 第3回路部
DESCRIPTION OF SYMBOLS 1 Cooling circuit 2 Compressor 3 Condenser 4 Electronic expansion valve (pressure reduction device)
5 Evaporator (cooler)
6 Defroster heater 10 Valve controller 11 First solenoid valve (first on-off valve)
12 Second solenoid valve (second on-off valve)
13 Third solenoid valve (third on-off valve)
14 Pulse motor operated valve (Flow control valve)
15 Flexible pipe 16 Check valve 17 Dryer C1 1st circuit part C2 2nd circuit part C3 3rd circuit part

Claims (6)

圧縮機と、凝縮器と、減圧装置と、低温室内の冷却器とを有する冷却回路において、
前記冷却回路によって減圧装置から吐出した冷媒を冷却器に導入する第1回路部と、前記圧縮機から吐出された高温高圧ガスの冷媒を凝縮器と減圧装置に通さずに冷却器に導入する第2回路部と、前記凝縮器から吐出された高圧の液冷媒を減圧装置に通さずに冷却器に導入する第3回路部とを有しており、
制御装置は、前記第1回路部により冷却された冷媒を冷却器に導入すると共に、前記第2回路部と第3回路部とを遮断する冷却モードと、前記第1回路部を遮断すると共に、予め定めた所定の温度条件に応じて前記第2回路部または第3回路部のいずれか一方を選択して開き他方を遮断して前記冷媒を冷却器に導入する温度制御モードとを有することを特徴とする冷却回路。
In a cooling circuit having a compressor, a condenser, a pressure reducing device, and a cooler in a low temperature chamber,
A first circuit portion that introduces refrigerant discharged from the decompression device by the cooling circuit into the cooler; and a first circuit portion that introduces high-temperature and high-pressure gas refrigerant discharged from the compressor into the cooler without passing through the condenser and the decompression device. Two circuit parts, and a third circuit part for introducing the high-pressure liquid refrigerant discharged from the condenser into the cooler without passing through the decompression device,
The control device introduces the refrigerant cooled by the first circuit unit into a cooler, shuts off the second circuit unit and the third circuit unit, shuts off the first circuit unit, A temperature control mode in which either one of the second circuit unit or the third circuit unit is selected according to a predetermined temperature condition set in advance, the other is opened, the other is shut off, and the refrigerant is introduced into the cooler. Characteristic cooling circuit.
第1回路部が、冷却回路の凝縮器と減圧装置との間に冷媒を通す第1開閉弁を有しており、
第2回路部が、圧縮機と凝縮器の間に圧縮機から吐出された高温高圧ガスの冷媒を通す第2開閉弁を有しており、
第3回路部が、凝縮器と第1開閉弁の間で凝縮器から吐出された高圧液体の冷媒を通す第3開閉弁を有しており、
前記第2回路部と第3回路部とは、冷却器に接続される流量調整弁に接続されており、
制御装置の冷却モードでは、低温室の冷却を行う場合には前記第1開閉弁を開くと共に第2電磁弁および第3電磁弁を閉じて冷却を行い、温度制御モードでは、前記第1開閉弁を閉じると共に温度条件に応じて、前記第1開閉弁を閉じて第2開閉弁または第3開閉弁のいずれかを一方を開き第3開閉弁を開いてガスまたは液体の冷媒を冷却器に導入しうることを特徴とする冷却回路。
The first circuit portion has a first on-off valve for passing the refrigerant between the condenser of the cooling circuit and the decompression device;
The second circuit part has a second on-off valve for passing the refrigerant of the high-temperature high-pressure gas discharged from the compressor between the compressor and the condenser;
The third circuit portion has a third on-off valve for passing the refrigerant of the high-pressure liquid discharged from the condenser between the condenser and the first on-off valve;
The second circuit portion and the third circuit portion are connected to a flow rate adjustment valve connected to a cooler,
In the cooling mode of the control device, when cooling the low temperature chamber, the first on-off valve is opened and the second electromagnetic valve and the third electromagnetic valve are closed for cooling. In the temperature control mode, the first on-off valve is used. And the first on-off valve is closed, one of the second on-off valve and the third on-off valve is opened, and the third on-off valve is opened to introduce a gas or liquid refrigerant into the cooler according to the temperature condition. A cooling circuit characterized in that it can.
流量調整弁と冷却器との間の回路の一部または全部にフレキシブル管が用いられていることを特徴とする請求項1または2に記載の冷却回路。   The cooling circuit according to claim 1 or 2, wherein a flexible pipe is used for a part or all of the circuit between the flow regulating valve and the cooler. 減圧装置と冷却器との間に逆止弁が設けられていることを特徴とする請求項1から3のいずれかに記載の冷却回路。   The cooling circuit according to claim 1, wherein a check valve is provided between the pressure reducing device and the cooler. 第1から第3の開閉弁の全部または一部が、電磁弁または電動弁からなっており、流量調整弁がパルス電動弁からなっていることを特徴とする請求項2から4のいずれかに記載の冷却回路。   5. The system according to claim 2, wherein all or a part of the first to third on-off valves is made of an electromagnetic valve or an electric valve, and the flow rate adjusting valve is made of a pulse electric valve. The cooling circuit described. 低温室に、補助的に低温室内の霜取り用のヒーターが設けられていることを特徴とする請求項1に記載の冷却回路。   The cooling circuit according to claim 1, wherein a heater for defrosting the low temperature room is provided as an auxiliary to the low greenhouse.
JP2016186330A 2016-09-23 2016-09-23 Cooling circuit Active JP6228644B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186330A JP6228644B1 (en) 2016-09-23 2016-09-23 Cooling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186330A JP6228644B1 (en) 2016-09-23 2016-09-23 Cooling circuit

Publications (2)

Publication Number Publication Date
JP6228644B1 JP6228644B1 (en) 2017-11-08
JP2018048794A true JP2018048794A (en) 2018-03-29

Family

ID=60265910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186330A Active JP6228644B1 (en) 2016-09-23 2016-09-23 Cooling circuit

Country Status (1)

Country Link
JP (1) JP6228644B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165033A (en) 2018-11-26 2021-07-23 杰富意钢铁株式会社 Method for producing non-oriented electromagnetic steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038453A (en) * 1996-07-24 1998-02-13 Matsushita Refrig Co Ltd Defrosting method for freezer/refrigerator
JP2003336943A (en) * 2002-05-17 2003-11-28 Hoshizaki Electric Co Ltd Cooling device
JP2005201412A (en) * 2004-01-19 2005-07-28 Ork:Kk Vibration absorbing pipe
JP2006118783A (en) * 2004-10-21 2006-05-11 Denso Corp Refrigerating cycle device
JP2010236830A (en) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd Refrigerating device for transportation
JP2015190717A (en) * 2014-03-28 2015-11-02 平出デンソー部株式会社 Refrigeration cycle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038453A (en) * 1996-07-24 1998-02-13 Matsushita Refrig Co Ltd Defrosting method for freezer/refrigerator
JP2003336943A (en) * 2002-05-17 2003-11-28 Hoshizaki Electric Co Ltd Cooling device
JP2005201412A (en) * 2004-01-19 2005-07-28 Ork:Kk Vibration absorbing pipe
JP2006118783A (en) * 2004-10-21 2006-05-11 Denso Corp Refrigerating cycle device
JP2010236830A (en) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd Refrigerating device for transportation
JP2015190717A (en) * 2014-03-28 2015-11-02 平出デンソー部株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP6228644B1 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
KR101366279B1 (en) Refrigerator and control method for the same
US9612047B2 (en) Refrigeration cycle apparatus and refrigerant circulation method
CN101981389B (en) Refrigerating device
CN105020846B (en) The control method of air regulator
US9970696B2 (en) Defrost for transcritical vapor compression system
CN102734969B (en) The hot-water central heating system of freezing cycle device and this freezing cycle device of outfit
US20080168781A1 (en) Refrigerating Machine
EP2988077B1 (en) Systems and methods for operating a refrigeration system
CN106949654B (en) Air conditioner and refrigeration system
JP2013119954A (en) Heat pump hot water heater
JP6545252B2 (en) Refrigeration cycle device
EP3273191B1 (en) Refrigerator and method for controlling constant temperature thereof
WO2017006126A1 (en) Combined heating and cooling systems
JPWO2017037891A1 (en) Refrigeration cycle equipment
JP6228644B1 (en) Cooling circuit
JP2017166747A5 (en)
JP2017067318A (en) Air conditioner
CN110319542B (en) Unloading start-stop control method of large-displacement variable-frequency multi-split system
KR101674302B1 (en) Refrigerator for Constant-Temperature System
JP5150300B2 (en) Heat pump type water heater
KR100698578B1 (en) Hot water generating apparatus using heat pump
JP4871800B2 (en) Chiller device
KR100927391B1 (en) Chiller device for semiconductor process equipment and its control method
JP2012097953A (en) Heat pump water heater
US20140284024A1 (en) Method for controlling refrigerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171013

R150 Certificate of patent or registration of utility model

Ref document number: 6228644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250