JP2018048726A - Slide device - Google Patents

Slide device Download PDF

Info

Publication number
JP2018048726A
JP2018048726A JP2016186169A JP2016186169A JP2018048726A JP 2018048726 A JP2018048726 A JP 2018048726A JP 2016186169 A JP2016186169 A JP 2016186169A JP 2016186169 A JP2016186169 A JP 2016186169A JP 2018048726 A JP2018048726 A JP 2018048726A
Authority
JP
Japan
Prior art keywords
graphite particles
sliding
particles
scaly
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016186169A
Other languages
Japanese (ja)
Other versions
JP6653234B2 (en
Inventor
貴文 山内
Takafumi Yamauchi
貴文 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2016186169A priority Critical patent/JP6653234B2/en
Publication of JP2018048726A publication Critical patent/JP2018048726A/en
Application granted granted Critical
Publication of JP6653234B2 publication Critical patent/JP6653234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slide device hardly causing damage to a surface of a slide layer even under a non-lubricating condition, and having excellent abrasion resistance.SOLUTION: A slide device includes a shaft member and a slide member, and in the shaft member, hard particles of 5-50 vol% are dispersed in a synthetic resin. The slide member includes a back metal layer and a slide layer, and the slide layer is composed of a synthetic resin and graphite particles. A volume of the graphite particles is 5-50 vol% of the slide layer, the graphite particles are composed of long spherical graphite particles and thin plate-shaped scaly graphite particles, and a volume ratio of the scaly graphite particles to the total graphite particles is 10-40%. In a cross-sectional structure of the long spherical graphite particles, a plurality of AB surfaces of graphite crystal are laminated in a curved shape along roundness of the particle surfaces from a surface toward a center, and in a cross-sectional structure of the scaly graphite particles, the plurality of AB surfaces are laminated in a thickness direction of the thin plate shape. An average particle size of the long spherical graphite particles is 3-50 μm, an average particle size of the scaly graphite particles is 1-25 μm, a graphitization degree K1 of the long spherical graphite particles is 0.80-0.97, and a graphitization degree K2 of the scaly graphite particles is greater than K1 by 0.03-0.15.SELECTED DRAWING: Figure 1

Description

本発明は、摺動装置に関するものであり、詳細には、合成樹脂製の軸部材と、裏金層上に合成樹脂および黒鉛からなる摺動層を備え、軸部材を支承する摺動部材とを有する摺動装置に係るものである。   The present invention relates to a sliding device. Specifically, a shaft member made of synthetic resin, and a sliding member that includes a sliding layer made of synthetic resin and graphite on a back metal layer and supports the shaft member. The present invention relates to a sliding device.

互いに摺動接触する摺動面がともに樹脂組成物である二つの摺動部材を組合わせた構造の摺動装置が用いられている。二つの摺動部材のうち、一方は、回転動作、あるいは、往復動作を行う軸部材であり、他方は、この軸部材を支承する摺動層を有する摺動部材である。
軸部材は、強度を高めるために、合成樹脂にカーボン繊維、ガラス繊維、金属粒子、セラミックス粒子等の硬質粒子を含有させたものが、従来より知られている(特許文献1、特許文献2参照)。
A sliding device having a structure in which two sliding members whose sliding surfaces that are in sliding contact with each other are resin compositions is combined is used. Of the two sliding members, one is a shaft member that performs a rotating operation or a reciprocating operation, and the other is a sliding member having a sliding layer that supports the shaft member.
Conventionally known shaft members are made of synthetic resin containing hard particles such as carbon fibers, glass fibers, metal particles, and ceramic particles in order to increase strength (see Patent Documents 1 and 2). ).

他方、摺動部材としては、合成樹脂に固体潤滑剤として鱗片状の黒鉛を添加した樹脂組成物を有するものが、従来より用いられている(特許文献3)。天然黒鉛は、一般的に、その性状によって、鱗片状黒鉛、鱗状黒鉛、土壌黒鉛に分けられる。黒鉛化度は、鱗状黒鉛が100%と最も高く、次いで鱗片状黒鉛の99.9%であり、土壌黒鉛は28%と低い。従来、摺動部材用の固体潤滑剤としての黒鉛は、黒鉛化度が高い鱗状黒鉛または鱗片状黒鉛の天然黒鉛を機械的に粉砕した鱗片状粒子が用いられてきた。   On the other hand, as a sliding member, what has the resin composition which added scaly graphite as a solid lubricant to a synthetic resin is used conventionally (patent document 3). Natural graphite is generally classified into scaly graphite, scaly graphite, and soil graphite depending on its properties. The degree of graphitization is the highest at 100% for scaly graphite, then 99.9% for scaly graphite, and 28% for soil graphite. Conventionally, as a solid lubricant for a sliding member, scaly graphite having a high degree of graphitization or scaly particles obtained by mechanically grinding natural graphite of scaly graphite has been used.

この鱗片形状の黒鉛は、炭素原子が規則正しく網目構造を形成して平面状に広がるAB面(六角網面平面、ベーサル面)が多数積層し、AB面に垂直なC軸方向に厚みを有する結晶である。積層したAB面相互間のファンデルワールス力による結合力がAB面の面内方向の結合力に比べてはるかに小さいため、AB面間でせん断が起きやすい。そのため、この黒鉛は、AB面の広がりに対して積層の厚みが薄いため、全体としては薄板状を呈している。なお、鱗片状黒鉛粒子は、外力を受けた場合にAB面間のせん断が起こることにより固体潤滑剤として機能すると考えられている。   This scaly graphite is a crystal in which carbon atoms regularly form a network structure and a large number of AB planes (hexagonal plane planes, basal planes) spread in a plane and have a thickness in the C-axis direction perpendicular to the AB plane. It is. Since the bonding force due to the van der Waals force between the laminated AB surfaces is much smaller than the bonding force in the in-plane direction of the AB surface, shearing is likely to occur between the AB surfaces. Therefore, this graphite has a thin plate shape as a whole because the thickness of the laminated layer is small with respect to the spread of the AB surface. In addition, it is thought that scaly graphite particles function as a solid lubricant by shearing between AB surfaces when receiving external force.

近年、鱗片状黒鉛粒子を含有する樹脂組成物を用いた摺動部材では、鱗片状黒鉛粒子の形状が薄板状であり脆いことに起因して、摺動面となる樹脂組成物の表面を機械加工した際に鱗片状黒鉛粒子が割れて脱落してしまい、摺動層の表面の粗さが悪くなり、その結果として耐焼付性が悪くなるという問題が生じている。この問題を解決するため、合成樹脂に球状化天然黒鉛粒子を含有させ、機械加工後の表面粗さを小さくできるとする摺動材料が、たとえば特許文献4に提案されている。
ここで、球状化黒鉛粒子は、天然の鱗片状黒鉛粒子を原材料とし、鱗片状黒鉛粒子に小さな負荷を繰り返し加えて、折り曲げることにより球状に造粒したものである(特許文献5、特許文献6参照)。
In recent years, in a sliding member using a resin composition containing scaly graphite particles, the surface of the resin composition serving as a sliding surface is machined because the shape of the scaly graphite particles is thin and brittle. When processed, the flaky graphite particles break and fall off, resulting in a problem that the surface roughness of the sliding layer is deteriorated, and as a result, seizure resistance is deteriorated. In order to solve this problem, for example, Patent Document 4 proposes a sliding material capable of containing spherical natural graphite particles in a synthetic resin and reducing the surface roughness after machining.
Here, the spheroidized graphite particles are obtained by using natural scale-like graphite particles as a raw material, repeatedly applying a small load to the scale-like graphite particles, and bending the particles into a spherical shape (Patent Documents 5 and 6). reference).

特開2001‐132757号公報JP 2001-132757 A 特開平5-179277号公報JP-A-5-179277 特開2005-89514号公報JP 2005-89514 A 国際公開第2012/074107号International Publication No. 2012/074107 国際公開第2012/137770号International Publication No. 2012/137770 特開2008−24588号公報JP 2008-24588 A

互いに摺動する摺動面がともに樹脂組成物である軸部材と摺動部材を組合わせた構造の摺動装置は、摺動面間に油の供給がなされていない条件(以下、「無潤滑条件」という)で運転がなされる場合も多く、無潤滑条件では摺動部材の摺動面と軸部材の表面とが直接、接触した摺動が起こる。特許文献4のような天然黒鉛を球状化した黒鉛粒子を合成樹脂に含有させた樹脂組成物を用いた摺動部材は、無潤滑条件で硬質粒子を含有する樹脂組成物からなる軸部材を支承する摺動部に用いると、摺動部材の摺動層の表面に傷がつき、摩耗が起きやすくなり、さらに、摺動時に摺動面に露出する黒鉛粒子に割れが生じて摺動面からの脱落がおこり摺動性能の低下が起こることが判明した。   A sliding device having a structure in which a sliding member that slides relative to each other is made of a resin composition and a sliding member has a structure in which oil is not supplied between the sliding surfaces (hereinafter referred to as “non-lubricated”). In many cases, the operation is performed under the “condition”, and the sliding surface of the sliding member and the surface of the shaft member are in direct contact with each other under the non-lubricated condition. A sliding member using a resin composition in which natural graphite spheroidized graphite particles are contained in a synthetic resin as in Patent Document 4 supports a shaft member made of a resin composition containing hard particles under non-lubricating conditions. When used in sliding parts, the surface of the sliding layer of the sliding member is scratched and wear easily occurs. It was found that the sliding performance declined due to the dropout of the material.

したがって、本発明の目的は、摺動面がともに樹脂組成物である軸部材と摺動部材を組合わせた構造の摺動装置において、従来技術の上記欠点を克服して、無潤滑条件でも摺動部材の摺動層の表面に傷が発生し難く、耐摩耗性に優れる摺動装置を提供することである。   Accordingly, an object of the present invention is to overcome the above-mentioned drawbacks of the prior art in a sliding device having a structure in which a shaft member and a sliding member whose sliding surfaces are both resin compositions are combined. It is an object of the present invention to provide a sliding device that hardly causes scratches on the surface of the sliding layer of the moving member and has excellent wear resistance.

本発明の一観点によれば、5〜50体積%の硬質粒子が分散された合成樹脂からなる軸部材と、軸部材を支承(支持)する摺動部材とを備えた摺動装置が提供される。摺動部材は、裏金層と、裏金層上に設けられた摺動層とを備える。
この摺動層は、合成樹脂と、この合成樹脂に分散された黒鉛粒子とからなり、この黒鉛粒子は、摺動層の5〜50体積%を占める。黒鉛粒子は、長球状黒鉛粒子と、薄板形状の鱗片状黒鉛粒子とからなり、黒鉛粒子の全体積に対する鱗片状黒鉛粒子の体積の割合は10〜40%である。長球状黒鉛粒子の断面組織は、黒鉛結晶のAB面が粒子表面から中心方向に向けて粒子表面の丸みに沿って曲線状に複数積層している。鱗片状黒鉛粒子の断面組織は、黒鉛結晶のAB面が薄板形状の厚さ方向(黒鉛結晶のAB面に対して垂直方向であるC軸方向)に複数積層している。長球状黒鉛粒子の平均粒径は3〜50μmであり、鱗片状黒鉛粒子の平均粒径は1〜25μmである。長球状黒鉛粒子の黒鉛化度K1は0.80〜0.97であり、鱗片状黒鉛粒子の黒鉛化度K2は、長球状黒鉛粒子の黒鉛化度K1よりも大きく、その差K2−K1が0.03〜0.15である。
According to one aspect of the present invention, there is provided a sliding device including a shaft member made of a synthetic resin in which 5 to 50% by volume of hard particles are dispersed, and a sliding member that supports (supports) the shaft member. The The sliding member includes a backing metal layer and a sliding layer provided on the backing metal layer.
The sliding layer is made of a synthetic resin and graphite particles dispersed in the synthetic resin, and the graphite particles occupy 5 to 50% by volume of the sliding layer. The graphite particles are composed of long spherical graphite particles and thin scaly graphite particles, and the ratio of the volume of the scaly graphite particles to the total volume of the graphite particles is 10 to 40%. As for the cross-sectional structure of the long spherical graphite particles, a plurality of AB planes of the graphite crystal are laminated in a curved shape along the roundness of the particle surface from the particle surface toward the center. As for the cross-sectional structure of the scaly graphite particles, the AB surface of the graphite crystal is laminated in the thickness direction of the thin plate shape (C-axis direction perpendicular to the AB surface of the graphite crystal). The average particle diameter of the long spherical graphite particles is 3 to 50 μm, and the average particle diameter of the scaly graphite particles is 1 to 25 μm. The graphitization degree K1 of the long spherical graphite particles is 0.80 to 0.97, the graphitization degree K2 of the scaly graphite particles is larger than the graphitization degree K1 of the long spherical graphite particles, and the difference K2-K1 is 0.03 to 0.15.

本発明の摺動装置は、主に、摺動部材の摺動層中に分散する長球状黒鉛粒子が潤滑成分として作用する。
摺動層中に分散する長球状黒鉛粒子の断面(内部)組織は、黒鉛結晶のAB面(六角網面平面)が粒子表面から中心方向に向けて粒子表面の丸みに沿って曲線状に複数積層しているために、摺動層の摺動面に露出する長球状黒鉛粒子の表面は、黒鉛結晶のAB面で構成されることとなる。
上記の通り、黒鉛結晶は、AB面が多数積層し、AB面に垂直方向であるC軸方向に厚みを有する結晶であり、積層したAB面相互間の結合力(ファンデルワールス力)は、AB面の面内方向の結合力に比べてはるかに小さいため、AB面間でせん断が起きやすい。摺動面に黒鉛結晶のAB面からなる面が露出した場合、摺動面では軸部材の表面に対してAB面が接触するので、軸部材からの負荷が小さい場合でも、AB面間でせん断が容易に起こり、その結果、摺動面と軸部材の表面との摩擦力が小さくなり、摺動層の摩耗量が少なくなる。
In the sliding device of the present invention, the oblong graphite particles dispersed in the sliding layer of the sliding member mainly act as a lubricating component.
The cross-sectional (internal) structure of the oblong graphite particles dispersed in the sliding layer has a plurality of curved shapes along the roundness of the particle surface with the AB surface (hexagonal network surface plane) of the graphite crystal from the particle surface toward the center. Because of the lamination, the surface of the oblong graphite particles exposed on the sliding surface of the sliding layer is composed of the AB surface of graphite crystals.
As described above, the graphite crystal is a crystal in which a large number of AB planes are laminated and has a thickness in the C-axis direction perpendicular to the AB plane, and the bonding force (van der Waals force) between the laminated AB planes is: Since the bonding force in the in-plane direction of the AB surface is much smaller, shearing is likely to occur between the AB surfaces. When the surface consisting of the AB surface of the graphite crystal is exposed on the sliding surface, the AB surface contacts the surface of the shaft member on the sliding surface, so even if the load from the shaft member is small, shearing is performed between the AB surfaces. As a result, the frictional force between the sliding surface and the surface of the shaft member is reduced, and the wear amount of the sliding layer is reduced.

しかし、とりわけ軸部材が硬質粒子を含有する場合、合成樹脂と球状黒鉛粒子とからなる摺動層を有する従来の摺動部材を用いた摺動装置では、摺動部材の摩耗が起こりやすい。これは、軸部材の表面に露出する硬質粒子と摺動部材の摺動面が、直接、接触した状態で摺動すると摺動部材の摺動面に露出する長球状黒鉛粒子に割れが生じて摺動面からの脱落がおこり、摺動面に傷がつき、摺動層の摩耗が起きやすくなるからである。これに対し、本発明の摺動装置の摺動部材は、主に、摺動部材の摺動層中に分散する上記の黒鉛化度を有する鱗片状黒鉛粒子の作用により、摺動部材の表面に傷が発生することが防がれる。   However, particularly when the shaft member contains hard particles, the sliding member using the conventional sliding member having a sliding layer made of synthetic resin and spherical graphite particles tends to wear the sliding member. This is because if the hard particles exposed on the surface of the shaft member and the sliding surface of the sliding member are in direct contact, the oval graphite particles exposed on the sliding surface of the sliding member are cracked. This is because the sliding surface falls off, the sliding surface is damaged, and the sliding layer is easily worn. On the other hand, the sliding member of the sliding device of the present invention mainly has the surface of the sliding member by the action of the scaly graphite particles having the above graphitization degree dispersed in the sliding layer of the sliding member. Scratches are prevented from occurring.

軸部材との摺動により、摺動部材の摺動面に露出する鱗片状黒鉛粒子は、摺動面から摩耗し脱落するが、鱗片状黒鉛粒子は、厚みが薄いので、摺動面と軸部材の表面との間の隙間に侵入する。隙間に侵入した鱗片状黒鉛粒子は、鱗片状黒鉛粒子の平板面(AB面)が、軸部材の表面に露出する硬質粒子の表面に対して平行となるように移着し、また、摺動部材の摺動面に露出する長球状黒鉛粒子の表面に対して平行となるように移着する。硬質粒子の表面に移着した鱗片状黒鉛粒子は、軸部材の表面に対して、僅かに摺動部材の摺動面側に突出し、長球状黒鉛粒子の表面に移着した鱗片状黒鉛粒子は摺動部材の摺動面に対して、僅かに軸部材の表面側に突出する。このような移着部が、軸部材の表面および摺動部材の摺動面に多数形成されるので、本来の軸部材の表面に露出する硬質粒子が摺動部材の摺動面に露出する長球状黒鉛粒子と直接接触することが防がれるか、または、接触する頻度が緩和される。この結果、摺動部材の摺動面に傷が発生することが抑制される。   The scaly graphite particles exposed to the sliding surface of the sliding member due to sliding with the shaft member wear away from the sliding surface and fall off, but the scaly graphite particles are thin, so the sliding surface and shaft It penetrates into the gap between the surface of the member. The scaly graphite particles that have entered the gap are transferred so that the flat plate surface (AB surface) of the scaly graphite particles is parallel to the surface of the hard particles that are exposed on the surface of the shaft member. It is transferred so as to be parallel to the surface of the oblong graphite particles exposed on the sliding surface of the member. The scaly graphite particles transferred to the surface of the hard particles slightly protrude toward the sliding surface of the sliding member relative to the surface of the shaft member, and the scaly graphite particles transferred to the surface of the long spherical graphite particles are It protrudes slightly to the surface side of the shaft member with respect to the sliding surface of the sliding member. Since many such transfer parts are formed on the surface of the shaft member and the sliding surface of the sliding member, the length of the hard particles exposed on the original surface of the shaft member is exposed on the sliding surface of the sliding member. Direct contact with the spherical graphite particles is prevented or the frequency of contact is reduced. As a result, the occurrence of scratches on the sliding surface of the sliding member is suppressed.

さらに本発明によれば、長球状黒鉛粒子の黒鉛化度K1は0.80〜0.97である。黒鉛化度が大きいほうが純粋な黒鉛結晶を有するので、上記に説明した黒鉛結晶のAB面でのせん断が起こりやすい。黒鉛化度K1が0.80未満であると、長球状黒鉛粒子のAB面でのせん断が起き難くなり、摺動時の潤滑成分として機能することが不十分となる場合がある。   Furthermore, according to the present invention, the degree of graphitization K1 of the long spherical graphite particles is 0.80 to 0.97. Since the higher the degree of graphitization has pure graphite crystals, the above-described shearing of the graphite crystals on the AB surface is likely to occur. When the degree of graphitization K1 is less than 0.80, shearing on the AB surface of the long spherical graphite particles is difficult to occur, and it may be insufficient to function as a lubricating component during sliding.

このように、摺動時に摺動面から脱落した鱗片状黒鉛粒子が軸部材の表面からの負荷により、摺動面に露出する長球状黒鉛粒子上に押し付けられて移着するが、このとき鱗片状黒鉛粒子および該鱗片状黒鉛粒子と接する長球状黒鉛粒子の表面付近がほぼ同じように塑性変形することで長球状黒鉛粒子上に鱗片状黒鉛粒子が移着する。
本発明によれば、鱗片状黒鉛粒子の黒鉛化度K2が、長球状黒鉛粒子の黒鉛化度K1よりも大きく、その差K2−K1は、0.03〜0.15である。この関係であると、鱗片状黒鉛粒子は、長球状黒鉛粒子よりも、外力をうけた場合に塑性変形が若干起こり易くなり、鱗片状黒鉛粒子が長球状黒鉛粒子上に移着しやすくなる。 移着時に、鱗片状黒鉛粒子および長球状黒鉛粒子が塑性変形し粒子のAB面間でせん断が起こる場合があるが、上記黒鉛化度の関係であると、鱗片状黒鉛粒子内でせん断が起こりやすく、長球状黒鉛粒子内ではせん断が起こり難くなる。なお、移着時に鱗片状黒鉛粒子内にせん断が起こっても、長球状黒鉛粒子上に鱗片状黒鉛粒子が移着した状態で残る。すなわち、長球状黒鉛粒子の表面と接した側の鱗片状黒鉛粒子が残るように鱗片状黒鉛粒子のAB面どうしの間でせん断が起こる。
As described above, the scaly graphite particles dropped from the sliding surface during sliding are pressed and transferred onto the long spherical graphite particles exposed on the sliding surface due to the load from the surface of the shaft member. The scaly graphite particles are transferred onto the long spherical graphite particles by plastic deformation in the same manner in the vicinity of the surface of the spherical graphite particles and the oblong graphite particles in contact with the flake graphite particles.
According to the present invention, the degree of graphitization K2 of the scaly graphite particles is larger than the degree of graphitization K1 of the long spherical graphite particles, and the difference K2-K1 is 0.03 to 0.15. With this relationship, the flaky graphite particles are more likely to be plastically deformed when subjected to external force than the spheroid graphite particles, and the flaky graphite particles are more easily transferred onto the spheroid graphite particles. At the time of transfer, the scaly graphite particles and the oval graphite particles may be plastically deformed to cause shearing between the AB surfaces of the particles. However, according to the above graphitization degree, shearing occurs in the scaly graphite particles. It is easy to shear in the long spherical graphite particles. In addition, even if shearing occurs in the scaly graphite particles at the time of transfer, the scaly graphite particles remain transferred on the long spherical graphite particles. That is, shearing occurs between the AB surfaces of the scaly graphite particles so that the scaly graphite particles on the side in contact with the surface of the long spherical graphite particles remain.

黒鉛化度の差K2−K1が0.03未満の場合には、鱗片状黒鉛粒子と長球状黒鉛粒子との黒鉛化の程度がほぼ等しいので、移着時に鱗片状黒鉛粒子の内部でなく鱗片状黒鉛粒子が接する長球状黒鉛粒子の表面近くの粒子内部でせん断が発生して摺動面から脱落しやすくなるために長球状黒鉛粒子上に鱗片状黒鉛粒子の移着部が形成されにくい。
他方、黒鉛化度の差K2−K1が0.15を超えると、鱗片状黒鉛粒子の黒鉛化度が長球状黒鉛粒子の黒鉛化度よりも大きくなり過ぎ、軸部材から負荷が加わる時に、長球状黒鉛粒子に対して鱗片状黒鉛粒子は塑性変形し易くなりすぎて、鱗片状黒鉛粒子が複数の小さいせん断片に破壊されやすくなり、長球状黒鉛粒子上に鱗片状黒鉛粒子が移着し難くなる。
When the difference K2−K1 in the degree of graphitization is less than 0.03, since the degree of graphitization of the scaly graphite particles and the long spherical graphite particles is almost equal, it is not the inside of the scaly graphite particles at the time of transfer. Since the shear is generated inside the particles near the surface of the long spherical graphite particles with which the graphite particles are in contact and easily fall off from the sliding surface, the transferred portion of the scaly graphite particles is difficult to be formed on the long spherical graphite particles.
On the other hand, if the difference K2-K1 in the degree of graphitization exceeds 0.15, the degree of graphitization of the scaly graphite particles becomes too larger than the degree of graphitization of the long spherical graphite particles, and when the load is applied from the shaft member, The flaky graphite particles are more likely to be plastically deformed than the spherical graphite particles, and the flaky graphite particles are easily broken into a plurality of small thread segments, and the flaky graphite particles are difficult to transfer onto the long spherical graphite particles. Become.

鱗片状黒鉛粒子の平均粒径は、1〜25μmとすることが好ましい。鱗片状黒鉛粒子の平均粒径が1μm未満であると、摺動層中に鱗片状黒鉛粒子どうしの凝集部が形成されやすく、摺動層の強度が低下する場合がある。鱗片状黒鉛粒子の平均粒径が25μmを超えると、摺動時に摺動層に加わる負荷により摺動層中の鱗片状黒鉛粒子にせん断が起こり、摺動層の強度が小さくなる場合がある。   The average particle size of the scaly graphite particles is preferably 1 to 25 μm. When the average particle size of the flaky graphite particles is less than 1 μm, aggregated portions of the flaky graphite particles are easily formed in the sliding layer, and the strength of the sliding layer may be reduced. If the average particle size of the scaly graphite particles exceeds 25 μm, the scaly graphite particles in the sliding layer may be sheared by a load applied to the sliding layer during sliding, and the strength of the sliding layer may be reduced.

他方、長球状黒鉛粒子の平均粒径は3〜50μmとすることが好ましい。摺動面に露出する長球状黒鉛粒子は、軸部材の表面からの負荷を支えるが、平均粒径が3μm未満であると、摺動時に、摺動面に露出する長球状黒鉛粒子の一部は、摺動面から脱落しやすくなり、摺動層が負荷を支える能力が低下することがある。長球状黒鉛粒子の平均粒径が50μmを超えると、摺動層の表面に傷が発生する場合がある。   On the other hand, the average particle diameter of the oblong graphite particles is preferably 3 to 50 μm. The oval graphite particles exposed on the sliding surface support the load from the surface of the shaft member, but if the average particle size is less than 3 μm, a part of the oval graphite particles exposed on the sliding surface when sliding May easily fall off the sliding surface, and the ability of the sliding layer to support a load may be reduced. If the average particle diameter of the long spherical graphite particles exceeds 50 μm, scratches may occur on the surface of the sliding layer.

本発明の一具体例によれば、長球状黒鉛粒子の黒鉛化度K1は0.85〜0.97であることが好ましい。長球状黒鉛粒子の黒鉛化度K1が0.85以上であると、黒鉛化度K1が0.85未満であるよりも摺動特性がさらに向上し、耐摩耗もさらに向上する。さらに、長球状黒鉛粒子の黒鉛化度K1は0.90〜0.97がより好ましい。   According to one embodiment of the present invention, the degree of graphitization K1 of the long spherical graphite particles is preferably 0.85 to 0.97. When the graphitization degree K1 of the long spherical graphite particles is 0.85 or more, the sliding characteristics are further improved and the wear resistance is further improved than when the graphitization degree K1 is less than 0.85. Furthermore, the graphitization degree K1 of the long spherical graphite particles is more preferably 0.90 to 0.97.

本発明の一具体例によれば、鱗片状黒鉛粒子の黒鉛化度K2と長球状黒鉛粒子の黒鉛化度K1との差K2−K1は、0.03〜0.10であることが好ましい。黒鉛化度の差が0.10以下であると、黒鉛化度の差が0.10を超える場合よりも、さらに、摺動面に露出する長球状黒鉛粒子上に鱗片状黒鉛粒子が移着しやすくなり摺動特性がさらに向上する。さらに、黒鉛化度の差K2−K1は0.03〜0.05が好ましい。   According to one specific example of the present invention, the difference K2-K1 between the graphitization degree K2 of the scaly graphite particles and the graphitization degree K1 of the long spherical graphite particles is preferably 0.03 to 0.10. When the difference in graphitization degree is 0.10 or less, the scaly graphite particles are transferred onto the long spherical graphite particles exposed on the sliding surface, compared to the case where the difference in graphitization degree exceeds 0.10. And the sliding characteristics are further improved. Further, the difference K2-K1 in the degree of graphitization is preferably 0.03 to 0.05.

本発明の一具体例によれば、長球状黒鉛粒子の平均アスペクト比A1は1.5〜4.5であることが好ましい。長球状黒鉛粒子の平均アスペクト比は、長球状黒鉛粒子の長軸と短軸との比の平均により表される。長球状黒鉛粒子の平均アスペクト比A1が1.5以上であると、平均アスペクト比A1が1.5未満である場合よりも、耐摩耗性がさらに向上する。これは、長球状黒鉛粒子の表面積が大きくなることにより、合成樹脂との長球状黒鉛粒子の接触面積が大きくなり、合成樹脂との密着性が大きくなるために摺動時に摺動面から脱落し難くなるからと考えられる。さらに、長球状黒鉛粒子の平均アスペクト比A1は2以上が好ましい。   According to one embodiment of the present invention, the average aspect ratio A1 of the oblong graphite particles is preferably 1.5 to 4.5. The average aspect ratio of the long spherical graphite particles is represented by the average ratio of the long axis and the short axis of the long spherical graphite particles. When the average aspect ratio A1 of the long spherical graphite particles is 1.5 or more, the wear resistance is further improved as compared with the case where the average aspect ratio A1 is less than 1.5. This is because the contact area of the oblong graphite particles with the synthetic resin is increased by increasing the surface area of the oblong graphite particles, and the adhesion with the synthetic resin is increased. This is thought to be difficult. Further, the average aspect ratio A1 of the long spherical graphite particles is preferably 2 or more.

長球状黒鉛粒子の原材料である球状化黒鉛粒子は、天然の鱗片状黒鉛粒子に小さな負荷を繰り返し加えて、折り曲げることにより球状に造粒したものである。造粒時に天然の鱗片状黒鉛粒子に大きな負荷をかけると、AB面間でせん断がおこり小さい鱗片状に粉砕されてしまうので、印加する負荷は小さくせざるを得ない。このため、球状化粒子の内部で、造粒前の鱗片状黒鉛粒子の表面どうしの接触が不十分となる箇所が生じ、鱗片状黒鉛粒子の表面間に空隙が形成されやすい(特許文献5の図5(C)や特許文献6の図3〜図6参照)。
この球状化天然黒鉛粒子は、摺動部材の合成樹脂に球形状が維持された状態で分散させた場合、黒鉛粒子内には空隙が存在するために、摺動面の露出する黒鉛粒子が負荷を受けると黒鉛粒子に割れが生じ、摺動面から脱落し、軸部材表面との間の隙間に侵入して摺動部材の摺動面や軸部材表面に損傷が発生するという問題がある。
The spheroidized graphite particles, which are raw materials for the long spherical graphite particles, are granulated in a spherical shape by repeatedly applying a small load to natural scaly graphite particles and bending them. When a large load is applied to natural scaly graphite particles during granulation, shearing occurs between the AB surfaces and the particles are crushed into small scaly shapes, so the applied load must be reduced. For this reason, in the inside of the spheroidized particles, there is a portion where the contact between the surfaces of the scaly graphite particles before granulation is insufficient, and voids are easily formed between the surfaces of the scaly graphite particles (see Patent Document 5). FIG. 5C and FIG. 3 to FIG. 6 of Patent Document 6).
When the spherical natural graphite particles are dispersed in the synthetic resin of the sliding member while maintaining the spherical shape, there are voids in the graphite particles, so the graphite particles exposed on the sliding surface are loaded. When it receives, there is a problem that the graphite particles are cracked, fall off from the sliding surface, enter the gap between the shaft member surface and damage the sliding surface of the sliding member and the shaft member surface.

本発明の上記平均アスペクト比A1を有する長球状黒鉛粒子は、後述するように原材料である球状黒鉛粒子に長球形状を付与する処理により形成されるが、この処理により、同時に、球状黒鉛粒子の内部の空隙をなくすることができる。長球状黒鉛粒子の平均アスペクト比A1が1.5であると、長球状黒鉛粒子の断面組織に空隙が少なくなり、さらに、平均アスペクト比A1が2以上であると、長球状黒鉛粒子の断面組織に空隙が(ほぼ)存在しなくなり、摺動面に露出する長球状黒鉛粒子が軸部材から負荷を受けても、長球状黒鉛粒子には割れが生じることがない。そのため、長球状黒鉛粒子が摺動面から脱落したり、または長球状黒鉛粒子の割れに伴う破片が発生して、軸部材の表面との間の隙間に侵入して摺動部材の摺動面や軸部材の表面に損傷が発生する問題がおこらない。   The long spherical graphite particles having the above average aspect ratio A1 of the present invention are formed by a process of imparting a long spherical shape to the raw spherical graphite particles as will be described later. Internal voids can be eliminated. When the average aspect ratio A1 of the long spherical graphite particles is 1.5, there are less voids in the cross-sectional structure of the long spherical graphite particles, and when the average aspect ratio A1 is 2 or more, the cross-sectional structure of the long spherical graphite particles Even if the long spherical graphite particles exposed on the sliding surface are subjected to a load from the shaft member, the long spherical graphite particles are not cracked. Therefore, the oblong graphite particles fall off from the sliding surface, or fragments are generated due to cracking of the oblong graphite particles and enter the gap between the shaft member surface and the sliding surface of the sliding member. The problem of damage to the surface of the shaft member does not occur.

本発明の一具体例によれば、鱗片状黒鉛粒子は、平均アスペクト比A2が5〜10である。鱗片状黒鉛粒子の平均アスペクト比は、鱗片状黒鉛粒子の長軸と短軸との比の平均により表される。
さらに、鱗片状黒鉛粒子は、異方分散指数Sが3以上であることが好ましい。この異方分散指数Sは、各鱗片状黒鉛粒子についての比X1/Y1の値の平均として定義される。ここで、X1は、摺動層の摺動面に対して垂直方向の断面組織における鱗片状黒鉛粒子の摺動面に平行方向の長さであり、Y1は、摺動層の摺動面に対し垂直方向の断面組織における鱗片状黒鉛粒子の摺動面に垂直方向の長さである。
According to one embodiment of the present invention, the scaly graphite particles have an average aspect ratio A2 of 5-10. The average aspect ratio of the scaly graphite particles is represented by the average ratio of the major axis to the minor axis of the scaly graphite particles.
Further, the scaly graphite particles preferably have an anisotropic dispersion index S of 3 or more. This anisotropic dispersion index S is defined as the average of the values of the ratio X1 / Y1 for each scaly graphite particle. Here, X1 is the length parallel to the sliding surface of the scaly graphite particles in the cross-sectional structure perpendicular to the sliding surface of the sliding layer, and Y1 is the sliding surface of the sliding layer. On the other hand, it is the length in the direction perpendicular to the sliding surface of the scaly graphite particles in the cross-sectional structure in the vertical direction.

摺動層内の鱗片状黒鉛粒子の平板面(AB面の広がる方向)が摺動面に略平行に配向するものの割合が大きいほど、この異方分散指数Sの値が大きくなる。上記したように摺動装置の摺動部材と軸部材との摺動により、摺動部材の摺動面に露出する鱗片状黒鉛粒子は摺動面から脱落する。鱗片状黒鉛粒子は、上記の通り平均アスペクト比A2が5〜10の薄板形状を有し、さらに、異方分散指数Sが3以上であるために平板面が摺動面に略平行に配向するものの割合が大きい。そのため、脱落した直後から、鱗片状黒鉛粒子は、その平板面が、軸部材の表面に概ね平行になり、軸部材の表面に移着しやすくなる。鱗片状黒鉛粒子の異方分散指数Sは、4以上であることがさらに好ましい。   The value of the anisotropic dispersion index S increases as the ratio of the flat surface of the scaly graphite particles in the sliding layer (in which the AB surface spreads) is oriented substantially parallel to the sliding surface increases. As described above, the scaly graphite particles exposed on the sliding surface of the sliding member fall off from the sliding surface by sliding between the sliding member and the shaft member of the sliding device. The scaly graphite particles have a thin plate shape with an average aspect ratio A2 of 5 to 10 as described above, and further, since the anisotropic dispersion index S is 3 or more, the flat plate surface is oriented substantially parallel to the sliding surface. The ratio of things is large. Therefore, immediately after falling off, the scaly graphite particles have a flat surface substantially parallel to the surface of the shaft member, and are easily transferred to the surface of the shaft member. The anisotropic dispersion index S of the scaly graphite particles is more preferably 4 or more.

本発明の一具体例によれば、摺動部材の摺動層に用いられる合成樹脂は、PAI(ポリアミドイミド)、PI(ポリイミド)、PBI(ポリベンゾイミダゾール)、PA(ポリアミド)、フェノール、エポキシ、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PE(ポリエチレン)、PPS(ポリフェニレンサルファイド)およびPEI(ポリエーテルイミド)のうちから選ばれる1種または2種以上からなることができる。   According to one embodiment of the present invention, the synthetic resin used for the sliding layer of the sliding member is PAI (polyamideimide), PI (polyimide), PBI (polybenzimidazole), PA (polyamide), phenol, epoxy. , POM (polyacetal), PEEK (polyetheretherketone), PE (polyethylene), PPS (polyphenylene sulfide), and PEI (polyetherimide).

本発明の一具体例によれば、摺動部材の摺動層は、MoS、WS、h−BNおよびPTFEから選ばれる1種または2種以上の固体潤滑剤1〜20体積%をさらに含むことができる。この固体潤滑剤を含有することにより、摺動層の摺動特性を高めることができる。 According to one embodiment of the present invention, the sliding layer of the sliding member further includes 1 to 20% by volume of one or more solid lubricants selected from MoS 2 , WS 2 , h-BN and PTFE. Can be included. By containing this solid lubricant, the sliding characteristics of the sliding layer can be enhanced.

本発明の一具体例によれば、摺動部材の摺動層は、CaF、CaCo、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウムおよびMoC(モリブデンカーバイト)のうちから選ばれる1種または2種以上の充填材を1〜10体積%をさらに含むことができる。この充填材を含有することにより、摺動層の耐摩耗性を高めることが可能となる。 According to one embodiment of the present invention, the sliding layer of the sliding member is selected from CaF 2 , CaCo 3 , talc, mica, mullite, iron oxide, calcium phosphate and Mo 2 C (molybdenum carbide). The seed or two or more fillers may further comprise 1 to 10% by volume. By containing this filler, the wear resistance of the sliding layer can be increased.

本発明の一具体例によれば、摺動部材は、裏金層と摺動層との間に多孔質金属層をさらに有することができる。裏金層の表面に多孔質金属層を設けることにより、摺動層と裏金層の接合強度を高めることができる。すなわち、多孔質金属層の空孔部に摺動層を構成する組成物が含浸されることによるアンカー効果により裏金層と摺動層との接合力の強化が可能になる。
多孔質金属層は、Cu、Cu合金、Fe、Fe合金等の金属粉末を金属板や条等の表面上に焼結することにより形成することができる。多孔質金属層の空孔率は20〜60%程度であればよい。多孔質金属層の厚さは0.05〜0.5mm程度とすればよい。この場合、多孔質金属層の表面上に被覆される摺動層の厚さは0.05〜0.4mm程度となるようにすればよい。ただし、ここで記載した寸法は一例であり、本発明がこの値の限定されるものではなく、異なる寸法に変更するも可能である。
According to one embodiment of the present invention, the sliding member may further include a porous metal layer between the back metal layer and the sliding layer. By providing the porous metal layer on the surface of the back metal layer, the bonding strength between the sliding layer and the back metal layer can be increased. That is, the bonding force between the backing metal layer and the sliding layer can be enhanced by the anchor effect by impregnating the pores of the porous metal layer with the composition constituting the sliding layer.
The porous metal layer can be formed by sintering metal powder such as Cu, Cu alloy, Fe, Fe alloy or the like on the surface of a metal plate or strip. The porosity of the porous metal layer may be about 20 to 60%. The thickness of the porous metal layer may be about 0.05 to 0.5 mm. In this case, the thickness of the sliding layer coated on the surface of the porous metal layer may be about 0.05 to 0.4 mm. However, the dimension described here is an example, and the present invention is not limited to this value, and can be changed to a different dimension.

本発明の一具体例によれば、軸部材に用いられる合成樹脂は、PAI(ポリアミドイミド)、PI(ポリイミド)、PBI(ポリベンゾイミダゾール)、PA(ポリアミド)、PF(フェノール)、EP(エポキシ)、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PE(ポリエチレン)、PPS(ポリフェニレンサルファイド)およびPEI(ポリエーテルイミド)のうちから選ばれる1種または2種以上からなることができる。   According to one specific example of the present invention, the synthetic resin used for the shaft member is PAI (polyamideimide), PI (polyimide), PBI (polybenzimidazole), PA (polyamide), PF (phenol), EP (epoxy). ), POM (polyacetal), PEEK (polyetheretherketone), PE (polyethylene), PPS (polyphenylenesulfide) and PEI (polyetherimide).

本発明の一具体例によれば、軸部材に用いられる硬質粒子は、CF(炭素繊維)、GF(ガラス繊維)、BN、Al、SiC、SiO、AlN、およびTiO、のうちから選ばれる1種または2種以上からなることができる。軸部材は、これら硬質粒子を含有することにより、軸部材の強度(剛性)が高くなる。硬質粒子の平均粒径は、1〜50μmとすることができる。 According to one specific example of the present invention, the hard particles used for the shaft member are CF (carbon fiber), GF (glass fiber), BN, Al 2 O 3 , SiC, SiO 2 , AlN, and TiO 2 . It can consist of one or more selected from among them. When the shaft member contains these hard particles, the strength (rigidity) of the shaft member is increased. The average particle diameter of the hard particles can be 1 to 50 μm.

なお、軸部材は、CaF、CaCo、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウムおよびMoC(モリブデンカーバイト)のうちから選ばれる1種または2種以上の充填材1〜10体積%をさらに含むことができる。また、軸部材は、MoS、WS、h−BNおよびPTFEから選ばれる1種または2種以上の固体潤滑剤および/または油5体積%以下をさらに含むことができる。 The shaft member, CaF 2, CaCo 3, talcum, mica, mullite, iron oxide, calcium phosphate and Mo 2 C 1 kind selected from among (molybdenum carbide) or two or more fillers 1-10% by volume Can further be included. Further, the shaft member can further include one or more solid lubricants selected from MoS 2 , WS 2 , h-BN and PTFE and / or 5% by volume or less of oil.

本発明の一例による摺動装置の断面を示す図。The figure which shows the cross section of the sliding apparatus by an example of this invention. 本発明の一例による摺動部材の断面を示す図。The figure which shows the cross section of the sliding member by an example of this invention. 本発明の一例による軸部材の断面を示す図。The figure which shows the cross section of the shaft member by an example of this invention. 長球状黒鉛粒子のアスペクト比(A1)を説明する図。The figure explaining the aspect ratio (A1) of an oblong graphite particle. 鱗片状黒鉛粒子のアスペクト比(A2)および異方分散指数(S)を説明する図。The figure explaining the aspect-ratio (A2) and anisotropic dispersion index (S) of scaly graphite particles. 本発明の他の例による摺動部材の断面を示す図。The figure which shows the cross section of the sliding member by the other example of this invention. 本発明の摺動装置の一具体的形態例を示す図。The figure which shows the example of 1 specific form of the sliding apparatus of this invention.

図1に本発明による摺動装置1の一例を概略的に示す。摺動装置1は、軸部材2および軸部材2を支承する摺動部材3を備える。摺動部材3は、裏金層4および摺動層5を有する。
本発明の摺動装置1の具体的形態として、円柱形状の軸部材2を円筒形状の摺動部材3が支承する摺動装置とすることができる(図7参照)。この場合は、円筒形状の摺動部材3の内面に摺動層5が形成される。しかし、本発明による摺動装置はこの形態に限定されずに、軸部材2および摺動部材3が平板である形態、その他いずれの形態であってもよい。
FIG. 1 schematically shows an example of a sliding device 1 according to the present invention. The sliding device 1 includes a shaft member 2 and a sliding member 3 that supports the shaft member 2. The sliding member 3 has a backing metal layer 4 and a sliding layer 5.
As a specific form of the sliding device 1 of the present invention, a cylindrical shaft member 2 can be a sliding device supported by a cylindrical sliding member 3 (see FIG. 7). In this case, the sliding layer 5 is formed on the inner surface of the cylindrical sliding member 3. However, the sliding device according to the present invention is not limited to this form, and the shaft member 2 and the sliding member 3 may be flat or any other form.

図2に本発明による摺動装置の摺動部材3の一例の断面を概略的に示す。摺動部材3は、裏金層4上に、摺動層5が設けられている。摺動層5は、合成樹脂6と、5〜50体積%の黒鉛粒子7とからなる。黒鉛粒子7は、長球状形状の長球状黒鉛粒子71と薄片形状の鱗片状黒鉛粒子72とからなる。長球状黒鉛粒子71の黒鉛化度K1は、0.80〜0.97であり、鱗片状黒鉛粒子72の黒鉛化度K2は、長球状黒鉛粒子51の黒鉛化度K1よりも0.03〜0.15大きい。黒鉛粒子7の全体積に対する鱗片状黒鉛粒子72の体積割合は10〜40%である。長球状黒鉛粒子71の断面(内部)組織は、黒鉛結晶のAB面が粒子表面から中心方向に向けて粒子表面の丸みに沿って曲線状に複数積層しており、長球状黒鉛粒子71の断面組織中には空隙が存在しない。鱗片状黒鉛粒子72の断面組織は、黒鉛結晶のAB面が薄板形状の厚さ方向(黒鉛結晶のAB面に対して垂直方向であるC軸方向)に複数積層している。球状黒鉛粒子の平均粒径D1は3〜50μmであり、鱗片状黒鉛粒子の平均粒径D2は1〜25μmである。
なお、摺動層5と裏金層4との間に多孔質金属層8を設けてもよい。多孔質金属層8を設けた摺動部材の一例の断面を図6に概略的に示す。
FIG. 2 schematically shows a cross section of an example of the sliding member 3 of the sliding device according to the present invention. The sliding member 3 is provided with a sliding layer 5 on a back metal layer 4. The sliding layer 5 is composed of a synthetic resin 6 and 5 to 50% by volume of graphite particles 7. The graphite particles 7 are composed of long spherical graphite particles 71 and flaky graphite particles 72. The graphitization degree K1 of the long spherical graphite particles 71 is 0.80 to 0.97, and the graphitization degree K2 of the scaly graphite particles 72 is 0.03 to the graphitization degree K1 of the long spherical graphite particles 51. 0.15 larger. The volume ratio of the scaly graphite particles 72 to the total volume of the graphite particles 7 is 10 to 40%. The cross-sectional (internal) structure of the oblong graphite particles 71 is such that the AB surface of the graphite crystal is laminated in a curved shape along the roundness of the particle surface from the particle surface toward the center. There are no voids in the tissue. As for the cross-sectional structure of the scaly graphite particles 72, a plurality of the AB surfaces of the graphite crystals are laminated in the thickness direction of the thin plate (the C-axis direction perpendicular to the AB surface of the graphite crystals). The average particle diameter D1 of the spherical graphite particles is 3 to 50 μm, and the average particle diameter D2 of the scaly graphite particles is 1 to 25 μm.
A porous metal layer 8 may be provided between the sliding layer 5 and the back metal layer 4. A cross section of an example of the sliding member provided with the porous metal layer 8 is schematically shown in FIG.

本明細書で用いる「長球状」の語は、幾何学的に厳密な長球形を意味するものではなく、広い意味で、一方向に長く延びており(すなわち下記のアスペクト比を有する)、角ばって不定形な形状を有さないことを表わす。
また、長球状黒鉛粒子71の組織内に空隙がないことは、摺動層5の摺動面に垂直方向の断面において、複数個(例えば、20個)の黒鉛粒子を電子顕微鏡を用いて倍率2000倍で電子像を撮影し、撮影画像中の長球状黒鉛71の粒子の断面組織内に空隙が形成されていないことを観察することにより確認できる。ただし、長球状黒鉛の粒子71の断面組織内に幅0.1μm以下の細線状の空隙の形成は許容されるが、この幅0.1μm以下の細線状の空隙は、その総面積が、長球状黒鉛粒子71の断面組織中での面積率が3%以下に限定される。
As used herein, the term “oval” does not mean a geometrically exact oval, but in a broad sense extends long in one direction (ie has the following aspect ratio) and has a corner. This means that it does not have an irregular shape.
Further, the absence of voids in the structure of the long spherical graphite particles 71 means that a plurality of (for example, 20) graphite particles are magnified using an electron microscope in a cross section perpendicular to the sliding surface of the sliding layer 5. This can be confirmed by taking an electronic image at 2000 times and observing that no voids are formed in the cross-sectional structure of the particles of the long spherical graphite 71 in the taken image. However, although the formation of fine-line voids having a width of 0.1 μm or less is allowed in the cross-sectional structure of the long spherical graphite particles 71, the total area of the fine-line voids having a width of 0.1 μm or less is long. The area ratio in the cross-sectional structure of the spherical graphite particles 71 is limited to 3% or less.

摺動層5内に分散する長球状黒鉛粒子71の長軸と短軸との比の平均で表される平均アスペクト比A1は1.5〜4.5であることが好ましい。
他方、鱗片状黒鉛粒子72の長軸と短軸との比の平均で表される平均アスペクト比A2は5〜10であることが好ましい。
The average aspect ratio A1 represented by the average of the ratio between the major axis and the minor axis of the long spherical graphite particles 71 dispersed in the sliding layer 5 is preferably 1.5 to 4.5.
On the other hand, it is preferable that the average aspect ratio A2 represented by the average of the ratio between the major axis and the minor axis of the scaly graphite particles 72 is 5 to 10.

さらに、鱗片状黒鉛粒子72は、異方分散指数Sが3以上となっていることが好ましい。異方分散指数Sは、摺動層の摺動面に対して垂直方向の断面組織での鱗片状黒鉛粒子72の摺動面に対して平行方向の長さをX1、摺動層の摺動面に対して垂直方向の断面組織での鱗片状黒鉛粒子72の摺動面に対して垂直方向の長さをY1としたとき(図5参照)、各鱗片状黒鉛粒子の比X1/Y1の値を全鱗片状黒鉛粒子について平均したものとして表される。さらに、異方分散指数Sは4以上とすることが好ましい。   Furthermore, it is preferable that the scale-like graphite particles 72 have an anisotropic dispersion index S of 3 or more. The anisotropic dispersion index S is X1 as the length in the direction parallel to the sliding surface of the scaly graphite particles 72 in the cross-sectional structure perpendicular to the sliding surface of the sliding layer, and the sliding of the sliding layer. When the length in the direction perpendicular to the sliding surface of the scaly graphite particles 72 in the cross-sectional structure perpendicular to the surface is Y1 (see FIG. 5), the ratio X1 / Y1 of each scaly graphite particle Values are expressed as averages for all scaly graphite particles. Furthermore, the anisotropic dispersion index S is preferably 4 or more.

上記に説明した摺動装置の摺動部材について、製造工程に沿って以下に詳細に説明する。
(1)原材料黒鉛粒子の準備
長球状黒鉛粒子の原材料として、鱗片状天然黒鉛を造粒した球状黒鉛粒子を用いることができる。この球状黒鉛粒子は、黒鉛結晶のAB面が粒の表面から内部に向かって粒子表面の丸みに沿って曲線状に複数積層した組織となっており、粒子の内部には空隙が形成されている。この原材料の球状黒鉛粒子は、黒鉛化度K1が0.80〜0.97の粒子であるものを用いる。ここで黒鉛化度は、X線回折(XRD)測定装置により測定された黒鉛の回折ピークの回折角2θ(度)、半価値(度)をシリコン(Si)標準試料の回折ピークの回折角2θ(度)、半価値(度)で補正して、黒鉛結晶の(002)面の平均面間隔d002値(nm)を求めて、次式にd002値を挿入して求められる。
黒鉛化度=(d002−0.344)/(0.335−0.344)
The sliding member of the above-described sliding device will be described in detail below along the manufacturing process.
(1) Preparation of raw material graphite particles Spherical graphite particles obtained by granulating scaly natural graphite can be used as raw materials for the long spherical graphite particles. The spherical graphite particles have a structure in which a plurality of graphite crystal AB planes are laminated in a curved shape along the roundness of the particle surface from the particle surface to the inside, and voids are formed inside the particles. . As the raw material spherical graphite particles, those having a graphitization degree K1 of 0.80 to 0.97 are used. Here, the graphitization degree is the diffraction angle 2θ (degree) of the diffraction peak of graphite measured by an X-ray diffraction (XRD) measuring device, and the half-value (degree) is the diffraction angle 2θ of the diffraction peak of the silicon (Si) standard sample. Corrected by (degrees) and half value (degrees), the average interplanar spacing d 002 value (nm) of the (002) plane of the graphite crystal is obtained, and the d 002 value is inserted into the following equation.
Degree of graphitization = (d 002 −0.344) / (0.335−0.344)

また、原材料の球状黒鉛粒子は、レーザー回折式粒度測定装置により測定される平均粒径が2〜60μmで、円形度が0.92以上であるものを用いることが好ましい。ここで、円形度は、次式で表される。
円形度=(投影粒子形状と同一の面積を有する円の周囲長)/(投影粒子形状の周囲長)
投影粒子形状が真円をなす場合には円形度は1となる。投影粒子形状は、光学顕微鏡や走査型電子顕微鏡などを用いて得られた撮影画像から求めることができる。
原材料の球状黒鉛粒子の円形度が0.92未満のものを用いた場合、後述する混合工程での空隙を無くす処理の際に、黒鉛粒子の表面には不均質に負荷が加わりやすくなり、黒鉛粒子の表面が局部的に変形してせん断したり、内部に割れが生じて新たな空隙が形成されやすくなる。
Further, it is preferable to use spherical graphite particles as raw materials having an average particle diameter of 2 to 60 μm and a circularity of 0.92 or more as measured by a laser diffraction particle size measuring apparatus. Here, the circularity is expressed by the following equation.
Circularity = (perimeter of a circle having the same area as the projected particle shape) / (perimeter of the projected particle shape)
When the projected particle shape forms a perfect circle, the circularity is 1. The projected particle shape can be obtained from a photographed image obtained using an optical microscope or a scanning electron microscope.
When the raw material spherical graphite particles having a circularity of less than 0.92 are used, the surface of the graphite particles tends to be unevenly loaded during the process of eliminating voids in the mixing step described later. The surface of the particle is locally deformed and sheared, or cracks are generated inside and new voids are easily formed.

鱗片状黒鉛粒子の原材料としては、薄板形状を有する天然の鱗片状黒鉛粒子を用いる。この鱗片状黒鉛粒子は、球状黒鉛粒子の黒鉛化度の測定方法と同様の方法にて黒鉛化度K2を測定し、鱗片状黒鉛粒子の黒鉛化度K2と球状黒鉛粒子の黒鉛化度K1の差K2−K1が0.03〜0.15の範囲内であるものを用いる。また、鱗片状黒鉛粒子は、レーザー回折式粒度測定装置により測定されるAB面に平行方向の平均粒径が1〜30μmであり、また、粒子の平均厚さが0.2〜3.5μmである粒子を用いることが好ましい。   As a raw material of the scaly graphite particles, natural scaly graphite particles having a thin plate shape are used. The scaly graphite particles were measured for the degree of graphitization K2 by the same method as the method for measuring the degree of graphitization of the spherical graphite particles, and the degree of graphitization K2 of the scaly graphite particles and the degree of graphitization K1 of the spherical graphite particles. The difference K2-K1 is in the range of 0.03 to 0.15. Further, the scaly graphite particles have an average particle size in the direction parallel to the AB surface measured by a laser diffraction particle size measuring device of 1 to 30 μm, and an average particle thickness of 0.2 to 3.5 μm. It is preferable to use certain particles.

(2)合成樹脂粒子の準備
原材料である合成樹脂粒子は、球状黒鉛粒子の平均径の50〜150%の平均粒径を有するものを用いることが好ましい。合成樹脂としては、PAI、PI、PBI、PA、フェノール、エポキシ、POM、PEEK、PE、PPSおよびPEIのうちから選ばれる1種または2種以上からなるものを用いることができる。
(2) Preparation of synthetic resin particles It is preferable to use synthetic resin particles as raw materials having an average particle diameter of 50 to 150% of the average diameter of the spherical graphite particles. As synthetic resin, what consists of 1 type (s) or 2 or more types chosen from PAI, PI, PBI, PA, a phenol, an epoxy, POM, PEEK, PE, PPS, and PEI can be used.

(3)混合
球状黒鉛粒子および鱗片状黒鉛粒子を、鱗片状黒鉛粒子の体積割合が全黒鉛粒子体積の10〜40%となるように調整する。次に、この黒鉛成分が5〜50体積%となるように、球状黒鉛粒子および鱗片状黒鉛粒子と合成樹脂粒子との割合を調整する。この球状黒鉛粒子および鱗片状黒鉛粒子並びに合成樹脂粒子を有機溶剤で希釈し、粘度が40000〜110000mPa・sとなる組成物を作製する。この希釈液をロールミルで混合することにより、混合時に、ほぼ球状であった球状黒鉛粒子に長球形状が付与され、同時に、球状黒鉛粒子の内部組織中の空隙が減少あるいは消滅する。
(3) Mixing Spherical graphite particles and scaly graphite particles are adjusted so that the volume ratio of the scaly graphite particles is 10 to 40% of the total graphite particle volume. Next, the ratio of the spherical graphite particles and scaly graphite particles to the synthetic resin particles is adjusted so that the graphite component is 5 to 50% by volume. The spherical graphite particles, scaly graphite particles, and synthetic resin particles are diluted with an organic solvent to produce a composition having a viscosity of 40,000 to 110,000 mPa · s. By mixing this diluted solution with a roll mill, a long spherical shape is imparted to the spherical graphite particles that are substantially spherical during mixing, and at the same time, voids in the internal structure of the spherical graphite particles are reduced or eliminated.

この理由は、以下のように考えられる。
従来の黒鉛粒子や他の充填材粒子を含有する樹脂組成物の希釈液の粘度は、通常は、最大でも15000mPa・s程度になされていた。しかし、ここでは、希釈した組成物の粘度を40000〜110000mPa・sと通常よりも大きくする。このことにより、ロールミルによる混合時に、球状黒鉛粒子と樹脂粒子とが同時にロールミルのロール間のギャップ(間隙)を通過する頻度が高くなる。球状黒鉛粒子と樹脂粒子とが同時にロールギャップを通過するときに、球状黒鉛粒子に負荷が加わることにより黒鉛粒が変形するが、ロールから球状黒鉛粒子へ加わる負荷は、球状黒鉛粒子に接した樹脂粒子が変形することにより緩和されることで、球状黒鉛粒子の表面に局部的に過度な負荷が加わることが防がれ、黒鉛粒子をせん断させることなく変形させられる。黒鉛粒子は、合成樹脂の粒子とともにロールミルのロールギャップを通過する毎に徐々に変形し長球形状が付与され、同時に、粒子の内部の空隙が減少あるいは消失する。
組成物の粘度が110000mPa・sを超えると、溶剤の濃度が低すぎて、樹脂粒子と長球状黒鉛粒子と鱗片状黒鉛粒子とを均質に分散させ難くなるため好ましくない。さらに、ロールミルでの混合時に、鱗片状黒鉛粒子に割れが発生する場合ある。
The reason is considered as follows.
The viscosity of the diluted liquid of the resin composition containing conventional graphite particles and other filler particles is usually about 15000 mPa · s at the maximum. However, here, the viscosity of the diluted composition is set to 40,000 to 110,000 mPa · s, which is larger than usual. This increases the frequency with which the spherical graphite particles and the resin particles simultaneously pass through the gap (gap) between the rolls of the roll mill during mixing by the roll mill. When the spherical graphite particles and the resin particles pass through the roll gap at the same time, the graphite particles are deformed by applying a load to the spherical graphite particles. By being relaxed by the deformation of the particles, it is possible to prevent an excessive load from being locally applied to the surface of the spherical graphite particles and to deform the graphite particles without shearing. The graphite particles are gradually deformed and given a long spherical shape every time they pass through the roll gap of the roll mill together with the synthetic resin particles, and at the same time, voids inside the particles are reduced or eliminated.
When the viscosity of the composition exceeds 110000 mPa · s, the concentration of the solvent is too low, and it becomes difficult to uniformly disperse the resin particles, the long spherical graphite particles, and the scaly graphite particles. Furthermore, cracks may occur in the scaly graphite particles during mixing with a roll mill.

ロールミルのロール間のギャップは、球状黒鉛粒子の平均粒径の150%〜250%に相当する間隔に設定する。従来技術においては、摺動部材である黒鉛粒子や他の充填材粒子を含有する樹脂組成物をロールミルを用いて混合する場合、混合は、単に有機溶剤中に樹脂粒子と黒鉛粒子や他充填材粒子を均質分散させることを目的としており、ロールミルのロール間のギャップは、原材料である樹脂粒子や黒鉛粒子の粒径よりもかなりに大きな間隔(例えば、黒鉛粒子の平均粒径の400%程度)になされていた。   The gap between rolls of the roll mill is set to an interval corresponding to 150% to 250% of the average particle diameter of the spherical graphite particles. In the prior art, when a resin composition containing graphite particles or other filler particles that are sliding members is mixed using a roll mill, the mixing is simply performed in an organic solvent with resin particles and graphite particles or other fillers. The purpose is to uniformly disperse the particles, and the gap between rolls of the roll mill is considerably larger than the particle size of the raw material resin particles and graphite particles (for example, about 400% of the average particle size of the graphite particles). It was made to.

なお、球状黒鉛粒子のみを有機溶剤で希釈した組成物をロールミルに通しても、球状黒鉛粒子を変形させることはできない。この場合、球状黒鉛粒子にせん断や割れが発生してしまい変形は起こらない。これは、ロール間のギャップを球状黒鉛粒子が通過するとき、球状黒鉛粒子のロール表面との接触部や球状黒鉛粒子どうしの接触部に局部的に大きな負荷が加わりせん断や割れが生じるためと考えられる。   Note that even if a composition obtained by diluting only spherical graphite particles with an organic solvent is passed through a roll mill, the spherical graphite particles cannot be deformed. In this case, shearing and cracking occur in the spherical graphite particles and no deformation occurs. This is because when the spherical graphite particles pass through the gap between the rolls, a large load is locally applied to the contact portions of the spherical graphite particles with the roll surface and the contact portions of the spherical graphite particles, resulting in shearing and cracking. It is done.

上記した合成樹脂粒子の平均粒径が、球状黒鉛粒子の平均粒径の50〜150%である関係は、ロール間のギャップを通過するときに黒鉛粒子に過度な負荷が加わりせん断が発生することを防ぐために好適である。摺動層中に固体潤滑剤や充填材をさらに含有させる場合、これら固体潤滑剤や充填材の粒子は、球状黒鉛粒子の平均粒径の50%以下の平均粒径を有するものを用いることが好ましい。   The relationship that the average particle diameter of the synthetic resin particles described above is 50 to 150% of the average particle diameter of the spherical graphite particles is that an excessive load is applied to the graphite particles when passing through the gap between the rolls, and shearing occurs. It is suitable for preventing. When the sliding layer further contains a solid lubricant or filler, the solid lubricant or filler particles should have an average particle size of 50% or less of the average particle size of the spherical graphite particles. preferable.

合成樹脂粒子、球状黒鉛粒子および鱗片状黒鉛粒子の混合方法は、上記実施形態で示したロールミルを用いた混合方法に限定されないで、他の混合機を用いたり、他の混合条件を調整することも可能である。   The method of mixing the synthetic resin particles, the spherical graphite particles and the scaly graphite particles is not limited to the mixing method using the roll mill shown in the above embodiment, but using other mixers or adjusting other mixing conditions Is also possible.

(4)裏金
裏金層としては、Fe合金、Cu、Cu合金等の金属板を用いることができる。裏金層表面、すなわち摺動層との界面となる側に多孔質金属層を形成してもよいが、多孔質金属層は裏金層と同じ組成を有することも、異なる組成または材料を用いることも可能である。
(4) Back metal As a back metal layer, metal plates, such as Fe alloy, Cu, and Cu alloy, can be used. The porous metal layer may be formed on the surface of the back metal layer, that is, the side that becomes the interface with the sliding layer, but the porous metal layer may have the same composition as the back metal layer, or a different composition or material may be used. Is possible.

(5)被覆工程
混合後の組成物は、裏金層の一方の表面、あるいは裏金層上の多孔質金属層に塗布され、組成物を塗布した裏金は、組成物の厚さを均一とするため、所定の一定の間隙を有するロール間に通される。
混合後の組成物の粘度は、摺動部材の摺動層中での鱗片状黒鉛粒子の長軸方向の異方(配向)分散にも密接に関係し、この鱗片状黒鉛粒子の異方分散は、この被覆工程での条件設定が重要であることが判明した。
(5) Coating process The composition after mixing is applied to one surface of the back metal layer or the porous metal layer on the back metal layer, and the back metal applied with the composition has a uniform thickness. And passed between rolls having a predetermined constant gap.
The viscosity of the composition after mixing is also closely related to the long-axis anisotropic (orientation) dispersion of the scaly graphite particles in the sliding layer of the sliding member, and the anisotropic dispersion of the scaly graphite particles It was found that setting conditions in this coating step is important.

混合工程で組成物の粘度が大きい(有機溶剤の割合が少ない)場合、組成物を塗布した裏金層がロール間を通過するときに、組成物中の鱗片状黒鉛粒子が(その平板面が摺動面に対して平行な方向を向くように)流動しにくくなるからである。
他方、組成物の粘度が110000mPa・s以下であると、被覆工程で長球状の黒鉛粒子が有機溶剤とともに流動しやすいので、この鱗片状黒鉛粒子は、その平板面の向く方向が、摺動部材の摺動層中において配向すなわち異方に分散する。具体的には、組成物の粘度が110000mPa・s以下であると、摺動層に分散する鱗片状黒鉛粒子は、異方分散指数Sが2.5以上となる。さらに組成物の粘度が100000mPa・s以下であると異方分散指数が3以上、80000mPa・s以下であると異方分散指数が4以上となる。
When the viscosity of the composition is high in the mixing step (the ratio of the organic solvent is small), the scaly graphite particles in the composition (the flat surface of which is slid) are transferred when the back metal layer coated with the composition passes between the rolls. This is because it becomes difficult to flow (in a direction parallel to the moving surface).
On the other hand, when the viscosity of the composition is 110000 mPa · s or less, the oval graphite particles easily flow together with the organic solvent in the coating step. In the sliding layer, it is oriented, that is, anisotropically dispersed. Specifically, when the viscosity of the composition is 110000 mPa · s or less, the scale-like graphite particles dispersed in the sliding layer have an anisotropic dispersion index S of 2.5 or more. Furthermore, when the viscosity of the composition is 100,000 mPa · s or less, the anisotropic dispersion index is 3 or more, and when it is 80000 mPa · s or less, the anisotropic dispersion index is 4 or more.

(6)乾燥・焼成工程
組成物を被覆した裏金層(あるいは、裏金層および多孔質多孔質金属層)は、組成物中の有機溶剤を乾燥させるための加熱、組成物中の樹脂を焼成するための加熱を施して摺動部材が得られる。これらの加熱条件は、使用した樹脂に対して一般に用いられる条件を採用できる。
(6) Drying / firing step The backing metal layer (or backing metal layer and porous porous metal layer) coated with the composition is heated to dry the organic solvent in the composition, and the resin in the composition is fired. For this reason, the sliding member is obtained. As these heating conditions, conditions generally used for the resin used can be adopted.

(7)測定
長球状黒鉛粒子の黒鉛化度K1および鱗片状黒鉛粒子の黒鉛化度K2は、摺動部材の摺動面に垂直方向の断面から測定した。具体的には、長球状黒鉛粒子の黒鉛化度K1と鱗片状黒鉛粒子の黒鉛化度K2は、X線回折装置(装置:X’pert MPD ; PHILIPS社製)を用いて、Cuターゲットを線源として、管電圧を40Kv、管電流を50mAに設定して精密測定した摺動部材に分散する各黒鉛粒子の回折線の回折角2θ(度)、半価値(度)をSi標準試料のピークの回折角2θ(度)、半価値(度)で補正して平均面間隔d002値(nm)を求めた後、次式にd002値を挿入し、各黒鉛化度を算出して求める。
黒鉛化度=(d002−0.344)/(0.335−0.344)
なお、摺動部材に分散した長球状黒鉛粒子の黒鉛化度K1および鱗片状黒鉛粒子の黒鉛化度K2の値は、上述した原材料時の球状黒鉛粒子の黒鉛化度K1および鱗片状黒鉛粒子の黒鉛化度K2の値と同じになる。
(7) Measurement The graphitization degree K1 of the oblong graphite particles and the graphitization degree K2 of the scaly graphite particles were measured from a cross section perpendicular to the sliding surface of the sliding member. Specifically, the degree of graphitization K1 of the long spherical graphite particles and the degree of graphitization K2 of the scaly graphite particles are measured using an X-ray diffractometer (apparatus: X'pert MPD; manufactured by PHILIPS). As a source, the diffraction angle 2θ (degrees) and half value (degrees) of the diffraction lines of each graphite particle dispersed in the sliding member measured precisely by setting the tube voltage to 40 Kv and the tube current to 50 mA are the peaks of the Si standard sample. After correcting the diffraction angle 2θ (degrees) and half value (degrees) to obtain an average interplanar distance d 002 value (nm), the d 002 value is inserted into the following equation, and the degree of graphitization is calculated. .
Degree of graphitization = (d 002 −0.344) / (0.335−0.344)
Note that the values of the graphitization degree K1 of the long spherical graphite particles dispersed in the sliding member and the graphitization degree K2 of the scaly graphite particles are the same as the graphitization degree K1 of the spherical graphite particles and the scaly graphite particles of the raw material described above. It becomes the same as the value of the graphitization degree K2.

長球状黒鉛粒子の平均粒径は、摺動部材の摺動面に垂直方向の断面を、電子顕微鏡を用いて電子像を200倍で撮影し、長球状黒鉛粒子の平均粒径を測定した。具体的には、長球状黒鉛粒子の平均粒径は、得られた電子像を一般的な画像解析手法(解析ソフト:Image−Pro Plus(Version4.5);(株)プラネトロン製)を用いて、各長球状黒鉛粒子の面積を測定し、それを円と想定した場合の平均直径に換算して求める。   As for the average particle diameter of the long spherical graphite particles, a cross section perpendicular to the sliding surface of the sliding member was photographed with an electron microscope at 200 times using an electron microscope, and the average particle diameter of the long spherical graphite particles was measured. Specifically, the average particle diameter of the long spherical graphite particles is determined by using a general image analysis method (analysis software: Image-Pro Plus (Version 4.5); manufactured by Planetron Co., Ltd.). Then, the area of each oblong graphite particle is measured, and it is calculated by converting it into an average diameter when it is assumed to be a circle.

鱗片状黒鉛粒子の平均粒径も、上記の手法で得られた電子像を上記の像解析手法を用いて、各鱗片状黒鉛粒子の面積を測定し、それを円と想定した場合の平均直径に換算して求める。ただし、電子像の撮影倍率は、200倍に限定されないで、他の倍率に変更することができる。   The average particle diameter of the flaky graphite particles is also the average diameter when the area of each flaky graphite particle is measured using the above image analysis technique and the electronic image obtained by the above technique is assumed to be a circle. Calculate by converting to However, the photographing magnification of the electronic image is not limited to 200 times, and can be changed to other magnifications.

長球状黒鉛粒子のアスペクト比A1は、上記の手法で得られた電子像を、上記の像解析手法を用い、各長球状黒鉛粒子の長軸の長さL1と短軸の長さS1の比(長軸の長さL1/短軸の長さS1)の平均として求める(図4参照)。なお、長球状黒鉛粒子の長軸の長さL1は、上記電子像中の長球状黒鉛粒子の長さが最大となる位置での長さを示し、長球状黒鉛粒子の短軸の長さS1は、この長軸の長さL1の方向に直交する方向での長さが最大となる位置での長さを示す。   The aspect ratio A1 of the long spherical graphite particles is the ratio between the long axis length L1 and the short axis length S1 of each long spherical graphite particle by using the above-described image analysis method for the electronic image obtained by the above method. It is determined as an average of (long axis length L1 / short axis length S1) (see FIG. 4). The long axis length L1 of the long spherical graphite particles indicates the length at the position where the length of the long spherical graphite particles in the electron image is maximum, and the short axis length S1 of the long spherical graphite particles. Indicates the length at a position where the length in the direction orthogonal to the direction of the length L1 of the long axis is maximum.

鱗片状黒鉛粒子のアスペクト比A2は、上記の手法で得られた電子像を、上記の像解析手法を用い、各鱗片状黒鉛粒子の長軸の長さL2と短軸の長さS2の比(長軸の長さL2/短軸の長さS2)の平均として求める(図5参照)。なお、鱗片状黒鉛粒子の長軸の長さL2は、上記電子像中の鱗片状黒鉛粒子の長さが最大となる位置での長さを示し、鱗片状黒鉛粒子の短軸の長さS2は、この長軸の長さL2の方向に直交する方向での長さが最大となる位置での長さを示す。   The aspect ratio A2 of the scaly graphite particles is the ratio of the major axis length L2 to the minor axis length S2 of each scaly graphite particle using the above-described image analysis method based on the electronic image obtained by the above method. It is obtained as an average of (long axis length L2 / short axis length S2) (see FIG. 5). The long axis length L2 of the scaly graphite particles indicates the length at the position where the length of the scaly graphite particles in the electronic image is maximum, and the short axis length S2 of the scaly graphite particles. Indicates the length at the position where the length in the direction orthogonal to the direction of the length L2 of the long axis is maximum.

長球状黒鉛粒子は、断面組織が、黒鉛結晶のAB面が粒子表面から中心方向に向けて粒子表面の丸みに沿って曲線状に複数積層している組織となっていることは、摺動部材の摺動面に垂直方向の断面において、複数個(例えば20個)の長球状黒鉛粒子を電子顕微鏡を用いて倍率2000倍で電子像を撮影し、撮影画像中の長球状黒鉛粒子の断面組織が、粒子表面から中心方向に向けて粒子表面の丸みに沿った層状部が形成されていることが観察されることで確認できた。
原材料として球状化天然黒鉛粒子を用い、この黒鉛粒子を、上記の混合工程で黒鉛粒子の内部組織中の空隙を無くす処理を施しても、長球状黒鉛粒子の一部は、上記の観察方法により内部に、幅(組織中の黒鉛結晶のAB面に垂直方向の幅)が0.1μm以下の細線状の空隙が、空隙の総面積が長球状黒鉛粒子の断面組織中での面積率で3%以下で形成される場合があったが、このような細線状の空隙を有する長球状黒鉛粒子であれば、完全に空隙の無い長球状黒鉛粒子と同等の摺動性能を有する。
The long spherical graphite particles have a cross-sectional structure in which the AB surface of the graphite crystal is laminated in a curved shape along the roundness of the particle surface from the particle surface toward the center. In a cross section perpendicular to the sliding surface, an electron image of a plurality (for example, 20) of long spherical graphite particles was photographed at a magnification of 2000 using an electron microscope, and the cross-sectional structure of the long spherical graphite particles in the photographed image However, it was confirmed by observing that a layered portion was formed along the roundness of the particle surface from the particle surface toward the center.
Even if spheroidized natural graphite particles are used as a raw material and the graphite particles are subjected to a treatment for eliminating voids in the internal structure of the graphite particles in the mixing step, a part of the long spherical graphite particles is obtained by the above observation method. Inside, fine line voids having a width (width in the direction perpendicular to the AB surface of the graphite crystal in the structure) of 0.1 μm or less, the total area of the voids is 3 in terms of the area ratio in the cross-sectional structure of the oblong graphite particles. However, the long spherical graphite particles having such fine-line voids have the same sliding performance as the long spherical graphite particles having no voids.

鱗片状黒鉛粒子は、断面組織が、黒鉛結晶のAB面が薄板形状の厚さ方向(黒鉛結晶のAB面に対して垂直方向であるC軸方向)に複数積層している組織となっていることは、摺動部材の摺動面に垂直方向の断面において、複数個(例えば20個)の鱗片状黒鉛粒子を電子顕微鏡を用いて倍率2000倍で電子像を撮影し、撮影画像中の鱗片状黒鉛粒子の断面組織が、薄板形状の厚さ方向に複数積層している層状部が形成されていることが観察されることにより確認できた。   The scaly graphite particles have a cross-sectional structure in which the AB surface of the graphite crystal is laminated in the thickness direction of the thin plate shape (C-axis direction perpendicular to the AB surface of the graphite crystal). That is, in a cross section perpendicular to the sliding surface of the sliding member, an electronic image of a plurality (for example, 20 pieces) of scaly graphite particles is taken at a magnification of 2000 using an electron microscope, and the scales in the photographed image are taken. It was confirmed by observing that the cross-sectional structure of the glassy graphite particles was formed as a layered portion in which a plurality of laminated layers were formed in the thickness direction of the thin plate shape.

鱗片状黒鉛粒子72の異方分散指数Sは、摺動部材の摺動面に対して垂直方向の断面を電子顕微鏡を用いて電子像を200倍で撮影した画像を、上記画像解析手法を用い、摺動層中の各鱗片状黒鉛粒子72の摺動面に対して平行方向の長さX1と、摺動面に対して垂直方向の長さY1を測定し、それら各長さの比X1/Y1の平均値を算出して求めた(図5参照)。   The anisotropic dispersion index S of the scaly graphite particles 72 is obtained by using the above image analysis method for an image obtained by photographing an electronic image at a magnification of 200 using an electron microscope with respect to a cross section perpendicular to the sliding surface of the sliding member. The length X1 in the direction parallel to the sliding surface of each scaly graphite particle 72 in the sliding layer and the length Y1 in the direction perpendicular to the sliding surface are measured, and the ratio X1 of these lengths The average value of / Y1 was calculated (see FIG. 5).

図3に本発明による摺動装置1の軸部材2の一例の断面を概略的に示す。軸部材2は、合成樹脂9に硬質粒子10が分散されている。軸部材の製造工程は、合成樹脂と硬質粒子を混合後ペレット化を行い、射出成型にて円柱状や平板状等の所定の形状に成型できる。   FIG. 3 schematically shows a cross section of an example of the shaft member 2 of the sliding device 1 according to the present invention. In the shaft member 2, hard particles 10 are dispersed in a synthetic resin 9. The manufacturing process of a shaft member can be formed into a predetermined shape such as a columnar shape or a flat plate shape by injection molding by mixing synthetic resin and hard particles and then pelletizing.

軸部材2の合成樹脂9は、PAI(ポリアミドイミド)、PI(ポリイミド)、PBI(ポリベンゾイミダゾール)、PA(ポリアミド)、PF(フェノール)、EP(エポキシ)、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PE(ポリエチレン)、PPS(ポリフェニレンサルファイド)およびPEI(ポリエーテルイミド)のうちから選ばれる1種または2種以上からなることができる。   The synthetic resin 9 of the shaft member 2 is PAI (polyamideimide), PI (polyimide), PBI (polybenzimidazole), PA (polyamide), PF (phenol), EP (epoxy), POM (polyacetal), PEEK (poly). It can be composed of one or more selected from ether ether ketone), PE (polyethylene), PPS (polyphenylene sulfide), and PEI (polyetherimide).

軸部材2は、合成樹脂9と、この合成樹脂9に分散された硬質粒子10からなり、硬質粒子10は、摺動層5の5〜50体積%を占めるようにすることができる。
軸部材2の硬質粒子10は、CF(炭素繊維)、GF(ガラス繊維)、BN、Al、SiC、SiO、AlN、およびTiO、のうちから選ばれる1種または2種以上からなることができる。硬質粒子10の平均粒径は、1〜50μm程度とすることができる。
The shaft member 2 includes a synthetic resin 9 and hard particles 10 dispersed in the synthetic resin 9, and the hard particles 10 can occupy 5 to 50% by volume of the sliding layer 5.
The hard particles 10 of the shaft member 2 are one or more selected from CF (carbon fiber), GF (glass fiber), BN, Al 2 O 3 , SiC, SiO 2 , AlN, and TiO 2 . Can consist of The average particle diameter of the hard particles 10 can be about 1 to 50 μm.

なお、軸部材2は、CaF、CaCo、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウムおよびMoC(モリブデンカーバイト)のうちから選ばれる1種または2種以上の充填材1〜10体積%をさらに含むことができる。また、軸部材2は、MoS、WS、h−BNおよびPTFEから選ばれる1種または2種以上の固体潤滑剤および/または油5体積%以下をさらに含むことができる。 The shaft member 2, CaF 2, CaCo 3, talcum, mica, mullite, one or more fillers 1-10 volume selected from among iron oxides, calcium phosphate and Mo 2 C (molybdenum carbide) % May further be included. The shaft member 2 can further include one or more solid lubricants selected from MoS 2 , WS 2 , h-BN, and PTFE and / or 5% by volume or less of oil.

本発明による軸受装置の実施例1〜10および比較例11〜20を以下に示すとおり作製した。実施例1〜10および比較例11〜20の軸部材及び摺動部材の摺動層の組成は、表1に示すとおりである。   Examples 1 to 10 and Comparative Examples 11 to 20 of the bearing device according to the present invention were produced as follows. The compositions of the sliding layers of the shaft members and the sliding members of Examples 1 to 10 and Comparative Examples 11 to 20 are as shown in Table 1.

実施例1〜10および比較例11〜20の軸部材は、表1に示す樹脂(EP、PF)と硬質粒子(CF(カーボン繊維)、SiO粒子)を混合し、ペレット化し、このペレットを射出成型機を用い円柱形状に成形した。 The shaft members of Examples 1 to 10 and Comparative Examples 11 to 20 were prepared by mixing the resin (EP, PF) and hard particles (CF (carbon fiber), SiO 2 particles) shown in Table 1 into pellets. Molded into a cylindrical shape using an injection molding machine.

摺動部材の原材料として用いた球状黒鉛粒子は、鱗片状天然黒鉛を球状に造粒したもので、粒子の内部組織は黒鉛結晶のAB面が粒の表面から内部に向かって粒子表面の丸みに沿って曲線状に複数積層した組織となっており、粒の内部には約10%程度の空隙が形成されていた。   The spherical graphite particles used as the raw material of the sliding member are obtained by spherically granulating scaly natural graphite, and the internal structure of the particles is such that the AB surface of the graphite crystal is rounded from the particle surface toward the inside. A structure in which a plurality of layers are laminated along a curved line, and about 10% of voids are formed inside the grains.

また、摺動部材の原材料として用いた鱗片状黒鉛粒子は、平面状に広がるAB面が多数積層しAB面に垂直方向であるC軸方向に厚みを有する組織となっており、AB面の広がりに対して積層の厚みが薄いため、粒子の形状は薄板状を呈している。この鱗片状黒鉛粒子は、断面組織内には空隙がない。   In addition, the scaly graphite particles used as the raw material of the sliding member have a structure in which a large number of AB surfaces spreading in a planar shape are laminated and have a thickness in the C-axis direction perpendicular to the AB surface. On the other hand, since the thickness of the laminate is thin, the shape of the particles is a thin plate. The scaly graphite particles have no voids in the cross-sectional structure.

また、摺動部材の原材料として用いた合成樹脂(PAI、PI)粒子は、摺動部材の原材料が球状黒鉛粒子を含有する場合は、球状黒鉛粒子の平均粒径に対して合成樹脂の平均粒径が125%であるものを用いた。摺動部材の原材料が鱗片状黒鉛粒子のみである比較例16では、原材料の合成樹脂の粒径は、鱗片状黒鉛粒子の平均粒径に対して125%であるものを用いた。実施例5〜7の摺動部材の原材料として用いた固体潤滑剤(MoS、PTFE)は粒子の平均粒径が、原材料である球状黒鉛粒子の平均粒径に対して30%のものを用い、充填材(CaCo)の粒子は、粒子の平均粒径が球状黒鉛粒子の平均粒径に対して25%のものを用いた。 Further, the synthetic resin (PAI, PI) particles used as the raw material of the sliding member, when the raw material of the sliding member contains spherical graphite particles, the average particle size of the synthetic resin with respect to the average particle size of the spherical graphite particles A diameter of 125% was used. In Comparative Example 16 where the raw material of the sliding member is only scaly graphite particles, the raw material synthetic resin has a particle size of 125% with respect to the average particle size of the scaly graphite particles. The solid lubricant (MoS 2 , PTFE) used as a raw material for the sliding members of Examples 5 to 7 has an average particle diameter of 30% with respect to the average particle diameter of the spherical graphite particles as the raw material. The filler (CaCo 3 ) particles having an average particle diameter of 25% with respect to the average particle diameter of the spherical graphite particles were used.

上記の摺動部材の原材料を用いた表1に示す摺動部材の組成物を有機溶剤で希釈し、表1の「粘度(mPa・s)」欄に示す粘度の組成物を準備し、次に、ロールミルを用いて組成物の混合と球状黒鉛粒子の内部空隙を消滅させる処理(処理時間1時間)を同時に行った。なお、ロールミルのロール間のギャップは、実施例1〜10および比較例11〜15、17〜20は、摺動部材の原材料として用いた球状黒鉛粒子の平均径に対する比率が200%となるようにし、比較例16は、摺動部材の原材料として用いた鱗片状黒鉛粒子の平均径に対する比率が400%となるようにした。   The composition of the sliding member shown in Table 1 using the raw material of the sliding member is diluted with an organic solvent to prepare a composition having a viscosity shown in the “viscosity (mPa · s)” column of Table 1. In addition, the composition was mixed using a roll mill and the treatment for eliminating the internal voids of the spherical graphite particles (treatment time 1 hour) was simultaneously performed. In addition, the gap between the rolls of the roll mill is set so that the ratio of the average diameter of the spherical graphite particles used as the raw material of the sliding member in Examples 1 to 10 and Comparative Examples 11 to 15 and 17 to 20 is 200%. In Comparative Example 16, the ratio of the scaly graphite particles used as the raw material of the sliding member to the average diameter was 400%.

次に混合後の摺動部材の組成物をFe合金製の裏金層の一方の表面に塗布したのち、ロールにて組成物が所定の厚さとなるように被覆した。なお、実施例1〜9及び比較例11〜20の裏金層はFe合金を用い、実施例10は表面にCu合金の多孔質焼結部を有するFe合金を用いた。
次に、摺動部材の組成物中の溶剤を乾燥する加熱、摺動部材の組成物の合成樹脂の焼成する加熱を施して摺動部材を作製した。作製された実施例1〜10および比較例11〜20の摺動部材の摺動層の厚さは0.3mmであり、裏金層の厚さは1.7mmであった。
Next, the composition of the mixed sliding member was applied to one surface of the Fe alloy back metal layer, and then coated with a roll so that the composition had a predetermined thickness. In addition, the back metal layer of Examples 1-9 and Comparative Examples 11-20 used Fe alloy, and Example 10 used Fe alloy which has a porous sintered part of Cu alloy on the surface.
Next, heating for drying the solvent in the composition of the sliding member and heating for baking the synthetic resin of the composition of the sliding member were performed to prepare the sliding member. The thickness of the sliding layer of the manufactured sliding members of Examples 1 to 10 and Comparative Examples 11 to 20 was 0.3 mm, and the thickness of the back metal layer was 1.7 mm.

作製された実施例の摺動部材は、上記に説明した測定方法による摺動層中に分散する長球状黒鉛粒子の平均粒径の測定を行い、その結果を表1の「平均粒径」欄に示した。また、上記に説明した長球状黒鉛粒子の平均アスペクト比(A1)の測定行い、その結果を表1の「アスペクト比(A1)」欄に示した。比較例11〜15、17〜20は、実施例と同様の方法で平均粒径、平均アスペクト比(A1)を測定した結果を表1に示した。   The sliding member of the manufactured example was measured for the average particle size of the long spherical graphite particles dispersed in the sliding layer by the measurement method described above, and the result was shown in the “average particle size” column of Table 1. It was shown to. Further, the average aspect ratio (A1) of the oblong graphite particles described above was measured, and the result is shown in the “Aspect ratio (A1)” column of Table 1. In Comparative Examples 11 to 15 and 17 to 20, Table 1 shows the results of measuring the average particle diameter and average aspect ratio (A1) in the same manner as in the Examples.

作製された実施例の摺動部材は、上記に説明した測定方法による摺動層中に分散する鱗片状黒鉛粒子の平均粒径の測定を行い、その結果を表1の「平均粒径」欄に示した。また、上記に説明した鱗片状黒鉛粒子72の平均アスペクト比(A2)、異方分散指数(S)の測定行い、その結果を表1の「アスペクト比(A2)」欄、「異方分散指数(S)」欄に示した。比較例11〜14、16〜20は、実施例と同様の方法で平均粒径、平均アスペクト比(A2)、「異方分散指数(S)」を測定した結果を表1に示した。   The sliding member of the produced example was measured for the average particle size of the scaly graphite particles dispersed in the sliding layer by the measurement method described above, and the result was shown in the “average particle size” column of Table 1. It was shown to. Further, the average aspect ratio (A2) and the anisotropic dispersion index (S) of the scale-like graphite particles 72 described above are measured, and the results are shown in the “Aspect ratio (A2)” column of Table 1, “Anisotropic dispersion index”. (S) "column. Comparative Examples 11 to 14 and 16 to 20 show the results of measuring the average particle diameter, average aspect ratio (A2), and “anisotropic dispersion index (S)” in the same manner as in Example 1.

作製された実施例の摺動部材は、上記に説明した測定方法による摺動層中に分散する長球状黒鉛粒子の黒鉛化度(K1)、鱗片状黒鉛粒子の黒鉛化度(K2)の測定を行い、それぞれ表1の「黒鉛化度(K1)」、「黒鉛化度(K2)」の欄に結果を示した。また、鱗片状黒鉛粒子の黒鉛化度(K2)と長球状黒鉛粒子の黒鉛化度(K1)との差K2−K1を算出し、その結果を表1の「黒鉛化度差(K2−K1)」欄に示した。   The manufactured sliding member of the example was measured for the degree of graphitization (K1) of the long spherical graphite particles and the degree of graphitization (K2) of the scaly graphite particles dispersed in the sliding layer by the measurement method described above. The results are shown in the columns of “degree of graphitization (K1)” and “degree of graphitization (K2)” in Table 1, respectively. In addition, the difference K2-K1 between the degree of graphitization of the scaly graphite particles (K2) and the degree of graphitization of the long spherical graphite particles (K1) was calculated, and the result is shown in Table 1 as “graphitization degree difference (K2-K1). ) "Column.

各実施例および各比較例の摺動部材を摺動層を内側にして円筒形状に形成し、また軸部材を円柱形状に成型し(図7参照)、表2に示す条件で摺動試験を行った。各実施例および各比較例の摺動試験後の摺動層の摩耗量を表1の「摩耗量」欄に示す。また、各実施例および各比較例は、摺動試験後の摺動部材の摺動面(摺動層の表面)の複数箇所を、粗さ測定器を用いて表面の傷の発生の有無を評価した。摺動面に深さが2μm以上の傷が測定された場合には「有」、測定されなかった場合には「無」とし、表1の「傷有無」欄に示した。   The sliding member of each example and each comparative example was formed into a cylindrical shape with the sliding layer inside, and the shaft member was formed into a cylindrical shape (see FIG. 7), and the sliding test was performed under the conditions shown in Table 2. went. The amount of wear of the sliding layer after the sliding test of each example and each comparative example is shown in the “wear amount” column of Table 1. In each example and each comparative example, the surface of the sliding member (the surface of the sliding layer) of the sliding member after the sliding test was checked for occurrence of scratches on the surface using a roughness measuring instrument. evaluated. When a scratch having a depth of 2 μm or more was measured on the sliding surface, “Yes” was indicated, and when it was not measured, “No” was indicated.

表1に示す結果から分かるとおり、実施例1〜10は、比較例11〜20に対して、摺動試験後の摺動層の摩耗量が少なくなった。   As can be seen from the results shown in Table 1, in Examples 1 to 10, the amount of wear of the sliding layer after the sliding test was smaller than in Comparative Examples 11 to 20.

さらに、実施例1〜10は、摺動試験後の摺動部材の摺動面に傷の発生がなかったが、これは摩耗量の抑制と同じ理由である。すなわち、実施例1〜10が摺動部材の摺動面の傷発生を抑制する理由は、既に説明したとおり、摺動層が、長球状黒鉛粒子と鱗片状黒鉛粒子とを含み、摺動層に含まれる全黒鉛粒子に対する鱗片状黒鉛粒子の体積割合が10〜40%であり、長球状黒鉛粒子の黒鉛化度K1が0.80〜0.97であり、且つ、鱗片状黒鉛粒子の黒鉛化度K2と長球状黒鉛粒子の黒鉛化度K1との差K2−K1が0.03〜0.15であることで、無潤滑条件での摺動時に、軸部材の表面に露出する硬質粒子上及び摺動部材の摺動面に露出する長球状黒鉛粒子上に鱗片状黒鉛粒子が移着することによる。   Further, in Examples 1 to 10, there was no scratch on the sliding surface of the sliding member after the sliding test, which is the same reason as the suppression of the amount of wear. That is, the reason why Examples 1 to 10 suppress the generation of scratches on the sliding surface of the sliding member is that, as already described, the sliding layer includes long spherical graphite particles and scaly graphite particles, and the sliding layer The volume ratio of the scaly graphite particles to the total graphite particles contained in the graphite is 10 to 40%, the degree of graphitization K1 of the long spherical graphite particles is 0.80 to 0.97, and the graphite of the scaly graphite particles Hard particles exposed on the surface of the shaft member when sliding under non-lubricating conditions because the difference K2−K1 between the degree K2 and the graphitization degree K1 of the oblong graphite particles is 0.03 to 0.15 This is because the scaly graphite particles are transferred onto the oblong graphite particles exposed on the upper and sliding surfaces of the sliding member.

実施例4〜9は、特に比較例に対して摩耗量が少なくなったが、理由を以下に示す。   In Examples 4 to 9, the amount of wear was particularly small compared to the comparative example. The reason will be described below.

実施例4は、摺動層に含まれる長球状黒鉛粒子の黒鉛化度K1が0.85以上であり、摺動時の摺動成分としての機能する作用が大きいため摺動層の摩耗量が少なくなったと考える。   In Example 4, the graphitization degree K1 of the long spherical graphite particles contained in the sliding layer is 0.85 or more, and the wear function of the sliding layer is large because of its large function as a sliding component during sliding. I think it's less.

実施例5は、摺動層に含まれる鱗片状黒鉛粒子の黒鉛化度K2と長球状黒鉛粒子の黒鉛化度K1との差K2−K1が、0.10以下であるため、上記で説明したように摺動時に、摺動面に露出する長球状黒鉛粒子上に鱗片状黒鉛粒子の移着部が形成され易くなったために摩耗量が少なくなったと思われる。   In Example 5, since the difference K2-K1 between the graphitization degree K2 of the scaly graphite particles contained in the sliding layer and the graphitization degree K1 of the long spherical graphite particles is 0.10 or less, it is described above. Thus, during sliding, it seems that the amount of wear was reduced because the transfer part of the scaly graphite particles was easily formed on the long spherical graphite particles exposed on the sliding surface.

実施例6は、摺動層に含まれる長球状黒鉛粒子の平均アスペクト比A1が3以上であるために、上記で説明したように長球状黒鉛粒子の表面積が大きくなることにより、合成樹脂との接触面積が増大して合成樹脂による保持が大きくなったために摩耗量が少なくなったと思われる。   In Example 6, since the average aspect ratio A1 of the long spherical graphite particles contained in the sliding layer is 3 or more, the surface area of the long spherical graphite particles is increased as described above. It seems that the amount of wear decreased because the contact area increased and the retention by the synthetic resin increased.

実施例7は、摺動層に含まれる鱗片状黒鉛粒子の平均アスペクト比A2が5〜10の範囲内であり、かつ異方分散指数Sが3以上であるために、上記で説明したように鱗片状黒鉛粒子の平板面が摺動面に概ね平行となり、摺動面に露出する長球状黒鉛粒子上に鱗片状黒鉛粒子の移着部が形成され易くなったために摩耗量が少なくなったと思われる。   In Example 7, since the average aspect ratio A2 of the scaly graphite particles contained in the sliding layer is in the range of 5 to 10 and the anisotropic dispersion index S is 3 or more, as described above. The flat plate surface of the flaky graphite particles was almost parallel to the sliding surface, and the amount of wear was thought to have decreased because the transfer parts of the flaky graphite particles were easily formed on the long spherical graphite particles exposed on the sliding surface. It is.

また実施例8、9は特に摩耗量が少なくなった。これは上記実施例4〜7の摩耗量が少なくなる理由として説明した条件の全てを満たすので、特に摩耗量が少なったと思われる。   In Examples 8 and 9, the amount of wear was particularly small. This satisfies all of the conditions described as the reason why the amount of wear in Examples 4 to 7 is reduced, so it seems that the amount of wear is particularly small.

比較例11は、摺動層に含まれる長球状黒鉛粒子の黒鉛化度K1が0.698と低いために潤滑成分として十分に機能せず、給油状態での摺動時に摺動層の摩耗量が多くなったと考えられる。   In Comparative Example 11, since the graphitization degree K1 of the oblong graphite particles contained in the sliding layer is as low as 0.698, it does not function sufficiently as a lubricating component, and the amount of wear of the sliding layer during sliding in an oil supply state Seems to have increased.

比較例12は、摺動層に含まれる鱗片状黒鉛粒子の黒鉛化度K2と長球状黒鉛粒子の黒鉛化度K1との差K2−K1が0.015と小さいため、上記で説明したように摺動時に、摺動面に露出する長球状黒鉛粒子上に鱗片状黒鉛粒子の移着部が形成され難く、長球状黒鉛粒子と軸部材の表面に露出する硬質粒子が直接、接触して、長球状黒鉛粒子にせん断がおこり摺動面から脱落し摺動層の表面に傷が発生し、摺動層の摩耗量が多くなったと考えられる。 In Comparative Example 12, since the difference K2-K1 between the graphitization degree K2 of the scaly graphite particles contained in the sliding layer and the graphitization degree K1 of the long spherical graphite particles is as small as 0.015, as described above. At the time of sliding, the transfer part of the scaly graphite particles is difficult to be formed on the long spherical graphite particles exposed on the sliding surface, and the hard spherical particles and the hard particles exposed on the surface of the shaft member are in direct contact with each other. It is considered that the long spherical graphite particles were sheared and dropped from the sliding surface, causing scratches on the surface of the sliding layer, and the amount of wear of the sliding layer increased.

比較例13は、摺動層に含まれる長球状黒鉛粒子の黒鉛化度K1が鱗片状黒鉛粒子の黒鉛化度K2よりも大きいために、上記で説明したように摺動時に、摺動面に露出する長球状黒鉛粒子上に鱗片状黒鉛粒子の移着部が十分に形成され難く、また長球状黒鉛粒子の内部でせん断がおこり摺動面から脱落し、摺動面の摩耗が促進されたと考えられる。   In Comparative Example 13, since the degree of graphitization K1 of the long spherical graphite particles contained in the sliding layer is larger than the degree of graphitization K2 of the scaly graphite particles, as described above, when sliding, It is difficult to sufficiently form the transfer part of the scaly graphite particles on the exposed long spherical graphite particles, and shearing occurs inside the long spherical graphite particles, so that the sliding surface is removed, and wear of the sliding surface is promoted. Conceivable.

比較例14は、摺動層に含まれる鱗片状黒鉛粒子の黒鉛化度K2と長球状黒鉛粒子の黒鉛化度K1との差K2−K1が0.171と大きすぎるため、上記で説明したように鱗片状黒鉛粒子が長球状黒鉛粒子上に移着しても軸部材から負荷が加わった時に長球状黒鉛粒子に対して鱗片状黒鉛粒子は塑性変形しすぎて、鱗片状黒鉛粒子が複数の小さいせん断片に破壊されやすくなり、結果、長球状黒鉛粒子上に移着する鱗片状黒鉛粒子が少なくなる。このため、長球状黒鉛粒子と軸部材の表面に露出する硬質粒子が直接、接触して、長球状黒鉛粒子の内部でせん断がおこり摺動面から脱落し、摺動面の摩耗が促進されたと考えられる。   In Comparative Example 14, since the difference K2-K1 between the graphitization degree K2 of the scaly graphite particles contained in the sliding layer and the graphitization degree K1 of the long spherical graphite particles is too large as 0.171, it is explained above. Even when the flaky graphite particles are transferred onto the long spherical graphite particles, when the load is applied from the shaft member, the flaky graphite particles are excessively plastically deformed with respect to the long spherical graphite particles, and the flaky graphite particles have a plurality of flaky graphite particles. It becomes easy to be broken into small thread fragments, and as a result, fewer scaly graphite particles are transferred onto the long spherical graphite particles. For this reason, the long spherical graphite particles and the hard particles exposed on the surface of the shaft member are in direct contact with each other, shearing occurs inside the long spherical graphite particles and falling off the sliding surface, and wear of the sliding surface is promoted. Conceivable.

比較例15は、表1に示すように実施例とは異なり、摺動層は長球状黒鉛粒子のみを含む。比較例15は、摺動時に軸部材の表面に露出する硬質粒子と摺動部材の摺動面に露出する長球状黒鉛粒子が、直接、接触し、摺動面に露出する長球状黒鉛粒子に割れが生じて摺動面からの脱落がおこり、摺動面に傷がつき、摺動層の摩耗量が多くなった。さらに、比較例15は、原材料である黒鉛粒子として内部に空隙を有する球状化黒鉛粒子を用いたが、黒鉛粒子を含む組成物を有機溶剤で粘度が15000mPa・sとなるよう希釈したため、組成物中の有機溶剤の割合が多く、混合工程でロールミルのロール間のギャップを球状化黒鉛粒子が通るときに同時に合成樹脂の粒子が通過する頻度が低い。このため、混合工程で原材料である球状化黒鉛粒子の変形量が少なくなり、その結果、摺動層の分散する長球状黒鉛粒子は、平均アスペクト比A1が小さくなり、断面組織内には、原材料である球状化黒鉛粒子の内部に形成されていた空隙が、ほぼそのまま残った。
このため、比較例15の摺動部材は、摺動試験において、摺動層の表面に露出する黒鉛粒子が軸部材の表面からの負荷を受けると、長球状黒鉛粒子に割れが生じたり、内部空隙が潰されて座屈が起こり、粒の表面積が小さくなり、長球状黒鉛粒子の合成樹脂による保持が十分でなくなることにより、長球状黒鉛粒子のせん断片が摺動面から脱落し、軸部材の表面との間の空隙に侵入して摺動面の摩耗が促進されたと考えられる。
As shown in Table 1, Comparative Example 15 is different from the Examples, and the sliding layer includes only long spherical graphite particles. In Comparative Example 15, the hard particles exposed on the surface of the shaft member during sliding and the long spherical graphite particles exposed on the sliding surface of the sliding member are in direct contact with each other to form the long spherical graphite particles exposed on the sliding surface. Cracking occurred and the sliding surface fell off, the sliding surface was damaged, and the wear amount of the sliding layer increased. Further, in Comparative Example 15, spheroidized graphite particles having voids therein were used as the raw material graphite particles, but the composition containing graphite particles was diluted with an organic solvent so that the viscosity became 15000 mPa · s. The ratio of the organic solvent is large, and when the spheroidized graphite particles pass through the gap between the rolls of the roll mill in the mixing step, the frequency of the synthetic resin particles passing at the same time is low. For this reason, the amount of deformation of the spheroidized graphite particles as a raw material is reduced in the mixing step, and as a result, the long spherical graphite particles dispersed in the sliding layer have a small average aspect ratio A1, and the raw material is present in the cross-sectional structure. The voids formed inside the spheroidized graphite particles remained almost as they were.
For this reason, in the sliding member of Comparative Example 15, in the sliding test, when the graphite particles exposed on the surface of the sliding layer are subjected to a load from the surface of the shaft member, The voids are crushed and buckling occurs, the surface area of the grains is reduced, and the oval graphite particles are not sufficiently retained by the synthetic resin. It is considered that the wear of the sliding surface was promoted by entering the gap between the surface and the surface.

比較例16は、表1に示すように実施例とは異なり、摺動層は鱗片状黒鉛粒子のみを含む。比較例16において摺動層の摩耗量が増加した理由は以下のように考えられる。
比較例16は、摺動層は、鱗片状黒鉛粒子のみを含むので、実施例に比べて摺動面に露出する鱗片状黒鉛粒子の量が多い。このため、比較例16は、摺動時に、摺動面から軸部材の表面と摺動面との間の隙間に脱落する鱗片状黒鉛粒子の量が多くなりすぎて、摺動面に傷が発生し、摺動層の摩耗量が多くなった。
As shown in Table 1, Comparative Example 16 is different from the Examples, and the sliding layer includes only scaly graphite particles. The reason why the wear amount of the sliding layer increased in Comparative Example 16 is considered as follows.
In Comparative Example 16, since the sliding layer includes only the scaly graphite particles, the amount of the scaly graphite particles exposed on the sliding surface is larger than that of the example. For this reason, in Comparative Example 16, the amount of scaly graphite particles falling off from the sliding surface into the gap between the surface of the shaft member and the sliding surface during sliding is excessive, and the sliding surface is scratched. This occurred and the amount of wear of the sliding layer increased.

比較例17は、摺動層は、長球状黒鉛粒子と鱗片状黒鉛粒子の両方を含むが、摺動層に分散された黒鉛粒子の全体積に対する鱗片状黒鉛粒子の体積割合が8%と低すぎるため、摺動時の鱗片状黒鉛粒子の摺動面に露出する長球状黒鉛粒子上への移着部の形成が不十分となり、摺動面に傷が発生した。このため、摺動層の摩耗量が多くなった。   In Comparative Example 17, the sliding layer includes both long spherical graphite particles and scaly graphite particles, but the volume ratio of the scaly graphite particles to the total volume of the graphite particles dispersed in the sliding layer is as low as 8%. Therefore, the formation of the transfer portion on the long spherical graphite particles exposed on the sliding surface of the scaly graphite particles during sliding was insufficient, and the sliding surface was damaged. For this reason, the abrasion amount of the sliding layer increased.

比較例18は、摺動層は、長球状黒鉛粒子と鱗片状黒鉛粒子の両方を含むが、摺動層に分散された黒鉛粒子の全体積に対する鱗片状黒鉛粒子の体積割合が45%と大きすぎるため、摺動時に、摺動面に露出する鱗片状黒鉛粒子に割れが生じて脱落する量が多くなり、脱落した鱗片状黒鉛粒子によって摺動面に傷が発生し、摺動層の摩耗量が増加したと考えられる。   In Comparative Example 18, the sliding layer includes both long spherical graphite particles and scaly graphite particles, but the volume ratio of the scaly graphite particles to the total volume of the graphite particles dispersed in the sliding layer is as large as 45%. Therefore, during the sliding, the scaly graphite particles exposed on the sliding surface are cracked, and the amount of falling off increases, and the falling scaly graphite particles cause scratches on the sliding surface and wear the sliding layer. The amount is thought to have increased.

比較例19は、摺動層に含まれる長球状黒鉛粒子と鱗片状黒鉛粒子とからなる黒鉛粒子の量が3体積%と少ないため、摺動層と軸部材軸表面との摩擦力を低くする効果が不十分となり、摺動層の摩耗量が多くなったと考えられる。   Comparative Example 19 reduces the frictional force between the sliding layer and the shaft member shaft surface because the amount of graphite particles composed of the oblong graphite particles and the scaly graphite particles contained in the sliding layer is as small as 3% by volume. It is considered that the effect was insufficient and the wear amount of the sliding layer was increased.

比較例20は、摺動層に含まれる長球状黒鉛粒子と鱗片状黒鉛粒子とからなる黒鉛粒子の量が60体積%と多いため、摺動層の強度が低くなり、摺動層の摩耗量が多くなったと考えられる。   In Comparative Example 20, since the amount of the graphite particles composed of the oblong graphite particles and the scaly graphite particles contained in the sliding layer is as large as 60% by volume, the strength of the sliding layer is reduced, and the wear amount of the sliding layer is reduced. Seems to have increased.

1:摺動装置
2:軸部材
3:摺動部材
4:裏金層
5:摺動層
6:摺動部材の合成樹脂
7:黒鉛粒子
71:長球状黒鉛粒子
72:鱗片状黒鉛粒子
8:多孔質金属層
9:軸部材の合成樹脂
10:硬質粒子
1: Sliding device 2: Shaft member 3: Sliding member 4: Back metal layer 5: Sliding layer 6: Synthetic resin of sliding member 7: Graphite particles 71: Spherical graphite particles 72: Scale-like graphite particles 8: Porous Metal layer 9: shaft member synthetic resin 10: hard particles

Claims (12)

軸部材と、該軸部材を支承する摺動部材とを備える摺動装置であって、
前記軸部材は、合成樹脂と、該合成樹脂中に分散された硬質粒子からなり、前記硬質粒子の体積は、前記軸部材の体積の5〜50体積%であり、
前記摺動部材は、裏金層と、該裏金層上に設けられた摺動層とを備え、
前記摺動層は、合成樹脂と、該合成樹脂中に分散された黒鉛粒子とからなり、該黒鉛粒子の体積は、前記摺動層の体積の5〜50体積%であり、
前記黒鉛粒子は、黒鉛化度K1の長球状黒鉛粒子と黒鉛化度K2の薄板形状の鱗片状黒鉛粒子とからなり、前記黒鉛粒子の全体積に対する前記鱗片状黒鉛粒子の体積の割合が10〜40%であり、
前記長球状黒鉛粒子の断面組織は、黒鉛結晶のAB面が粒子表面から中心方向に向けて粒子表面の丸みに沿って曲線状に複数積層しており、前記鱗片状黒鉛粒子の断面組織は、黒鉛結晶のAB面が前記薄板形状の厚さ方向に複数積層しており、
前記長球状黒鉛粒子の平均粒径が3〜50μmであり、前記鱗片状黒鉛粒子の平均粒径が1〜25μmであり、
前記長球状黒鉛粒子の黒鉛化度K1が0.80〜0.97であり、前記鱗片状黒鉛粒子の黒鉛化度K2が前記長球状黒鉛粒子の黒鉛化度K1よりも大きく、その差K2−K1が0.03〜0.15である、摺動装置。
A sliding device comprising a shaft member and a sliding member for supporting the shaft member,
The shaft member is made of a synthetic resin and hard particles dispersed in the synthetic resin, and the volume of the hard particles is 5 to 50% by volume of the volume of the shaft member,
The sliding member includes a backing metal layer and a sliding layer provided on the backing metal layer,
The sliding layer comprises a synthetic resin and graphite particles dispersed in the synthetic resin, and the volume of the graphite particles is 5 to 50% by volume of the volume of the sliding layer,
The graphite particles are composed of oblong graphite particles having a graphitization degree K1 and thin plate-like scaly graphite particles having a graphitization degree K2, and the ratio of the volume of the scaly graphite particles to the total volume of the graphite particles is 10 to 10. 40%,
The cross-sectional structure of the long spherical graphite particles is such that the AB surface of the graphite crystal is laminated in a curved shape along the roundness of the particle surface from the particle surface toward the center, and the cross-sectional structure of the scaly graphite particles is: A plurality of AB surfaces of graphite crystals are laminated in the thickness direction of the thin plate shape,
The average particle diameter of the long spherical graphite particles is 3 to 50 μm, the average particle diameter of the scaly graphite particles is 1 to 25 μm,
The graphitization degree K1 of the long spherical graphite particles is 0.80 to 0.97, the graphitization degree K2 of the scaly graphite particles is larger than the graphitization degree K1 of the long spherical graphite particles, and the difference K2− The sliding device whose K1 is 0.03-0.15.
前記長球状黒鉛粒子の黒鉛化度K1が0.85〜0.97である、請求項1に記載された摺動装置。   The sliding device according to claim 1, wherein the graphitization degree K1 of the long spherical graphite particles is 0.85 to 0.97. 前記鱗片状黒鉛粒子の黒鉛化度K2と前記長球状黒鉛粒子の黒鉛化度K1との差K2−K1が0.03〜0.10である、請求項1または請求項2に記載された摺動装置。   The slide according to claim 1 or 2, wherein a difference K2-K1 between a graphitization degree K2 of the scaly graphite particles and a graphitization degree K1 of the long spherical graphite particles is 0.03 to 0.10. Moving device. 前記長球状黒鉛粒子の平均アスペクト比が1.5〜4.5である、請求項1から請求項3までのいずれか1項に記載された摺動装置。   The sliding device according to any one of claims 1 to 3, wherein an average aspect ratio of the long spherical graphite particles is 1.5 to 4.5. 前記鱗片状黒鉛粒子の平均アスペクト比が5〜10であり、
前記鱗片状黒鉛粒子の異方分散指数が3以上であり、該異方分散指数は、各鱗片状黒鉛粒子についての比X1/Y1の平均により表され、ここで
X1は、前記摺動層の摺動面に対して垂直方向の断面組織での、前記鱗片状黒鉛粒子の前記摺動面に対して平行方向の長さであり、
Y1は、前記摺動層の摺動面に対して垂直方向の断面組織での、前記鱗片状黒鉛粒子の前記摺動面に対して垂直方向の長さである、請求項1から請求項4までのいずれか1項に記載された摺動装置。
The scaly graphite particles have an average aspect ratio of 5 to 10,
The anisotropic dispersion index of the scaly graphite particles is 3 or more, and the anisotropic dispersion index is represented by an average of the ratio X1 / Y1 for each of the scaly graphite particles, where X1 is the value of the sliding layer. The cross-sectional structure perpendicular to the sliding surface is the length in the direction parallel to the sliding surface of the scaly graphite particles,
5. Y1 is a length in a direction perpendicular to the sliding surface of the scaly graphite particles in a cross-sectional structure perpendicular to the sliding surface of the sliding layer. The sliding device described in any one of the preceding items.
前記摺動層の合成樹脂が、PAI、PI、PBI、PA、フェノール、エポキシ、POM、PEEK、PE、PPS、及びPEIから選ばれる1種または2種以上からなる、請求項1から請求項5までのいずれか1項に記載された摺動装置。   The synthetic resin of the sliding layer is composed of one or more selected from PAI, PI, PBI, PA, phenol, epoxy, POM, PEEK, PE, PPS, and PEI. The sliding device described in any one of the preceding items. 前記摺動層が、MoS、WS、h−BN、及びPTFEから選ばれる1種または2種以上の固体潤滑剤を1〜20体積%をさらに含む、請求項1から請求項6までのいずれか1項に記載された摺動装置。 Said sliding layer, MoS further comprising 2, WS 2, h-BN , and 1 to 20 vol% of one or more solid lubricants selected from PTFE, of claims 1 to 6 The sliding device described in any one of items. 前記摺動層が、CaF、CaCo、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウム、及びMoCから選ばれる1種または2種以上の充填材を1〜10体積%さらに含む、請求項1から請求項7までのいずれか1項に記載された摺動装置。 The sliding layer comprises CaF 2, CaCo 3, talcum, mica, mullite, iron oxide, calcium phosphate, and Mo 2 one or more fillers selected from C 1 to 10 vol% addition, claim The sliding device according to any one of claims 1 to 7. 前記裏金層と前記摺動層との間に、多孔質金属層をさらに有する、請求項1から請求項8までのいずれか1項に記載された摺動装置。   The sliding device according to any one of claims 1 to 8, further comprising a porous metal layer between the backing metal layer and the sliding layer. 前記軸部材の前記合成樹脂が、PAI、PI、PBI、PA、フェノール、エポキシ、POM、PEEK、PE、PPSおよびPEIのうちから選ばれる1種または2種以上である請求項1から請求項9までのいずれか1項に記載された摺動装置。   The synthetic resin of the shaft member is one or more selected from PAI, PI, PBI, PA, phenol, epoxy, POM, PEEK, PE, PPS and PEI. The sliding device described in any one of the preceding items. 前記硬質粒子が、炭素繊維、ガラス繊維、BN、Al、SiC、SiO、AlN、およびTiOのうちから選ばれる1種または2種以上からなる請求項1から請求項10までのいずれか1項に記載された摺動装置。 The hard particles are composed of one or more selected from carbon fiber, glass fiber, BN, Al 2 O 3 , SiC, SiO 2 , AlN, and TiO 2 . The sliding device described in any one of the items. 前記軸部材が、
CaF、CaCo、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウムおよびMoCのうちから選ばれる1種または2種以上を1〜10体積%、及び/または
MoS、WS、h−BNおよびPTFEから選ばれる1種または2種以上を5体積%以下
をさらに含む請求項1から請求項11までのいずれか1項に記載された摺動装置。
The shaft member is
CaF 2, CaCo 3, talcum, mica, mullite, iron oxide, 1-10% by volume of one or more selected from among calcium phosphate and Mo 2 C, and / or MoS 2, WS 2, h-BN The sliding device according to any one of claims 1 to 11, further comprising 5 vol% or less of one or more selected from PTFE.
JP2016186169A 2016-09-23 2016-09-23 Sliding device Active JP6653234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186169A JP6653234B2 (en) 2016-09-23 2016-09-23 Sliding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186169A JP6653234B2 (en) 2016-09-23 2016-09-23 Sliding device

Publications (2)

Publication Number Publication Date
JP2018048726A true JP2018048726A (en) 2018-03-29
JP6653234B2 JP6653234B2 (en) 2020-02-26

Family

ID=61767386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186169A Active JP6653234B2 (en) 2016-09-23 2016-09-23 Sliding device

Country Status (1)

Country Link
JP (1) JP6653234B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553963A (en) * 2018-10-30 2019-04-02 广东格瑞新材料股份有限公司 A kind of heat sink material and preparation method thereof
CN110592414A (en) * 2019-11-01 2019-12-20 齐齐哈尔翔科新材料有限公司 Self-lubricating aluminum-based composite material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092156A (en) * 2007-10-10 2009-04-30 Daido Metal Co Ltd Sliding bearing
JP2010216639A (en) * 2009-03-19 2010-09-30 Daido Metal Co Ltd Bearing device of compressor for refrigerator
WO2012074107A1 (en) * 2010-12-02 2012-06-07 大豊工業株式会社 Swash plate for swash plate compressor
JP2013083301A (en) * 2011-10-07 2013-05-09 Taiho Kogyo Co Ltd Slide bearing made of graphite added resin-based material, for pinion gear of planetary gear mechanism
WO2014181562A1 (en) * 2013-05-09 2014-11-13 大豊工業株式会社 Sliding member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092156A (en) * 2007-10-10 2009-04-30 Daido Metal Co Ltd Sliding bearing
JP2010216639A (en) * 2009-03-19 2010-09-30 Daido Metal Co Ltd Bearing device of compressor for refrigerator
WO2012074107A1 (en) * 2010-12-02 2012-06-07 大豊工業株式会社 Swash plate for swash plate compressor
JP2013083301A (en) * 2011-10-07 2013-05-09 Taiho Kogyo Co Ltd Slide bearing made of graphite added resin-based material, for pinion gear of planetary gear mechanism
WO2014181562A1 (en) * 2013-05-09 2014-11-13 大豊工業株式会社 Sliding member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553963A (en) * 2018-10-30 2019-04-02 广东格瑞新材料股份有限公司 A kind of heat sink material and preparation method thereof
CN110592414A (en) * 2019-11-01 2019-12-20 齐齐哈尔翔科新材料有限公司 Self-lubricating aluminum-based composite material and preparation method thereof

Also Published As

Publication number Publication date
JP6653234B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP6298132B1 (en) Sliding member
JP6300843B2 (en) Sliding member
JP6267174B2 (en) Sliding member
JP6599756B2 (en) Sliding member
JP6649108B2 (en) Sliding device
EP3819514B1 (en) Sliding member
JP6653234B2 (en) Sliding device
JP6624679B2 (en) Sliding member
WO2021106274A1 (en) Resin material for sliding members, and sliding member
JP4998458B2 (en) Ceramic sintered body, sliding component using the same, and method for producing ceramic sintered body
JP6704832B2 (en) Sliding device
JP2010037451A (en) Sliding member
JP6712203B2 (en) Sliding device
JP5748009B2 (en) Solid particles, solid lubricants and metal parts
JP6624680B2 (en) Sliding device
JP5448009B2 (en) Resin sliding member
JP6712202B2 (en) Sliding member
WO2023248962A1 (en) Sliding member
JP2015113457A (en) Lubrication film and slide bearing
US20210246937A1 (en) Sliding member
US20210246944A1 (en) Sliding member
Muthupandi et al. Effect of Mesophase particles on the Electrographite carbon brush tribology behavior under no-load condition
Barman et al. Fretting wear behaviour of MoS2 dry film lubricant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190515

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R150 Certificate of patent or registration of utility model

Ref document number: 6653234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250