JP2018044980A - 階調電圧生成回路、表示ドライバー、電気光学装置及び電子機器 - Google Patents

階調電圧生成回路、表示ドライバー、電気光学装置及び電子機器 Download PDF

Info

Publication number
JP2018044980A
JP2018044980A JP2016177570A JP2016177570A JP2018044980A JP 2018044980 A JP2018044980 A JP 2018044980A JP 2016177570 A JP2016177570 A JP 2016177570A JP 2016177570 A JP2016177570 A JP 2016177570A JP 2018044980 A JP2018044980 A JP 2018044980A
Authority
JP
Japan
Prior art keywords
variable resistance
circuit
voltage
node
gradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016177570A
Other languages
English (en)
Other versions
JP6834274B2 (ja
Inventor
和顕 田中
Kazuaki Tanaka
和顕 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016177570A priority Critical patent/JP6834274B2/ja
Publication of JP2018044980A publication Critical patent/JP2018044980A/ja
Application granted granted Critical
Publication of JP6834274B2 publication Critical patent/JP6834274B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

【課題】様々な表示パネルのガンマ特性に対応することが可能な階調電圧生成回路、表示ドライバー、電気光学装置及び電子機器等を提供すること。【解決手段】階調電圧生成回路10は、直列に接続される第1〜第nの可変抵抗回路(RVA1〜RVA7)を含む。第1〜第nの可変抵抗回路のうちの少なくとも第iの可変抵抗回路RVAiは、複数の階調電圧(V24〜V30)を出力する。第1〜第nの可変抵抗回路のうちの他の可変抵抗回路は、1又は複数の階調電圧を出力する。第iの可変抵抗回路RVAiは、複数の階調電圧(V24〜V30)が出力される複数の電圧分割ノード(NV24〜NV30)のうちの第pの電圧分割ノード(NV24)と第qの電圧分割ノード(NV26)との間に設けられる可変抵抗部40を、更に有する。【選択図】 図2

Description

本発明は、階調電圧生成回路、表示ドライバー、電気光学装置及び電子機器等に関する。
液晶表示パネル等の表示パネルは、その機種等に応じて特有のガンマ特性を有しており、そのガンマ特性に合わせたデータ電圧で表示ドライバーが表示パネルを駆動することで、適切な階調表示が実現される。ガンマ特性は、画素に表示される階調と、その階調を実現するデータ電圧とを対応付ける特性(ガンマカーブ)である。表示データとデータ電圧との対応をガンマ特性に合わせることを、ガンマ補正(或いは階調補正)等と呼ぶ。例えば、ガンマ補正は、表示データのデジタル処理、或いは階調電圧生成回路のガンマ特性(の調整)によって実現される。階調電圧生成回路のガンマ特性で実現する場合、各階調に対応した電圧を、表示パネルのガンマ特性に合わせて調整しておく必要がある。
例えば特許文献1に、階調電圧生成回路のガンマ特性を調整する技術が開示されている。特許文献1では、第1のラダー抵抗で第1〜第9の基準電圧を生成し、その基準電圧をボルテージフォロアで増幅して第2のラダー抵抗に供給し、第2のラダー抵抗は第1〜第9の基準電圧の間を更に分割して第1〜第64の階調電圧を出力する。第1、第2の基準電圧は、第1、第3の階調電圧として出力され、その間の第2の階調電圧は、第2のラダー抵抗の第1、第2の抵抗による抵抗分割で生成される。そして、第1、第2の抵抗の抵抗値が可変に調整可能となっている。
特開2005−10276号公報
さて、階調電圧生成回路を種々の表示パネルのガンマ特性に合わせるためには、全ての階調電圧を自在に調整できることが望ましいが、抵抗値を可変にするためのスイッチ素子や抵抗の数が増え、回路規模が増大する。そのため、ラダー抵抗を幾つかのブロックに分割し、その各ブロックをそれぞれ1つの可変抵抗回路に構成する手法がある。この場合、ブロック間の抵抗比が可変となり、それを調整することで表示パネルのガンマ特性を実現する。
しかしながら、各ブロックはラダー抵抗の1又は複数の抵抗を含んでおり、そのブロック内での抵抗比は調整できない。そのため、様々な表示パネルのガンマ特性に合わせようとした場合、そのガンマ特性と階調電圧生成回路のガンマ特性との間の誤差が大きくなる場合がある。例えば、あるブロックが担当する階調範囲において、ガンマカーブが直線的な表示パネルと、ガンマカーブが曲線的な表示パネルがあったとする。このとき、そのブロック内での抵抗比を一方のガンマ特性に合わせると、他方のガンマ特性を適切に実現することが難しい。
本発明の幾つかの態様によれば、様々な表示パネルのガンマ特性に対応することが可能な階調電圧生成回路、表示ドライバー、電気光学装置及び電子機器等を提供できる。
本発明の一態様は、直列に接続される第1〜第nの可変抵抗回路(nは3以上の整数)を含み、前記第1〜第nの可変抵抗回路のうちの少なくとも第iの可変抵抗回路(iは1以上n以下の整数)は、複数の階調電圧を出力し、前記第1〜第nの可変抵抗回路のうちの他の可変抵抗回路は、1又は複数の階調電圧を出力し、前記第iの可変抵抗回路は、複数の階調電圧が出力される複数の電圧分割ノードのうちの第pの電圧分割ノードと第qの電圧分割ノード(p、qは異なる整数)との間に設けられる可変抵抗部を、更に有する階調電圧生成回路に関係する。
本発明の一態様によれば、複数の電圧分割ノードのうちの第pの電圧分割ノードと第qの電圧分割ノードとの間に更に可変抵抗部が設けられるので、第iの可変抵抗回路が出力する複数の階調電圧のガンマ特性のうち、一部のガンマ特性(第pの電圧分割ノードと第qの電圧分割ノードとの間の電圧分割ノードから出力される階調電圧のガンマ特性)を調整できる。これにより、表示パネルの局所的なガンマ特性の変化に合わせて、第iの可変抵抗回路が出力する複数の階調電圧のガンマ特性を調整することが可能となり、様々な表示パネルのガンマ特性に対応することが可能となる。
また本発明の一態様では、前記第1〜第nの可変抵抗回路の第1の可変抵抗回路は、第1の電源ノードに一端が接続され、前記第1〜第nの可変抵抗回路の第nの可変抵抗回路は、前記第1の電源ノードより高電位の第2の電源ノードに一端が接続され、前記第iの可変抵抗回路は、前記第1〜第nの可変抵抗回路のうちの前記第1の可変抵抗回路及び前記第nの可変抵抗回路以外の可変抵抗回路であってもよい。
ガンマ特性の両端に対応する第1、第nの可変抵抗回路よりも第2〜第n−1の可変抵抗回路の方が、出力する階調電圧の数が多くなる。そのため、種々の表示パネルのガンマ特性に合わせようとした場合に、その階調範囲においてガンマ特性の形状が変化する可能性が大きくなる。この点、本発明の一態様では、第iの可変抵抗回路は、第1、第nの可変抵抗回路以外の可変抵抗回路なので、上記のようなガンマ特性の形状変化に対応できる。
また本発明の一態様では、前記第pの電圧分割ノードと前記第qの電圧分割ノードとの間には、少なくとも1つの抵抗が設けられ、前記可変抵抗部の抵抗値の下限値は、前記少なくとも1つの抵抗の各々の抵抗値よりも大きくてもよい。
第iの可変抵抗回路が更に有する可変抵抗部は、第iの可変抵抗回路が出力する階調電圧に対応した局所的な階調範囲でのガンマ特性を調整するものである。本発明の一態様によれば、可変抵抗部の抵抗値の変化範囲の下限値は、第pの電圧分割ノードと第qの電圧分割ノードとの間に設けられる少なくとも1つの抵抗の各々の抵抗値よりも大きくなっており、局所的なガンマ特性を調整(例えば微調整)できる。
また本発明の一態様では、前記第pの電圧分割ノード及び前記第qの電圧分割ノードの一方の電圧分割ノードは、前記第iの可変抵抗回路の一端のノード又は他端のノードであってもよい。
このようにすれば、第iの可変抵抗回路が出力する階調電圧に対応する階調範囲を、第iの可変抵抗回路が更に有する可変抵抗部で調整される第1範囲と、それ以外の第2範囲とに分割できる。そして、第1範囲でのガンマ特性と第2範囲でのガンマ特性との間で相対的に傾きを調整できる。
また本発明の一態様では、前記第1〜第nの可変抵抗回路に含まれる抵抗は、前記第1〜第nの可変抵抗回路に含まれるトランジスターの第1の方向に配置され、前記可変抵抗部を構成する回路素子は、前記第1〜第nの可変抵抗回路に含まれるトランジスターの前記第1の方向と直交する第2の方向に配置されてもよい。
このようにすれば、第1〜第nの可変抵抗回路に含まれる抵抗とトランジスターのレイアウト(例えば従来の階調電圧生成回路のレイアウト)をほぼ変更することなく、第iの可変抵抗回路が更に有する可変抵抗部のレイアウトを追加できる。例えば、可変抵抗部をトランジスターのオン抵抗で実現した場合、そのトランジスターのサイズは第iの可変抵抗回路に含まれるトランジスターのサイズに比べて小さくできる。この場合、レイアウト面積の増加を抑制しつつ可変抵抗部を追加できる。
また本発明の一態様では、前記可変抵抗部は、前記第pの電圧分割ノードと前記第qの電圧分割ノードとの間に並列に接続される複数のトランジスターを有し、前記複数のトランジスターのオン及びオフによって設定される、前記複数のトランジスターのオン抵抗により、前記可変抵抗部の抵抗値が可変に設定されてもよい。
このようにすれば、第iの可変抵抗回路が更に有する可変抵抗部にポリ抵抗等を用いないため、可変抵抗部のトランジスターのサイズを非常に小さくできる。これにより、レイアウト面積の増加を抑制しつつ、第iの可変抵抗回路に可変抵抗部を設けることが可能になる。
また本発明の他の態様は、複数の基準電圧が入力され、各抵抗回路が、前記複数の基準電圧のいずれか2つの基準電圧に基づいて1又は複数の階調電圧を出力する第1〜第nの抵抗回路(nは3以上の整数)を含み、前記第1〜第nの抵抗回路のうちの第iの抵抗回路は、複数の階調電圧が出力される複数の電圧分割ノードのうちの第pの電圧分割ノードと第qの電圧分割ノードとの間に設けられる可変抵抗部を、有する階調電圧生成回路に関係する。
本発明の他の態様によれば、複数の電圧分割ノードのうちの第pの電圧分割ノードと第qの電圧分割ノードとの間に可変抵抗部が設けられるので、第iの抵抗回路が出力する複数の階調電圧のガンマ特性のうち、一部のガンマ特性(第pの電圧分割ノードと第qの電圧分割ノードとの間の電圧分割ノードから出力される階調電圧のガンマ特性)を調整できる。これにより、表示パネルの局所的なガンマ特性の変化に合わせて、第iの抵抗回路が出力する複数の階調電圧のガンマ特性を調整することが可能となり、様々な表示パネルのガンマ特性に対応することが可能となる。
また本発明の他の態様では、前記第pの電圧分割ノードと前記第qの電圧分割ノードとの間には、1又は複数の抵抗が設けられ、前記1又は複数の抵抗の各抵抗の抵抗値は、前記複数の電圧分割ノードである第1〜第kの電圧分割ノードのうち第1の電圧分割ノードと前記第pの電圧分割ノードとの間、及び前記第qの電圧分割ノードと第kの電圧分割ノードとの間に設けられる1又は複数の抵抗の各抵抗の抵抗値よりも小さくてもよい。
このようにすれば、第iの抵抗回路が出力する階調電圧に対応する階調範囲のうち、ガンマ特性の傾きが相対的に小さい部分の傾きを調整することが可能となる。これにより、階調範囲におけるガンマ特性を、より曲線的にする方向の調整が可能となる。
また本発明の他の態様では、前記第pの電圧分割ノードと前記第qの電圧分割ノードとの間には、少なくとも1つの抵抗が設けられ、前記可変抵抗部の抵抗値の下限値は、前記少なくとも1つの抵抗の各々の抵抗値よりも大きくてもよい。
第iの抵抗回路が有する可変抵抗部は、第iの抵抗回路が出力する階調電圧に対応した局所的な階調範囲でのガンマ特性を調整するものである。本発明の他の態様によれば、可変抵抗部の抵抗値の変化範囲の下限値は、第pの電圧分割ノードと第qの電圧分割ノードとの間に設けられる少なくとも1つの抵抗の各々の抵抗値よりも大きくなっており、局所的なガンマ特性を調整(例えば微調整)できる。
また本発明の更に他の態様は、一端が第1の電源ノードに接続された第1の可変抵抗回路と、一端が前記第1の可変抵抗の他端と電気的に接続され、複数の電圧分割ノードを含む第2の可変抵抗回路と、一端が前記第2の可変抵抗の他端と電気的に接続され、他端が第1の電源ノードより高電位の第2の電源ノードと接続された第3の可変抵抗回路と、前記複数の電圧分割ノードのうちの第pの電圧分割ノードと第qの電圧分割ノード(p、qは異なる整数)との間に設けられる可変抵抗部と、を含む階調電圧生成回路に関係する。
本発明の更に他の態様によれば、複数の電圧分割ノードのうちの第pの電圧分割ノードと第qの電圧分割ノードとの間に更に可変抵抗部が設けられるので、第1の可変抵抗回路と第3の可変抵抗回路との間に設けられた第2の可変抵抗回路が出力する複数の階調電圧のガンマ特性のうち、一部のガンマ特性を調整できる。これにより、表示パネルの局所的なガンマ特性の変化に合わせて、第2の可変抵抗回路が出力する複数の階調電圧のガンマ特性を調整することが可能となり、様々な表示パネルのガンマ特性に対応することが可能となる。
また本発明の一態様と他の態様と更に他の態様では、qはp+1より大きくてもよい。
qがp+1よりも大きいので、第pの電圧分割ノードと第qの電圧分割ノードとの間には1又は複数(少なくとも1つ)の抵抗が設けられることになる。
また本発明の更に他の態様は、上記のいずれかに記載された階調電圧生成回路を含む表示ドライバーに関係する。
また本発明の他の態様は、上記のいずれかに記載された階調電圧生成回路を含む電気光学装置に関係する。
また本発明の他の態様は、上記のいずれかに記載された階調電圧生成回路を含む電子機器に関係する。
本実施形態の階調電圧生成回路の構成例。 第iの可変抵抗回路の一例として第5の可変抵抗回路の構成例。 本実施形態の階調電圧生成回路のレイアウト構成例。 第5の可変抵抗回路の比較例。 表示パネルのガンマ特性の第1の例。 表示パネルのガンマ特性の第1の例。 表示パネルのガンマ特性の第2の例。 表示パネルのガンマ特性の第2の例。 表示パネルのガンマ特性の第3の例。 表示パネルのガンマ特性の第3の例。 第5の可変抵抗回路の第1の変形例。 第5の可変抵抗回路の第2の変形例。 第5の可変抵抗回路の第3の変形例。 階調電圧生成回路の変形例。 第iの抵抗回路の一例として第5の抵抗回路の構成例。 表示ドライバーの構成例。 電気光学装置の構成例。 電子機器の構成例。
以下、本発明の好適な実施の形態について詳細に説明する。なお以下に説明する本実施形態は特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。
1.階調電圧生成回路
図1は、本実施形態の階調電圧生成回路10の構成例である。階調電圧生成回路10は、直列に接続される第1〜第nの可変抵抗回路を含む。なお以下ではn=7の場合を例に説明するが、nは7に限定されず、3以上の整数であればよい。
具体的には、階調電圧生成回路10は、低電位側電源電圧VL(広義には第1の電源電圧、基準電圧)と高電位側電源電圧VH(広義には第2の電源電圧、基準電圧)の間を分圧した第1〜第33の階調電圧V1〜V33を出力する。第1の階調電圧V1は電圧VLであり、第33の階調電圧V33は電圧VHである。電圧VL、VHは、例えば図16の電圧生成回路180から供給される。
第1〜第7の可変抵抗回路RVA1〜RVA7(第1〜第nの可変抵抗回路)は、その順番に直列に接続されている。第1の可変抵抗回路RVA1の一端のノードには電圧VLが入力され、第7の可変抵抗回路RVA7の一端のノードには電圧VHが入力される。そして、第1〜第7の可変抵抗回路RVA1〜RVA7の間の6つのノードからは、それぞれ第2の階調電圧V2、第4の階調電圧V4、第10の階調電圧V10、第24の階調電圧V24、第30の階調電圧V30、第32の階調電圧V32が出力される。これら以外の階調電圧は、各可変抵抗回路が、その両端の電圧を分圧して生成する。例えば、第4の可変抵抗回路RVA4は、第10の階調電圧V10と第24の階調電圧V24の間を分圧して第11〜第23の階調電圧V11〜V23を生成する。
なお、階調電圧生成回路10が出力する階調電圧の数は33に限定されない。本実施形態では、階調電圧生成回路10が出力する各階調電圧の間を、ソースアンプ(駆動回路)が更に4分圧し、最終的に128階調のデータ電圧を出力する。この場合、階調電圧生成回路10は、128/4+1=33の階調電圧を出力する。例えば、ソースアンプでの分圧数が4分圧で、256階調のデータ電圧を出力する場合、階調電圧生成回路10は、256/4+1=65の階調電圧を出力する。
また、第1〜第7の可変抵抗回路RVA1〜RVA7の各可変抵抗回路が出力する階調電圧の数は図1に限定されない。例えば第1の可変抵抗回路RVA1は、その他端のノードに1つの階調電圧(V2)を出力するが、これに限定されず、更に分圧を行って複数の階調電圧を出力してもよい。
さて従来は、図4で後述するように、第1〜第7の可変抵抗回路RVA1〜RVA7の抵抗比を調整することで、可変抵抗回路の間のノードの階調電圧V2、V4、V10、V24、V30、V32を調整し、図5のように表示パネル(電気光学パネル)のガンマ特性に合わせる。しかしながら、可変抵抗回路内の直列抵抗(R24〜R29)の抵抗比は調整できないので、例えば局所的にガンマカーブの形状が大きくことなる表示パネル等(例えば図5、図7の階調「24」〜「30」のガンマカーブ)に階調電圧生成回路のガンマ特性を合わせようとすると、困難な場合がある。
例えば、階調電圧生成回路10において直列に接続する可変抵抗回路の数(n)を増やすことで、ガンマ特性の調整範囲を広げることが可能となる。しかしながら、可変抵抗回路の数が増えると調整部のスイッチ等が増加し、レイアウト面積が増大してしまう。調整部のスイッチは例えばトランジスターであるが、抵抗値への影響を小さくするために非常に小さいオン抵抗が求められ、大きなサイズのトランジスターが必要である。
そこで、本実施形態では以下のように第1〜第7の可変抵抗回路RVA1〜RVA7を構成する。図2には、一例として第5の可変抵抗回路RVA5の構成例を示す。図2の第5の可変抵抗回路RVA5は、調整部20、分圧部30、可変抵抗部40(可変抵抗回路、部分調整部、部分調整回路)を含む。
分圧部30は、階調電圧V24のノードNV24と階調電圧V30のノードNV30との間に直列に接続された抵抗R24〜R29を有する。抵抗R24〜R29は、階調電圧V24と階調電圧V30の間を抵抗分割し、そのタップのノードNV25〜NV29の電圧を階調電圧V25〜V29として出力する。抵抗R24〜R29は、例えばポリ抵抗(ポリシリコンで形成された固定抵抗素子)である。
調整部20は、直列に接続された抵抗RT1〜RT10と、スイッチST1〜ST10と、を有する。スイッチST1〜ST10の一端はノードNV30に接続される。スイッチST1〜ST10の他端は、抵抗RT1〜RT10の一端に接続される。抵抗RT1〜RT9の他端は抵抗RT2〜RT10の一端に接続され、抵抗RT10の他端はノードNV24に接続される。抵抗RT1〜RT10は、例えばポリ抵抗であり、それぞれ異なる抵抗値を有する。スイッチST1〜ST10は例えばトランジスターで構成され、例えばP型トランジスター、或いはN型トランジスター、或いはP型トランジスターとN型トランジスターを組み合わせたトランスファーゲートである。このスイッチST1〜ST10は、例えば図16の制御回路120によりオン及びオフが制御され、各スイッチのオン及びオフに応じて調整部20及び分圧部30の合成抵抗が変化するようになっている。各スイッチのオン及びオフは、例えばレジスター設定により設定されてもよいし、或いは予め不揮発性メモリー等に記憶された設定情報により設定されてもよい。なお、調整部20に設けられる抵抗の数は10に限定されない。また、調整部20の構成は図2に限定されない。例えば、抵抗RT1〜RT10がノードNV24とノードNV30との間に並列に設けられ、抵抗RT1、RT2、・・・、RT10に、それぞれスイッチST1、ST2、・・・、ST10が直列に接続されてもよい。
可変抵抗部40は、ノードNV24とノードNV26との間に設けられる。この可変抵抗部40の抵抗値が可変に調整されることで、抵抗R24、R25及び可変抵抗部40の合成抵抗が変化する。
このように本実施形態では、第1〜第nの可変抵抗回路(RVA1〜RVA7)のうち第iの可変抵抗回路RVAiは、複数の階調電圧を出力し、他の可変抵抗回路(RVA1〜RVAi−1、RVAi+1〜RVAn)は、1又は複数の階調電圧を出力する。そして第iの可変抵抗回路RVAiは、複数の階調電圧が出力される複数の電圧分割ノードのうちの第pの電圧分割ノードと第qの電圧分割ノードとの間に設けられる可変抵抗部40を、更に有する。
図2の例では、第iの可変抵抗回路RVAiは第5の可変抵抗回路RVA5に対応する。また、複数の階調電圧が出力される複数の電圧分割ノードは、階調電圧V24〜V30が出力されるノードNV24〜NV30に相当する。また、第pの電圧分割ノードはノードNV24に対応し、第qの電圧分割ノードはノードNV26に対応する。即ち、ノードNV24〜NV30を第1〜第7の電圧分割ノードと呼ぶこととすると、p=1、q=3である。なお、p、qはこれに限定されない。即ち、分圧部30が第1〜第tの電圧分割ノード(tは3以上の整数)を有する場合、p、qは1以上t以下の整数であり、qがp+1よりも大きければよい。また、p=1の場合にはq≠tである。
なお、図2では第5の可変抵抗回路RVA5が更に可変抵抗部40を含む場合を図示しているが、これに限定されず、可変抵抗部40を含む第iの可変抵抗回路RVAiは、第1〜第7の可変抵抗回路RVA1〜RVA7のいずれであってもよい。また、第1〜第7の可変抵抗回路RVA1〜RVA7のうち複数の可変抵抗回路のそれぞれが更に可変抵抗部40を含んでもよい。
このように、第1の電圧分割ノード(NV24)と第3の電圧分割ノード(NV26)との間に可変抵抗部40が設けられることで、分圧部30の抵抗R24〜R29の抵抗比を一部調整することが可能となる。即ち、階調電圧V24〜V30によるガンマカーブのうち階調電圧V24〜V26の部分のガンマカーブの傾きを変更し、階調電圧V24〜V30によるガンマカーブの形状を変更できる。例えば、直線的なガンマカーブを曲線に変更したり、曲線的なガンマカーブを直線に近づけたりできる。これにより、局所的にガンマカーブの形状が大きくことなる表示パネル等であっても、種々の表示パネルのガンマ特性に階調電圧生成回路10のガンマ特性を合わせることが可能となる。
また本実施形態では、上述したように第1の可変抵抗回路RVA1は第1の電源ノード(電圧VLのノード、低電位側電源ノード)に一端が接続され、第7の可変抵抗回路RVA7は、第1の電源ノードより高電位の第2の電源ノード(電圧VHのノード、高電位側電源ノード)に一端が接続される。このとき、第iの可変抵抗回路は、第1の可変抵抗回路RVA1及び第7の可変抵抗回路RVA7(第nの可変抵抗回路)以外の可変抵抗回路である。即ち2≦i≦n−1=6である。
図5、図6に示すように階調の両端(階調「1」、「33」付近)ではガンマカーブの傾きが大きく、階調の中央部ではガンマカーブの傾きが小さい。傾きが小さいと1階調あたりの電圧差が小さいので、分圧部30の各抵抗の抵抗値が小さくなる。そのため、階調の端に対応した可変抵抗回路RVA1、RVA7では分圧部30の抵抗数が相対的に少なく、階調の中央部に対応した可変抵抗回路RVA2〜RVA6では分圧部30の抵抗数が相対的に多くなる。もし、中央部で抵抗数を少なくすると、可変抵抗回路の両端の電圧差が小さくなり、調整部20の抵抗値を小さくする必要がある。そうすると、調整部20のスイッチ(トランジスター)のオン抵抗を非常に小さくしなければならなくなり、スイッチのサイズが大きくなりすぎてしまうからである。
このように、階調の中央部に対応した可変抵抗回路RVA2〜RVA6は、担当する階調範囲が広くなるので、種々の表示パネルに対応させようとすると、その担当する階調範囲でのガンマカーブの形状が大きく変化することになる。この点、本実施形態では可変抵抗部40が更に設けられる第iの可変抵抗回路RVAiが第2〜第6の可変抵抗回路RVA2〜RVA6(のうち1又は複数)なので、その担当する階調範囲でのガンマカーブの形状変化に対応できる。
また本実施形態では、第pの電圧分割ノード(図2ではNV24)と第qの電圧分割ノード(NV26)との間には、少なくとも1つの抵抗(R24、R25)が設けられる。そして、可変抵抗部40の抵抗値の下限値は、少なくとも1つの抵抗(R24、R25)の各々の抵抗値よりも大きい。
具体的には、少なくとも1つの抵抗が1つの抵抗である場合、その抵抗の抵抗値よりも可変抵抗部40の抵抗値の下限値の方が大きい。また少なくとも1つの抵抗が複数の抵抗である場合、その複数の抵抗の各抵抗の抵抗値のうち最大値よりも可変抵抗部40の抵抗値の方が大きい。可変抵抗部40の抵抗値は可変であるが、例えば、その可変範囲の下限値が少なくとも1つの抵抗の抵抗値よりも大きい。
第iの可変抵抗回路RVAiが有する可変抵抗部40は、第iの可変抵抗回路RVAiが担当する局所的な階調範囲でのガンマ特性を調整するものである。即ち、基本的にはガンマ特性の微調整に用いるものである。そのため、可変抵抗部40は、第pの電圧分割ノードと第qの電圧分割ノードとの間の合成抵抗を極端に変動させる必要はない。この点、本実施形態では、可変抵抗部40の抵抗値の下限値は、第pの電圧分割ノードと第qの電圧分割ノードとの間に設けられる少なくとも1つの抵抗の各々の抵抗値よりも大きくなっており、局所的なガンマ特性を微調整するものになっている。
また、可変抵抗部40は分圧部30の直列抵抗の一部に設けられるので、抵抗値が小さくなり、可変抵抗部40に含まれるスイッチ(トランジスター)のサイズが大きくなる恐れがある。この点、本実施形態によれば、可変抵抗部40の抵抗値が小さくなりすぎないので、可変抵抗部40のサイズ増大を抑制できる。
また本実施形態では、第pの電圧分割ノード及び第qの電圧分割ノードの一方の電圧分割ノードは、第iの可変抵抗回路RVAiの一端のノード又は他端のノードである。
図2の例では、第pの電圧分割ノードが第5の可変抵抗回路RVA5の一端のノードNV24である。
このようにすれば、第iの可変抵抗回路RVAiが担当する階調範囲(図2では「24」〜「30」)を、可変抵抗部40で調整される第1範囲(24〜26)とそれ以外の第2範囲(26〜30)とに2分割できる。そして、可変抵抗部40により第1範囲でのガンマカーブの傾きと第2範囲でのガンマカーブでの傾きとを相対的に調整できる。これにより、第iの可変抵抗回路RVAiが担当する階調範囲での局所的なガンマカーブの形状を変更できる。例えば、緩やかに傾きが変化する形状を、ある階調で急激に傾きが変化する形状や、より直線的な形状に変更することが可能となる。
また本実施形態では、可変抵抗部40は、第pの電圧分割ノードと第qの電圧分割ノードとの間に並列に接続される複数のトランジスターを有する。そして、その複数のトランジスターのオン抵抗が、複数のトランジスターのオン及びオフにより設定され、そのオン抵抗により、可変抵抗部40の抵抗値が可変に設定される。
図2の例では、可変抵抗部40はノードNV24とノードNV26との間に並列に接続される第1〜第3のトランジスターTR1〜TR3を有する。なお、並列に接続されるトランジスターの数は3に限定されない。トランジスターTR1〜TR3の各トランジスターは、例えばP型トランジスター(第1導電型トランジスター)であるが、これに限定されず、N型トランジスター(第2導電型トランジスター)であってもよいし、P型トランジスターとN型トランジスターを組み合わせたトランスファーゲートであってもよい。トランジスターTR1〜TR3は、例えば図16の制御回路120によりオン及びオフが制御され、オンになったトランジスターのオン抵抗により可変抵抗部40の抵抗値が決まる。
このように、トランジスターTR1〜TR3のオン抵抗により可変抵抗部40の抵抗値を設定することで、可変抵抗部40を調整部20に比べて非常に小さいレイアウト面積にできる。即ち、可変抵抗部40にポリ抵抗等を用いないのでトランジスターTR1〜TR3のオン抵抗を小さくする必要がなく、トランジスターTR1〜TR3のサイズを非常に小さくできる。これにより、従来の階調電圧生成回路10からレイアウト面積をほとんど増加させることなく、ガンマ特性の調整範囲を広げることが可能となる。
なお、可変抵抗部40の構成は上記に限定されず、例えば第pの電圧分割ノードと第qの電圧分割ノードとの間に並列に接続されたポリ抵抗をスイッチ(トランジスター)で選択する構成にしてもよい。
また、本実施形態の階調電圧生成回路は以下のように構成してもよい。即ち、階調電圧生成回路は、一端が第1の電源ノード(VLのノード)に接続された第1の可変抵抗回路と、一端が第1の可変抵抗回路の他端と電気的に接続され、複数の電圧分割ノードを含む第2の可変抵抗回路と、一端が第2の可変抵抗回路の他端と電気的に接続され、他端が第1の電源ノードより高電位の第2の電源ノード(VHのノード)と接続された第3の可変抵抗回路と、複数の電圧分割ノードのうちの第pの電圧分割ノードと第qの電圧分割ノードとの間に設けられる可変抵抗部と、を含む。
例えば、ここでの第1の可変抵抗回路は、図1のRVA1に相当し、第2の可変抵抗回路は、図1のRVA5(RVAi。RVA2〜RVA6のいずれか)に相当し、第3の可変抵抗回路は、図1のRVA7に相当する。「電気的に接続される」とは、直接的に接続される場合だけでなく抵抗等の回路素子を介して電気的に接続される場合を含む。即ち、第2の可変抵抗回路は、第1、第3の可変抵抗回路の間に設けられており、第1、第2の可変抵抗回路の間に他の可変抵抗回路等が接続されてもよいし、第2、第3の可変抵抗回路の間に他の可変抵抗回路が接続されてもよい。
2.レイアウト
図3は、本実施形態の階調電圧生成回路10のレイアウト構成例である。図3には、階調電圧生成回路10が形成される半導体基板を平面視した図を示す。
第1〜第7の可変抵抗回路RVA1〜RVA7(第1〜第nの可変抵抗回路)を構成する抵抗が配置される領域を、第1の領域60とする。第1〜第7の可変抵抗回路RVA1〜RVA7を構成するトランジスターが配置される領域を、第2の領域70とする。この場合に、可変抵抗部40を構成する回路素子は、第1の領域60及び第2の領域70以外の領域80に配置される。
具体的には、第1の領域60には、図2の分圧部30の抵抗R24〜R29や調整部20の抵抗RT1〜RT10が配置される。例えば複数のユニット抵抗がマトリクス状に配置される。図3では、ユニット抵抗をハッチングされた矩形で示す。例えば、各ユニット抵抗の長手方向が第1の方向D1に沿うようにユニット抵抗が配置される。そして、幾つかのユニット抵抗を直列又は並列に接続することで、抵抗R24〜R29等の各抵抗が構成される。なお、ユニット抵抗の配置は図3に限定されず、ユニット抵抗が第1の領域60に第2の方向D2に沿って(即ちマトリックスの1行分だけ)配置されてもよい。第2の方向D2は、第1の方向D1に直交(交差)する方向である。ここで、抵抗が配置される領域とは、半導体基板に抵抗(例えばポリ抵抗等)を形成する際に設けられる拡散層やポリシリコン層等が配置された領域のことである。
第2の領域70には、図2の調整部20のスイッチST1〜ST10を構成するトランジスターが配置される。例えば複数のトランジスターが第2の方向D2に沿って配置される。トランジスターのゲートに沿った方向(チャネル幅方向)は第1の方向D1である。図3には、P型トランジスターを符号「PTR」が付された矩形で示し、N型トランジスターを符号「NTR」が付された矩形で示す。ここで、トランジスターが配置される領域とは、半導体基板にトランジスターを形成する際に設けられる拡散層(ソース、ドレイン、ウェル)やポリシリコン層(ゲート)が配置された領域のことである。
領域80には、図2の可変抵抗部40のトランジスターTR1〜TR3が配置される。
このように本実施形態では、可変抵抗回路RVA1〜RVA7に含まれる抵抗は、可変抵抗回路RVA1〜RVA7に含まれるトランジスターの第1の方向D1(第1の方向D1側)に配置される。可変抵抗部40を構成する回路素子は、可変抵抗回路RVA1〜RVA7に含まれるトランジスターの第2の方向D2(第2の方向D2側)に配置されている。
上述したようにトランジスターTR1〜TR3のサイズは調整部20のトランジスター(スイッチST1〜ST10)のサイズに比べて小さいため、領域80は第2の領域70に比べて非常に小さくて済む。そのため、領域80を例えば第2の領域70の外側周辺部に配置することで、ほとんどレイアウト面積の増加(或いはレイアウトの変更)なく可変抵抗部40を導入できる。なお、領域80の位置は図3に限定されない。例えば第2の領域70を複数の領域に分割し、その分割領域の間に領域80を設けてもよい。
ここで、上記では可変抵抗部40を構成する回路素子がトランジスターのみである場合を例に説明したが、これに限定されない。例えば回路素子は抵抗(ポリ抵抗)とトランジスターであってもよい。この場合、第1の領域60と第2の領域70以外の領域に抵抗とトランジスターが配置される。例えば、第1の領域60の外側周辺部に可変抵抗部40の抵抗の配置領域が設けられ、第2の領域70の外側周辺部に可変抵抗部40のトランジスターの配置領域が設けられる。
3.比較例及び本実施形態におけるガンマ特性の調整手法
図4は、第5の可変抵抗回路RVA5の比較例である。図4では、図2の可変抵抗部40が設けられていない。なお比較例では、第1〜第4、第6、第7の可変抵抗回路RVA1〜RVA4、RVA6、RVA7についても可変抵抗部40が設けられていない。
図5、図6は、表示パネルのガンマ特性の第1の例である。図5には、各階調における階調電圧を示す。図6には、各階調における1つ下の階調との階調電圧差(例えば階調「2」では階調電圧差V2−V1)を示す。
本実施形態では、このような表示パネルのガンマ特性に階調電圧生成回路10のガンマ特性を(近似的に)一致させるように、第1〜第7の可変抵抗回路RVA1〜RVA7の抵抗比を調整する。即ち、第1〜第7の可変抵抗回路RVA1〜RVA7の間のノードの階調電圧V2、V4、V10、V24、V30、V32が可変なので、その階調電圧が表示パネルのガンマ特性に一致するように調整する。
階調電圧V2、V4、V10、V24、V30、V32の間の階調電圧は、各可変抵抗回路内の直列抵抗の抵抗比で決まる。例えば第5の可変抵抗回路RVA5は階調電圧V24、V30の間を抵抗R24〜R29で分圧して階調電圧V25〜V29を生成する。この階調電圧V25〜V29によるガンマカーブは抵抗R24〜R29の抵抗比で決まる。
例えば、各可変抵抗回路内の直列抵抗の抵抗比を、図5、図6の表示パネルのガンマ特性に合わせて設計したとする。図6に示すように、例えば第4の可変抵抗回路RVA4が担当する階調「10」〜「24」では階調電圧差が一定(ガンマカーブの傾きが一定)なので、直列抵抗の各抵抗は同じ抵抗値となる。第5の可変抵抗回路RVA5が担当する階調「24」〜「30」では、階調電圧差が増加していくので、直列抵抗の各抵抗は高階調側ほど大きい抵抗値となる。なお、図6のA1に示す点線の曲線のように、近似的にガンマ特性を合わせてもよい。
図7、図8は、表示パネルのガンマ特性の第2の例である。図5、図6のガンマ特性に合わせて設計した階調電圧生成回路10を調整して、図7、図8のガンマ特性に合わせる場合を考える。
図7、図8のガンマ特性では、中央付近の傾きが一定の階調範囲が広くなっている。そのため、第5の可変抵抗回路RVA5が担当する階調「24」〜「30」では階調電圧差が一定(ガンマカーブの傾きが一定)になっている。図7のB1や、図8のC1に示すように、第5の可変抵抗回路RVA5の抵抗比を相対的に小さくすることで、階調「24」〜「30」におけるガンマカーブを寝かせて(傾きを小さくして)、近似的に表示パネルのガンマ特性に近づけることは可能である。
しかしながら、図4の比較例のような構成では直列抵抗(R24〜R29)の抵抗比が変えられないので、高階調側ほど階調電圧差が増加する特性を変えることはできない。そのため、階調「24」〜「30」におけるガンマカーブは曲がったままであり、直線(一定の傾き)になるわけではない。また、このような形状が一致しないガンマカーブをつなぎ合わせて表示パネルのガンマ特性を近似すると、その境目で階調変化が不自然になる場合がある。例えば、図8のような階調電圧差の特性において、境目(例えば階調「24」、「30」等)で階調電圧差が滑らかに接続できない(例えば階調電圧差が境目で一端下がる)場合がある。
図9、図10は、表示パネルのガンマ特性の第3の例である。図5、図6のガンマ特性に合わせて設計した階調電圧生成回路10を調整して、図9、図10のガンマ特性に合わせる場合を考える。
図9、図10のガンマ特性では、中央付近の傾きが一定ではなく緩やかに変化している。そのため、第4の可変抵抗回路RVA4が担当する階調「10」〜「24」では階調電圧差が緩やかに変化している。図10のE1に示すように、第4の可変抵抗回路RVA4の抵抗比を相対的に調整することで、階調「10」〜「24」におけるガンマカーブの傾きを変えて、近似的に表示パネルのガンマ特性に近づけることは可能である。
しかしながら、図4の比較例のような構成では直列抵抗の抵抗比が変えられないので、階調電圧差が一定という特性を変えることはできない。そのため、階調「10」〜「24」におけるガンマカーブは直線(一定の傾き)のままであり、曲線になるわけではない。
以上のように、従来の構成では種々の表示パネルに階調電圧生成回路10を適用すると、階調電圧生成回路10のガンマ特性と表示パネルのガンマ特性との間の誤差が大きくなり、表示品質が低下するおそれがある。例えば、グレースケールを表示した場合にムラや線が見えてしまう可能性がある。
この点、図2で説明したように本実施形態では直列抵抗の一部の抵抗比を可変にする可変抵抗部40を更に設けている。これにより、直列抵抗による局所的なガンマカーブの形状も変更可能となり、階調電圧生成回路10のガンマ特性と表示パネルのガンマ特性との間の誤差を小さくできる。
例えば、可変抵抗部40を高階調側(例えば図2のノードNV28、NV30の間)に設けた場合、可変抵抗部40で合成抵抗を小さくすることで、高階調側のガンマカーブを寝かせることができる。そうすると、図7のB1に示す曲線的な特性を、より直線に近づけることが可能となり、表示パネルのガンマ特性に近づけることができる。
或いは、可変抵抗部40を低階調側(例えば図2の通り)に設けた場合、可変抵抗部40で合成抵抗を小さくすることで、低階調側のガンマカーブを寝かせることができる。そうすると、相対的に高階調側のガンマカーブが立つ(傾きが急になる)ので、ガンマカーブをより急峻に変化させることができる。例えば、図7の階調「24」〜「30」はガンマカーブが直線になっているが、この特性に合わせて階調電圧生成回路10を設計したとする。この場合、上記のように階調「24」〜「30」のガンマカーブを曲線に変えることで、図5のガンマ特性に合わせることができる。
或いは、図11で後述するように、可変抵抗部40を中央部に設けた場合、可変抵抗部40で合成抵抗を小さくすることで、中央部のガンマカーブの傾きを相対的に小さくできる。例えば、図10のE1に示す階調「10」〜「24」の直線的な特性を、中央部の傾き(階調電圧差)を相対的に小さくすることで曲線的な特性に変化させ、表示パネルのガンマ特性に近づけることができる。
4.第iの可変抵抗回路の変形例
以下、第iの可変抵抗回路RVAiの変形例について説明する。以下では第5の可変抵抗回路RVA5を例に説明するが、各変形例は第1〜第7の可変抵抗回路RVA1〜RVA7のいずれにも適用可能である。
図11は、第5の可変抵抗回路RVA5の第1の変形例である。第1の変形例では、可変抵抗部40が、階調「24」〜「30」の中央部であるノードNV26(第pの電圧分割ノード)とノードNV28(第qの電圧分割ノード)との間に設けられる。
このような構成にすることで、第5の可変抵抗回路RVA5が担当する階調範囲の中央部と両側とでガンマカーブの傾きを相対的に変化させることができ、例えば図10で説明したような調整が可能となる。
図12は、第5の可変抵抗回路RVA5の第2の変形例である。第2の変形例では、複数の可変抵抗部41〜43が設けられる。即ち、可変抵抗部41は、階調「24」〜「30」の高階調側であるノードNV28とノードNV30との間に設けられ、可変抵抗部42は、階調「24」〜「30」の中央部であるノードNV26とノードNV28との間に設けられ、可変抵抗部43は、階調「24」〜「30」の低階調側であるノードNV24とノードNV26との間に設けられる。これらの可変抵抗部41〜43の各々は図2の可変抵抗部40と同様の構成である。
このような構成にすることで、第5の可変抵抗回路RVA5が担当する階調範囲で、より自在にガンマカーブの形状を調整することが可能となる。なお、複数の可変抵抗回路の数は3に限定されない。また、複数の可変抵抗回路の各々をいずれの電圧分割ノードの間に設けるかは任意である。
図13は、第5の可変抵抗回路RVA5の第3の変形例である。第3の変形例では、可変抵抗部44、45が入れ子構造になっている。即ち、可変抵抗部44は、ノードNV24とノードNV26との間に設けられ、可変抵抗部45は、可変抵抗部44よりも広い階調範囲のノードNV24とノードNV28との間に設けられる。これらの可変抵抗部44、45の各々は図2の可変抵抗部40と同様の構成である。
このような構成にすることで、第5の可変抵抗回路RVA5が担当する階調範囲で、ガンマカーブの傾きの変化をより自在に調整することが可能となる。なお、入れ子(の深さ)は二重に限定されず、より多重の入れ子を構成してもよい。また、図13では可変抵抗部44、45がノードNV24を共有しているが、これに限定されない。例えば可変抵抗部44がノードNV25とノードNV27との間に設けられてもよい。
5.階調電圧生成回路の変形例
図14は、階調電圧生成回路10の変形例である。階調電圧生成回路10は、第1〜第nの抵抗回路を含む。第1〜第nの抵抗回路には複数の基準電圧が入力され、第1〜第nの抵抗回路の各抵抗回路が、複数の基準電圧のいずれか2つの基準電圧に基づいて1又は複数の階調電圧を出力する。なお以下ではn=7の場合を例に説明するが、nは7に限定されず、3以上の整数であればよい。
第1〜第7の抵抗回路RB1〜RB7には、基準電圧生成回路90からの第1〜第8の基準電圧VR1〜VR8が入力される。具体的には、第iの抵抗回路RBiの一端には第iの基準電圧VRiが入力され、他端には第i+1の基準電圧VRi+1が入力される。基準電圧VR1〜VR8は、それぞれ階調電圧V1、V2、V4、V10、V24、V30、V32、V33として出力される。これら以外の階調電圧は、各抵抗回路が、その両端の電圧を分圧して生成する。例えば、第4の抵抗回路RB4は、基準電圧VR4、VR5(階調電圧V10、V24)の間を分圧して階調電圧V11〜V23を生成する。
基準電圧生成回路90は、基準電圧VR1〜VR8を生成する回路であり、階調電圧生成回路10とは別の回路として設けられる。例えば基準電圧生成回路90は、階調電圧生成回路10を含む回路装置(IC等)とは別の回路装置に含まれる。或いは、基準電圧生成回路90は、階調電圧生成回路10と同じ回路装置内に設けられてもよい。基準電圧生成回路90は、例えば基準電圧VR1〜VR8を出力する複数のレギュレーターで構成される。或いは、基準電圧生成回路90は、ラダー抵抗と、そのラダー抵抗の出力電圧をバッファリングして基準電圧VR1〜VR8として出力する複数のアンプ回路と、で構成される。
図15には、第iの抵抗回路の一例として第5の抵抗回路RB5の構成例を示す。第5の抵抗回路RB5は、分圧部30、可変抵抗部40を含む。即ち、図2の第5の可変抵抗回路RVA5から調整部20を除いた構成になっている。分圧部30、可変抵抗部40の構成は図2と同様であり、分圧部30の両端には基準電圧VR5、VR6が入力される。そして、可変抵抗部40は、複数の階調電圧(V24〜V30)が出力される複数の電圧分割ノード(NV24〜NV30)のうちの第pの電圧分割ノード(NV24)と第qの電圧分割ノード(NV26)との間に設けられる。
本変形例によれば、図2等で説明した実施形態と同様に、局所的にガンマカーブの形状が大きくことなる表示パネル等であっても、種々の表示パネルのガンマ特性に階調電圧生成回路10のガンマ特性を合わせることが可能となる。
また本変形例では、第pの電圧分割ノード(NV24)と第qの電圧分割ノード(NV26)との間には、1又は複数の抵抗(R24、R25)が設けられる。この1又は複数の抵抗(R24、R25)の各抵抗の抵抗値は、複数の電圧分割ノードである第1〜第kの電圧分割ノード(NV24〜NV30)のうち第qの電圧分割ノード(NV26)と第kの電圧分割ノード(NV30)との間に設けられる1又は複数の抵抗(R26〜R29)の各抵抗の抵抗値よりも小さい。なお、図15では第pの電圧分割ノードが第1の電圧分割ノード(NV24)であるが、これに限定されない。p>1の場合、第p、第qの電圧分割ノードの間に設けられる1又は複数の抵抗の各抵抗の抵抗値は、第1の電圧分割ノードと第pの電圧分割ノードとの間に設けられる1又は複数の抵抗の各抵抗の抵抗値よりも小さい。
このようにすれば、第5の抵抗回路RB5が担当する階調「24」〜「30」のうちガンマカーブの傾きが相対的に小さい部分の傾きを調整する(より傾きを相対的に小さくする)ことが可能となる。これにより、階調「24」〜「30」におけるガンマカーブをより曲線的にする方向の調整が可能となり、表示パネルのガンマ特性に合わせた調整が可能となる。
また本変形例では、第pの電圧分割ノード(NV24)と第qの電圧分割ノード(NV26)との間には、少なくとも1つの抵抗(R24、R25)が設けられる。そして、図2で説明した実施形態と同様に、可変抵抗部40の抵抗値は、少なくとも1つの抵抗(R24、R25)の抵抗値よりも大きい。
図2で説明したように、可変抵抗部40は、第pの電圧分割ノードと第qの電圧分割ノードとの間の合成抵抗を極端に変動させる必要はない。即ち、可変抵抗部40の抵抗値は、第pの電圧分割ノードと第qの電圧分割ノードとの間に設けられる抵抗の抵抗値よりも大きくなっており、局所的なガンマ特性を微調整するものになっている。
6.表示ドライバー
図16は、本実施形態の階調電圧生成回路10を含む表示ドライバー100の構成例である。表示ドライバー100は、階調電圧生成回路10、走査線駆動回路110(走査線駆動部)、制御回路120(制御部、処理回路)、データ線駆動回路130(データ線駆動部)、インターフェース回路150(インターフェース部)、電圧生成回路180(電圧生成部)を含む。表示ドライバー100は、回路装置であり、例えば集積回路装置(IC)等で実現される。
インターフェース回路150は、外部の処理装置(例えば表示コントローラー、MPU、CPU等)との間の通信を行う。通信は、例えば表示データ(画像データ)の転送やクロック信号、同期信号の供給、コマンド(又は制御信号)の転送等である。インターフェース回路150は、例えばI/Oバッファー等で構成される。
制御回路120は、インターフェース回路150を介して入力された表示データやクロック信号、同期信号、コマンド等に基づいて、表示データの処理やタイミング制御、表示ドライバー100の各部の制御等を行う。例えばタイミング制御では、同期信号や表示データに基づいて表示パネルの走査線の駆動タイミングやデータ線の駆動タイミングを制御する。また各画素に書き込むデータ電圧の極性を制御する。制御回路120は、例えばゲートアレイ等のロジック回路で構成される。
データ線駆動回路130は、複数の駆動回路を含む。各駆動回路は、D/A変換回路と、アンプ回路と、を含む。階調電圧生成回路10は複数の階調電圧(図1のV1〜V33)を出力し、その各階調電圧は複数の階調値のいずれかに対応している。D/A変換回路は、階調電圧生成回路10からの複数の階調電圧の中から、表示データに対応する2つの隣り合った階調電圧を選択する。アンプ回路は、D/A変換回路からの2つの階調電圧の間を更に分圧し、その分圧した電圧のうち表示データに対応する電圧を増幅してデータ電圧を表示パネルのデータ線(ソース線)に出力する。D/A変換回路は例えばスイッチ回路等で構成され、アンプ回路は例えば演算増幅器やキャパシター、抵抗等で構成される。
走査線駆動回路110は、走査線の選択信号を表示パネルの走査線(ゲート線)に出力する。例えば走査線駆動回路110は、選択する走査線を指定する信号を生成する回路、その信号をバッファリングして選択信号として出力するバッファー回路等で構成される。
電圧生成回路180は、表示パネルのコモン電極に供給されるコモン電圧や、表示ドライバー100の各部に供給される電圧を生成する。例えば階調電圧生成回路10の電源電圧(図1のVH、VL)や、走査線駆動回路110のバッファー回路の電源電圧や、データ線駆動回路130のアンプ回路の電源電圧等を生成する。例えば電圧生成回路180は、昇圧回路やレギュレーター、抵抗分圧回路等で構成される。
7.電気光学装置
図17は、本実施形態の表示ドライバー100(階調電圧生成回路10)を含む電気光学装置350の構成例である。
電気光学装置350は、ガラス基板210と、ガラス基板210上に形成される画素アレイ220と、ガラス基板210上に実装される表示ドライバー100と、表示ドライバー100及び画素アレイ220のデータ線を接続する配線群230と、表示ドライバー100及び画素アレイ220の走査線を接続する配線群240と、表示コントローラー300に接続されるフレキシブル基板250と、フレキシブル基板250と表示ドライバー100を接続する配線群260を含む。配線群230及び配線群240、配線群260は、ガラス基板210上に透明電極(ITO:Indium Tin Oxide)などで形成される。画素アレイ220は、画素、データ線、走査線を含み、ガラス基板210と画素アレイ220が表示パネルに相当する。なお、電気光学装置は、フレキシブル基板250に接続された基板と、その基板に実装される表示コントローラー300と、を更に含んでも良い。
なお、上記では表示パネルのガラス基板上に表示ドライバー100が実装される場合を例に説明したが、電気光学装置350の構成はこれに限定されない。例えば表示ドライバー100が回路基板に実装され、その回路基板と表示パネルとが接続されてもよい。
8.電子機器
図18は、本実施形態の表示ドライバー100(階調電圧生成回路10)を含む電子機器400の構成例である。本実施形態の電子機器として、例えば車載表示装置(例えばメーターパネル等)や、モニター、ディスプレイ、単板プロジェクター、テレビション装置、情報処理装置(コンピューター)、携帯型情報端末、カーナビゲーションシステム、携帯型ゲーム端末、DLP(Digital Light Processing)装置、プリンター等の、表示装置を搭載する種々の電子機器を想定できる。
電子機器400は、電気光学装置350、CPU310(広義には処理装置)、表示コントローラー300、記憶部320(メモリー、記憶装置)、ユーザーインターフェース部330(ユーザーインターフェース回路)、データインターフェース部340(データインターフェース回路)を含む。電気光学装置350は、表示ドライバー100、表示パネル200を含む。なお、表示コントローラー300の機能をCPU310が実現し、表示コントローラー300が省略されてもよい。また、表示ドライバー100と表示パネル200が電気光学装置350として一体に構成されず、個々の構成要素として電子機器に組み込まれてもよい。
ユーザーインターフェース部330は、ユーザーからの種々の操作を受け付けるインターフェース部である。例えば、ボタンやマウス、キーボード、表示パネル200に装着されたタッチパネル等で構成される。データインターフェース部340は、画像データや制御データの入出力を行うインターフェース部である。例えばUSB等の有線通信インターフェースや、或は無線LAN等の無線通信インターフェースである。記憶部320は、データインターフェース部340から入力された画像データを記憶する。或は、記憶部320は、CPU310や表示コントローラー300のワーキングメモリーとして機能する。CPU310は、電子機器の各部の制御処理や種々のデータ処理を行う。表示コントローラー300は表示ドライバー100の制御処理を行う。例えば、表示コントローラー300は、データインターフェース部340や記憶部320からCPU310を介して転送された画像データを、表示ドライバー100が受け付け可能な形式に変換し、その変換された画像データを表示ドライバー100へ出力する。表示ドライバー100は、表示コントローラー300から転送された画像データに基づいて表示パネル200を駆動する。
例えば電子機器400が車載表示装置である場合、CPU310、記憶部320等がECU(Electronic Control Unit)に相当し、そのECUが処理する種々の情報(例えば車速、燃料残量、室温、日時等の情報)が表示コントローラー300や電気光学装置350に転送され、表示パネル200に表示される。なお、車載表示装置とECUは別体であってもよく、車載表示装置としてはCPU310や記憶部320等を含まなくてもよい。
なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また本実施形態及び変形例の全ての組み合わせも、本発明の範囲に含まれる。また階調電圧生成回路、表示ドライバー、電気光学装置、電子機器等の構成・動作等も、本実施形態で説明したものに限定されず、種々の変形実施が可能である。
10…階調電圧生成回路、20…調整部、30…分圧部、40〜45…可変抵抗部、
60…第1の領域、70…第2の領域、80…領域、90…基準電圧生成回路、
100…表示ドライバー、110…走査線駆動回路、120…制御回路、
130…データ線駆動回路、150…インターフェース回路、180…電圧生成回路、
200…表示パネル、210…ガラス基板、220…画素アレイ、
230,240…配線群、250…フレキシブル基板、260…配線群、
300…表示コントローラー、310…CPU、320…記憶部、
330…ユーザーインターフェース部、340…データインターフェース部、
350…電気光学装置、400…電子機器、
D1…第1の方向、D2…第2の方向、
NV24〜NV30…ノード(電圧分割ノード)、R24〜R29…抵抗、
RB1〜RB7…第1〜第7の抵抗回路、RT1〜RT10…抵抗、
RVA1〜RVA7…第1〜第7の可変抵抗回路、ST1〜ST10…スイッチ、
TR1〜TR3…トランジスター、V1〜V33…階調電圧、
VH…高電位側電源電圧、VL…低電位側電源電圧、
VR1〜VR8…第1〜第8の基準電圧

Claims (14)

  1. 直列に接続される第1〜第nの可変抵抗回路(nは3以上の整数)を含み、
    前記第1〜第nの可変抵抗回路のうちの少なくとも第iの可変抵抗回路(iは1以上n以下の整数)は、複数の階調電圧を出力し、
    前記第1〜第nの可変抵抗回路のうちの他の可変抵抗回路の各々は、1又は複数の階調電圧を出力し、
    前記第iの可変抵抗回路は、
    複数の階調電圧が出力される複数の電圧分割ノードのうちの第pの電圧分割ノードと第qの電圧分割ノード(p、qは異なる整数)との間に設けられる可変抵抗部を、更に有することを特徴とする階調電圧生成回路。
  2. 請求項1において、
    前記第1〜第nの可変抵抗回路の第1の可変抵抗回路は、
    第1の電源ノードに一端が接続され、
    前記第1〜第nの可変抵抗回路の第nの可変抵抗回路は、
    前記第1の電源ノードより高電位の第2の電源ノードに一端が接続され、
    前記第iの可変抵抗回路は、
    前記第1〜第nの可変抵抗回路のうちの前記第1の可変抵抗回路及び前記第nの可変抵抗回路以外の可変抵抗回路であることを特徴とする階調電圧生成回路。
  3. 請求項1又は2において、
    前記第pの電圧分割ノードと前記第qの電圧分割ノードとの間には、少なくとも1つの抵抗が設けられ、
    前記可変抵抗部の抵抗値の下限値は、前記少なくとも1つの抵抗の各々の抵抗値よりも大きいことを特徴とする階調電圧生成回路。
  4. 請求項1乃至3のいずれかにおいて、
    前記第pの電圧分割ノード及び前記第qの電圧分割ノードの一方の電圧分割ノードは、前記第iの可変抵抗回路の一端のノード又は他端のノードであることを特徴とする階調電圧生成回路。
  5. 請求項1乃至4のいずれかにおいて、
    前記第1〜第nの可変抵抗回路に含まれる抵抗は、前記第1〜第nの可変抵抗回路に含まれるトランジスターの第1の方向に配置され、
    前記可変抵抗部を構成する回路素子は、前記第1〜第nの可変抵抗回路に含まれるトランジスターの前記第1の方向と直交する第2の方向に配置されていることを特徴とする階調電圧生成回路。
  6. 請求項1乃至5のいずれかにおいて、
    前記可変抵抗部は、
    前記第pの電圧分割ノードと前記第qの電圧分割ノードとの間に並列に接続される複数のトランジスターを有し、
    前記複数のトランジスターのオン及びオフによって設定される、前記複数のトランジスターのオン抵抗により、前記可変抵抗部の抵抗値が可変に設定されることを特徴とする階調電圧生成回路。
  7. 複数の基準電圧が入力され、各抵抗回路が、前記複数の基準電圧のいずれか2つの基準電圧に基づいて1又は複数の階調電圧を出力する第1〜第nの抵抗回路(nは3以上の整数)を含み、
    前記第1〜第nの抵抗回路のうちの第iの抵抗回路は、
    複数の階調電圧が出力される複数の電圧分割ノードのうちの第pの電圧分割ノードと第qの電圧分割ノードとの間に設けられる可変抵抗部を、有することを特徴とする階調電圧生成回路。
  8. 請求項7において、
    前記第pの電圧分割ノードと前記第qの電圧分割ノードとの間には、1又は複数の抵抗が設けられ、
    前記1又は複数の抵抗の各抵抗の抵抗値は、前記複数の電圧分割ノードである第1〜第kの電圧分割ノードのうち第1の電圧分割ノードと前記第pの電圧分割ノードとの間、及び前記第qの電圧分割ノードと第kの電圧分割ノードとの間に設けられる1又は複数の抵抗の各抵抗の抵抗値よりも小さいことを特徴とする階調電圧生成回路。
  9. 請求項7又は8において、
    前記第pの電圧分割ノードと前記第qの電圧分割ノードとの間には、少なくとも1つの抵抗が設けられ、
    前記可変抵抗部の抵抗値の下限値は、前記少なくとも1つの抵抗の各々の抵抗値よりも大きいことを特徴とする階調電圧生成回路。
  10. 一端が第1の電源ノードに接続された第1の可変抵抗回路と、
    一端が前記第1の可変抵抗回路の他端と電気的に接続され、複数の電圧分割ノードを含む第2の可変抵抗回路と、
    一端が前記第2の可変抵抗回路の他端と電気的に接続され、他端が第1の電源ノードより高電位の第2の電源ノードと接続された第3の可変抵抗回路と、
    前記複数の電圧分割ノードのうちの第pの電圧分割ノードと第qの電圧分割ノード(p、qは異なる整数)との間に設けられる可変抵抗部と、
    を含むことを特徴とする階調電圧生成回路。
  11. 請求項1乃至10のいずれかにおいて、
    qはp+1より大きいことを特徴とする階調電圧生成回路。
  12. 請求項1乃至11のいずれかに記載された階調電圧生成回路を含むことを特徴とする表示ドライバー。
  13. 請求項1乃至11のいずれかに記載された階調電圧生成回路を含むことを特徴とする電気光学装置。
  14. 請求項1乃至11のいずれかに記載された階調電圧生成回路を含むことを特徴とする電子機器。
JP2016177570A 2016-09-12 2016-09-12 階調電圧生成回路、表示ドライバー、電気光学装置及び電子機器 Active JP6834274B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016177570A JP6834274B2 (ja) 2016-09-12 2016-09-12 階調電圧生成回路、表示ドライバー、電気光学装置及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016177570A JP6834274B2 (ja) 2016-09-12 2016-09-12 階調電圧生成回路、表示ドライバー、電気光学装置及び電子機器

Publications (2)

Publication Number Publication Date
JP2018044980A true JP2018044980A (ja) 2018-03-22
JP6834274B2 JP6834274B2 (ja) 2021-02-24

Family

ID=61694817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177570A Active JP6834274B2 (ja) 2016-09-12 2016-09-12 階調電圧生成回路、表示ドライバー、電気光学装置及び電子機器

Country Status (1)

Country Link
JP (1) JP6834274B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085187A (zh) * 2019-05-05 2019-08-02 深圳市华星光电技术有限公司 Gamma电路的电阻选值方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085187A (zh) * 2019-05-05 2019-08-02 深圳市华星光电技术有限公司 Gamma电路的电阻选值方法及装置

Also Published As

Publication number Publication date
JP6834274B2 (ja) 2021-02-24

Similar Documents

Publication Publication Date Title
US8730223B2 (en) Source driver and display device having the same
US8154498B2 (en) Display device
US11887512B2 (en) Display substrate, display device, and manufacturing method of display substrate
US20150161956A1 (en) Liquid crystal display device
US7193602B2 (en) Driver circuit, electro-optical device, and driving method
US10878767B2 (en) Display driver, electro-optical device, and electronic apparatus
US20070182683A1 (en) Gamma voltage generating apparatus for display device
US8159431B2 (en) Electrooptic device and electronic apparatus
US7209104B2 (en) Display apparatus and portable terminal which uses D/A conversion circuit
JP2001034237A (ja) 液晶表示装置
US10068536B2 (en) Circuit device, electro-optical device, and electronic apparatus
JP6613786B2 (ja) 回路装置、電気光学装置及び電子機器
US10783849B2 (en) Display driver, electro-optic device, and electronic apparatus
US20190279557A1 (en) Display driver and display panel module
US20090160849A1 (en) Integrated circuit device, electro-optical device, and electronic instrument
US20070132620A1 (en) Array substrate and display device
CN107871479B (zh) 扫描线驱动电路、显示驱动器、电光学装置、设备和驱动方法
TWI569239B (zh) 整合型源極驅動器及其液晶顯示器
US20090273593A1 (en) Display Device and Electronic Device
JP6834274B2 (ja) 階調電圧生成回路、表示ドライバー、電気光学装置及び電子機器
JP4321502B2 (ja) 駆動回路、電気光学装置及び電子機器
US7728831B2 (en) Semiconductor device, electro-optical device, and electronic instrument
US11488543B2 (en) Gate driving circuit and display device
US20210407372A1 (en) Circuit device, electro-optical device, and electronic apparatus
US10672359B2 (en) Display driver, electro-optical device, and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6834274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150