JP2018044530A - Fuel injection controller of internal combustion engine and fuel injection control method - Google Patents

Fuel injection controller of internal combustion engine and fuel injection control method Download PDF

Info

Publication number
JP2018044530A
JP2018044530A JP2016181979A JP2016181979A JP2018044530A JP 2018044530 A JP2018044530 A JP 2018044530A JP 2016181979 A JP2016181979 A JP 2016181979A JP 2016181979 A JP2016181979 A JP 2016181979A JP 2018044530 A JP2018044530 A JP 2018044530A
Authority
JP
Japan
Prior art keywords
fuel
temperature
fuel injection
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016181979A
Other languages
Japanese (ja)
Other versions
JP6663330B2 (en
Inventor
吉辰 中村
Yoshitatsu Nakamura
吉辰 中村
高輔 神田
Kosuke Kanda
高輔 神田
正生 中村
Masao Nakamura
正生 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016181979A priority Critical patent/JP6663330B2/en
Priority to PCT/JP2017/031445 priority patent/WO2018051806A1/en
Publication of JP2018044530A publication Critical patent/JP2018044530A/en
Application granted granted Critical
Publication of JP6663330B2 publication Critical patent/JP6663330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress air-fuel ratio fluctuation due to fuel temperature rise in a fuel sump, in an internal combustion engine where a fuel injection valve formed with the fuel sump on a downstream side of a valve body is arranged in an intake passage.SOLUTION: A controller is configured to estimate a fuel temperature INJFT in a fuel sump on the basis of a cooling water temperature detection value TW; when the fuel temperature INJFT is higher than a predetermined temperature during warming-up operation where an internal combustion engine 1 is left in an idling state from cold starting, assume that fuel injection is executed in a state where liquid fuel is not left in the fuel sump; and reduce an injection pulse width (injection amount command value) more than before.SELECTED DRAWING: Figure 4

Description

本発明は、内燃機関の燃料噴射制御装置及び燃料噴射制御方法に関し、詳しくは、燃料噴射弁の弁体下流側に形成される燃料溜りの燃料温度による燃料流量の変化を補償するための技術に関する。   The present invention relates to a fuel injection control device and a fuel injection control method for an internal combustion engine, and more particularly to a technique for compensating for a change in fuel flow rate due to a fuel temperature in a fuel reservoir formed downstream of a valve body of a fuel injection valve. .

特許文献1には、燃料配管中におけるベーパ発生による空燃比ずれを補正するために、冷却水温と吸気温度とから燃料温度を推定し、推定燃料温度と吸気管圧力に基づいて、予め設定されたマップから空燃比補正係数を算出する構成が開示されている。   In Patent Document 1, in order to correct an air-fuel ratio shift due to vapor generation in the fuel pipe, the fuel temperature is estimated from the cooling water temperature and the intake air temperature, and preset based on the estimated fuel temperature and the intake pipe pressure. A configuration for calculating an air-fuel ratio correction coefficient from a map is disclosed.

特開平11−200918号公報JP-A-11-200908

ところで、弁体下流側の弁体と噴孔との間に燃料溜り(燃料が残留する容積室、デッドボリューム)が形成される燃料噴射弁を吸気通路に配置してなる内燃機関において、燃料溜りに燃料が残存する状態では、吸気通路内圧力P3<燃料溜り内圧力P2<弁体上流側圧力P1の関係が満たされる。
しかし、燃料噴射弁の先端部の温度上昇に伴って燃料溜り内の燃料が閉弁期間中に気化し、燃料溜り内に液体燃料が残存しない状態になると、燃料溜り内圧力P2が下がってP2≒P1になる。
By the way, in an internal combustion engine in which a fuel injection valve in which a fuel reservoir (volume chamber in which fuel remains, dead volume) is formed between a valve body downstream of the valve body and an injection hole is disposed in an intake passage. In the state where the fuel remains, the relationship of the intake passage pressure P3 <the fuel pool pressure P2 <the valve body upstream pressure P1 is satisfied.
However, when the fuel in the fuel reservoir evaporates during the valve closing period as the temperature of the tip of the fuel injection valve rises and no liquid fuel remains in the fuel reservoir, the fuel reservoir internal pressure P2 decreases and P2 ≈P1.

これによって、吸気通路内圧力P3及び弁体上流側圧力P1が同じ条件でも、弁体の前後差圧が増して燃料噴射弁の燃料流量(単位時間当たりの噴射量)が増加し、同じ噴射量指令値で噴射される燃料量が燃料溜りに液体燃料が残存するときよりも多くなって空燃比変動(空燃比のリッチ化)が生じる。
空燃比検出値と目標空燃比との比較に基づき噴射量指令値を補正する空燃比フィードバック制御が実施される内燃機関では、燃料溜りの燃料温度の上昇に伴って空燃比ずれが発生すると、噴射量指令値の補正値を変化させて実空燃比を目標空燃比に保とうとするが、燃料溜りの燃料温度の上昇に伴う空燃比変動が大きくなると、空燃比フィードバック制御が破綻したり、空燃比の学習補正値を誤学習したりすることで、空燃比の収束安定性が損なわれる可能性があった。
As a result, even if the intake passage pressure P3 and the valve body upstream pressure P1 are the same, the differential pressure across the valve body increases and the fuel flow rate (injection amount per unit time) of the fuel injection valve increases, resulting in the same injection amount. The amount of fuel injected at the command value becomes larger than when liquid fuel remains in the fuel reservoir, causing air-fuel ratio fluctuations (air-fuel ratio enrichment).
In an internal combustion engine in which air-fuel ratio feedback control for correcting an injection amount command value based on a comparison between an air-fuel ratio detection value and a target air-fuel ratio is performed, if an air-fuel ratio shift occurs as the fuel temperature in the fuel pool rises, Although the actual air-fuel ratio is to be maintained at the target air-fuel ratio by changing the correction value of the quantity command value, if the air-fuel ratio fluctuation accompanying the increase in the fuel temperature in the fuel reservoir becomes large, the air-fuel ratio feedback control will fail or the air-fuel ratio If the learning correction value is mislearned, the convergence stability of the air-fuel ratio may be impaired.

本発明は上記問題点に鑑みなされたものであり、燃料溜り内の燃料温度の上昇に伴う空燃比変動を抑制できる、内燃機関の燃料噴射制御装置及び燃料噴射制御方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel injection control device and a fuel injection control method for an internal combustion engine that can suppress air-fuel ratio fluctuations accompanying an increase in fuel temperature in a fuel reservoir. To do.

そのため、本願発明に係る内燃機関の燃料噴射制御装置は、燃料溜りにおける燃料温度が所定温度よりも高くなるときには低いときに比べて燃料噴射量指令値を減量する。
また、本願発明に係る内燃機関の燃料噴射制御方法は、燃料溜りにおける燃料温度を推定するステップと、燃料温度の推定値と所定温度とを比較するステップと、燃料温度の推定値が所定温度よりも高いときは低いときに比べて燃料噴射弁の燃料噴射量指令値を減量するステップと、を含む。
Therefore, the fuel injection control device for an internal combustion engine according to the present invention reduces the fuel injection amount command value when the fuel temperature in the fuel reservoir is higher than a predetermined temperature compared to when it is low.
The fuel injection control method for an internal combustion engine according to the present invention includes a step of estimating the fuel temperature in the fuel reservoir, a step of comparing the estimated value of the fuel temperature with a predetermined temperature, and the estimated value of the fuel temperature from the predetermined temperature. A step of reducing the fuel injection amount command value of the fuel injection valve when the time is higher than that when the time is lower.

上記発明によると、燃料溜り内の燃料が温度上昇に伴って気化して弁体の前後差圧が増え燃料噴射弁の燃料流量が増大するときに、燃料噴射量指令値を減量することができ、燃料流量の変化による空燃比ずれの発生を抑制でき、空燃比の収束安定性を改善することができる。   According to the above invention, the fuel injection amount command value can be reduced when the fuel in the fuel reservoir is vaporized as the temperature rises and the differential pressure across the valve body increases and the fuel flow rate of the fuel injection valve increases. Thus, the occurrence of an air-fuel ratio shift due to a change in the fuel flow rate can be suppressed, and the convergence stability of the air-fuel ratio can be improved.

本発明の実施形態における内燃機関のシステム構成図である。1 is a system configuration diagram of an internal combustion engine in an embodiment of the present invention. 本発明の実施形態における内燃機関用冷却装置のシステム構成図である。It is a system configuration figure of a cooling device for internal-combustion engines in an embodiment of the present invention. 本発明の実施形態における燃料温度と弁体の前後差圧との相関を示す図である。It is a figure which shows the correlation with the fuel temperature in embodiment of this invention, and the pressure difference before and behind a valve body. 本発明の実施形態における噴射制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of the injection control in embodiment of this invention. 本発明の実施形態における冷却水温検出値TWと燃料温度INJFTとの相関を例示する図である。It is a figure which illustrates the correlation with the cooling water temperature detected value TW and fuel temperature INJFT in embodiment of this invention. 本発明の実施形態における基本噴射パルス幅TIB、燃料温度INJFT、及びパルス幅補正値TIHOSの相関を例示する図である。It is a figure which illustrates the correlation of basic injection pulse width TIB, fuel temperature INJFT, and pulse width correction value TIHOS in the embodiment of the present invention. 本発明の実施形態における噴射制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of the injection control in embodiment of this invention. 本発明の実施形態における吸気温検出値TAと燃料温度INJFTとの相関を例示する図である。It is a figure which illustrates the correlation with intake air temperature detection value TA and fuel temperature INJFT in embodiment of this invention.

以下に本発明の実施の形態を説明する。
図1は、本発明に係る燃料噴射制御装置を適用する内燃機関の一態様を示すシステム図である。
内燃機関1は、車両に動力源として搭載される4サイクルガソリン機関であり、吸気管2から分岐して各気筒の燃焼室に接続される吸気ポート2aそれぞれに燃料噴射弁3を備え、燃料噴射弁3は、各気筒の吸気ポート2a内に燃料を噴射する。つまり、燃料噴射弁3は、内燃機関1の吸気通路に配置されて吸気通路内に燃料を噴射する。
Embodiments of the present invention will be described below.
FIG. 1 is a system diagram showing an aspect of an internal combustion engine to which a fuel injection control device according to the present invention is applied.
The internal combustion engine 1 is a four-cycle gasoline engine mounted on a vehicle as a power source, and includes a fuel injection valve 3 in each intake port 2a branched from the intake pipe 2 and connected to the combustion chamber of each cylinder. The valve 3 injects fuel into the intake port 2a of each cylinder. That is, the fuel injection valve 3 is disposed in the intake passage of the internal combustion engine 1 and injects fuel into the intake passage.

燃料噴射弁3が噴射した燃料は、空気と共に吸気バルブ4を介して燃焼室5内に吸引され、点火プラグ6による火花点火によって着火燃焼する。燃焼室5内の燃焼ガスは、排気バルブ7を介して排気管8に排出される。
吸気管2には、スロットルモータ9で開閉される電子制御スロットル10が配され、電子制御スロットル10は、内燃機関1の吸入空気量を調整する。
The fuel injected by the fuel injection valve 3 is sucked into the combustion chamber 5 together with air through the intake valve 4 and ignited and burned by spark ignition by the spark plug 6. The combustion gas in the combustion chamber 5 is discharged to the exhaust pipe 8 through the exhaust valve 7.
An electronic control throttle 10 that is opened and closed by a throttle motor 9 is disposed in the intake pipe 2, and the electronic control throttle 10 adjusts the intake air amount of the internal combustion engine 1.

また、内燃機関1は、燃料タンク11内の燃料を燃料噴射弁3に圧送する燃料供給装置13を備えている。
燃料供給装置13は、燃料タンク11、燃料ポンプ12、燃料ギャラリー配管14、燃料供給配管15、燃料フィルタ16などを備える。
燃料ポンプ12は、モータでポンプインペラを回転駆動する電動式流体用ポンプであり、燃料タンク11内に配置される。
The internal combustion engine 1 also includes a fuel supply device 13 that pumps the fuel in the fuel tank 11 to the fuel injection valve 3.
The fuel supply device 13 includes a fuel tank 11, a fuel pump 12, a fuel gallery pipe 14, a fuel supply pipe 15, a fuel filter 16, and the like.
The fuel pump 12 is an electric fluid pump that rotationally drives a pump impeller with a motor, and is disposed in the fuel tank 11.

また、燃料ポンプ12は、吐出燃料の逆流を阻止するためのチェックバルブ(逆止弁)12a、及び、燃料ポンプ12の吐出圧が上限圧を上回った場合に開弁し、燃料ポンプ12が吐き出した燃料を燃料タンク11内にリリーフするリリーフバルブ12bを内蔵している。
尚、チェックバルブ(逆止弁)12a及びリリーフバルブ12bを、燃料ポンプ12から分離して、燃料供給配管15の途中に設けることができる。
The fuel pump 12 opens when the discharge pressure of the fuel pump 12 exceeds the upper limit pressure, and the fuel pump 12 discharges the check valve (check valve) 12a for preventing the backflow of the discharged fuel. A relief valve 12b for relieving the fuel in the fuel tank 11 is incorporated.
The check valve (return valve) 12 a and the relief valve 12 b can be separated from the fuel pump 12 and provided in the middle of the fuel supply pipe 15.

燃料ポンプ12の吐出口には燃料供給配管15の一端が接続され、燃料供給配管15の他端は燃料ギャラリー配管14に接続される。
燃料供給配管15の途中の燃料タンク11内に位置する部分には、燃料をろ過する燃料フィルタ16を設けてある。
燃料ギャラリー配管14には、各気筒の燃料噴射弁3がそれぞれ接続される。
One end of the fuel supply pipe 15 is connected to the discharge port of the fuel pump 12, and the other end of the fuel supply pipe 15 is connected to the fuel gallery pipe 14.
A fuel filter 16 for filtering fuel is provided in a portion located in the fuel tank 11 in the middle of the fuel supply pipe 15.
A fuel injection valve 3 for each cylinder is connected to the fuel gallery pipe 14.

また、内燃機関1は、水冷式の冷却装置を含んで構成される。
図2は、水冷式の冷却装置の一態様を示す。
内燃機関1の冷却装置は、内燃機関1で駆動される機械式ウォーターポンプ51、ラジエータ52、サーモスタット53、これらを接続して循環経路を形成する冷却水配管54を含んで構成される。
The internal combustion engine 1 includes a water cooling type cooling device.
FIG. 2 shows an embodiment of a water-cooled cooling device.
The cooling device for the internal combustion engine 1 includes a mechanical water pump 51 driven by the internal combustion engine 1, a radiator 52, a thermostat 53, and a cooling water pipe 54 that connects these to form a circulation path.

冷却水は、機械式ウォーターポンプ51によって内燃機関1内に設けた冷却水通路に供給され、内燃機関1を冷却した後の冷却水は、ラジエータ52に送られて放熱し、放熱後の冷却水は機械式ウォーターポンプ51に吸い込まれて再度内燃機関1に送られる。
また、ラジエータ52を迂回して冷却水を循環させるバイパス経路54a、及び、ラジエータ52の出口を開閉するサーモスタット53を設けてある。
The cooling water is supplied to the cooling water passage provided in the internal combustion engine 1 by the mechanical water pump 51, and the cooling water after cooling the internal combustion engine 1 is sent to the radiator 52 to dissipate heat, and the cooling water after heat dissipation. Is sucked into the mechanical water pump 51 and sent to the internal combustion engine 1 again.
Further, a bypass path 54 a that circulates the coolant while bypassing the radiator 52, and a thermostat 53 that opens and closes the outlet of the radiator 52 are provided.

サーモスタット53は、感温部材が冷却水の温度に感応して変位することでラジエータ52の出口を開閉する装置であり、冷却水温度が低いときはラジエータ52の出口を閉じることで、ラジエータ52を迂回して冷却水を循環させ、冷却水温度が設定温度(開弁温度)を超えると、ラジエータ52の出口を開いてラジエータ52を経由する冷却水の循環を行わせる。   The thermostat 53 is a device that opens and closes the outlet of the radiator 52 when the temperature sensing member is displaced in response to the temperature of the cooling water. When the cooling water temperature is low, the thermostat 53 closes the outlet of the radiator 52 so that the radiator 52 is opened. By bypassing and circulating the cooling water, when the cooling water temperature exceeds the set temperature (valve opening temperature), the outlet of the radiator 52 is opened and the cooling water is circulated through the radiator 52.

燃料噴射弁3による燃料噴射、点火プラグ6による点火、電子制御スロットル10の開度などを制御する制御装置(制御ユニット)として、マイクロコンピュータを備えるECM(エンジン・コントロール・モジュール)31を設けてある。
また、燃料ポンプ12を駆動する制御装置(制御ユニット)として、マイクロコンピュータを備えるFPCM(フューエル・ポンプ・コントロール・モジュール)30を設けてある。
An ECM (engine control module) 31 having a microcomputer is provided as a control device (control unit) for controlling fuel injection by the fuel injection valve 3, ignition by the spark plug 6, opening of the electronic control throttle 10, and the like. .
Further, as a control device (control unit) for driving the fuel pump 12, an FPCM (fuel pump control module) 30 including a microcomputer is provided.

ECM31とFPCM30とは相互に通信可能に構成され、ECM31からFPCM30に向けては、燃料ポンプ12のPWM制御におけるデューティ比及び周波数を指示する信号などが送信され、FPCM30からECM31に向けては、診断情報などが送信される。
尚、ECM31がFPCM30としての機能及び回路を備えるようにして、FPCM30を省略することができる。
The ECM 31 and the FPCM 30 are configured to be able to communicate with each other, and signals indicating the duty ratio and frequency in the PWM control of the fuel pump 12 are transmitted from the ECM 31 to the FPCM 30, and diagnosis is performed from the FPCM 30 to the ECM 31. Information etc. are transmitted.
Note that the FPCM 30 can be omitted by providing the ECM 31 with the functions and circuits as the FPCM 30.

ECM31は、内燃機関1の運転条件を検出する各種センサの出力信号を入力する。
各種センサとして、燃料ギャラリー配管14内の燃圧FUPR、即ち、燃料噴射弁3への燃料供給圧(kPa)を検出する燃圧センサ33、図外のアクセルペダルの踏み込み量に相当するアクセル開度ACCを検出するアクセル開度センサ34、内燃機関1の吸入空気流量QAを検出するエアフローセンサ35、内燃機関1の回転速度NE(rpm)を検出する回転センサ36、内燃機関1の冷却水温度TW(℃)を検出する水温センサ37、内燃機関1の排気中の酸素濃度に応じて内燃機関1の燃焼混合気の空燃比A/Fを検出する空燃比センサ38、内燃機関1の吸気温度TA(℃)を検出する吸気温センサ39などを設けてある。
なお、吸気温センサ39は、エアフローセンサ35と一体的に設けられている。
また、水温センサ37は、冷却水循環経路のうちの内燃機関1内に形成される冷却水通路の出口付近に配置される(図2参照)。
The ECM 31 receives output signals from various sensors that detect the operating conditions of the internal combustion engine 1.
As various sensors, a fuel pressure FUPR in the fuel gallery pipe 14, that is, a fuel pressure sensor 33 for detecting the fuel supply pressure (kPa) to the fuel injection valve 3, and an accelerator opening degree ACC corresponding to the amount of depression of the accelerator pedal (not shown). An accelerator opening sensor 34 for detecting, an air flow sensor 35 for detecting the intake air flow rate QA of the internal combustion engine 1, a rotation sensor 36 for detecting the rotational speed NE (rpm) of the internal combustion engine 1, and a cooling water temperature TW (° C. of the internal combustion engine 1) ) To detect the air-fuel ratio A / F of the combustion mixture of the internal combustion engine 1 according to the oxygen concentration in the exhaust gas of the internal combustion engine 1, and the intake air temperature TA (° C.) of the internal combustion engine 1. ) Is detected.
The intake air temperature sensor 39 is provided integrally with the air flow sensor 35.
The water temperature sensor 37 is disposed in the vicinity of the outlet of the cooling water passage formed in the internal combustion engine 1 in the cooling water circulation path (see FIG. 2).

そして、ECM31は、前述の各種センサからの信号に基づいて内燃機関1の運転状態を検出し、検出した機関運転状態に応じて、燃料噴射弁3による燃料噴射量及び噴射タイミング、点火プラグ6による点火時期、電子制御スロットル10の開度などを制御する。
また、ECM31は、機関負荷、機関回転速度、冷却水温度などの運転条件に基づき、燃圧FUPRの目標値TGFUPRを設定し、燃圧センサ33の出力に基づき検出した燃圧検出値FUPRが、目標値TGFUPRに近づくように、燃料ポンプ12のPWM制御におけるデューティ比(操作量)を決定する、燃圧フィードバック制御を行う。
Then, the ECM 31 detects the operating state of the internal combustion engine 1 based on the signals from the various sensors described above, and according to the detected engine operating state, the fuel injection amount and injection timing by the fuel injection valve 3, and the spark plug 6 The ignition timing, the opening degree of the electronic control throttle 10 and the like are controlled.
Further, the ECM 31 sets a target value TGFUPR of the fuel pressure FUPR based on operating conditions such as engine load, engine speed, and coolant temperature, and the detected fuel pressure value FUPR detected based on the output of the fuel pressure sensor 33 is the target value TGFUPR. The fuel pressure feedback control for determining the duty ratio (operation amount) in the PWM control of the fuel pump 12 is performed so as to approach

また、燃料噴射制御装置であるECM31は、燃料噴射弁3による燃料噴射の制御において、燃料噴射弁3に出力する噴射パルス信号のパルス幅TI(ms)を、吸入空気流量QA、機関回転速度NE、空燃比A/F、冷却水温度TWなどの機関運転状態に応じて演算する。
なお、冷却水温度TWに応じたパルス幅TIの演算処理は、冷機状態で燃料の気化性能が低下することを補償するための噴射量の増量補正処理であり、また、空燃比A/Fに応じたパルス幅TIの演算処理は、実際の空燃比A/Fを目標空燃比に近づけるための噴射量の補正処理(空燃比フィードバック処理)である。
Further, the ECM 31 as the fuel injection control device uses the pulse width TI (ms) of the injection pulse signal output to the fuel injection valve 3 in the control of fuel injection by the fuel injection valve 3, the intake air flow rate QA, and the engine speed NE. , The air-fuel ratio A / F, the cooling water temperature TW and other engine operating conditions are calculated.
The calculation process of the pulse width TI according to the cooling water temperature TW is an injection amount increase correction process to compensate for a decrease in fuel vaporization performance in the cold state, and the air-fuel ratio A / F The processing for calculating the corresponding pulse width TI is an injection amount correction process (air-fuel ratio feedback process) for bringing the actual air-fuel ratio A / F closer to the target air-fuel ratio.

また、ECM31は、噴射パルス信号の出力タイミング(噴射タイミング)を、吸入空気流量QA、機関回転速度NE、冷却水温度TWなどの機関運転状態に応じて演算する。そして、ECM31は、噴射タイミングを検出してパルス幅TIの噴射パルス信号を燃料噴射弁3に出力することで、燃料噴射弁3による燃料噴射量及び噴射タイミングを制御する。
燃料噴射弁3は、噴射パルス信号のパルス幅TIに比例する量の燃料を噴射する。つまり、噴射パルス幅TIは、燃料噴射量の指令値である。
Further, the ECM 31 calculates the output timing (injection timing) of the injection pulse signal according to the engine operating state such as the intake air flow rate QA, the engine rotational speed NE, and the coolant temperature TW. The ECM 31 detects the injection timing and outputs an injection pulse signal having a pulse width TI to the fuel injection valve 3 to control the fuel injection amount and the injection timing by the fuel injection valve 3.
The fuel injection valve 3 injects an amount of fuel proportional to the pulse width TI of the injection pulse signal. That is, the injection pulse width TI is a command value for the fuel injection amount.

更に、ECM31は、燃料噴射弁3による燃料噴射の制御において、燃料噴射弁3の弁体下流側の燃料溜り内の燃料が温度上昇に伴って気化し、これによって燃料噴射弁3の弁体の前後差圧が増して単位時間当たりの噴射量(燃料流量)が増えたときに空燃比が変動することを抑制するために、噴射パルス幅TIを補正する機能をソフトウェアとして備えている。   Further, in the control of fuel injection by the fuel injection valve 3, the ECM 31 vaporizes the fuel in the fuel reservoir on the downstream side of the valve body of the fuel injection valve 3 as the temperature rises. In order to suppress fluctuation of the air-fuel ratio when the front-rear differential pressure increases and the injection amount (fuel flow rate) per unit time increases, the function of correcting the injection pulse width TI is provided as software.

図3は、燃料溜り内の燃料の気化によって燃料流量の変動が発生する仕組みを説明するための図である。
図3に示す燃料噴射弁3の一態様において、弁体3Aは先端に球体部を備え、係る弁体3Aが漏斗状の弁座3Dに着座することで閉弁状態となり、図3の上側に弁体3Aがリフトすることで弁体3Aが弁座3Dから離座して開弁し、弁座3Dの下流側に設けた噴孔3Bから燃料を噴射する。
FIG. 3 is a diagram for explaining a mechanism in which a change in the fuel flow rate occurs due to the vaporization of the fuel in the fuel reservoir.
In one mode of the fuel injection valve 3 shown in FIG. 3, the valve body 3A is provided with a sphere at the tip, and the valve body 3A is seated on the funnel-shaped valve seat 3D, and the valve is closed. When the valve body 3A is lifted, the valve body 3A is opened from the valve seat 3D, and fuel is injected from the injection hole 3B provided on the downstream side of the valve seat 3D.

燃料噴射弁3の弁体3Aと噴孔3Bとの間には燃料溜り3C(デッドボリューム)が形成されている。この燃料溜り3Cは、例えば、特開2014−031758号公報に開示される燃料噴射弁のように燃料に旋回力を付与するためのスワール付与室として設けられる。
図3(A)は、冷機始動直後の燃料噴射弁3の先端部における燃料温度(燃料溜り3C内の燃料温度)が低い状態であり、この場合、燃料噴射弁3の閉弁期間中において燃料溜り3C内は液体の燃料で満たされ、吸気通路内圧力P3<燃料溜り内圧力P2<弁体上流側圧力P1の関係が成り立つ。
A fuel reservoir 3C (dead volume) is formed between the valve body 3A of the fuel injection valve 3 and the injection hole 3B. The fuel reservoir 3C is provided as a swirl application chamber for applying a turning force to the fuel as in a fuel injection valve disclosed in Japanese Patent Application Laid-Open No. 2014-031758, for example.
FIG. 3A shows a state in which the fuel temperature at the tip of the fuel injection valve 3 immediately after the start of the cold engine (the fuel temperature in the fuel reservoir 3C) is low. In this case, the fuel during the valve closing period of the fuel injection valve 3 The reservoir 3C is filled with liquid fuel, and the relationship of intake passage pressure P3 <fuel reservoir pressure P2 <valve upstream pressure P1 is established.

図3(A)の状態から燃料噴射弁3の先端部における燃料温度が上昇すると、閉弁期間中に燃料溜り3C内の液体燃料中に燃料ベーパが発生する図3(B)の状態になる。
そして、燃料溜り3C内の液体燃料中に燃料ベーパVAが発生すると、燃料溜り内圧力P2が上昇することで、弁体上流側圧力P1と燃料溜り内圧力P2との差圧、つまり、弁体3Aの前後差圧が減少することで、単位時間当たりの噴射量(燃料流量)は、図3(A)の燃料溜り3C内に燃料ベーパVAが発生していない状態に比べて減ることになる。
When the fuel temperature at the tip of the fuel injection valve 3 rises from the state of FIG. 3A, the fuel vapor is generated in the liquid fuel in the fuel reservoir 3C during the valve closing period, and the state of FIG. .
When the fuel vapor VA is generated in the liquid fuel in the fuel reservoir 3C, the fuel reservoir internal pressure P2 is increased, so that the differential pressure between the valve body upstream pressure P1 and the fuel reservoir internal pressure P2, that is, the valve body is increased. By reducing the differential pressure before and after 3A, the injection amount (fuel flow rate) per unit time is reduced compared to the state in which no fuel vapor VA is generated in the fuel reservoir 3C in FIG. .

燃料噴射弁3の先端部の温度が更に上昇して燃料溜り3Cにおける燃料の気化が進むと、噴射時(開弁時)に燃料溜り3C内に液体燃料が残存しない図3(C)の状態になる。
燃料溜り3C内に液体燃料が残存しない状態では、燃料溜り3C内が液体燃料で満たされている図3(A)の状態に比べて燃料溜り内圧力P2が減少し、燃料溜り内圧力P2は吸気通路内圧力P3と略同等になる。この結果、図3(C)に示す燃料溜り3C内に液体燃料が残存しない状態では、燃料溜り3C内が液体燃料で満たされている図3(A)の場合に比べて、弁体3Aの前後差圧が増え、単位時間当たりの噴射量(燃料流量)が増加する。
When the temperature of the tip of the fuel injection valve 3 further rises and the vaporization of the fuel in the fuel reservoir 3C proceeds, the liquid fuel does not remain in the fuel reservoir 3C at the time of injection (when the valve is opened). become.
In the state where the liquid fuel does not remain in the fuel reservoir 3C, the fuel reservoir internal pressure P2 decreases compared to the state of FIG. 3A in which the fuel reservoir 3C is filled with the liquid fuel, and the fuel reservoir internal pressure P2 is The pressure is substantially equal to the intake passage pressure P3. As a result, in the state where the liquid fuel does not remain in the fuel reservoir 3C shown in FIG. 3 (C), the valve body 3A is compared with the case of FIG. 3 (A) in which the fuel reservoir 3C is filled with the liquid fuel. The front-rear differential pressure increases and the injection amount (fuel flow rate) per unit time increases.

つまり、図3(C)に示す燃料溜り3C内に液体燃料が残存しない状態で、燃料溜り3C内が液体燃料で満たされている図3(A)の場合と同じ噴射パルス幅TIで燃料噴射弁3による燃料噴射を行わせると、実際に噴射される燃料量が多くなり、空燃比としてはリッチ化することになる。
ここで、図3(C)の場合での燃料流量を基準とすると、図3(A)や図3(B)の場合は燃料流量が相対的に少ないので、暖機過程である図3(A)や図3(B)の状態での空燃比フィードバックによる増量補正要求が大きくなって空燃比フィードバック補正値が限界値に張り付くなどの制御破綻が発生する可能性がある。
That is, fuel injection is performed with the same injection pulse width TI as in FIG. 3 (A) in which liquid fuel does not remain in the fuel reservoir 3C shown in FIG. 3 (C) and the fuel reservoir 3C is filled with liquid fuel. When fuel injection is performed by the valve 3, the amount of fuel actually injected increases, and the air-fuel ratio becomes rich.
Here, if the fuel flow rate in the case of FIG. 3C is used as a reference, the fuel flow rate is relatively small in the case of FIG. 3A or FIG. There is a possibility that the control failure such as the increase correction request by the air-fuel ratio feedback in the state of A) or FIG. 3B becomes large and the air-fuel ratio feedback correction value sticks to the limit value.

そこで、ECM31は、図3(C)の燃料溜り3C内に液体燃料が残存しないようになる温度まで燃料溜り3C内の燃料温度が上昇したときに、空燃比フィードバック補正なしで得られるベース空燃比がリッチ化することを抑制するために、噴射パルス幅(噴射量指令値)を補正する機能を有している。
なお、図3(C)の場合よりも更に燃料噴射弁3の先端部の温度が上昇すると、燃料溜り3C内に液体燃料が残存せずかつ弁体3Aの上流側の燃料通路内に燃料ベーパVAが発生する図3(D)の状態になり、この場合、燃料噴射弁3から噴射される燃料にベーパVAが混じることで燃料密度が低下し、燃料流量は低下することになる。
但し、図3(D)の状態は限られた条件(暖機後の連続高負荷運転状態など)で発生するため、ECM31は、図3(C)の燃料溜り3C内に液体燃料が残存しない温度条件に達したときの空燃比変動を抑制することを目的として、燃料溜り3Cにおける燃料温度に応じて噴射量指令値の補正処理を実施するよう構成されている。
Therefore, the ECM 31 is a base air-fuel ratio obtained without air-fuel ratio feedback correction when the fuel temperature in the fuel reservoir 3C rises to a temperature at which liquid fuel does not remain in the fuel reservoir 3C in FIG. Has a function of correcting the injection pulse width (injection amount command value).
If the temperature at the tip of the fuel injection valve 3 is further increased than in the case of FIG. 3C, liquid fuel does not remain in the fuel reservoir 3C and the fuel vapor in the fuel passage on the upstream side of the valve body 3A. 3D, in which VA is generated. In this case, the fuel VA is mixed with the fuel injected from the fuel injection valve 3, so that the fuel density is lowered and the fuel flow rate is lowered.
However, since the state of FIG. 3D occurs under limited conditions (such as a continuous high-load operation state after warm-up), the ECM 31 does not leave liquid fuel in the fuel reservoir 3C of FIG. In order to suppress the air-fuel ratio fluctuation when the temperature condition is reached, the injection amount command value is corrected according to the fuel temperature in the fuel reservoir 3C.

図4は、ECM31による噴射量指令値(噴射パルス幅TI)の演算処理の手順を示すフローチャートであり、ECM31は、図4のフローチャートに示すルーチンを一定時間毎の割り込み処理で実行する。
まず、ECM31は、ステップS101で、基本噴射パルス幅TIBを演算する。
基本噴射パルス幅TIBの演算処理には、シリンダ吸入空気量に応じた噴射パルス幅の演算、冷機時における増量補正分の演算、空燃比フィードバック補正分の演算などが含まれる。
FIG. 4 is a flowchart showing the procedure of the calculation process of the injection amount command value (injection pulse width TI) by the ECM 31, and the ECM 31 executes the routine shown in the flowchart of FIG. 4 by interruption processing at regular intervals.
First, the ECM 31 calculates the basic injection pulse width TIB in step S101.
The calculation process of the basic injection pulse width TIB includes the calculation of the injection pulse width according to the cylinder intake air amount, the calculation for the increase correction at the time of cooling, the calculation for the air-fuel ratio feedback correction, and the like.

次のステップS102で、ECM31は、冷却水温検出値TWの読み込みを行う。
そして、ステップS103で、ECM31は、ステップS102で読み込んだ冷却水温検出値TWと、予め記憶されている暖機判定水温TWDKとを比較する。
内燃機関1の暖機が完了しているときに、冷却水温検出値TWが暖機判定水温TWDKよりも高くなるように、暖機判定水温TWDKは予め実験やシミュレーションに基づき適合されている。
In the next step S102, the ECM 31 reads the detected coolant temperature value TW.
In step S103, the ECM 31 compares the cooling water temperature detection value TW read in step S102 with the warm-up determination water temperature TWDK stored in advance.
The warm-up determination water temperature TWDK is preliminarily adapted based on experiments and simulations so that the coolant temperature detection value TW becomes higher than the warm-up determination water temperature TWDK when the internal combustion engine 1 has been warmed up.

冷却水温検出値TWが暖機判定水温TWDKよりも高い内燃機関1の暖機完了状態であるとき、ECM31は、燃料溜り3Cにおける燃料温度に応じた噴射量指令値の補正を実施することなく、本ルーチンを終了させる。
つまり、燃料噴射弁3の弁体の前後差圧(燃料溜り3Cの圧力)が燃料溜り3Cにおける燃料温度の変化に伴って急変するのは内燃機関1の暖機中であり、暖機完了後は、燃料溜り3Cにおける燃料温度が安定化して、燃料溜り3Cにおける燃料の気化状態による前後差圧(燃料流量)の急変は発生しないので、ECM31は、補正実施条件を暖機中とする。
When the cooling water temperature detection value TW is the warm-up completion state of the internal combustion engine 1 higher than the warm-up determination water temperature TWDK, the ECM 31 does not correct the injection amount command value according to the fuel temperature in the fuel reservoir 3C. This routine is terminated.
That is, it is during the warming up of the internal combustion engine 1 that the pressure difference between the front and rear of the valve body of the fuel injection valve 3 (the pressure of the fuel pool 3C) suddenly changes with the change in the fuel temperature in the fuel pool 3C. Since the fuel temperature in the fuel reservoir 3C is stabilized and a sudden change in the differential pressure (fuel flow rate) does not occur due to the fuel vaporization state in the fuel reservoir 3C, the ECM 31 sets the correction execution condition to warm-up.

一方、冷却水温検出値TWが暖機判定水温TWDK以下である内燃機関1の暖機途中であるときは、燃料溜り3Cにおける燃料温度の変化に伴って図3に示した燃料溜り3Cにおける燃料気化状態の変化が発生し、これによって燃料噴射弁3の燃料流量の急変が発生するので、ECM31は、ステップS104に進む。
ステップS104で、ECM31は、燃料溜り3Cにおける燃料温度(燃料噴射弁3の先端での燃料温度)INJFTを、冷却水温検出値TWに基づき推定する。
On the other hand, when the cooling water temperature detection value TW is the warm-up determination water temperature TWDK or lower and the internal combustion engine 1 is being warmed up, the fuel vaporization in the fuel pool 3C shown in FIG. Since a change in state occurs, which causes a sudden change in the fuel flow rate of the fuel injection valve 3, the ECM 31 proceeds to step S104.
In step S104, the ECM 31 estimates the fuel temperature (fuel temperature at the tip of the fuel injection valve 3) INJFT in the fuel reservoir 3C based on the detected coolant temperature TW.

内燃機関1を冷機始動からアイドリング状態に放置した場合、冷却水温検出値TWと燃料溜り3Cにおける燃料温度INJFTとは相関が高く、暖機途中での燃料温度INJFTを冷却水温検出値TWに基づき推定することが可能であり、ECM31には、冷却水温検出値TWを燃料温度INJFTに変換するための変換特性(演算式又は変換テーブル)が予め用意されている(図5参照)。   When the internal combustion engine 1 is left in the idling state from the cold start, the detected coolant temperature TW and the fuel temperature INJFT in the fuel reservoir 3C are highly correlated, and the fuel temperature INJFT during the warm-up is estimated based on the detected coolant temperature TW. In the ECM 31, a conversion characteristic (an arithmetic expression or a conversion table) for converting the detected coolant temperature value TW into the fuel temperature INJFT is prepared in advance (see FIG. 5).

次に、ECM31は、ステップS105に進み、ステップS104で推定した燃料温度INJFT(燃料温度推定値)と基本噴射パルス幅TIB(機関負荷)とに基づき、図3(C)の燃料溜り3C内に液体燃料が残存しない状態になって弁体前後差圧が増加することによる燃料流量の増大を相殺するためのパルス幅補正値TIHOSを設定する。
ECM31は、ステップS105において、ステップS104で推定した燃料温度INJFTに基づき、燃料溜り3C内の燃料が気化して燃料溜り3C内に液体燃料が残存しない状態で燃料噴射が実施される温度条件を満たしているか否かを判別する。換言すれば、ECM31は、ステップS105において、燃料噴射が行われるときの燃料溜り内3Cの圧力が、燃料溜り3C内の燃料温度の上昇に伴ってそれまでよりも低下する温度条件に達したか否かを、ステップS104で推定した燃料温度INJFTが所定温度よりも高くなったか否かに基づき判別する。
Next, the ECM 31 proceeds to step S105, and based on the fuel temperature INJFT (fuel temperature estimated value) and the basic injection pulse width TIB (engine load) estimated in step S104, the ECM 31 enters the fuel reservoir 3C of FIG. A pulse width correction value TIHOS is set to cancel the increase in fuel flow rate due to the increase in the differential pressure across the valve body when no liquid fuel remains.
In step S105, the ECM 31 satisfies a temperature condition in which fuel injection is performed in a state where the fuel in the fuel reservoir 3C is vaporized and no liquid fuel remains in the fuel reservoir 3C based on the fuel temperature INJFT estimated in step S104. It is determined whether or not. In other words, in step S105, the ECM 31 has reached a temperature condition in which the pressure in the fuel sump 3C when fuel injection is performed becomes lower than before as the fuel temperature in the fuel sump 3C rises. Is determined based on whether or not the fuel temperature INJFT estimated in step S104 is higher than a predetermined temperature.

更に、ECM31は、内燃機関1の負荷が所定機関負荷よりも小さく、アイドリング運転を含む低負荷領域内で運転されている状態であるか否かを、機関負荷に相関する状態量である基本噴射パルス幅TIB(機関負荷)に基づき判別する。
つまり、内燃機関1が冷機始動からアイドリング状態に放置された場合、燃料溜り3Cにおける燃料温度の上昇変化に伴い、アイドリング運転中に図3(A)の状態から図3(C)の状態に移り変わることになる。そして、図3(C)の状態になった後とそれまでとは(燃料溜り3Cの燃料温度が所定温度を超える前と後では)、目標空燃比を得るための噴射量指令値は、燃料溜り3C内での気化状態の違いによって変化する燃料噴射弁3の燃料流量に応じて異なるようになる。
Further, the ECM 31 is a basic injection that is a state quantity that correlates with the engine load whether or not the load of the internal combustion engine 1 is smaller than the predetermined engine load and is operating in a low load region including idling operation. The determination is made based on the pulse width TIB (engine load).
That is, when the internal combustion engine 1 is left in the idling state from the cold start, the state of FIG. 3 (A) is changed to the state of FIG. 3 (C) during the idling operation in accordance with the increase in the fuel temperature in the fuel reservoir 3C. It will be. Then, after the state shown in FIG. 3C and until then (before and after the fuel temperature in the fuel reservoir 3C exceeds the predetermined temperature), the injection amount command value for obtaining the target air-fuel ratio is It becomes different according to the fuel flow rate of the fuel injection valve 3 which changes with the difference in the vaporization state in the reservoir 3C.

ここで、図3(C)の状態になったことによる燃料流量の増大を相殺するための噴射パルス幅の変更を実施すれば、図3(C)の状態になった後とそれまでとで、空燃比フィードバック補正なしで得られるベース空燃比が同等になる。
このため、空燃比フィードバック補正の破綻が抑制され、また、空燃比フィードバック補正による補正要求を運転領域毎に空燃比学習補正値として学習する場合に、燃料溜り3C内の燃料温度に影響されることなく実空燃比を目標空燃比付近に収束させることができる空燃比学習補正値を低負荷領域で学習させることが可能となる。
Here, if the injection pulse width is changed to cancel the increase in the fuel flow rate due to the state of FIG. 3C, the state after the state of FIG. The base air-fuel ratio obtained without air-fuel ratio feedback correction becomes equivalent.
For this reason, the failure of the air-fuel ratio feedback correction is suppressed, and when the correction request by the air-fuel ratio feedback correction is learned as the air-fuel ratio learning correction value for each operation region, it is influenced by the fuel temperature in the fuel reservoir 3C. Thus, it becomes possible to learn an air-fuel ratio learning correction value that can converge the actual air-fuel ratio in the vicinity of the target air-fuel ratio in the low load region.

図6は、ECM31によるパルス幅補正値TIHOSの設定処理の一態様を示す。
ECM31は、基本噴射パルス幅TIBに乗算される補正項であるパルス幅補正値TIHOS(TIHOS>0)を、燃料溜り3C内の燃料温度INJFTが所定温度よりも高く、かつ、基本噴射パルス幅TIB(機関負荷)が所定値(所定機関負荷)よりも低い場合(図6の第1領域)とそれ以外(図6の第2領域)とで異なる値に設定する。
更に、ECM31は、図6の第1領域に割り当てるパルス幅補正値TIHOS1を、図6の第2領域に割り当てるパルス幅補正値TIHOS2よりも小さい値に設定し、第2領域に比べて第1領域では噴射パルス幅TI(燃料噴射量指令値)を減少(減量)させる。
FIG. 6 shows one mode of setting processing of the pulse width correction value TIHOS by the ECM 31.
The ECM 31 uses a pulse width correction value TIHOS (TIHOS> 0), which is a correction term multiplied by the basic injection pulse width TIB, to determine that the fuel temperature INJFT in the fuel reservoir 3C is higher than a predetermined temperature and the basic injection pulse width TIB. When the (engine load) is lower than a predetermined value (predetermined engine load) (the first region in FIG. 6), a different value is set for the other (the second region in FIG. 6).
Furthermore, the ECM 31 sets the pulse width correction value TIHOS1 assigned to the first region in FIG. 6 to a value smaller than the pulse width correction value TIHOS2 assigned to the second region in FIG. Then, the injection pulse width TI (fuel injection amount command value) is decreased (decreased).

つまり、内燃機関1が冷機状態からアイドリング状態に放置された場合に、ECM31は、燃料温度INJFTが所定温度を上回り、燃料溜り3C内に液体燃料が残存しない状態で燃料噴射が行われる燃温条件になると、パルス幅補正値TIHOSをTIHOS2からTIHOS1に切り替えることでそれまでよりも噴射パルス幅TI(噴射量指令値)の減少率を大きくし、基本噴射パルス幅TIBが同じ状態であっても最終的な噴射パルス幅が短くなるようにする。
これにより、燃料溜り3C内に液体燃料が残存する状態で噴射が行われる状態から燃料溜り3C内に液体燃料が残存しない状態で噴射が行われるようになって、弁体3Aの前後差圧が増大変化しても、係る前後差圧の増大に伴って実際に内燃機関1に噴射される燃料量が増えてしまうことを抑制できる。
That is, when the internal combustion engine 1 is left in the idling state from the cold state, the ECM 31 has a fuel temperature condition in which fuel injection is performed in a state where the fuel temperature INJFT exceeds a predetermined temperature and no liquid fuel remains in the fuel reservoir 3C. Then, the pulse width correction value TIHOS is switched from TIHOS2 to TIHOS1, thereby increasing the reduction rate of the injection pulse width TI (injection amount command value) more than before, and even if the basic injection pulse width TIB is the same, the final The effective injection pulse width is shortened.
Thus, the injection is performed from the state where the liquid fuel remains in the fuel reservoir 3C to the state where the liquid fuel does not remain in the fuel reservoir 3C, and the differential pressure across the valve body 3A is reduced. Even if the change is increased, it is possible to suppress an increase in the amount of fuel actually injected into the internal combustion engine 1 with an increase in the differential pressure before and after.

なお、ECM31は、例えば、図6の第1領域に割り当てるパルス幅補正値TIHOS1を1.0とし、図6の第2領域に割り当てるパルス幅補正値TIHOS2を1.1としたり、図6の第1領域に割り当てるパルス幅補正値TIHOS1を0.9とし、図6の第2領域に割り当てるパルス幅補正値TIHOS2を1.0としたりすることができる。
ここで、パルス幅補正値TIHOS1とパルス幅補正値TIHOS2との差、換言すれば、第2領域に対して第1領域で噴射量指令値を減量させる比率は、燃料溜り3C内が液体燃料で満たされる状態と燃料溜り3C内に液体燃料が残存しない状態との間における弁体3Aの前後差圧(燃料流量)の違いに依存する値であり、予め実験やシミュレーションに基づき適合される。
For example, the ECM 31 sets the pulse width correction value TIHOS1 assigned to the first region in FIG. 6 to 1.0, sets the pulse width correction value TIHOS2 assigned to the second region in FIG. 6 to 1.1, or assigns it to the first region in FIG. The pulse width correction value TIHOS1 can be set to 0.9, and the pulse width correction value TIHOS2 assigned to the second region in FIG. 6 can be set to 1.0.
Here, the difference between the pulse width correction value TIHOS1 and the pulse width correction value TIHOS2, in other words, the ratio of reducing the injection amount command value in the first region with respect to the second region is the liquid fuel in the fuel reservoir 3C. The value depends on the difference in the differential pressure across the valve body 3A (fuel flow rate) between the state that is satisfied and the state in which no liquid fuel remains in the fuel reservoir 3C, and is preliminarily adapted based on experiments and simulations.

また、図6の例では、パルス幅補正値TIHOSをパルス幅補正値TIHOS1とパルス幅補正値TIHOS2との間で切り替える境界付近で、燃料温度INJFT及び基本噴射パルス幅TIB(機関負荷)の変化に応じて、パルス幅補正値TIHOSが段階的に変化するように設定されている。
但し、パルス幅補正値TIHOSがパルス幅補正値TIHOS2からパルス幅補正値TIHOS1に直接的に切り替わる構成とすることができる。
In the example of FIG. 6, the fuel temperature INJFT and the basic injection pulse width TIB (engine load) change in the vicinity of the boundary where the pulse width correction value TIHOS is switched between the pulse width correction value TIHOS1 and the pulse width correction value TIHOS2. Accordingly, the pulse width correction value TIHOS is set to change stepwise.
However, the pulse width correction value TIHOS can be directly switched from the pulse width correction value TIHOS2 to the pulse width correction value TIHOS1.

ステップS105でパルス幅補正値TIHOSを設定すると、ECM31は、次いでステップS106に進み、基本噴射パルス幅TIBにパルス幅補正値TIHOSを乗算した結果を最終的な噴射パルス幅TIとする(TI=TIB×TIHOS)。
そして、ECM31は、各気筒の噴射タイミングにおいて噴射パルス幅TIの噴射パルス信号を燃料噴射弁3に出力し、燃料噴射弁3から噴射パルス幅TIに比例する量の燃料を噴射させる。
When the pulse width correction value TIHOS is set in step S105, the ECM 31 then proceeds to step S106, and the final injection pulse width TI is obtained by multiplying the basic injection pulse width TIB by the pulse width correction value TIHOS (TI = TIB). X TIHOS).
Then, the ECM 31 outputs an injection pulse signal having an injection pulse width TI to the fuel injection valve 3 at the injection timing of each cylinder, and injects an amount of fuel proportional to the injection pulse width TI from the fuel injection valve 3.

上記のECM31による燃料噴射制御によれば、燃料溜り3C内の燃料温度の上昇に伴って(換言すれば、暖機の進行に伴って)、閉弁期間中の燃料溜り3Cが液体燃料で満たされる状態から燃料溜り3Cに液体燃料が残存しない状態で燃料噴射が行われる状態に移行すると、噴射パルス幅TI(噴射量指令値)をそれまでよりも減量補正する。
これにより、燃料溜り3Cに液体燃料が残存しないことで燃料溜り3C内の圧力が吸気通路内圧力と同等になって弁体の前後差圧が増大し、燃料噴射弁3の燃料流量が増えても、内燃機関1に実際に噴射される燃料量が増えることを抑制できるため、空燃比のリッチ化を抑制できる。
According to the fuel injection control by the ECM 31 described above, as the fuel temperature in the fuel reservoir 3C rises (in other words, as the warm-up progresses), the fuel reservoir 3C during the valve closing period is filled with liquid fuel. When the fuel injection is performed in a state where liquid fuel does not remain in the fuel reservoir 3C, the injection pulse width TI (injection amount command value) is corrected to be smaller than before.
As a result, since no liquid fuel remains in the fuel reservoir 3C, the pressure in the fuel reservoir 3C becomes equal to the pressure in the intake passage, the differential pressure across the valve body increases, and the fuel flow rate of the fuel injection valve 3 increases. However, since it is possible to suppress an increase in the amount of fuel actually injected into the internal combustion engine 1, it is possible to suppress the enrichment of the air-fuel ratio.

したがって、例えば、内燃機関1が冷機始動からアイドル状態に放置された場合に、途中から空燃比フィードバック補正の要求が急変することが抑止され、空燃比フィードバック補正が破綻したり、空燃比学習補正値が誤学習されたりすることを抑制でき、暖機運転における空燃比の収束安定性を向上させ、暖機中の排気性能などを改善できる。   Therefore, for example, when the internal combustion engine 1 is left in the idle state from the cold start, it is suppressed that the request for the air-fuel ratio feedback correction is suddenly changed in the middle, and the air-fuel ratio feedback correction fails or the air-fuel ratio learning correction value Can be prevented from being erroneously learned, the convergence stability of the air-fuel ratio in the warm-up operation can be improved, and the exhaust performance during the warm-up can be improved.

ところで、内燃機関1の水冷式冷却装置において、サーモスタット53が閉状態から開状態に切り替わってラジエータ52を経由して冷却水が循環されるようになると、燃料噴射弁3先端の燃料温度は冷却水の循環経路の切り替えに影響されずに上昇を続けるのに対し、冷却水の放熱性能の変化に伴って冷却水温検出値TWの上昇は過渡的に鈍る。
そのため、冷却水がラジエータ52に循環されるようになった当初は、燃料溜り3Cにおける燃料温度INJFTと冷却水温検出値TWとの相関が崩れ、燃料温度INJFTの推定精度が低下し、引いては、噴射パルス幅の補正精度(噴射量指令値の設定精度、空燃比制御精度)が低下する可能性がある。
By the way, in the water-cooling type cooling device of the internal combustion engine 1, when the thermostat 53 is switched from the closed state to the open state and the cooling water is circulated through the radiator 52, the fuel temperature at the tip of the fuel injection valve 3 becomes the cooling water. While the rise continues without being affected by the switching of the circulation path, the rise in the coolant temperature detection value TW becomes transiently slow as the heat dissipation performance of the coolant changes.
Therefore, at the beginning when the coolant is circulated to the radiator 52, the correlation between the fuel temperature INJFT in the fuel reservoir 3C and the detected coolant temperature TW is lost, and the estimated accuracy of the fuel temperature INJFT is reduced. The injection pulse width correction accuracy (injection amount command value setting accuracy, air-fuel ratio control accuracy) may decrease.

係る燃料温度INJFTの推定精度の低下を抑制できるようにした、ECM31による噴射制御を、図7のフローチャートにしたがって説明する。
ECM31は、図7のフローチャートに示したルーチンを一定時間毎の割り込み処理で実行する。
The injection control by the ECM 31 that can suppress the decrease in the estimation accuracy of the fuel temperature INJFT will be described according to the flowchart of FIG.
The ECM 31 executes the routine shown in the flowchart of FIG. 7 by interruption processing at regular intervals.

ECM31は、ステップS201で、基本噴射パルス幅TIBをステップS101と同様にして演算する。
次のステップS202で、ECM31は、冷却水温検出値TWの読み込みを行う。
そして、ステップS203で、ECM31は、ステップS202で読み込んだ冷却水温検出値TWと、予め記憶されている暖機判定水温TWDKとを比較する。
In step S201, the ECM 31 calculates the basic injection pulse width TIB in the same manner as in step S101.
In the next step S202, the ECM 31 reads the coolant temperature detection value TW.
In step S203, the ECM 31 compares the cooling water temperature detection value TW read in step S202 with the warm-up determination water temperature TWDK stored in advance.

冷却水温検出値TWが暖機判定水温TWDKよりも高い内燃機関1の暖機完了状態であるとき、ECM31は、燃料溜り3Cにおける燃料温度に応じた噴射量指令値の補正を実施することなく、本ルーチンを終了させる。
一方、冷却水温検出値TWが暖機判定水温TWDK以下である内燃機関1の暖機途中であるとき、ECM31は、ステップS204に進む。
When the cooling water temperature detection value TW is the warm-up completion state of the internal combustion engine 1 higher than the warm-up determination water temperature TWDK, the ECM 31 does not correct the injection amount command value according to the fuel temperature in the fuel reservoir 3C. This routine is terminated.
On the other hand, when the cooling water temperature detection value TW is in the middle of warming up of the internal combustion engine 1 in which the cooling water temperature detection value TW is equal to or lower than the warming up determination water temperature TWDK, the ECM 31 proceeds to step S204.

ステップS204で、ECM31は、冷却水温検出値TWの単位時間当たりの変化量(冷却水温検出値TWの変化速度)DTWを演算する。
そして、次のステップS205で、ECM31は、ステップS204で求めた変化量DTWと、サーモスタット53の閉判定用(ラジエータ52出口閉判定用)の変化量DTSCTWとを比較する。
In step S204, the ECM 31 calculates the amount of change per unit time of the coolant temperature detection value TW (change rate of the coolant temperature detection value TW) DTW.
In the next step S205, the ECM 31 compares the amount of change DTW obtained in step S204 with the amount of change DTCTTW for determining whether the thermostat 53 is closed (for determining whether the radiator 52 exits closed).

前記変化量DTSCTWは、サーモスタット53によってラジエータ52出口が開かれて冷却水がラジエータ52を経由して循環するようになった当初において、変化量DTWが下回るような値に予め適合されている。
つまり、冷却水がラジエータ52を迂回して循環する状態からラジエータ52に循環する状態に切り替わった直後は、冷却水の放熱性能の増大変化に伴って冷却水温検出値TWの上昇速度が過渡的に鈍り、この冷却水温検出値TWの上昇速度が鈍る期間では、冷却水温検出値TWに基づく燃料温度INJFTの推定精度が低下する。
The change amount DTSCTW is preliminarily adapted to a value such that the change amount DTW is lower at the beginning when the outlet of the radiator 52 is opened by the thermostat 53 and the cooling water circulates through the radiator 52.
That is, immediately after switching from the state in which the cooling water circulates around the radiator 52 to the state in which the cooling water circulates to the radiator 52, the rising speed of the detected coolant temperature value TW becomes transient as the cooling water heat dissipation performance increases. During the period when the cooling water temperature detection value TW rises dull, the estimation accuracy of the fuel temperature INJFT based on the cooling water temperature detection value TW decreases.

そこで、ECM31は、冷却水がラジエータ52を迂回する経路を循環する状態からラジエータ52に循環する状態に切り替わった直後であって、冷却水温検出値TWに基づく燃料温度INJFTの推定精度が低下する期間内であるか否かを、変化量DTWが変化量DTSCTWを下回るか否か(冷却水温検出値TWの上昇速度が鈍ったか否か)に基づいて検出する。
ここで、変化量DTWが変化量DTSCTW以上である場合は、サーモスタット53の閉から開への切り替わり期間ではなく、冷却水温検出値TWに基づき燃料温度INJFTを推定できる期間であることを示すので、ECM31は、ステップS206以降に進んで、冷却水温検出値TWに基づき燃料温度INJFTを推定する処理を実施する。
Therefore, the ECM 31 is immediately after switching from the state in which the coolant circulates the path that bypasses the radiator 52 to the state in which the coolant circulates to the radiator 52, and the period during which the estimated accuracy of the fuel temperature INJFT based on the detected coolant temperature TW decreases. Is detected based on whether or not the change amount DTW is less than the change amount DTCTTW (whether or not the rising speed of the coolant temperature detection value TW has slowed down).
Here, when the amount of change DTW is equal to or greater than the amount of change DTSCTW, it indicates that the fuel temperature INJFT can be estimated based on the detected coolant temperature TW, not the period from the closing of the thermostat 53 to the opening. The ECM 31 proceeds to step S206 and subsequent steps, and performs a process of estimating the fuel temperature INJFT based on the detected coolant temperature value TW.

ECM31は、ステップS206で冷却水温検出値TWを読み込み、次のステップS207では、ステップS104と同様にして、冷却水温検出値TWから燃料溜り3Cにおける燃料温度INJFTを推定する。
一方、変化量DTWが変化量DTSCTWを下回る場合は、サーモスタット53の閉から開への切り替わり期間内で、冷却水温検出値TWに基づく燃料温度INJFTの推定精度が低下する期間であることを示すので、ECM31は、ステップS206以降に進まずに(換言すれば、冷却水温検出値TWに基づき燃料温度INJFTを推定する処理を禁止して)、ステップS208に進む。
In step S206, the ECM 31 reads the detected coolant temperature value TW, and in the next step S207, similarly to step S104, estimates the fuel temperature INJFT in the fuel pool 3C from the detected coolant temperature value TW.
On the other hand, when the amount of change DTW is less than the amount of change DTCTTW, this indicates that the estimated accuracy of the fuel temperature INJFT based on the detected coolant temperature TW falls within the period when the thermostat 53 is switched from closed to open. The ECM 31 does not proceed to step S206 and thereafter (in other words, prohibits the process of estimating the fuel temperature INJFT based on the detected coolant temperature value TW), and proceeds to step S208.

ECM31は、ステップS208で、吸気温センサ39が検出した吸気温度検出値TAを読み込み、次のステップS209では、吸気温度検出値TAに基づき燃料溜り3Cにおける燃料温度INJFTを推定する。
ECM31には、吸気温度検出値TAを燃料温度INJFTに変換するための変換特性(演算式又は変換テーブル)が予め用意されている(図8参照)。
In step S208, the ECM 31 reads the intake air temperature detection value TA detected by the intake air temperature sensor 39, and in the next step S209, estimates the fuel temperature INJFT in the fuel reservoir 3C based on the intake air temperature detection value TA.
In the ECM 31, a conversion characteristic (an arithmetic expression or a conversion table) for converting the intake air temperature detection value TA into the fuel temperature INJFT is prepared in advance (see FIG. 8).

吸気温度検出値TAは、燃料溜り3Cにおける燃料温度INJFTに相関する状態量であって、冷却水の循環経路の切り替えに影響を受けることはなく、サーモスタット53の閉から開への切り替わり期間内であっても暖機の進行に伴って上昇を続ける値である。
したがって、ECM31は、サーモスタット53の閉から開への切り替わり期間内であるとき、つまり、冷却水がラジエータ52に循環される状態に切り替わる過渡期であるときに、冷却水温検出値TWに代えて吸気温度検出値TAに基づき燃料温度INJFTを推定することで、燃料温度INJFTの推定精度が過渡的に低下することを抑制できる。
The intake air temperature detection value TA is a state quantity that correlates with the fuel temperature INJFT in the fuel reservoir 3C, and is not affected by the switching of the cooling water circulation path, and is within the switching period of the thermostat 53 from closing to opening. Even if it is, it is a value that continues to rise as the warm-up progresses.
Therefore, the ECM 31 takes the intake air instead of the detected coolant temperature value TW when the thermostat 53 is within the switching period from closing to opening, that is, during the transition period when the coolant is switched to the state where the coolant is circulated to the radiator 52. By estimating the fuel temperature INJFT based on the temperature detection value TA, it is possible to suppress a transient decrease in the estimation accuracy of the fuel temperature INJFT.

ECM31は、冷却水温検出値TW又は吸気温度検出値TAに基づき燃料温度INJFTを推定すると、ステップS210に進み、ステップS105と同様にして、燃料温度INJFTと基本噴射パルス幅TIB(機関負荷)とに基づきパルス幅補正値TIHOSを設定する(図6参照)。
次のステップS211で、ECM31は、基本噴射パルス幅TIBにパルス幅補正値TIHOSを乗算した結果を最終的な噴射パルス幅TIとする(TI=TIB×TIHOS)。そして、ECM31は、各気筒の噴射タイミングにおいて噴射パルス幅TIの噴射パルス信号を燃料噴射弁3に出力し、燃料噴射弁3から噴射パルス幅TIに比例する量の燃料を噴射させる。
When the ECM 31 estimates the fuel temperature INJFT based on the detected coolant temperature value TW or the detected intake air temperature TA, the ECM 31 proceeds to step S210, and in the same manner as in step S105, the fuel temperature INJFT and the basic injection pulse width TIB (engine load) are set. Based on this, the pulse width correction value TIHOS is set (see FIG. 6).
In the next step S211, the ECM 31 sets a result obtained by multiplying the basic injection pulse width TIB by the pulse width correction value TIHOS as a final injection pulse width TI (TI = TIB × TIHOS). Then, the ECM 31 outputs an injection pulse signal having an injection pulse width TI to the fuel injection valve 3 at the injection timing of each cylinder, and injects an amount of fuel proportional to the injection pulse width TI from the fuel injection valve 3.

図7のフローチャートにしたがった噴射制御は、図4のフローチャートにしたがった噴射制御に対して燃料温度INJFTの推定処理が異なるが、推定した燃料温度INJFTに基づく噴射パルス幅TIの補正(噴射量指令値の変更)は図4のフローチャートにしたがった噴射制御と同様に実施される。このため、ECM31が、図7のフローチャートにしたがった噴射制御を実施することで、空燃比フィードバック補正の破綻や、空燃比学習補正値の誤学習が抑制され、暖機運転における空燃比の収束安定性が向上し、暖機中の排気性能などが改善される。   The injection control according to the flowchart of FIG. 7 differs from the injection control according to the flowchart of FIG. 4 in the estimation process of the fuel temperature INJFT, but the injection pulse width TI is corrected based on the estimated fuel temperature INJFT (injection amount command). Value change) is performed in the same manner as the injection control according to the flowchart of FIG. For this reason, the ECM 31 performs the injection control according to the flowchart of FIG. 7, thereby suppressing the failure of the air-fuel ratio feedback correction and the erroneous learning of the air-fuel ratio learning correction value, thereby stabilizing the convergence of the air-fuel ratio in the warm-up operation. The exhaust performance during warm-up is improved.

以上、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば種々の変形態様を採り得ることは自明である。
図7のフローチャートに示した噴射制御において、ECM31は、冷却水温検出値TWの単位時間当たりの変化量DTWに基づき、サーモスタット53の閉から開への切り替わり期間を検出するが、冷却水温検出値TWがサーモスタット53の開弁温度領域であるときをサーモスタット53の閉から開への切り替わり期間として、吸気温度検出値TAに基づく燃料温度INJFTの推定を行うことができる。
Although the contents of the present invention have been specifically described above with reference to the preferred embodiments, it is obvious that those skilled in the art can take various modifications based on the basic technical idea and teachings of the present invention. is there.
In the injection control shown in the flowchart of FIG. 7, the ECM 31 detects a switching period from closing to opening of the thermostat 53 based on the change amount DTW per unit time of the cooling water temperature detection value TW, but the cooling water temperature detection value TW The fuel temperature INJFT based on the intake air temperature detection value TA can be estimated with the period when the thermostat 53 is in the valve opening temperature region as a switching period from the closing of the thermostat 53 to the opening.

また、内燃機関1の使用燃料の性状(オクタン価など)によって、燃料溜り3C内に液体燃料が残存しない状態で燃料噴射が行われることになる燃料温度が異なるので、ECM31は燃料性状の情報を取得し、燃料性状に応じて燃料温度INJFTの推定結果を修正したり、燃料性状に応じてパルス幅補正値TIHOSを修正したりすることができる。   Further, since the fuel temperature at which fuel injection is performed in a state where liquid fuel does not remain in the fuel reservoir 3C differs depending on the property of the fuel used in the internal combustion engine 1 (octane number or the like), the ECM 31 acquires information on the fuel property. Then, the estimation result of the fuel temperature INJFT can be corrected according to the fuel property, or the pulse width correction value TIHOS can be corrected according to the fuel property.

また、ECM31は、燃料温度INJFTの推定処理において、推定タイミングにおける冷却水温検出値TWと始動時の冷却水温検出値TWとに基づき燃料温度INJFTを推定することができる。
また、ECM31は、冷機始動時から吸気温度検出値TAに基づき燃料温度INJFTを推定することができる。
Further, the ECM 31 can estimate the fuel temperature INJFT based on the coolant temperature detection value TW at the estimation timing and the coolant temperature detection value TW at the time of start-up in the fuel temperature INJFT estimation process.
Further, the ECM 31 can estimate the fuel temperature INJFT based on the intake air temperature detection value TA from the time of cold start.

ここで、上述した実施形態から把握し得る技術的思想について、以下に記載する。
内燃機関の燃料噴射制御装置は、その一態様において、弁体下流側に燃料溜りが形成される燃料噴射弁を吸気通路に配置してなる内燃機関に適用される燃料噴射制御装置であって、前記燃料溜りにおける燃料温度が所定温度よりも高くなるときには低いときに比べて燃料噴射量指令値を減量する。
Here, the technical idea that can be understood from the above-described embodiment will be described below.
A fuel injection control device for an internal combustion engine, in one aspect thereof, is a fuel injection control device applied to an internal combustion engine in which a fuel injection valve in which a fuel sump is formed on the downstream side of a valve body is disposed in an intake passage, When the fuel temperature in the fuel pool becomes higher than a predetermined temperature, the fuel injection amount command value is reduced as compared with when the fuel temperature is lower.

前記内燃機関の燃料噴射制御装置の好ましい態様において、前記燃料溜りにおける燃料温度を、前記内燃機関の冷却水温検出値と前記内燃機関の吸気温検出値との少なくとも一方に基づき推定する。
別の好ましい態様では、前記内燃機関の冷却水がラジエータを迂回して循環される状態から前記ラジエータに循環される状態に移行してから所定期間内であるときは吸気温検出値に基づき燃料温度を推定し、前記所定期間外であるときは冷却水温検出値に基づき燃料温度を推定する。
In a preferred aspect of the fuel injection control device for the internal combustion engine, the fuel temperature in the fuel reservoir is estimated based on at least one of a detected coolant temperature value of the internal combustion engine and an intake air temperature detected value of the internal combustion engine.
In another preferred aspect, the fuel temperature is based on the detected intake air temperature when the cooling water of the internal combustion engine is within a predetermined period from the state in which the coolant is circulated around the radiator to the state in which it is circulated to the radiator. The fuel temperature is estimated based on the detected coolant temperature when it is outside the predetermined period.

さらに別の好ましい態様では、冷却水温検出値の変化速度が閾値を超える状態を前記所定期間内とする。
さらに別の好ましい態様では、前記燃料噴射量指令値の減量を前記内燃機関の暖機運転中に実施する。
In still another preferred aspect, a state in which the change rate of the coolant temperature detection value exceeds the threshold value is defined as the predetermined period.
In still another preferred aspect, the fuel injection amount command value is reduced during the warm-up operation of the internal combustion engine.

さらに別の好ましい態様では、前記燃料噴射量指令値の減量を前記内燃機関の暖機運転中でかつ前記内燃機関の負荷が所定負荷よりも小さいときに実施する。
さらに別の好ましい態様では、前記所定温度よりも高い燃料温度領域は、前記燃料溜り内の燃料が気化して前記燃料溜り内に液体燃料が残存しない状態で燃料噴射が行われる温度領域である。
In still another preferred aspect, the fuel injection amount command value is reduced when the internal combustion engine is warming up and the load on the internal combustion engine is smaller than a predetermined load.
In still another preferred aspect, the fuel temperature region higher than the predetermined temperature is a temperature region in which fuel injection is performed in a state where the fuel in the fuel reservoir is vaporized and no liquid fuel remains in the fuel reservoir.

さらに別の好ましい態様では、前記所定温度よりも高い燃料温度領域は、燃料噴射が行われるときの前記燃料溜り内の圧力が、前記燃料溜り内の燃料温度の上昇に伴って低下する温度領域である。
また、内燃機関の燃料噴射制御装置は、その一態様において、弁体下流側に燃料溜りが形成される燃料噴射弁を吸気通路に配置してなる内燃機関に適用される燃料噴射制御装置であって、前記燃料溜り内に液体燃料が残存しない状態で燃料噴射が行われるときは、前記燃料溜り内に液体燃料が残存する状態で燃料噴射が行われるときよりも燃料噴射量指令値を減量する。
In still another preferred aspect, the fuel temperature region higher than the predetermined temperature is a temperature region in which the pressure in the fuel reservoir when fuel injection is performed decreases as the fuel temperature in the fuel reservoir increases. is there.
In one aspect, the fuel injection control device for an internal combustion engine is a fuel injection control device applied to an internal combustion engine in which a fuel injection valve in which a fuel reservoir is formed on the downstream side of the valve body is disposed in an intake passage. Thus, when fuel injection is performed with no liquid fuel remaining in the fuel reservoir, the fuel injection amount command value is reduced compared to when fuel injection is performed with liquid fuel remaining in the fuel reservoir. .

また、内燃機関の燃料噴射制御装置は、その一態様において、弁体下流側に燃料溜りが形成される燃料噴射弁を吸気通路に配置してなる内燃機関に適用される燃料噴射制御装置であって、前記燃料溜り内に液体燃料が残存せずかつ前記弁体上流側に燃料ベーパが発生していない状態で燃料噴射が行われるときは、それ以外のときよりも燃料噴射量指令値を減量する。   In one aspect, the fuel injection control device for an internal combustion engine is a fuel injection control device applied to an internal combustion engine in which a fuel injection valve in which a fuel reservoir is formed on the downstream side of the valve body is disposed in an intake passage. When fuel injection is performed in a state where no liquid fuel remains in the fuel reservoir and fuel vapor is not generated upstream of the valve body, the fuel injection amount command value is reduced compared to other cases. To do.

また、内燃機関の燃料噴射制御装置は、その一態様において、弁体下流側に燃料溜りが形成される燃料噴射弁を吸気通路に配置してなる内燃機関に適用される燃料噴射制御装置であって、燃料噴射が行われるときの前記燃料溜り内の圧力が前記燃料溜り内の燃料温度の上昇に伴って低下したときに、前記燃料溜り内の圧力が低下する前よりも燃料噴射量指令値を減量する。   In one aspect, the fuel injection control device for an internal combustion engine is a fuel injection control device applied to an internal combustion engine in which a fuel injection valve in which a fuel reservoir is formed on the downstream side of the valve body is disposed in an intake passage. Thus, when the pressure in the fuel reservoir when fuel injection is performed decreases as the fuel temperature in the fuel reservoir increases, the fuel injection amount command value is lower than that before the pressure in the fuel reservoir decreases. To lose weight.

また、内燃機関の燃料噴射制御方法は、その一態様において、弁体下流側に燃料溜りが形成される燃料噴射弁により内燃機関の吸気通路内に燃料を噴射するための燃料噴射制御方法であって、前記燃料溜りにおける燃料温度を推定するステップと、前記燃料温度の推定値と所定温度とを比較するステップと、前記燃料温度の推定値が所定温度よりも高いときは低いときに比べて前記燃料噴射弁の燃料噴射量指令値を減量するステップと、を含む。   In one aspect, the fuel injection control method for the internal combustion engine is a fuel injection control method for injecting fuel into the intake passage of the internal combustion engine by a fuel injection valve in which a fuel reservoir is formed on the downstream side of the valve body. The step of estimating the fuel temperature in the fuel reservoir, the step of comparing the estimated value of the fuel temperature with a predetermined temperature, and the estimated value of the fuel temperature when higher than the predetermined temperature are lower than when the estimated value is lower. Reducing the fuel injection amount command value of the fuel injection valve.

1…内燃機関、2…吸気管、3…燃料噴射弁、3A…弁体、3B…噴孔、3C…燃料溜り、4…吸気バルブ、31…ECM(エンジン・コントロール・モジュール)、33…燃圧センサ、34…アクセル開度センサ、35…エアフローセンサ、36…回転センサ、37…水温センサ、38…空燃比センサ、39…吸気温センサ、51…機械式ウォーターポンプ、52…ラジエータ、53…サーモスタット   DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Intake pipe, 3 ... Fuel injection valve, 3A ... Valve body, 3B ... Injection hole, 3C ... Fuel reservoir, 4 ... Intake valve, 31 ... ECM (engine control module), 33 ... Fuel pressure Sensor, 34 ... Accelerator opening sensor, 35 ... Air flow sensor, 36 ... Rotation sensor, 37 ... Water temperature sensor, 38 ... Air-fuel ratio sensor, 39 ... Intake air temperature sensor, 51 ... Mechanical water pump, 52 ... Radiator, 53 ... Thermostat

Claims (10)

弁体下流側に燃料溜りが形成される燃料噴射弁を吸気通路に配置してなる内燃機関に適用される燃料噴射制御装置であって、
前記燃料溜りにおける燃料温度が所定温度よりも高くなるときには低いときに比べて燃料噴射量指令値を減量する、内燃機関の燃料噴射制御装置。
A fuel injection control device applied to an internal combustion engine in which a fuel injection valve in which a fuel reservoir is formed downstream of a valve body is disposed in an intake passage,
A fuel injection control device for an internal combustion engine that reduces a fuel injection amount command value when a fuel temperature in the fuel reservoir becomes higher than a predetermined temperature as compared with a low temperature.
前記燃料溜りにおける燃料温度を、前記内燃機関の冷却水温検出値と前記内燃機関の吸気温検出値との少なくとも一方に基づき推定する、請求項1記載の内燃機関の燃料噴射制御装置。   The fuel injection control device for an internal combustion engine according to claim 1, wherein the fuel temperature in the fuel reservoir is estimated based on at least one of a detected coolant temperature value of the internal combustion engine and an intake air temperature detected value of the internal combustion engine. 前記内燃機関の冷却水がラジエータを迂回して循環される状態から前記ラジエータに循環される状態に移行してから所定期間内であるときは吸気温検出値に基づき燃料温度を推定し、前記所定期間外であるときは冷却水温検出値に基づき燃料温度を推定する、請求項2記載の内燃機関の燃料噴射制御装置。   When the cooling water of the internal combustion engine bypasses the radiator and circulates from the state in which the cooling water is circulated to the radiator, the fuel temperature is estimated based on the intake air temperature detection value within a predetermined period, and the predetermined temperature 3. The fuel injection control device for an internal combustion engine according to claim 2, wherein when it is out of the period, the fuel temperature is estimated based on the detected coolant temperature value. 冷却水温検出値の変化速度が閾値を超える状態を前記所定期間内とする、請求項3記載の内燃機関の燃料噴射制御装置。   4. The fuel injection control device for an internal combustion engine according to claim 3, wherein a state in which the change rate of the coolant temperature detection value exceeds a threshold value is within the predetermined period. 前記燃料噴射量指令値の減量を前記内燃機関の暖機運転中に実施する、請求項1から請求項4のいずれか1つに記載の内燃機関の燃料噴射制御装置。   The fuel injection control device for an internal combustion engine according to any one of claims 1 to 4, wherein the fuel injection amount command value is reduced during a warm-up operation of the internal combustion engine. 前記燃料噴射量指令値の減量を前記内燃機関の暖機運転中でかつ前記内燃機関の負荷が所定負荷よりも小さいときに実施する、請求項1から請求項4のいずれか1つに記載の内燃機関の燃料噴射制御装置。   The reduction in the fuel injection amount command value is performed when the internal combustion engine is warming up and when the load on the internal combustion engine is smaller than a predetermined load. A fuel injection control device for an internal combustion engine. 前記所定温度よりも高い燃料温度領域は、前記燃料溜り内の燃料が気化して前記燃料溜り内に液体燃料が残存しない状態で燃料噴射が行われる温度領域である、請求項1から請求項6のいずれか1つに記載の内燃機関の燃料噴射制御装置。   The fuel temperature region higher than the predetermined temperature is a temperature region in which fuel injection is performed in a state where the fuel in the fuel reservoir is vaporized and no liquid fuel remains in the fuel reservoir. A fuel injection control device for an internal combustion engine according to any one of the above. 前記所定温度よりも高い燃料温度領域は、燃料噴射が行われるときの前記燃料溜り内の圧力が、前記燃料溜り内の燃料温度の上昇に伴って低下する温度領域である、請求項1から請求項6のいずれか1つに記載の内燃機関の燃料噴射制御装置。   The fuel temperature region higher than the predetermined temperature is a temperature region in which the pressure in the fuel reservoir when fuel injection is performed decreases as the fuel temperature in the fuel reservoir increases. Item 7. The fuel injection control device for an internal combustion engine according to any one of Items 6 to 6. 弁体下流側に燃料溜りが形成される燃料噴射弁を吸気通路に配置してなる内燃機関に適用される燃料噴射制御装置であって、
前記燃料溜り内に液体燃料が残存しない状態で燃料噴射が行われるときは、前記燃料溜り内に液体燃料が残存する状態で燃料噴射が行われるときよりも燃料噴射量指令値を減量する、内燃機関の燃料噴射制御装置。
A fuel injection control device applied to an internal combustion engine in which a fuel injection valve in which a fuel reservoir is formed downstream of a valve body is disposed in an intake passage,
An internal combustion engine that reduces the fuel injection amount command value when fuel injection is performed with no liquid fuel remaining in the fuel reservoir, compared with when fuel injection is performed with liquid fuel remaining in the fuel reservoir. Engine fuel injection control device.
弁体下流側に燃料溜りが形成される燃料噴射弁により内燃機関の吸気通路内に燃料を噴射するための燃料噴射制御方法であって、
前記燃料溜りにおける燃料温度を推定するステップと、
前記燃料温度の推定値と所定温度とを比較するステップと、
前記燃料温度の推定値が所定温度よりも高いときは低いときに比べて前記燃料噴射弁の燃料噴射量指令値を減量するステップと、
を含む、内燃機関の燃料噴射制御方法。
A fuel injection control method for injecting fuel into an intake passage of an internal combustion engine by a fuel injection valve in which a fuel reservoir is formed downstream of a valve body,
Estimating a fuel temperature in the fuel reservoir;
Comparing the estimated value of the fuel temperature with a predetermined temperature;
Reducing the fuel injection amount command value of the fuel injection valve when the estimated value of the fuel temperature is higher than a predetermined temperature compared to when it is low;
A fuel injection control method for an internal combustion engine.
JP2016181979A 2016-09-16 2016-09-16 Fuel injection control device for internal combustion engine Active JP6663330B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016181979A JP6663330B2 (en) 2016-09-16 2016-09-16 Fuel injection control device for internal combustion engine
PCT/JP2017/031445 WO2018051806A1 (en) 2016-09-16 2017-08-31 Fuel injection control device and fuel injection control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016181979A JP6663330B2 (en) 2016-09-16 2016-09-16 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2018044530A true JP2018044530A (en) 2018-03-22
JP6663330B2 JP6663330B2 (en) 2020-03-11

Family

ID=61619518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016181979A Active JP6663330B2 (en) 2016-09-16 2016-09-16 Fuel injection control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6663330B2 (en)
WO (1) WO2018051806A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712031A (en) * 1993-06-28 1995-01-17 Toyota Motor Corp Fuel pressure control device for internal combustion engine
JP2005076596A (en) * 2003-09-03 2005-03-24 Bosch Automotive Systems Corp Fuel temperature estimating device
JP2013194580A (en) * 2012-03-19 2013-09-30 Hitachi Automotive Systems Ltd Fuel injection control device for internal combustion engine
JP2014025344A (en) * 2012-07-24 2014-02-06 Hitachi Automotive Systems Ltd Control apparatus of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712031A (en) * 1993-06-28 1995-01-17 Toyota Motor Corp Fuel pressure control device for internal combustion engine
JP2005076596A (en) * 2003-09-03 2005-03-24 Bosch Automotive Systems Corp Fuel temperature estimating device
JP2013194580A (en) * 2012-03-19 2013-09-30 Hitachi Automotive Systems Ltd Fuel injection control device for internal combustion engine
JP2014025344A (en) * 2012-07-24 2014-02-06 Hitachi Automotive Systems Ltd Control apparatus of internal combustion engine

Also Published As

Publication number Publication date
JP6663330B2 (en) 2020-03-11
WO2018051806A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
KR100881877B1 (en) Control apparatus for internal combustion engine
JP4538851B2 (en) In-cylinder injection internal combustion engine fuel pressure control device
JP5180251B2 (en) Fuel supply control device for internal combustion engine
KR100912844B1 (en) Control apparatus for internal combustion engine
KR101328885B1 (en) Control apparatus for internal combustion engine
JP5951388B2 (en) Control device for internal combustion engine
US7163002B1 (en) Fuel injection system and method
US20020038646A1 (en) Engine control system
JP4337710B2 (en) Control device for internal combustion engine
WO2018051806A1 (en) Fuel injection control device and fuel injection control method for internal combustion engine
JPH11210557A (en) Liquefied gas fuel supply device for engine
JP2008190428A (en) Control device for internal combustion engine
JP7013090B2 (en) Internal combustion engine control device
JP4737256B2 (en) Engine oil temperature estimation device
JP2006177288A (en) Fuel system abnormality detection device for engine
JP2004143969A (en) Cooling control system of internal combustion engine
JP2007071047A (en) Control device of internal combustion engine
JP4304463B2 (en) Fuel injection control device for internal combustion engine
JP2005016396A (en) Catalyst warming-up system of internal combustion engine
JP4692478B2 (en) Oil temperature estimation device and oil temperature estimation method
JP2010071158A (en) Estimation device of engine oil temperature
JP4120624B2 (en) Fuel supply device for internal combustion engine
JP4172269B2 (en) Internal combustion engine equipped with a heat storage device
JP2002021607A (en) Air/fuel ratio control device of engine
JP2022151108A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200214

R150 Certificate of patent or registration of utility model

Ref document number: 6663330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250