JP2018044518A - Intake manifold - Google Patents

Intake manifold Download PDF

Info

Publication number
JP2018044518A
JP2018044518A JP2016181620A JP2016181620A JP2018044518A JP 2018044518 A JP2018044518 A JP 2018044518A JP 2016181620 A JP2016181620 A JP 2016181620A JP 2016181620 A JP2016181620 A JP 2016181620A JP 2018044518 A JP2018044518 A JP 2018044518A
Authority
JP
Japan
Prior art keywords
gas distribution
gas
hot water
intake manifold
water passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016181620A
Other languages
Japanese (ja)
Other versions
JP6656126B2 (en
Inventor
英樹 浅野
Hideki Asano
英樹 浅野
翔太 山中
Shota Yamanaka
翔太 山中
河井 伸二
Shinji Kawai
伸二 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2016181620A priority Critical patent/JP6656126B2/en
Priority to CN201710451300.5A priority patent/CN107829853B/en
Publication of JP2018044518A publication Critical patent/JP2018044518A/en
Application granted granted Critical
Publication of JP6656126B2 publication Critical patent/JP6656126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10268Heating, cooling or thermal insulating means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

PROBLEM TO BE SOLVED: To warm up inner walls more efficiently and at an earlier stage in gas distribution portions for distributing an auxiliary gas to each of branch pipes.SOLUTION: An intake manifold 1 includes a surge tank 2, a plurality of branch pipes 3A-3C branched from the surge tank 2, gas distribution portions 11, 12 for distributing an auxiliary gas to each of the branch pipes 3A-3C, and a hot water passage portion 13 which is disposed adjacently to the gas distribution portions 11, 12 for warming up inner walls of the gas distributing portions 11, 12 and in which hot water flows. The gas distribution portions 11, 12 and the hot water passage portion 13 are extended in parallel with each other in a manner of crossing the respective branch pipes 3A-3C. The gas distribution portions 11, 12 include gas inlets, gas chambers and a plurality of gas distribution passages. The gas distribution portions 11, 12 and the hot water passage portion 13 are partitioned by walls 35, 36, and at least parts of the walls 35, 36 are heat transfer walls constituted of a material having heat conductivity higher than that of the other part.SELECTED DRAWING: Figure 11

Description

この発明は、エンジンの各気筒へ吸気を分配する複数の分岐管を備えた吸気マニホールドに係り、詳しくは、EGRガスやPCVガスなどの補助ガスを各分岐管へ分配するためのガス分配部を備えた吸気マニホールドに関する。   The present invention relates to an intake manifold having a plurality of branch pipes for distributing intake air to each cylinder of an engine. Specifically, a gas distributor for distributing auxiliary gas such as EGR gas or PCV gas to each branch pipe is provided. It relates to the provided intake manifold.

従来、この種の技術として、例えば、下記の特許文献1に記載される吸気マニホールドが知られている。この吸気マニホールドは、各気筒へ吸気を分配するための複数の吸気管(分岐管)と、EGRガスを各分岐管へ分配するためのEGRチャンバ(ガス分配部)とを備える。ガス分配部は、各分岐管の上側にてそれら横切る向きにそれらを跨ぐように設けられ、吸気マニホールドと一体に形成される。また、ガス分配部の内側には、EGRガスが滞留し得る凹部が設けられ、その外側には、エンジン冷却水(温水)を流す温水通路が、凹部に隣接して設けられる。従って、ガス分配部内に流入したEGRガスの一部は、凹部内に滞留する。このため、滞留したEGRガスと温水通路を流れる温水との熱交換作用が大きくなり、ガス分配部全体のEGRガスを効率良く保温することができ、ガス分配部内での凝縮水の発生や凍結を抑えることができる。   Conventionally, as this type of technique, for example, an intake manifold described in Patent Document 1 below is known. The intake manifold includes a plurality of intake pipes (branch pipes) for distributing intake air to the cylinders, and an EGR chamber (gas distribution unit) for distributing EGR gas to the branch pipes. The gas distribution part is provided on the upper side of each branch pipe so as to straddle them in the transverse direction, and is formed integrally with the intake manifold. In addition, a recess in which EGR gas can stay is provided inside the gas distribution unit, and a hot water passage through which engine cooling water (hot water) flows is provided adjacent to the recess. Accordingly, a part of the EGR gas that has flowed into the gas distribution part stays in the recess. For this reason, the heat exchange action between the staying EGR gas and the hot water flowing through the hot water passage is increased, the EGR gas in the entire gas distribution section can be efficiently maintained, and the generation and freezing of condensed water in the gas distribution section can be prevented. Can be suppressed.

特開2005−155448号公報JP 2005-155448 A

ところで、特許文献1に記載の吸気マニホールドでは、ガス分配部の凹部と温水通路を隣接して設けるという簡単な構造でEGRガスと温水との熱交換率を向上させられるものの、近年では、ガス分配部での凝縮水発生をより早期に抑えるために、熱交換率を更に向上させてEGRガスを早期に暖めることが要望されている。特に、近年一般的となった樹脂製の吸気マニホールドでは、ガス分配部を吸気マニホールドと樹脂で一体成形することになるので、樹脂材での熱交換率向上が要望されている。   Incidentally, in the intake manifold described in Patent Document 1, although the heat exchange rate between the EGR gas and the hot water can be improved with a simple structure in which the recess of the gas distribution portion and the hot water passage are provided adjacent to each other, in recent years, In order to suppress the generation of condensed water at the section earlier, it is desired to further improve the heat exchange rate and warm the EGR gas early. In particular, in resin-made intake manifolds that have become common in recent years, the gas distribution part is integrally formed with the intake manifold and the resin, so there is a demand for an improved heat exchange rate with resin materials.

また、EGRガスと同様、他の補助ガス(例えば、PCVガス)を吸気マニホールドの各分岐管へ分配することも考えられ、これら補助ガスを同様に保温する必要性もある。   Further, similarly to the EGR gas, it is conceivable to distribute other auxiliary gas (for example, PCV gas) to each branch pipe of the intake manifold, and there is a need to keep these auxiliary gases in the same manner.

この発明は、上記事情に鑑みてなされたものであって、その目的は、EGRガス等の補助ガスを各分岐管へ分配するためのガス分配部にてその内壁を更に効率よく早期に暖めることを可能とした吸気マニホールドを提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to warm the inner wall more efficiently and quickly at a gas distribution portion for distributing auxiliary gas such as EGR gas to each branch pipe. It is to provide an intake manifold that enables the above.

上記目的を達成するために、請求項1に記載の発明は、サージタンクと、サージタンクから分岐した複数の分岐管と、複数の分岐管のそれぞれに補助ガスを分配するためのガス分配部と、ガス分配部の内壁を暖めるためにガス分配部に隣接して設けられ、温水が流れる温水通路部とを備え、ガス分配部と温水通路部が複数の分岐管を横切るよう並列に伸びるように設けられ、ガス分配部は、補助ガスが導入されるガス入口と、ガス入口から導入される補助ガスを集合させるガスチャンバと、ガスチャンバから分岐され、各分岐管にそれぞれ連通する複数のガス分配通路とを含む吸気マニホールドにおいて、ガス分配部と温水通路部との間が壁で隔てられ、少なくともその壁の部分が、他の部分よりも熱伝導率のよい材料により構成された伝熱壁となることを趣旨とする。   To achieve the above object, the invention described in claim 1 includes a surge tank, a plurality of branch pipes branched from the surge tank, and a gas distributor for distributing auxiliary gas to each of the plurality of branch pipes. A warm water passage section provided adjacent to the gas distribution section for warming the inner wall of the gas distribution section, through which hot water flows, and the gas distribution section and the hot water passage section extend in parallel across the plurality of branch pipes The gas distribution unit is provided with a gas inlet for introducing auxiliary gas, a gas chamber for collecting auxiliary gas introduced from the gas inlet, a plurality of gas distribution branches from the gas chamber and communicates with the branch pipes, respectively. In the intake manifold including the passage, the gas distribution portion and the hot water passage portion are separated by a wall, and at least a portion of the wall is made of a material having a higher thermal conductivity than the other portions. The purpose to be a.

上記発明の構成によれば、ガス分配部に隣接して温水通路部が設けられるので、温水通路部を流れる温水の熱がガス分配部の内壁に伝わる。また、ガス分配部と温水通路部との間を隔てる壁の部分が、他の部分よりも熱伝導率のよい材料により構成された伝熱壁となるので、温水の熱がガス分配部の内壁へ伝わりやすくなる。   According to the configuration of the above invention, since the hot water passage portion is provided adjacent to the gas distribution portion, the heat of the hot water flowing through the hot water passage portion is transmitted to the inner wall of the gas distribution portion. Further, the wall portion separating the gas distribution portion and the hot water passage portion becomes a heat transfer wall made of a material having a higher thermal conductivity than the other portions, so that the heat of the hot water is transferred to the inner wall of the gas distribution portion. It becomes easy to be transmitted to.

上記目的を達成するために、請求項2に記載の発明は、請求項1に記載の発明において、温水通路部は、その長手方向に直交する断面が長方形をなし、その長方形の長辺側に伝熱壁が設けられることを趣旨とする。   In order to achieve the above object, the invention according to claim 2 is the invention according to claim 1, wherein the hot water passage section has a rectangular cross section perpendicular to the longitudinal direction, and the long side of the rectangle is The purpose is to provide a heat transfer wall.

上記発明の構成によれば、請求項1に記載の発明の作用に加え、温水通路部の断面長方形の長辺側に伝熱壁が設けられるので、伝熱壁の面積が相対的に大きくなり、ガス分配部の内壁が持つ熱量が多くなる。   According to the configuration of the invention, in addition to the action of the invention according to claim 1, since the heat transfer wall is provided on the long side of the rectangular section of the hot water passage portion, the area of the heat transfer wall becomes relatively large. The amount of heat that the inner wall of the gas distribution section has increases.

上記目的を達成するために、請求項3に記載の発明は、請求項1又は2に記載の発明において、温水通路部は、伝熱壁に沿って長手方向へ二列に延びる往路及び復路を備え、長手方向の一端側にて往路に通じる温水入口と復路に通じる温水出口が設けられ、長手方向の他端側にて往路と復路が連通路により繋がり、復路が往路の上側に配置されることを趣旨とする。   In order to achieve the above object, according to a third aspect of the present invention, in the first or second aspect of the present invention, the hot water passage portion includes an outward path and a return path extending in two rows in the longitudinal direction along the heat transfer wall. A hot water inlet leading to the forward path and a warm water outlet leading to the backward path are provided on one end side in the longitudinal direction, the forward path and the return path are connected by a communication path on the other end side in the longitudinal direction, and the return path is disposed on the upper side of the forward path The purpose is that.

上記発明の構成によれば、請求項1又は2に記載の発明の作用に加え、温水通路部の流路が、伝熱壁に沿って長手方向へ二列に延びる往路及び復路と、それらを繋ぐ連通路により全体がU字形状に構成される。従って、温水通路部全体の断面積に比べて温水の流路面積が小さくなり、温水の流速が相対的に速くなる。また、復路が 往路の上側に配置されるので、温水と共に往路に混入した空気(気泡)が、浮力及び温水の流れに沿って効率的に復路へ流れる。   According to the configuration of the invention described above, in addition to the operation of the invention according to claim 1 or 2, the flow path of the hot water passage section includes an outward path and a return path extending in two rows in the longitudinal direction along the heat transfer wall. The entire communication path is formed in a U shape. Therefore, compared with the cross-sectional area of the whole warm water passage part, the channel area of warm water becomes small, and the flow rate of warm water becomes relatively fast. In addition, since the return path is arranged on the upper side of the forward path, the air (bubbles) mixed in the forward path together with the hot water efficiently flows along the flow of buoyancy and hot water.

上記目的を達成するために、請求項4に記載の発明は、請求項1乃至3のいずれかに記載の発明において、複数の分岐管は、サージタンクから並列に同一方向へ伸びて湾曲するように形成され、ガス分配部と温水通路部は、各分岐管の湾曲部分の内側に配置されることを趣旨とする。   In order to achieve the above object, according to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the plurality of branch pipes extend in the same direction in parallel from the surge tank and bend. The gas distribution portion and the hot water passage portion are formed inside the curved portion of each branch pipe.

上記発明の構成によれば、請求項1乃至3のいずれかに記載の発明の作用に加え、ガス分配部と温水通路部が、各分岐管の湾曲部の内側に配置されるので、ガス分配部と温水通路部が吸気マニホールドの外側へ張り出さなくなる。   According to the configuration of the above invention, in addition to the operation of the invention according to any one of claims 1 to 3, the gas distribution portion and the hot water passage portion are disposed inside the curved portion of each branch pipe. And the hot water passage section do not protrude to the outside of the intake manifold.

上記目的を達成するために、請求項5に記載の発明は、請求項1乃至4のいずれかに記載の発明において、ガス分配部は、第1の補助ガスを分配する第1のガス分配部と第2の補助ガスを分配する第2のガス分配部を含み、第1のガス分配部と第2のガス分配部が温水通路部を挟んで配置されることを趣旨とする。   In order to achieve the above object, according to a fifth aspect of the present invention, in the first aspect of the present invention, the gas distribution unit is a first gas distribution unit that distributes the first auxiliary gas. And a second gas distribution part that distributes the second auxiliary gas, and the first gas distribution part and the second gas distribution part are arranged with the hot water passage part interposed therebetween.

上記発明の構成によれば、請求項1乃至4のいずれかに記載の発明の作用に加え、第1のガス分配部と第2のガス分配部が温水通路部を挟んで配置されるので、温水の熱が第1のガス分配部の内壁と第2のガス分配部の内壁へ伝わりやすくなる。   According to the configuration of the invention, in addition to the operation of the invention according to any one of claims 1 to 4, the first gas distribution part and the second gas distribution part are arranged with the hot water passage part interposed therebetween. Heat of the hot water is easily transmitted to the inner wall of the first gas distribution unit and the inner wall of the second gas distribution unit.

請求項1に記載の発明によれば、補助ガスを各分岐管へ分配するためのガス分配部にて、その内壁を温水により更に効率よく早期に暖めることができる。この結果、ガス分配部の内壁での凝縮水及びアイシングの発生を防止することができる。   According to the first aspect of the present invention, the inner wall of the gas distribution part for distributing the auxiliary gas to each branch pipe can be warmed more efficiently and quickly by the hot water. As a result, generation of condensed water and icing on the inner wall of the gas distribution unit can be prevented.

請求項2に記載の発明によれば、請求項1に記載の発明の効果に加え、ガス分配部の内壁に接触する補助ガスの温度低下を効果的に抑えることができる。   According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, it is possible to effectively suppress the temperature drop of the auxiliary gas contacting the inner wall of the gas distributor.

請求項3に記載の発明によれば、請求項1又は2に記載の発明の効果に加え、温水の熱ロスを減らしながらその熱を効率よくガス分配部の内壁に伝えることができ、その内壁を温水により更に効率よく早期に暖めることができる。また、温水通路部に混入した空気(気泡)を効率的に温水通路部から排出することができる。   According to the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2, the heat can be efficiently transmitted to the inner wall of the gas distribution section while reducing the heat loss of the hot water. Can be warmed more efficiently and quickly with hot water. Moreover, the air (bubbles) mixed in the warm water passage can be efficiently discharged from the warm water passage.

請求項4に記載の発明によれば、請求項1乃至3のいずれかに記載の発明の効果に加え、吸気マニホールドの小型化を図ることができ、吸気マニホールドのエンジンに対する組み付け性及び車両における搭載性を向上させることができる。   According to the invention described in claim 4, in addition to the effects of the invention described in any one of claims 1 to 3, the intake manifold can be reduced in size, and the assembly of the intake manifold to the engine and the mounting in the vehicle can be achieved. Can be improved.

請求項5に記載の発明によれば、請求項1乃至4のいずれかに記載の発明の効果に加え、第1のガス分配部の内壁と第2のガス分配部の内壁の両方を温水により更に効率よく早期に暖めることができる。   According to the invention described in claim 5, in addition to the effect of the invention described in any one of claims 1 to 4, both the inner wall of the first gas distributor and the inner wall of the second gas distributor are heated by hot water. Furthermore, it can warm up efficiently and early.

一実施形態に係り、吸気マニホールドの正面側を示す斜視図。The perspective view which concerns on one Embodiment and shows the front side of an intake manifold. 一実施形態に係り、吸気マニホールドの背面側を示す斜視図。The perspective view which concerns on one Embodiment and shows the back side of an intake manifold. 一実施形態に係り、吸気マニホールドを示す正面図。The front view which concerns on one Embodiment and shows an intake manifold. 一実施形態に係り、吸気マニホールドを示す背面図。The rear view which concerns on one Embodiment and shows an intake manifold. 一実施形態に係り、吸気マニホールドを示す平面図。The top view which concerns on one Embodiment and shows an intake manifold. 一実施形態に係り、吸気マニホールドを示す底面図。The bottom view showing an intake manifold concerning one embodiment. 一実施形態に係り、吸気マニホールドを示す右側面図。The right view which concerns on one Embodiment and shows an intake manifold. 一実施形態に係り、吸気マニホールドを示す左側面図。The left view which concerns on one Embodiment and shows an intake manifold. 一実施形態に係り、吸気マニホールドを示す図5のA−A線断面図。FIG. 6 is a cross-sectional view taken along line AA of FIG. 5 illustrating the intake manifold according to the embodiment. 一実施形態に係り、吸気マニホールドを示す図5のB−B線断面図。The BB sectional drawing of FIG. 5 which concerns on one Embodiment and shows an intake manifold. 一実施形態に係り、吸気マニホールドを示す図5のC−C線断面図。The CC sectional view taken on the line of FIG. 5 which shows an intake manifold according to one embodiment. 一実施形態に係り、吸気マニホールドを示す図5のD−D線断面図。FIG. 6 is a cross-sectional view taken along the line DD of FIG. 5 showing the intake manifold according to the embodiment. 一実施形態に係り、EGRガス分配部を示す図8のE−E線断面図。The EE sectional view taken on the line of FIG. 8 which shows an EGR gas distribution part concerning one Embodiment. 一実施形態に係り、温水通路部を示す図8のF−F線断面図。The FF sectional view taken on the line of FIG. 8 which shows a warm water channel | path part concerning one Embodiment. 一実施形態に係り、PCVガス分配部を示す図3のG−G線断面図。The GG sectional view of Drawing 3 showing a PCV gas distribution part concerning one embodiment. 一実施形態に係り、エンジンの冷間始動時における(a)エンジン冷却水、(b)伝熱壁及び(c)従来の樹脂壁の温度変化の違いを示すグラフ。The graph which shows the difference in the temperature change of (a) engine cooling water, (b) heat-transfer wall, and (c) the conventional resin wall at the time of the cold start of an engine concerning one embodiment. 別の実施形態に係り、吸気マニホールドを示す図9に準ずる断面図。Sectional drawing according to FIG. 9 which concerns on another embodiment and shows an intake manifold.

以下、本発明の吸気マニホールドを具体化した一実施形態につき図面を参照して詳細に説明する。   Hereinafter, an embodiment of an intake manifold according to the present invention will be described in detail with reference to the drawings.

図1に、この実施形態の吸気マニホールド1の正面側を斜視図により示す。図2に、同じく吸気マニホールド1の背面側を斜視図により示す。図3に、同じく吸気マニホールド1を正面図により示す。図4に、同じく吸気マニホールド1を背面図により示す。図5に、同じく吸気マニホールド1を平面図により示す。図6に、同じく吸気マニホールド1を底面図により示す。図7に、同じく吸気マニホールド1を右側面図により示す。図8に、同じく吸気マニホールド1を左側面図により示す。この吸気マニホールド1は、図3、図4に示す状態が、エンジンに装着される配置状態を示し、その上下左右は図3、図4に示す通りである。この吸気マニホールド1は、エンジンの複数の気筒に吸気を導入するためにエンジンに装着されて使用される。吸気マニホールド1は、全体が樹脂より形成され、サージタンク2と、そのサージタンク2から分岐する複数の分岐管3A,3B,3Cとを備える。各分岐管3A〜3Cは、サージタンク2から並列に同一方向へ伸びて湾曲するように形成される。この実施形態で、吸気マニホールド1は、3気筒のエンジンに対応した三つの分岐管3A〜3Cを有する。   FIG. 1 is a perspective view showing the front side of the intake manifold 1 of this embodiment. FIG. 2 is a perspective view of the back side of the intake manifold 1. FIG. 3 is a front view of the intake manifold 1. FIG. 4 is a rear view of the intake manifold 1. FIG. 5 is a plan view of the intake manifold 1. FIG. 6 also shows the intake manifold 1 in a bottom view. FIG. 7 also shows the intake manifold 1 in a right side view. FIG. 8 is a left side view of the intake manifold 1. 3 and FIG. 4 shows an arrangement state in which the intake manifold 1 is mounted on the engine, and the top, bottom, left and right thereof are as shown in FIG. 3 and FIG. The intake manifold 1 is used by being mounted on an engine in order to introduce intake air into a plurality of cylinders of the engine. The intake manifold 1 is entirely formed of resin, and includes a surge tank 2 and a plurality of branch pipes 3A, 3B, 3C branched from the surge tank 2. Each branch pipe 3A-3C is formed to extend from the surge tank 2 in parallel in the same direction and bend. In this embodiment, the intake manifold 1 has three branch pipes 3A to 3C corresponding to a three-cylinder engine.

図1〜図8に示すように、サージタンク2には、同タンク2内へ吸気を導入するための吸気入口4が設けられる。吸気入口4の外周には、入口フランジ5が設けられる。入口フランジ5には、周知のスロットル装置が接続される。また、各分岐管3A〜3Cの下流端には、エンジンの各吸気ポートへ向けて吸気を導出するための複数の吸気出口6A,6B,6Cが設けられる。吸気出口6A〜6Cの外周には、出口フランジ7が設けられる。出口フランジ7はエンジンに接続される。   As shown in FIGS. 1 to 8, the surge tank 2 is provided with an intake inlet 4 for introducing intake air into the tank 2. An inlet flange 5 is provided on the outer periphery of the intake inlet 4. A known throttle device is connected to the inlet flange 5. A plurality of intake outlets 6A, 6B, and 6C are provided at the downstream ends of the branch pipes 3A to 3C for leading intake air toward the intake ports of the engine. An outlet flange 7 is provided on the outer periphery of the intake outlets 6A to 6C. The outlet flange 7 is connected to the engine.

図1〜図8に示すように、各分岐管3A〜3Cの湾曲部の内側には、各分岐管3A〜3Cのそれぞれに補助ガスを分配するためのガス分配部11,12と、ガス分配部11,12の内壁を暖めるためにガス分配部11,12に隣接して設けられた温水通路部13とが設けられる。この実施形態で、ガス分配部11,12は、EGRガスを分配するEGRガス分配部11と、PCVガスを分配するPCVガス分配部12とを含む。EGRガスは、エンジンから排出された排気の一部であり、エンジンへ還流されるガスであって、本発明の第1の補助ガスの一例に相当する。EGRガス分配部11は、本発明の第1のガス分配部の一例に相当する。また、PCVガスは、エンジンからクランクケースへ漏れ出たブローバイガスであって、本発明の第2の補助ガスの一例に相当する。PCVガス分配部12は、本発明の第2のガス分配部の一例に相当する。EGRガス分配部11とPCVガス分配部12は、温水通路部13を挟んで配置される。EGRガス分配部11、温水通路部13及びPCVガス分配部12は、各分岐管3A〜3Cを横切るよう並列に伸びる。なお、この実施形態において、PCVガス分配部12は、パージガスを分配するパージガス分配部14として共用される。パージガスは、燃料タンクから蒸発した燃料ガスをキャニスタに一旦捕集したガスであり、エンジンへパージして処理するものであって、本発明の第2の補助ガスの一例に相当する。パージガス分配部14は、本発明の第2のガス分配部の一例に相当する。   As shown in FIGS. 1-8, inside the curved part of each branch pipe 3A-3C, the gas distribution parts 11 and 12 for distributing auxiliary gas to each of each branch pipe 3A-3C, and gas distribution In order to warm the inner walls of the portions 11 and 12, a hot water passage portion 13 provided adjacent to the gas distribution portions 11 and 12 is provided. In this embodiment, the gas distribution units 11 and 12 include an EGR gas distribution unit 11 that distributes EGR gas and a PCV gas distribution unit 12 that distributes PCV gas. The EGR gas is a part of the exhaust discharged from the engine, is a gas recirculated to the engine, and corresponds to an example of the first auxiliary gas of the present invention. The EGR gas distribution unit 11 corresponds to an example of the first gas distribution unit of the present invention. PCV gas is blow-by gas leaking from the engine to the crankcase, and corresponds to an example of the second auxiliary gas of the present invention. The PCV gas distribution unit 12 corresponds to an example of the second gas distribution unit of the present invention. The EGR gas distribution unit 11 and the PCV gas distribution unit 12 are arranged with the hot water passage unit 13 interposed therebetween. The EGR gas distribution unit 11, the hot water passage unit 13, and the PCV gas distribution unit 12 extend in parallel across the branch pipes 3A to 3C. In this embodiment, the PCV gas distribution unit 12 is shared as the purge gas distribution unit 14 that distributes the purge gas. The purge gas is a gas once collected in the canister from the fuel gas evaporated from the fuel tank, purged into the engine and processed, and corresponds to an example of the second auxiliary gas of the present invention. The purge gas distribution unit 14 corresponds to an example of the second gas distribution unit of the present invention.

図1〜図8に示すように、EGRガス分配部11には、同分配部11内へEGRガスを導入するためのEGRガス入口16が設けられる。EGRガス入口16の外周には、入口フランジ17が設けられる。入口フランジ17には、EGRガス入口16にEGRガスを流すためのEGR通路の配管が接続されるようになっている。   As shown in FIGS. 1 to 8, the EGR gas distribution unit 11 is provided with an EGR gas inlet 16 for introducing EGR gas into the distribution unit 11. An inlet flange 17 is provided on the outer periphery of the EGR gas inlet 16. The inlet flange 17 is connected to a pipe of an EGR passage for flowing EGR gas to the EGR gas inlet 16.

また、二つの分岐管3B,3Cの間には、PCVガス分配部12にPCVガスを導入するためのPCVガス入口18が設けられる。PCVガス入口18には、PCV弁を介してPCV通路の配管が接続されるようになっている(PCVガス入口18の断面形状については、後述する図10を参照。)。また、PCVガス分配部12(パージガス分配部14)の一端には、同分配部12(14)にパージガスを導入するためのパージガス入口19が設けられる。パージガス入口19は、入口管継手20に設けられる。入口管継手20には、パージガス通路の配管が接続されるようになっている。   Further, a PCV gas inlet 18 for introducing PCV gas into the PCV gas distributor 12 is provided between the two branch pipes 3B and 3C. A PCV passage pipe is connected to the PCV gas inlet 18 via a PCV valve (see FIG. 10 described later for the cross-sectional shape of the PCV gas inlet 18). Further, a purge gas inlet 19 for introducing a purge gas into the distributor 12 (14) is provided at one end of the PCV gas distributor 12 (purge gas distributor 14). The purge gas inlet 19 is provided in the inlet fitting 20. The inlet pipe joint 20 is connected to a pipe for a purge gas passage.

温水通路部13には、エンジン冷却水通路を循環する冷却水が温水として循環するように構成される。温水通路部13は、その長手方向の一端側であって、EGRガス入口16に隣接する位置に、温水入口21と温水出口22が隣接して設けられる。温水入口21は、入口管継手23に設けられ、温水出口22は、出口管継手24に設けられる。入口管継手23及び出口管継手24には、それぞれエンジン冷却水通路の配管が接続されるようになっている。これら配管を介して、エンジン冷却水(温水)が温水通路部13を循環するようになっている。   The hot water passage portion 13 is configured such that the cooling water circulating in the engine cooling water passage circulates as hot water. The hot water passage portion 13 is provided on one end side in the longitudinal direction thereof, adjacent to the EGR gas inlet 16, with a hot water inlet 21 and a hot water outlet 22 adjacent to each other. The hot water inlet 21 is provided in the inlet pipe joint 23, and the hot water outlet 22 is provided in the outlet pipe joint 24. The inlet pipe joint 23 and the outlet pipe joint 24 are connected to piping of the engine cooling water passage, respectively. Engine cooling water (warm water) is circulated through the warm water passage 13 through these pipes.

図9に、吸気マニホールド1を図5のA−A線断面図により示す。図10に、吸気マニホールド1を図5のB−B線断面図により示す。図11に、吸気マニホールド1を図5のC−C線断面図により示す。図12に、吸気マニホールド1を図5のD−D線断面図により示す。図9〜図12からわかるように、EGRガス分配部11、温水通路部13及びPCVガス分配部12(パージガス分配部14)は、それらの長手方向において、それぞれ断面形状が一部異なる。そこで、これらの断面形状を、代表的な図11を参照して以下に説明する。図11に示すように、PCVガス分配部12(パージガス分配部14)は、サージタンク2に最も近付いて配置され、EGRガス分配部11は、各分岐管3A〜3Cの出口フランジ7に最も近付いて配置され、温水通路部13は、両ガス分配部11,12(14)の間に配置される。   FIG. 9 shows the intake manifold 1 by a cross-sectional view taken along line AA of FIG. FIG. 10 shows the intake manifold 1 by a cross-sectional view taken along the line BB of FIG. FIG. 11 shows the intake manifold 1 by a cross-sectional view taken along the line CC of FIG. FIG. 12 shows the intake manifold 1 in a sectional view taken along the line DD in FIG. As can be seen from FIGS. 9 to 12, the EGR gas distribution section 11, the hot water passage section 13, and the PCV gas distribution section 12 (purge gas distribution section 14) are partially different in cross-sectional shape in the longitudinal direction. Therefore, these cross-sectional shapes will be described below with reference to a typical FIG. As shown in FIG. 11, the PCV gas distribution part 12 (purge gas distribution part 14) is disposed closest to the surge tank 2, and the EGR gas distribution part 11 is closest to the outlet flange 7 of each branch pipe 3A to 3C. The hot water passage 13 is disposed between the gas distributors 11 and 12 (14).

図13に、EGRガス分配部11を、図8のE−E線断面図により示す。図11に示すように、EGRガス分配部11は、その長手方向に直交する断面が略長方形をなしている。図13に示すように、EGRガス分配部11の内部には、EGRガス入口16に隣接してEGRガスを一旦集合させるEGRガスチャンバ26と、EGRガスチャンバ26から分岐され、各分岐管3A〜3Cにそれぞれ連通する3つのガス分配通路27A,27B,27C(異なる矢印で示す部分。)が設けられる。EGRガスチャンバ26と各ガス分配通路27A〜27Cは、壁28a,28b,28cにより仕切られる。図11、図13に示すように、各ガス分配通路27A〜27Cの出口側には、各分岐管3A〜3Cに連通するノズル29a,29b,29cが設けられる。   In FIG. 13, the EGR gas distribution part 11 is shown by the EE sectional view taken on the line of FIG. As shown in FIG. 11, the EGR gas distribution unit 11 has a substantially rectangular cross section perpendicular to the longitudinal direction. As shown in FIG. 13, the EGR gas distribution unit 11 includes an EGR gas chamber 26 that temporarily collects EGR gas adjacent to the EGR gas inlet 16, and a branch from the EGR gas chamber 26. Three gas distribution passages 27A, 27B, and 27C (portions indicated by different arrows) that respectively communicate with 3C are provided. The EGR gas chamber 26 and the gas distribution passages 27A to 27C are partitioned by walls 28a, 28b, and 28c. As shown in FIGS. 11 and 13, nozzles 29a, 29b, and 29c communicating with the branch pipes 3A to 3C are provided on the outlet sides of the gas distribution passages 27A to 27C.

図14に、温水通路部13を、図8のF−F線断面図により示す。図11に示すように、温水通路部13は、その長手方向に直交する断面が長方形をなし、その長方形の長辺側がEGRガス分配部11及びPCVガス分配部12に隣接して配置される。図14に示すように、温水通路部13は、壁35,36に沿って長手方向へ二列に延びる往路31及び復路32を備える。往路31と復路32は、壁33により仕切られ、復路32が往路31の上側に配置される。温水通路部13の長手方向の一端側には、往路31に通じる温水入口21と復路32に通じる温水出口22が設けられる。また、温水通路部13の長手方向の他端側は、往路31と復路32が連通路34により繋がり、通路全体としてU字形に構成される。図11に示すように、EGRガス分配部11と温水通路部13との間は、壁35により隔てられる。この実施形態では、壁35,36の部分のみが他の部分よりも熱伝導率のよい材料により構成された伝熱壁となっている。この実施形態では、樹脂材料にカーボン粉が混ぜ込まれることで伝熱壁の部分が他の部分より高い熱伝導率となっている。図9〜図12において、伝熱壁の部分には紗が付されている。   FIG. 14 shows the hot water passage portion 13 by a cross-sectional view taken along line FF in FIG. As shown in FIG. 11, the hot water passage portion 13 has a rectangular cross section orthogonal to the longitudinal direction, and the long side of the rectangle is disposed adjacent to the EGR gas distribution portion 11 and the PCV gas distribution portion 12. As shown in FIG. 14, the hot water passage portion 13 includes an outward path 31 and a return path 32 extending in two rows in the longitudinal direction along the walls 35 and 36. The outbound path 31 and the inbound path 32 are partitioned by a wall 33, and the inbound path 32 is disposed above the outbound path 31. On one end side in the longitudinal direction of the hot water passage portion 13, a hot water inlet 21 leading to the forward path 31 and a hot water outlet 22 leading to the return path 32 are provided. Further, the other end side in the longitudinal direction of the hot water passage portion 13 is formed in a U shape as a whole passage by connecting the forward path 31 and the return path 32 by the communication path 34. As shown in FIG. 11, the EGR gas distribution unit 11 and the hot water passage unit 13 are separated by a wall 35. In this embodiment, only the portions of the walls 35 and 36 are heat transfer walls made of a material having better thermal conductivity than the other portions. In this embodiment, the carbon powder is mixed into the resin material, so that the heat transfer wall portion has a higher thermal conductivity than the other portions. 9 to 12, the heat transfer wall portion is provided with ridges.

図15に、PCVガス分配部12(パージガス分配部14)を、図3のG−G線断面図により示す。図10、図11に示すように、PCVガス分配部12は、長手方向に直交する断面が異形をなし、その異形の一辺側が温水通路部13に隣接して配置される。PCVガス分配部12は、壁36を介して温水通路部13と隔てられるが、この壁36も上記と同様の伝熱壁で構成される。図10、図15に示すように、PCVガス分配部12の内部には、PCVガス入口18及びパージガス入口19に隣接してPCVガス(パージガス)を一旦集合させるPCVガスチャンバ41と、PCVガスチャンバ41から分岐され、各分岐管3A〜3Cにそれぞれ連通する3つのガス分配通路42A,42B,42C(異なる矢印で示す部分。)が設けられる。PCVガスチャンバ41と各ガス分配通路42A〜42Cは、壁43等により仕切られる。図11、図15に示すように、各ガス分配通路42A〜42Cの出口側には、各分岐管3A〜3Cに連通する連通孔44a,44b,44cが設けられる。   FIG. 15 shows the PCV gas distribution unit 12 (purge gas distribution unit 14) by a cross-sectional view taken along the line GG of FIG. As shown in FIGS. 10 and 11, the PCV gas distribution unit 12 has an irregular cross section orthogonal to the longitudinal direction, and one side of the irregular shape is disposed adjacent to the hot water passage unit 13. The PCV gas distribution unit 12 is separated from the hot water passage unit 13 through a wall 36, and the wall 36 is also formed of a heat transfer wall similar to the above. As shown in FIGS. 10 and 15, a PCV gas chamber 41 for temporarily collecting PCV gas (purge gas) adjacent to the PCV gas inlet 18 and the purge gas inlet 19 inside the PCV gas distributor 12, and a PCV gas chamber There are provided three gas distribution passages 42A, 42B, 42C (parts indicated by different arrows) branched from 41 and communicating with the respective branch pipes 3A-3C. The PCV gas chamber 41 and the gas distribution passages 42A to 42C are partitioned by a wall 43 and the like. As shown in FIGS. 11 and 15, communication holes 44a, 44b, and 44c communicating with the branch pipes 3A to 3C are provided on the outlet sides of the gas distribution passages 42A to 42C.

以上説明したこの実施形態の吸気マニホールド1の構成によれば、EGRガス分配部11に隣接して温水通路部13が設けられるので、温水通路部13を流れる温水の熱がEGRガス分配部11の内壁に伝わる。このため、EGRガス分配部11にて、その内壁を温水により暖めることができる。また、EGRガス分配部11と温水通路部13との間を隔てる壁35の部分が、他の部分よりも熱伝導率のよい材料により構成された伝熱壁となっているので、温水の熱がEGRガス分配部11の内壁へ伝わりやすくなる。このため、EGRガス分配部11にて、その内壁を温水により更に効率よく早期に暖めることができる。この結果、EGRガス分配部11の内壁での凝縮水及び凍結の発生を防止することができる。   According to the configuration of the intake manifold 1 of this embodiment described above, since the hot water passage portion 13 is provided adjacent to the EGR gas distribution portion 11, the heat of the hot water flowing through the hot water passage portion 13 is reduced in the EGR gas distribution portion 11. It is transmitted to the inner wall. For this reason, the EGR gas distribution part 11 can warm the inner wall with warm water. Moreover, since the part of the wall 35 which separates between the EGR gas distribution part 11 and the warm water channel | path part 13 becomes a heat-transfer wall comprised with the material whose heat conductivity is better than another part, Is easily transmitted to the inner wall of the EGR gas distribution unit 11. For this reason, in the EGR gas distribution part 11, the inner wall can be warmed with warm water more efficiently and early. As a result, generation of condensed water and freezing on the inner wall of the EGR gas distribution unit 11 can be prevented.

図16に、エンジンの冷間始動時における、(a)エンジン冷却水(破線で示す。)、(b)伝熱壁(実線で示す。)及び(c)従来の樹脂壁(1点鎖線で示す。)の温度変化の違いをグラフにより示す。図16(a)に示すように、エンジンの冷間始動時には、エンジン冷却水は徐々に上昇し、約450秒後に上限温度(約90℃)に達する。これに対し、伝熱壁と従来の樹脂壁は、図16(b),(c)に示すように、約500秒後に上限温度に達するが、従来の樹脂壁の上限温度が「約25℃」となるのに対し、伝熱壁の上限温度が「約63℃」となり、伝熱壁の方が従来の樹脂壁よりも熱伝導率が明らかに高いことがわかる。   FIG. 16 shows (a) engine cooling water (shown by a broken line), (b) heat transfer wall (shown by a solid line), and (c) a conventional resin wall (shown by a one-dot chain line) during cold start of the engine. The difference in temperature change is indicated by a graph. As shown in FIG. 16 (a), when the engine is cold started, the engine coolant gradually rises and reaches the upper limit temperature (about 90 ° C.) after about 450 seconds. On the other hand, as shown in FIGS. 16B and 16C, the heat transfer wall and the conventional resin wall reach the upper limit temperature after about 500 seconds, but the upper limit temperature of the conventional resin wall is “about 25 ° C. In contrast, the upper limit temperature of the heat transfer wall is “about 63 ° C.”, which indicates that the heat transfer wall has a clearly higher thermal conductivity than the conventional resin wall.

この実施形態の構成によれば、温水通路部13の断面長方形の長辺側に伝熱壁(壁35,36)が設けられるので、伝熱壁の面積が相対的に大きくなり、EGRガス分配部11の内壁が持つ熱量が多くなる。この結果、その内壁に接触するEGRガスの温度低下を効果的に抑えることができる。   According to the configuration of this embodiment, since the heat transfer walls (walls 35 and 36) are provided on the long side of the rectangular cross section of the hot water passage portion 13, the area of the heat transfer wall becomes relatively large, and EGR gas distribution is performed. The amount of heat that the inner wall of the part 11 has increases. As a result, the temperature drop of the EGR gas that contacts the inner wall can be effectively suppressed.

この実施形態の構成によれば、温水通路部13の流路が、伝熱壁(壁35,36)に沿って長手方向へ二列に延びる往路31及び復路32と、それらを繋ぐ連通路34により全体がU字形に構成される。従って、温水通路部13全体の断面積に比べて温水の流路面積が小さくなるので、温水の流速が相対的に速くなる。このため、温水の熱ロスを減らしながら温水熱を効率よくEGRガス分配部11の内壁に伝えることができ、その内壁を温水により更に効率よく早期に暖めることができる。また、復路32が往路31の上側に配置されるので、温水入口21から温水と共に往路31に混入した空気(気泡)が、浮力及び温水の流れに沿って効率的に復路32へ流れ、温水出口22から流れ出る。このため、温水通路部13に混入した空気(気泡)を効率的に温水通路部13から排出することができる。   According to the configuration of this embodiment, the flow path of the hot water passage section 13 includes the forward path 31 and the return path 32 extending in two rows in the longitudinal direction along the heat transfer walls (walls 35 and 36), and the communication path 34 connecting them. As a result, the whole is formed into a U-shape. Therefore, since the flow area of the hot water is smaller than the cross-sectional area of the entire hot water passage portion 13, the flow rate of the hot water is relatively increased. For this reason, it is possible to efficiently transmit the hot water heat to the inner wall of the EGR gas distribution unit 11 while reducing the heat loss of the hot water, and it is possible to warm the inner wall more efficiently and quickly with the hot water. In addition, since the return path 32 is arranged on the upper side of the forward path 31, air (bubbles) mixed with the warm water from the warm water inlet 21 together with the warm water efficiently flows to the return path 32 along the flow of buoyancy and warm water, and the warm water outlet 22 will flow out. For this reason, the air (bubbles) mixed in the hot water passage portion 13 can be efficiently discharged from the hot water passage portion 13.

この実施形態の構成によれば、EGRガス分配部11とPCVガス分配部12(パージガス分配部14)が温水通路部13を挟んで配置されるので、温水の熱がEGRガス分配部11の内壁とPCVガス分配部12(パージガス分配部14)の内壁へ伝わりやすくなる。このため、EGRガス分配部11の内壁とPCVガス分配部12(パージガス分配部14)の内壁の両方を温水により更に効率よく早期に暖めることができる。すなわち、PCVガス分配部12(パージガス分配部14)の内壁を上記したEGRガス分配部11の内壁と同様に、温水により更に効率よく早期に暖めることができる。   According to the configuration of this embodiment, since the EGR gas distribution unit 11 and the PCV gas distribution unit 12 (purge gas distribution unit 14) are arranged with the hot water passage unit 13 interposed therebetween, the heat of the hot water is transferred to the inner wall of the EGR gas distribution unit 11. And easily transmitted to the inner wall of the PCV gas distributor 12 (purge gas distributor 14). For this reason, both the inner wall of the EGR gas distribution unit 11 and the inner wall of the PCV gas distribution unit 12 (purge gas distribution unit 14) can be warmed more efficiently and quickly by the hot water. That is, the inner wall of the PCV gas distribution unit 12 (purge gas distribution unit 14) can be warmed more efficiently and quickly with hot water, like the inner wall of the EGR gas distribution unit 11 described above.

この実施形態の構成によれば、EGRガス分配部11、PCVガス分配部12(パージガス分配部14)及び温水通路部13が、湾曲する各分岐管3A〜3Cの湾曲部の内側に配置されるので、EGRガス分配部11、PCVガス分配部12(パージガス分配部14)及び温水通路部13が吸気マニホールド1の外側へ張り出さなくなる。この意味で、吸気マニホールド1の小型化を図ることができ、吸気マニホールド1のエンジンに対する組み付け性及び車両における搭載性を向上させることができる。   According to the configuration of this embodiment, the EGR gas distribution unit 11, the PCV gas distribution unit 12 (purge gas distribution unit 14), and the hot water passage unit 13 are disposed inside the curved portions of the curved branch pipes 3A to 3C. Therefore, the EGR gas distribution part 11, the PCV gas distribution part 12 (purge gas distribution part 14), and the hot water passage part 13 do not protrude to the outside of the intake manifold 1. In this sense, the intake manifold 1 can be reduced in size, and the assembling property of the intake manifold 1 with respect to the engine and the mounting property in the vehicle can be improved.

なお、この発明は前記実施形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で構成の一部を適宜変更して実施することもできる。   In addition, this invention is not limited to the said embodiment, A part of structure can also be changed suitably and implemented in the range which does not deviate from the meaning of invention.

(1)前記実施形態では、図9に紗で示すように、壁35,36の部分のみを他の部分よりも熱伝導率のよい材料により構成された伝熱壁とした。これに対し、図17の断面図で紗で示すように、EGRガス分配部11を構成する壁37の部分も熱伝導率のよい材料により構成された伝熱壁とすることができる。この構成によれば、EGRガス分配部11の内壁全体を速やかに暖めることができる。   (1) In the said embodiment, as shown by the scissors in FIG. 9, only the part of walls 35 and 36 was made into the heat-transfer wall comprised with the material whose heat conductivity is better than another part. On the other hand, as shown by a scissors in the cross-sectional view of FIG. 17, the portion of the wall 37 constituting the EGR gas distribution unit 11 can also be a heat transfer wall made of a material having good thermal conductivity. According to this configuration, the entire inner wall of the EGR gas distribution unit 11 can be quickly warmed.

(2)前記実施形態では、基材である樹脂材料にカーボン粉を混ぜ込むことで伝熱壁を構成したが、樹脂に金属板をインサート成形することで伝熱壁を構成することもできる。   (2) In the said embodiment, although the heat-transfer wall was comprised by mixing carbon powder with the resin material which is a base material, a heat-transfer wall can also be comprised by insert-molding a metal plate to resin.

(3)前記実施形態では、本発明を3つの分岐管3A〜3Cを備えた吸気マニホールド1に具体化したが、分岐管の数は3つ以外の複数であってもよい。   (3) In the above-described embodiment, the present invention is embodied in the intake manifold 1 including the three branch pipes 3A to 3C. However, the number of branch pipes may be a plurality other than three.

(4)前記実施形態では、吸気マニホールド1の詳しい構成について言及しなかったが、吸気マニホールドを複数のピースを接合することで一体に構成することもできる。   (4) Although the detailed configuration of the intake manifold 1 has not been described in the above embodiment, the intake manifold can be configured integrally by joining a plurality of pieces.

(5)前記実施形態では、温水通路部13へ、単にエンジン冷却水通路を循環する冷却水が温水として循環させるように構成した。これに対し、エンジン冷却水通路から、更に排熱回収器(排気通路に設けた。)を通過した温水を温水通路部へ循環させるように構成することもできる。   (5) In the said embodiment, it comprised so that the cooling water which circulates through an engine cooling water path to the hot water channel | path part 13 was circulated as warm water. On the other hand, the hot water that has passed through the exhaust heat recovery device (provided in the exhaust passage) from the engine cooling water passage can be circulated to the hot water passage portion.

この発明は、各種タイプのエンジンに対し、その吸気系の構成部品として利用することができる。   The present invention can be used as a component of the intake system for various types of engines.

1 吸気マニホールド
2 サージタンク
3A 分岐管
3B 分岐管
3C 分岐管
11 EGRガス分配部(ガス分配部、第1のガス分配部)
12 PCVガス分配部(ガス分配部、第2のガス分配部)
13 温水通路部
14 パージガス分配部(ガス分配部、第2のガス分配部)
16 EGRガス入口
18 PCVガス入口
19 パージガス入口
21 温水入口
22 温水出口
26 EGRガスチャンバ
27A ガス分配通路
27B ガス分配通路
27C ガス分配通路
31 往路
32 復路
34 連通路
35 壁(伝熱壁)
36 壁(伝熱壁)
37 壁(伝熱壁)
41 PCVガスチャンバ
42A ガス分配通路
42B ガス分配通路
42C ガス分配通路
DESCRIPTION OF SYMBOLS 1 Intake manifold 2 Surge tank 3A Branch pipe 3B Branch pipe 3C Branch pipe 11 EGR gas distribution part (gas distribution part, 1st gas distribution part)
12 PCV gas distributor (gas distributor, second gas distributor)
13 Hot water passage section 14 Purge gas distribution section (gas distribution section, second gas distribution section)
16 EGR gas inlet 18 PCV gas inlet 19 Purge gas inlet 21 Hot water inlet 22 Hot water outlet 26 EGR gas chamber 27A Gas distribution passage 27B Gas distribution passage 27C Gas distribution passage 31 Outward passage 32 Return passage 34 Communication passage 35 Wall (heat transfer wall)
36 wall (heat transfer wall)
37 walls (heat transfer walls)
41 PCV gas chamber 42A Gas distribution passage 42B Gas distribution passage 42C Gas distribution passage

Claims (5)

サージタンクと、前記サージタンクから分岐した複数の分岐管と、前記複数の分岐管のそれぞれに補助ガスを分配するためのガス分配部と、前記ガス分配部の内壁を暖めるために前記ガス分配部に隣接して設けられ、温水が流れる温水通路部とを備え、前記ガス分配部と前記温水通路部が前記複数の分岐管を横切るよう並列に伸びるように設けられ、前記ガス分配部は、補助ガスが導入されるガス入口と、前記ガス入口から導入される補助ガスを集合させるガスチャンバと、前記ガスチャンバから分岐され、前記各分岐管にそれぞれ連通する複数のガス分配通路とを含む吸気マニホールドにおいて、
前記ガス分配部と前記温水通路部との間が壁で隔てられ、少なくとも前記壁の部分が、他の部分よりも熱伝導率のよい材料により構成された伝熱壁となることを特徴とする吸気マニホールド。
A surge tank; a plurality of branch pipes branched from the surge tank; a gas distribution part for distributing auxiliary gas to each of the plurality of branch pipes; and the gas distribution part for warming an inner wall of the gas distribution part A hot water passage portion through which hot water flows, and the gas distribution portion and the hot water passage portion are provided to extend in parallel so as to cross the plurality of branch pipes. An intake manifold including a gas inlet for introducing gas, a gas chamber for collecting auxiliary gas introduced from the gas inlet, and a plurality of gas distribution passages branched from the gas chamber and communicating with the branch pipes, respectively. In
The gas distribution part and the hot water passage part are separated by a wall, and at least a part of the wall is a heat transfer wall made of a material having a higher thermal conductivity than the other part. Intake manifold.
前記温水通路部は、その長手方向に直交する断面が長方形をなし、その長方形の長辺側に前記伝熱壁が設けられることを特徴とする請求項1に記載の吸気マニホールド。   2. The intake manifold according to claim 1, wherein the hot water passage portion has a rectangular cross section orthogonal to a longitudinal direction thereof, and the heat transfer wall is provided on a long side of the rectangle. 前記温水通路部は、前記伝熱壁に沿って長手方向へ二列に延びる往路及び復路を備え、前記長手方向の一端側にて前記往路に通じる温水入口と前記復路に通じる温水出口が設けられ、前記長手方向の他端側にて前記往路と前記復路が連通路により繋がり、前記復路が前記往路の上側に配置されることを特徴とする請求項1又は2に記載の吸気マニホールド。   The warm water passage section includes a forward path and a return path extending in two rows in the longitudinal direction along the heat transfer wall, and a hot water inlet leading to the forward path and a warm water outlet leading to the return path are provided on one end side in the longitudinal direction. The intake manifold according to claim 1 or 2, wherein the forward path and the return path are connected by a communication path on the other end side in the longitudinal direction, and the return path is disposed above the forward path. 前記複数の分岐管は、前記サージタンクから並列に同一方向へ伸びて湾曲するように形成され、前記ガス分配部と前記温水通路部は、前記各分岐管の湾曲部分の内側に配置されることを特徴とする請求項1乃至3のいずれかに記載の吸気マニホールド。   The plurality of branch pipes are formed so as to bend in parallel in the same direction from the surge tank, and the gas distribution section and the hot water passage section are disposed inside the curved portion of each branch pipe. The intake manifold according to any one of claims 1 to 3. 前記ガス分配部は、第1の補助ガスを分配する第1のガス分配部と第2の補助ガスを分配する第2のガス分配部を含み、前記第1のガス分配部と前記第2のガス分配部が前記温水通路部を挟んで配置されることを特徴とする請求項1乃至4のいずれかに記載の吸気マニホールド。   The gas distribution unit includes a first gas distribution unit that distributes a first auxiliary gas and a second gas distribution unit that distributes a second auxiliary gas, and the first gas distribution unit and the second gas distribution unit The intake manifold according to any one of claims 1 to 4, wherein a gas distribution part is arranged with the hot water passage part interposed therebetween.
JP2016181620A 2016-09-16 2016-09-16 Intake manifold Active JP6656126B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016181620A JP6656126B2 (en) 2016-09-16 2016-09-16 Intake manifold
CN201710451300.5A CN107829853B (en) 2016-09-16 2017-06-15 Air intake manifold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016181620A JP6656126B2 (en) 2016-09-16 2016-09-16 Intake manifold

Publications (2)

Publication Number Publication Date
JP2018044518A true JP2018044518A (en) 2018-03-22
JP6656126B2 JP6656126B2 (en) 2020-03-04

Family

ID=61643043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016181620A Active JP6656126B2 (en) 2016-09-16 2016-09-16 Intake manifold

Country Status (2)

Country Link
JP (1) JP6656126B2 (en)
CN (1) CN107829853B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10190546B2 (en) 2016-12-26 2019-01-29 Aisan Kogyo Kabushiki Kaisha Intake manifold
US10544760B2 (en) 2017-12-06 2020-01-28 Aisan Kogyo Kabushiki Kaisha EGR gas distributor
CN110863932A (en) * 2018-08-28 2020-03-06 株式会社京浜 Air intake manifold
JP2021046792A (en) * 2019-09-16 2021-03-25 愛三工業株式会社 EGR gas distributor
US11193456B1 (en) 2020-05-27 2021-12-07 Aisan Kogyo Kabushiki Kaisha EGR system
US11306689B2 (en) 2020-03-04 2022-04-19 Aisan Kogyo Kabushiki Kaisha EGR system
JP7393202B2 (en) 2019-12-26 2023-12-06 マーレジャパン株式会社 External gas distribution piping for internal combustion engines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415718U (en) * 1987-07-20 1989-01-26
JPH01113117U (en) * 1988-01-26 1989-07-31
JP2005155448A (en) * 2003-11-26 2005-06-16 Honda Motor Co Ltd Exhaust gas recirculation device of multi-cylinder engine
JP2013151906A (en) * 2012-01-25 2013-08-08 Aisin Seiki Co Ltd Freezing prevention structure for pcv passage, and intake manifold
JP2014133550A (en) * 2012-12-11 2014-07-24 Denso Corp Vehicle heat exchange device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10004552A1 (en) * 2000-02-02 2001-08-09 Mann & Hummel Filter Intake pipe with integrated exhaust gas recirculation
US9228537B2 (en) * 2013-05-03 2016-01-05 General Electric Company Method and systems for a passageway block
JP2015209820A (en) * 2014-04-25 2015-11-24 三菱自動車工業株式会社 Intake manifold

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415718U (en) * 1987-07-20 1989-01-26
JPH01113117U (en) * 1988-01-26 1989-07-31
JP2005155448A (en) * 2003-11-26 2005-06-16 Honda Motor Co Ltd Exhaust gas recirculation device of multi-cylinder engine
JP2013151906A (en) * 2012-01-25 2013-08-08 Aisin Seiki Co Ltd Freezing prevention structure for pcv passage, and intake manifold
JP2014133550A (en) * 2012-12-11 2014-07-24 Denso Corp Vehicle heat exchange device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10190546B2 (en) 2016-12-26 2019-01-29 Aisan Kogyo Kabushiki Kaisha Intake manifold
US10544760B2 (en) 2017-12-06 2020-01-28 Aisan Kogyo Kabushiki Kaisha EGR gas distributor
CN110863932A (en) * 2018-08-28 2020-03-06 株式会社京浜 Air intake manifold
CN110863932B (en) * 2018-08-28 2021-08-24 株式会社京浜 Air intake manifold
JP2021046792A (en) * 2019-09-16 2021-03-25 愛三工業株式会社 EGR gas distributor
JP7393202B2 (en) 2019-12-26 2023-12-06 マーレジャパン株式会社 External gas distribution piping for internal combustion engines
US11306689B2 (en) 2020-03-04 2022-04-19 Aisan Kogyo Kabushiki Kaisha EGR system
US11193456B1 (en) 2020-05-27 2021-12-07 Aisan Kogyo Kabushiki Kaisha EGR system

Also Published As

Publication number Publication date
CN107829853A (en) 2018-03-23
CN107829853B (en) 2020-05-12
JP6656126B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP6656126B2 (en) Intake manifold
JP2018105180A (en) Intake manifold
JP5891813B2 (en) Freezing prevention structure of PCV passage and intake manifold
US10544760B2 (en) EGR gas distributor
US20100132639A1 (en) Liquid-cooled internal combustion
JP6278540B2 (en) Fuel system
JP3772871B2 (en) Intake device for internal combustion engine
US10690094B2 (en) Intake apparatus
US20190049195A1 (en) Heat exchanger and core for a heat exchanger
JP4375261B2 (en) Cylinder head and water-cooled engine using the same
JP2012097675A (en) Intake system of internal combustion engine
JP2016523339A (en) Heat exchanger for supplying fuel in an internal combustion engine
WO2015014674A1 (en) Vehicle water jacket
JP5711715B2 (en) Cylinder head coolant passage structure
US9470187B2 (en) EGR heat exchanger with continuous deaeration
JP2015124763A (en) Cylinder head of engine
JP5551547B2 (en) Internal combustion engine
JP6318492B2 (en) EGR cooling device
JP2017180392A (en) Intake air distribution device of internal combustion engine
US20160326948A1 (en) Intake air cooling device of internal combustion engine
JP6447104B2 (en) Intake manifold
CN110500902B (en) Heat exchanger for an internal combustion engine, in particular a charge air cooler
JP2005180379A (en) Exhaust gas recirculation device for engine
JP6517874B2 (en) Internal combustion engine with cooling channel
JP7471346B2 (en) Cylinder head structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R150 Certificate of patent or registration of utility model

Ref document number: 6656126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250