JP2018043312A - Cup type vitrified grind stone for grind stone - Google Patents

Cup type vitrified grind stone for grind stone Download PDF

Info

Publication number
JP2018043312A
JP2018043312A JP2016179648A JP2016179648A JP2018043312A JP 2018043312 A JP2018043312 A JP 2018043312A JP 2016179648 A JP2016179648 A JP 2016179648A JP 2016179648 A JP2016179648 A JP 2016179648A JP 2018043312 A JP2018043312 A JP 2018043312A
Authority
JP
Japan
Prior art keywords
grindstone
abrasive grains
grinding
cup
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016179648A
Other languages
Japanese (ja)
Other versions
JP6819994B2 (en
Inventor
秀一 尾倉
Shuichi Ogura
秀一 尾倉
雅則 沢下
Masanori SAWASHITA
雅則 沢下
稔雄 中澤
Toshio Nakazawa
稔雄 中澤
潤司 永橋
Junji Nagahashi
潤司 永橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizuho Co Ltd
Original Assignee
Mizuho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizuho Co Ltd filed Critical Mizuho Co Ltd
Priority to JP2016179648A priority Critical patent/JP6819994B2/en
Publication of JP2018043312A publication Critical patent/JP2018043312A/en
Application granted granted Critical
Publication of JP6819994B2 publication Critical patent/JP6819994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cup type grind stone for performing grinding working of brittle material such as a semiconductor substrate which makes specular working possible, continues satisfactory sharpness and prevents a grinding mark from being put on a center part of a work-piece.SOLUTION: A grind stone segment 3 of extremely soft class hardness of which porosity as volume ratio obtained by binding composite abrasive grains provided by combining hard abrasive grains such as diamond abrasive grains and soft abrasive grains such as cerium oxide of which respective particle sizes are 3 μm or less with a vitrified bond is 55% or more is provided. The grind stone segment 3 has innumerably existing fine pores opened to an outer part, and the grind stone configures a cup type grind stone which is arranged such that a rotation locus of polish surface draws a ring having a fixed width on a position deviated to the outer circumferential side of one surface of a base metal 2 assuming a disc shape and is joined. Therein, the grind stone segment 3 is arranged such that a distance from a center of the base metal 2 to radial direction inner/outer ends of the grind stone is changed during one round through an outer circumferential part of the base metal.SELECTED DRAWING: Figure 9

Description

この発明は、研削盤用のカップ型砥石、より詳しくは、超微粒(平均粒径0.1〜3μm)砥粒の使用による高品質の鏡面加工を可能にした研削盤用カップ型ビトリファイド砥石に関する。   The present invention relates to a cup-type grindstone for a grinder, and more particularly, to a cup-type vitrified grindstone for a grinder that enables high-quality mirror finishing by using ultrafine particles (average particle size 0.1 to 3 μm). .

研削盤用砥石のひとつにカップ型の研削砥石がある。そのカップ型の研削砥石の従来例として、例えば、下記特許文献1〜3に記載されたものが知られている。   One type of grinding wheel is a cup-type grinding wheel. As a conventional example of the cup-type grinding wheel, for example, those described in Patent Documents 1 to 3 below are known.

半導体基板などのウェーハの加工において、カップ状基台の周壁の端面に取り付けた砥石セグメント(切れ刃と称している)をウェーハの回転中心まで進出させた状態で加工を行うと、砥石セグメントのエッジ部が常に同一の軌道を通るため、ウェーハ中心部の回転周速度が極端に低下する箇所に疵を創成させ加工精度が悪化する。   When processing a wafer such as a semiconductor substrate, if the grindstone segment (called a cutting edge) attached to the end face of the peripheral wall of the cup-shaped base is advanced to the rotation center of the wafer, the edge of the grindstone segment Since the portion always passes through the same track, a wrinkle is created at a location where the rotational peripheral speed at the center of the wafer is extremely reduced, and the processing accuracy deteriorates.

そこで、特許文献1に記載された研削砥石は、砥石セグメントの配列を歪円形状にして砥石回転時に砥石セグメントが砥石の半径方向内外に揺動するようにして砥石を揺動させる装置を持たない研削盤を用いて上記の不具合を解決できるようにしている。   Therefore, the grinding wheel described in Patent Document 1 does not have a device that swings the grindstone so that the grindstone segment swings in and out in the radial direction of the grindstone when rotating the grindstone by arranging the grindstone segments in a distorted circle shape. The above-mentioned problems can be solved by using a grinding machine.

また、特許文献2,3に記載されたカップ型砥石は、横幅の異なる2種類の砥石セグメントを組み合わせることで、特許文献1の砥石と同様の効果を製造の容易な構造で実現している。   Moreover, the cup type grindstone described in Patent Documents 2 and 3 achieves the same effect as the grindstone of Patent Document 1 with an easily manufactured structure by combining two types of grindstone segments having different widths.

実公平7−5983号公報No. 7-5983 特開平11−207634号公報JP-A-11-207634 特開平11−207635号公報JP-A-11-207635

最近の研削加工における加工対象物は、それぞれの特性が異なるアルミナ、サファイア、炭化ケイ素、窒化ケイ素、窒化ガリウム、窒化アルミニウム、ニオブ酸リチウム、タンタル酸リチウム、コージライト、特殊ガラス、PCD等、多種に亘っている。   The objects to be processed in recent grinding processes are various, such as alumina, sapphire, silicon carbide, silicon nitride, gallium nitride, aluminum nitride, lithium niobate, lithium tantalate, cordierite, special glass, and PCD. Across.

研削加工において加工時間の短縮が求められることは勿論、要求加工面粗さも鏡面化を指向する傾向が顕著である。そのような状況でも、後工程のラッピング・ポリッシング工程の負担軽減や工程時間の大幅短縮を狙って高精度でダメージフリーの加工が要求されている。   The grinding process is required to reduce the processing time, and the required processing surface roughness tends to be mirrored. Even in such a situation, high-precision and damage-free processing is demanded with the aim of reducing the burden of the lapping / polishing process in the subsequent process and greatly reducing the process time.

鏡面加工に関しては、使用する砥石の砥粒の微粒子化が有効と考えられるが、研削加工における砥石砥粒の超微粒化は、切れ味が極端に低下することから実用化に至っていないのが現状である。   For mirror finishing, it is considered effective to make the abrasive grains of the grinding wheel to be used fine, but the ultra-fine grinding of the grinding stones in the grinding process has not yet been put to practical use because the sharpness is extremely reduced. is there.

また、カップ型の研削砥石を使用した加工では、回転する研削砥石の研削面の軌道中心が回転する加工物の中心を常に通るため、図15に示すような研削パターンが発生し、砥石幅方向のエッジによって疵を生成し、加工物中心部の面粗さが極端に悪くなる傾向がある(図16の砥石エッジの軌道集積パターン及び実加工面の性状を示す図17の写真参照)。   Further, in the processing using the cup-type grinding wheel, the center of the orbit of the grinding surface of the rotating grinding wheel always passes through the center of the rotating workpiece, so that a grinding pattern as shown in FIG. There is a tendency that wrinkles are generated by the edges of the workpiece, and the surface roughness of the center of the workpiece is extremely deteriorated (see the photograph of FIG. 17 showing the trajectory accumulation pattern of the grindstone edge and the properties of the actual machining surface in FIG. 16).

砥石の砥粒については、従来は、研削盤加工で能率よく加工できる領域は2000番(砥粒粒径8μm)までが限界とされていた。それよりも微粒領域においては切れ味が極端に低下したり、粒径に即した面粗さが得られない。   Regarding the abrasive grains of the grindstone, conventionally, the area that can be efficiently processed by grinding machine processing is limited to No. 2000 (abrasive grain diameter of 8 μm). In that case, in the fine particle region, the sharpness is extremely lowered, and the surface roughness corresponding to the particle size cannot be obtained.

上記特許文献1の研削砥石は、砥石の回転に伴って砥石セグメントが砥石の半径方向内外に揺動するようにしたことによって加工物の中心部に生じる研削マークと称される研削疵(研磨模様)を抑制できるが、砥石が歪円の特殊な形状であるため、その製造が容易でない。   The grinding wheel disclosed in Patent Document 1 is a grinding wheel called a grinding mark (polishing pattern) generated at the center of a workpiece by causing the grinding wheel segment to swing in and out in the radial direction of the grinding wheel as the grinding wheel rotates. However, since the grindstone has a special shape of a strain circle, its manufacture is not easy.

また、上記特許文献2,3の砥石は、特許文献1の砥石に比べる製造し易い構造になっているが、これらは、2種類の砥石セグメントを用いるので、生産性や製造コストを考えるとまだ改善の余地を残している。   Moreover, although the grindstone of the said patent document 2 and 3 has a structure which is easy to manufacture compared with the grindstone of patent document 1, since these use two types of grindstone segments, when considering productivity and manufacturing cost, it is still. There is room for improvement.

このほか、特許文献1〜3は、砥石の砥粒等については何ら言及していない。上述した通り、従来限界とされていた2000番程度の砥石では後工程のラッピング・ポリッシング工程の負担軽減を図るのが難しい。   In addition, Patent Documents 1 to 3 do not mention any abrasive grains of the grindstone. As described above, it is difficult to reduce the burden of the lapping / polishing process in the subsequent process with a grindstone of about 2000, which has been regarded as a limit.

上記の現状技術に鑑み、研削加工において、より微粒領域(0.1〜3μm)の砥粒を使用しても切れ味が低下しない砥石の開発と疵(特に加工物中心部の研削マーク)を発生させない砥石の開発が望まれている。   In view of the above-mentioned present state of the art, in grinding processing, development of whetstones that do not degrade sharpness even when using abrasive grains in the finer particle region (0.1 to 3 μm) and generation of wrinkles (especially grinding marks at the center of the workpiece) The development of a grindstone that does not occur is desired.

そこで、この発明は、鏡面加工が可能で切れ味の低下が抑えられ、さらに、加工物中心部の疵も防止される研削盤用のカップ型砥石を実現して提供することを課題としている。   Accordingly, an object of the present invention is to realize and provide a cup-type grindstone for a grinding machine that can be mirror-finished, can prevent a reduction in sharpness, and can prevent wrinkles at the center of the workpiece.

上記の課題を解決するため、この発明においては、各々の粒径が3μm以下の硬質砥粒と軟質砥粒を組み合わせた複合砥粒を低融点ビトリファイドボンドで結合させた体積比での気孔率が55%以上の極軟目硬度の砥石を有し、その砥石は、研磨面となる表面に外部に開放された微細な気孔が無数に存在し、その砥石が、円盤状をなす台金の片面の外周側に偏った位置に研磨面の回転軌跡が一定の幅を持った輪を画く配置にして接合された研削盤用カップ型ビトリファイド砥石であって、
前記砥石の配置が、前記台金の中心から砥石の径方向外端までの距離と径方向内端までの距離が台金の外周部を1周する間に変化するようになされた研削盤用カップ型ビトリファイド砥石を提供する。
In order to solve the above-mentioned problems, in the present invention, the porosity in a volume ratio in which composite abrasive grains, each of which is a combination of hard abrasive grains and soft abrasive grains each having a grain size of 3 μm or less, are bonded by a low melting point vitrified bond, There is a grindstone with an extremely soft hardness of 55% or more, and the grindstone has numerous fine pores open to the outside on the surface that becomes the polishing surface, and the grindstone is a single side of a disk-shaped base metal A cup-type vitrified grindstone for a grinding machine, which is joined with a rotation locus of a polishing surface in a position deviating to the outer peripheral side of the ring so as to describe a ring having a certain width,
For a grinding machine in which the disposition of the grindstone is such that the distance from the center of the base metal to the radially outer end of the grindstone and the distance from the radially inner end of the grindstone change during one round of the outer peripheral portion of the base metal A cup-type vitrified grinding wheel is provided.

かかる研削盤用カップ型ビトリファイド砥石の好ましい形態を以下に列挙する。
1)前記砥石の砥石粒度、RL硬度及び、2点支持1点荷重での抗折力で表される砥石強度の関係が下表の通りに設定されたもの。
Preferred forms of such cup-type vitrified grinding wheels for grinding machines are listed below.
1) The relationship between the grindstone particle size, RL hardness of the grindstone, and the strength of the grindstone expressed by the bending strength with a one-point load at two points is set as shown in the table below.

2)前記複合砥粒の硬質砥粒が、ダイヤモンド砥粒または立方晶窒化ホウ素砥粒であり、前記軟質砥粒が、酸化セリウム、シリカ、硫酸バリウムもしくは酸化ジルコニウムであり、前記硬質砥粒の体積比での割合が50〜90%、軟質砥粒の体積比での割合が10〜50%であるもの。 2) The hard abrasive grains of the composite abrasive grains are diamond abrasive grains or cubic boron nitride abrasive grains, the soft abrasive grains are cerium oxide, silica, barium sulfate or zirconium oxide, and the volume of the hard abrasive grains The ratio in the ratio of 50 to 90% and the volume ratio of the soft abrasive grains is 10 to 50%.

3)前記砥石が、同一形状、同一サイズの複数の砥石セグメントを組み合わせて構成され、各砥石セグメントの個々の寸法は、幅:3〜6mm、長さ:9〜30mm、厚み:5〜10mmであり、その砥石セグメントが周方向に1〜10mmの隙間をあけて配列されたもの。 3) The said grindstone is comprised combining several grindstone segments of the same shape and the same size, and each dimension of each grindstone segment is width: 3-6 mm, length: 9-30 mm, thickness: 5-10 mm Yes, the grindstone segments are arranged with a gap of 1-10 mm in the circumferential direction.

4)前記砥石セグメントが長さ方向に直線的に延びており、かつ、長さ方向の両端がR面であるもの。 4) The grindstone segment extends linearly in the length direction, and both ends in the length direction are R surfaces.

5)前記砥石セグメントの配列が、一定曲率の凸円弧の辺を有する多角形を基本形にし、その多角形の各辺に沿って複数個の砥石セグメントが疑似の凸円弧を描くように並べられ、各コーナ部において隣り合う位置の砥石セグメントが所定の角度をもって離間状態に配置されたもの。
6)前記多角形が奇数角の正多角形であり、その正多角形の各凸円弧の辺に沿って複数個の砥石セグメントが並べられ、各コーナ部において隣り合う位置の砥石セグメントが、正多角形の角数をnとしたときに、{X=180°×(n−2)÷n}の式で求まる角度Xをもって離間状態に配置されたもの。なお、奇数角の正多角形は五角形が特に好ましい。
7)前記台金の中心から砥石の径方向外端までの距離と径方向内端までの距離が台金の外周部を1周する間の変化量が砥石幅よりも0.5〜2mm大きくなるように前記砥石セグメントの配列がなされたもの。
5) The arrangement of the grindstone segments is based on a polygon having a side of a convex arc of constant curvature, and a plurality of grindstone segments are arranged along each side of the polygon so as to draw a pseudo convex arc, A grindstone segment at an adjacent position in each corner is arranged in a separated state with a predetermined angle.
6) The polygon is an odd-numbered regular polygon, and a plurality of grindstone segments are arranged along the sides of the convex arcs of the regular polygon. When the number of corners of the polygon is n, the polygons are arranged in a separated state with an angle X determined by the equation {X = 180 ° × (n−2) ÷ n}. The odd-numbered regular polygon is particularly preferably a pentagon.
7) The amount of change between the distance from the center of the base metal to the radially outer end of the grindstone and the distance from the radially inner end of the base metal to the outer circumference of the base metal is 0.5 to 2 mm larger than the grindstone width. The whetstone segments are arranged so as to be.

3μm以下の超微粒の砥粒を用いた砥石であっても、切れ味が優れることが要求される。そこで、この発明においては、ダイヤモンド砥粒や立方晶窒化ホウ素砥粒などの硬質砥粒と、酸化セリウム、シリカ、硫酸バリウム、もしくは酸化ジルコニウムなどの軟質砥粒を組み合わせた複合砥粒を低融点ビトリファイドボンドで結合させた極軟目硬度の砥石を採用した。   Even a grindstone using ultrafine abrasive grains of 3 μm or less is required to have excellent sharpness. Therefore, in the present invention, low melting point vitrified composite abrasive grains in which hard abrasive grains such as diamond abrasive grains and cubic boron nitride abrasive grains and soft abrasive grains such as cerium oxide, silica, barium sulfate or zirconium oxide are combined. A very soft hardness grindstone bonded with a bond was adopted.

この砥石は、複合砥粒と低融点ビトリファイドボンドの混合物を900℃以下の温度で焼成して得られる。   This grindstone is obtained by firing a mixture of composite abrasive grains and a low melting point vitrified bond at a temperature of 900 ° C. or lower.

軟質砥粒を混合することで砥粒間隔をあけることができる。また、軟質砥粒と硬質砥粒をビトリファイドボンドで結合させることで微小破砕が起こり易くなって良好な切れ味の持続が可能となる。これに加え、メカノケミカル反応も期待できる。   By mixing soft abrasive grains, the gap between the abrasive grains can be increased. Moreover, by combining soft abrasive grains and hard abrasive grains with vitrified bonds, micro-crushing is likely to occur, and good sharpness can be maintained. In addition, a mechanochemical reaction can be expected.

硬質砥粒に対する軟質砥粒の混合割合は、質量比で10〜50%が適当である。この割合であれば砥粒間隔を確保できる上に、砥粒陥入能力も向上させることができる。   The mixing ratio of the soft abrasive grains to the hard abrasive grains is suitably 10 to 50% by mass ratio. If it is this ratio, an abrasive grain space | interval can be ensured and an abrasive grain penetration capability can also be improved.

砥石組織は、6〜12%の低結合剤率でありながら55%以上の高気孔率を保有した多孔質組織となっており、その多孔質組織により、切り屑の排出が良好になされて切れ味の持続性が確保される。   The grindstone structure is a porous structure having a high porosity of 55% or more while having a low binder ratio of 6 to 12%. The porous structure allows good chip discharge and sharpness. Sustainability.

また、加工物の中央部における研削マーク・面粗さの悪化の問題に対しては、台金の中心から砥石の径方向外端までの距離と径方向内端までの距離が台金の外周部を1周する間(砥石が1回転する間)に変化しているため、砥石のエッジが同一の軌道を通らない。   Also, for the problem of deterioration of grinding marks and surface roughness at the center of the workpiece, the distance from the center of the base metal to the radially outer end of the grindstone and the distance from the radially inner end is the outer circumference of the base metal. Since it changes during one round of the part (while the grindstone makes one revolution), the edge of the grindstone does not pass the same track.

上記距離の変化により、カップ型砥石の回転に伴ってエッジの位置が径方向の内側と外側との間で揺動し、これにより、砥石エッジの軌道集積パターンにずれが生じて加工物の中央部における研削マークの発生・面粗さの悪化が抑制される。   Due to the change in the distance, the position of the edge fluctuates between the inner side and the outer side in the radial direction as the cup-type grindstone rotates, thereby causing a deviation in the track accumulation pattern of the grindstone edge and the center of the workpiece. The generation of grinding marks and the deterioration of surface roughness at the part are suppressed.

上記距離の変化は、同一形状、同一サイズの複数の砥石セグメントを組み合わせて研磨面を構成することで簡単に付与することができる。   The change in the distance can be easily imparted by combining a plurality of grindstone segments having the same shape and the same size to form a polished surface.

前記砥石セグメントの配列を、一定曲率の凸円弧の辺を有する多角形を基本形にし、その多角形の各辺に沿って複数個の砥石セグメントが疑似の凸円弧を描くように並べ、各コーナ部において隣り合う位置の砥石セグメントを所定の角度をもって離間状態に配置することで台金の中心から砥石の径方向内・外端までの距離を台金の周囲を1周する間に変化させることができる。   The arrangement of the grindstone segments is based on a polygon having convex arc sides with a constant curvature, and a plurality of grindstone segments are arranged along each side of the polygon so as to draw a pseudo convex arc. The distance from the center of the base metal to the inner and outer ends in the radial direction of the grinding wheel can be changed during one round of the circumference of the base metal by arranging the grindstone segments at adjacent positions in a separated state at a predetermined angle. it can.

ここで言う所定の角度Xとは、正多角形の角数をnとしたときに、{X=180°×(n−2)÷n}の式で求まる角度である。   The predetermined angle X mentioned here is an angle obtained by the equation {X = 180 ° × (n−2) ÷ n} where n is the number of regular polygons.

前記基本形の多角形が奇数角の多角形であると、研磨面が同一の軌道を通る状況を回避し易い。基本形の多角形が正五角形であり、その正五角形の各凸円弧の辺に沿って複数個の砥石セグメントが並べられ、各コーナ部において隣り合う位置の砥石セグメントが、108°の角度をもって離間状態に配置されたものは特に、加工物の中央部における研削マークの防止、面粗さの改善、取代の増加、耐摩耗性などの総合評価において最も優れた効果が発揮された。   When the basic polygon is an odd-numbered polygon, it is easy to avoid a situation in which the polishing surface passes through the same track. The basic polygon is a regular pentagon, and a plurality of grindstone segments are arranged along the side of each convex arc of the regular pentagon, and the grindstone segments at adjacent positions in each corner portion are spaced apart at an angle of 108 °. In particular, those arranged in (1) exhibited the most excellent effects in comprehensive evaluations such as prevention of grinding marks at the center of the workpiece, improvement of surface roughness, increase in machining allowance, and wear resistance.

各砥石セグメントは、直線的に延びるものが製造時の歪などが生じ難くて高寸法精度を確保し易い。また、各砥石セグメントの個々の寸法は、幅:3〜6mm、長さ:9〜30mm、厚み:5〜10mm程度が適当であり、さらに、各砥石セグメントの形状は、長さ方向の両端がR面であるものがよい。   Each grindstone segment that extends linearly is less likely to be distorted during manufacturing, and it is easy to ensure high dimensional accuracy. The individual dimensions of each grindstone segment are suitably width: 3 to 6 mm, length: 9 to 30 mm, and thickness: 5 to 10 mm. Further, the shape of each grindstone segment has both ends in the length direction. What is an R surface is good.

砥石セグメントの長さ方向の両端をR面にすると、加工面に対する食いつきが徐々に広がるため、砥石エッジから発生すると考えられる深い疵が生じ難い。   If both ends in the length direction of the grindstone segment are R surfaces, the biting on the machined surface gradually spreads, so that deep wrinkles that are thought to occur from the grindstone edge are unlikely to occur.

その砥石セグメントを周方向に1〜10mmの隙間をあけて配列したものが、実削試験で好結果が得られている。   Good results have been obtained in the actual cutting test by arranging the grindstone segments with a gap of 1 to 10 mm in the circumferential direction.

この発明のカップ型砥石(疑似多角形砥石)の一例を示す斜視図である。It is a perspective view which shows an example of the cup type grindstone (pseudo polygon grindstone) of this invention. 図1のカップ型砥石の平面図である。It is a top view of the cup type grindstone of FIG. この発明のカップ型砥石(疑似多角形砥石)の他の例を示す正面図である。It is a front view which shows the other example of the cup type grindstone (pseudo polygon grindstone) of this invention. この発明のカップ型砥石(疑似多角形砥石)のさらに他の例を示す正面図である。It is a front view which shows the further another example of the cup type grindstone (pseudo polygon grindstone) of this invention. この発明のカップ型砥石(疑似多角形砥石)のさらに他の例を示す正面図である。It is a front view which shows the further another example of the cup type grindstone (pseudo polygon grindstone) of this invention. この発明のカップ型砥石(疑似多角形砥石)のさらに他の例を示す正面図である。It is a front view which shows the further another example of the cup type grindstone (pseudo polygon grindstone) of this invention. この発明のカップ型砥石(疑似多角形砥石)のさらに他の例を示す正面図である。It is a front view which shows the further another example of the cup type grindstone (pseudo polygon grindstone) of this invention. この発明のカップ型砥石(疑似多角形砥石)のさらに他の例を示す正面図である。It is a front view which shows the further another example of the cup type grindstone (pseudo polygon grindstone) of this invention. 砥石セグメントを多角形の各凸円弧の辺に添って配列した状態の一例を示す正面図である。It is a front view which shows an example of the state which arranged the grindstone segment along the side of each convex arc of a polygon. ブロック状の砥石セグメントを同真円上に配列したカップ型砥石の一例を示す正面図である。It is a front view which shows an example of the cup type grindstone which arranged the block-shaped grindstone segment on the same perfect circle. 砥石セグメントを台金中心と同心の円に対して接線方向に配列したターボ型のカップ型砥石を示す正面図である。It is a front view which shows the turbo type cup type grindstone which arranged the grindstone segment in the tangential direction with respect to the circle | round | yen concentric with the metal base. 砥石セグメントを台金中心と同心の円に沿って配列したコンティニュアス型のカップ型砥石を示す正面図である。It is a front view which shows the continuous type cup-type grindstone which arranged the grindstone segment along the circle | round | yen concentric with the metal base. 砥石セグメントの好ましい形状を示す斜視図である。It is a perspective view which shows the preferable shape of a grindstone segment. 研削盤によるバーチカル研削の加工イメージ図である。It is a processing image figure of vertical grinding by a grinding machine. 砥石のエッジの軌道が、加工部の中心を通る単一の軌道である研削パターンの説明図である。It is explanatory drawing of the grinding pattern whose track | orbit of the edge of a grindstone is a single track | truck passing through the center of a process part. 図15の研削パターンでの砥石エッジの軌道集積図である。FIG. 16 is a track integration diagram of a grindstone edge in the grinding pattern of FIG. 15. 図15の研削パターンで加工物の中心に生じた研削マークを示す実加工面の性状を示す図(写真)である。It is a figure (photograph) which shows the property of the actual processing surface which shows the grinding mark produced in the center of a workpiece with the grinding pattern of FIG. この発明のカップ型砥石での加工による研磨面の軌跡と砥石の軌道中心の移動量を示す図である。It is a figure which shows the movement amount of the locus | trajectory of the grinding | polishing surface by the process with the cup type grindstone of this invention, and the track | orbit center of a grindstone. 図18の研削パターンでの砥石エッジの軌道集積図である。FIG. 19 is a track integration diagram of a grindstone edge in the grinding pattern of FIG. 18. この発明のカップ型砥石による実加工面の性状を示す図(写真)である。It is a figure (photograph) which shows the property of the actual processing surface by the cup type grindstone of this invention. ブロック型砥石による実加工面の性状を示す図(写真)である。It is a figure (photograph) which shows the property of the actual processing surface by a block type grindstone. ターボ型砥石による実加工面の性状を示す図(写真)である。It is a figure (photograph) which shows the property of the actual processing surface by a turbo type grindstone. コンティニュアス型砥石による実加工面の性状を示す図(写真)である。It is a figure (photograph) which shows the property of the actual processing surface by a continuous type grindstone. 疑似五角形砥石による実加工面の性状を示す図(写真)である。It is a figure (photograph) which shows the property of the actual processing surface by a pseudo pentagonal grindstone.

以下、添付図面に基づいて、この発明の研削盤用カップ型ビトリファイド砥石の実施の形態を説明する。   Embodiments of a cup-type vitrified grindstone for a grinding machine according to the present invention will be described below with reference to the accompanying drawings.

図1〜図8に示した研削盤用カップ型ビトリファイド砥石(以下では、カップ型砥石と略称する)1は、いずれも、台金(円盤状ホイール)2の片面の外周側に偏った位置に、砥石セグメント3の多数個を、研磨面の回転軌跡D(図18参照)が一定の幅を持った輪を画く配置にして接合したものである。   The cup type vitrified grindstone for a grinding machine (hereinafter abbreviated as cup type grindstone) 1 shown in FIGS. 1 to 8 is located at a position biased toward the outer peripheral side of one side of a base metal (disk-shaped wheel) 2. A large number of the grindstone segments 3 are joined in such a manner that the rotation trajectory D (see FIG. 18) of the polishing surface is arranged so as to draw a ring having a certain width.

図2は、図1のカップ型ビトリファイド砥石の砥石セグメント3の配列状態をわかりやすくあらわした正面図である。図1のカップ型ビトリファイド砥石は同一品であるので、以下では、代表図として図2を挙げる。   FIG. 2 is a front view showing the arrangement state of the grindstone segments 3 of the cup-type vitrified grindstone of FIG. 1 in an easy-to-understand manner. Since the cup-type vitrified grindstone of FIG. 1 is the same product, FIG.

各砥石セグメント3の配列パターンは、図1〜図8の各実施例とも、一定曲率の凸円弧の辺を有する多角形を基本形にし、その多角形の各辺に沿って複数個の砥石セグメント3が疑似の凸円弧を描くように並べられ、各コーナ部において隣り合う位置の砥石セグメント3,3が、既述の{X=180°×(n−2)÷n}の式で求まる角度Xをもって離間した状態に配置されたものになっている。   The arrangement pattern of each grindstone segment 3 is a polygon having a side of a convex arc having a constant curvature in each of the embodiments of FIGS. 1 to 8, and a plurality of grindstone segments 3 along each side of the polygon. Are arranged so as to draw a pseudo-convex arc, and the grindstone segments 3 and 3 at adjacent positions in each corner portion are angle X determined by the above-described formula {X = 180 ° × (n−2) ÷ n}. Are arranged in a separated state.

これにより、台金2の中心O(図9参照)から砥石(砥石セグメント3)の径方向内・外端までの距離が台金の外周部を1周する間に変化している。   As a result, the distance from the center O (see FIG. 9) of the base metal 2 to the inner and outer ends in the radial direction of the grindstone (grindstone segment 3) changes while making one round of the outer peripheral portion of the base metal.

図1、図2のカップ型砥石1は、基本形の多角形が正三角形、図3のカップ型砥石1は、基本形の多角形が正四角形、図4〜図6のカップ型砥石1は、基本形の多角形が正五角形、図7のカップ型砥石1は、基本形の多角形が正六角形、図8のカップ型砥石1は、基本形の多角形が正七角形となっている。   The cup-shaped grindstone 1 of FIGS. 1 and 2 has a regular polygon as a regular triangle, the cup-shaped grindstone 1 of FIG. 3 has a regular polygon as a regular square, and the cup-shaped grindstone 1 of FIGS. 4 to 6 has a basic shape. 7 is a regular pentagon, the cup-shaped grindstone 1 of FIG. 7 has a regular polygon of a regular hexagon, and the cup-shaped grindstone 1 of FIG. 8 has a regular polygon of a regular heptagon.

図4〜図6のカップ型砥石1は、五角形の隣り合うコーナ間の凸円弧の辺S(図9参照)を、それぞれ半径R=150mm(図4)、半径R=135mm(図5)、半径R=190mm(図6)の辺にしてそれぞれの辺に沿って複数個の砥石セグメント3を疑似円弧を画くように並べたものである。   The cup-type grindstone 1 shown in FIGS. 4 to 6 has a radius R = 150 mm (FIG. 4), a radius R = 135 mm (FIG. 5), and a convex arc side S (see FIG. 9) between adjacent corners of a pentagon. A plurality of grindstone segments 3 are arranged so as to draw a pseudo arc along each side with a radius R = 190 mm (FIG. 6).

砥石セグメント3は、各々の粒径が3μm以下の硬質砥粒(ダイヤモンド砥粒または立方晶窒化ホウ素砥粒)と軟質砥粒(酸化セリウム、シリカ、硫酸バリウムまたは酸化ジルコニウム)を組み合わせた複合砥粒を低融点ビトリファイドボンドで結合させた極軟目硬度の砥石である。   The grindstone segment 3 is a composite abrasive in which hard abrasive grains (diamond abrasive grains or cubic boron nitride abrasive grains) each having a particle size of 3 μm or less and soft abrasive grains (cerium oxide, silica, barium sulfate or zirconium oxide) are combined. Is a grindstone of extremely soft hardness in which is bonded with a low melting point vitrified bond.

硬質砥粒と軟質砥粒の体積比での割合は、前者50〜90%、後者が10〜50%である。   The volume ratio of hard abrasive grains to soft abrasive grains is 50 to 90% for the former and 10 to 50% for the latter.

各砥石セグメント3は、同一材料で作られており、形状、サイズも同一である。そのために、同一カップ型砥石に採用する砥石セグメント3の種類が1種類に統合され、前記特許文献2,3の砥石と比べて生産性や製造コストに優れる。   Each grindstone segment 3 is made of the same material, and has the same shape and size. Therefore, the kind of grindstone segment 3 employ | adopted for the same cup type grindstone is integrated into one kind, and it is excellent in productivity and manufacturing cost compared with the grindstone of the said patent documents 2 and 3.

また、その形状は湾曲したものではなく、図13に示すように、長さ方向に直線的に延びたものが用いられており、成形し易いものになっている。また、直線の方が、加工時、微量に砥石が揺動する効果も生じる。さらに、長さ方向の両端が図13のようにR面であるものが用いられており、エッジによる加工物への深い疵の発生が起こり難い。   Further, the shape is not curved, and as shown in FIG. 13, a shape linearly extending in the length direction is used, and it is easy to mold. In addition, the straight line also has an effect that the grindstone swings in a minute amount during processing. Furthermore, the both ends in the length direction are R surfaces as shown in FIG. 13, and deep wrinkles are unlikely to occur on the workpiece due to the edges.

また、同一形状、同一サイズの砥石セグメント3を所定のパターンに配列して台金2に接合しているので、前記特許文献1の砥石よりも製造が容易である。   In addition, since the grindstone segments 3 having the same shape and the same size are arranged in a predetermined pattern and joined to the base metal 2, manufacture is easier than the grindstone of the Patent Document 1.

図2〜図8に示す形状のカップ型砥石を試作した。また、比較例として、従来からの標準であるブロック型の砥石(図10参照)、ターボ型の砥石(図11参照)、コンティニュアス型の砥石(図12参照)も用意した。   A cup-type grindstone having the shape shown in FIGS. Further, as a comparative example, a block-type grindstone (see FIG. 10), a turbo-type grindstone (see FIG. 11), and a continuous grindstone (see FIG. 12), which are conventional standards, were also prepared.

<使用砥石>
研削盤での中仕上げ(8〜20μmの取代と加工面粗さ5〜20nmRa以下を確保)用として、砥粒粒径が2〜4μm(4000番メッシュ)から粒径0〜2μm(8000番メッシュ)の砥石(砥石セグメント)を用いた。
<Whetstone used>
Abrasive grain size of 2-4 μm (4000 mesh) to 0-2 μm (8000 mesh) for intermediate finishing on a grinding machine (to ensure 8-20 μm machining allowance and 5-20 nmRa or less on the processed surface) ) Grindstone (grindstone segment).

また、仕上げ(1〜5μmの取代と2nmRa以下の鏡面を確保)用として、砥粒粒径が0〜1μm(10000番メッシュ)から0〜0.5μm(20000番メッシュ)の砥石(砥石セグメント)を用いた。   Also, for finishing (securing 1-5 μm machining allowance and mirror surface of 2 nmRa or less), grindstones (grinding stone segments) with an abrasive grain size of 0-1 μm (10000 mesh) to 0-0.5 μm (20000 mesh) Was used.

砥粒はアルミナ(Al)・サファイア(Al)・炭化ケイ素(SiC)・窒化ケイ素(Si)・窒化ガリウム(GaN)・ジルコニア(ZrO)・窒化アルミニウム(AlN)・タンタル酸リチウム(LiTaO)・ニオブ酸リチウム(LiNbO)・ケイ素(シリコン・Si)・石英・水晶(SiO)コージライト(2MgO・2Al・5SiO)・WC−Co系合金などの超硬合金・PCD(ダイヤモンド焼結体)・PCBN(CBN焼結体)やガラス等の脆性材料の研磨に対しては硬質砥粒としてダイヤモンド砥粒を用い、鉄系材料に対してはCBN(六方晶系窒化ホウ素)砥粒を用いる。 The abrasive grains are alumina (Al 2 O 3 ), sapphire (Al 2 O 3 ), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), gallium nitride (GaN), zirconia (ZrO 2 ), aluminum nitride (AlN ), Lithium tantalate (LiTaO 3 ), lithium niobate (LiNbO 3 ), silicon (silicon, Si), quartz, quartz (SiO 2 ) cordierite (2MgO, 2Al 2 O 3 , 5SiO 2 ), WC-Co series For grinding of brittle materials such as cemented carbides such as alloys, PCD (diamond sintered body), PCBN (CBN sintered body) and glass, diamond abrasive grains are used as hard abrasive grains. Uses CBN (hexagonal boron nitride) abrasive grains.

軟質砥粒は、硬質砥粒(ダイヤモンドやCBN)の砥粒間隔を広げる役目と、メカノケミカル反応による加工補助効果と、面粗さ向上の効果を得るためにシリカ・酸化セリウム・硫酸バリウム・酸化クロム・酸化ジルコニウム等を用いる。この軟質砥粒は、加工対象材料に合わせて使いわける。   Soft abrasive grains are used to increase the spacing between hard abrasive grains (diamonds and CBN), to assist machining by mechanochemical reaction, and to improve surface roughness. Silica, cerium oxide, barium sulfate, and oxidation Use chromium, zirconium oxide or the like. These soft abrasive grains can be used according to the material to be processed.

砥石結合度は総じて極軟目硬度を適用するが、使用する砥粒の粒度に応じて変える。即ち、砥粒は微粒になる程、同じ集中度でもその個数は飛躍的に増加し、砥粒間隔が狭くなっていく。そのため、細粒になる程、砥粒間隔を広げる必要性が生じ、その結果、砥石結合度は必然的に低目設定となる。   The grindstone bonding degree generally applies an extremely soft hardness, but varies depending on the grain size of the abrasive grains used. That is, the finer the abrasive grains, the greater the number of particles even at the same concentration, and the narrower the gap between the abrasive grains. For this reason, the finer the grain, the greater the need to widen the abrasive grain spacing. As a result, the grindstone bond inevitably has a low setting.

粒度別、硬さ調整は表2の通りにした。
砥石硬さは、ロックウェルスーパーフィシャル硬さ試験機を使用して、鋼球圧子3.175mm、基準荷重29.4N、試験荷重196Nにより測定した値を用いた。
各粒度別による適合硬さは表2の通りである。
The particle size and hardness adjustment were as shown in Table 2.
The grindstone hardness was measured using a Rockwell superficial hardness tester with a steel ball indenter of 3.175 mm, a standard load of 29.4 N, and a test load of 196 N.
Table 2 shows the conformity hardness for each particle size.

<使用形状>
表3に示すNo.A〜No.Cの基本的な3形状、及び表3のNo.D〜No.Nとした。No.D〜No.Nは、砥石幅W(横幅):3mm、4mm、5mmの3パターン、砥石セグメント間の隙間間隔G:0mm、3mm、6mmの3パターン、図18に示した砥石の移動軌跡Dと軌道中心の移動量Lを砥石幅Wに対して−2mm、+0.5mm、+6mmの3パターンに設定した形状の砥石にした。
<Use shape>
Three basic shapes No. A to No. C shown in Table 3 and No. D to No. N in Table 3 were used. No. D to No. N are grinding wheel width W (horizontal width): 3 patterns of 3 mm, 4 mm and 5 mm, gap interval between grinding wheel segments G: 3 patterns of 0 mm, 3 mm and 6 mm, movement of the grinding stone shown in FIG. The movement D of the trajectory D and the center of the trajectory is a grindstone having a shape set to 3 patterns of −2 mm, +0.5 mm, and +6 mm with respect to the grindstone width W.

<評価試験>
使用した砥石の種類は、4000番(砥粒平均粒径:2.5μm)では砥粒の種類を見るために、表4の2種類(実施例Aと比較例A)とし、8000番(砥粒平均粒径:1.0μm)では硬度の影響と形状の効果の確認用として表4の3種類(実施例Bと比較例B・C)とした。
<Evaluation test>
The type of grindstone used was No. 4000 (abrasive grain average particle size: 2.5 μm), and in order to see the type of abrasive grains, the two types in Table 4 (Example A and Comparative Example A) were used, and No. 8000 (Abrasive) In order to confirm the influence of hardness and the effect of shape, the three types shown in Table 4 (Example B and Comparative Examples B and C) were used.

実施例Aと比較例Aは、砥粒の種類以外は同一内容である。実施例Aは、表4に示す体積比でダイヤモンド砥粒約63.5%、SiO軟質砥粒約36.5%の複合砥粒を用いた。一方、比較例Aは、ダイヤモンド砥粒単独(MD)にした。 Example A and Comparative Example A have the same contents except for the type of abrasive grains. In Example A, composite abrasive grains having diamond abrasive grains of about 63.5% and SiO 2 soft abrasive grains of about 36.5% in a volume ratio shown in Table 4 were used. On the other hand, Comparative Example A was made of diamond abrasive grains alone (MD).

8000番は、体積比でダイヤモンド砥粒約63.5%、SiO軟質砥粒を36.5%入れたSHSの砥石にした。1点は砥石硬度による切れ味の影響を確認するため、砥粒1重量部に対する結合剤量を0.30質量部にした比較例Cと0.2質量部にした実施B・比較例B(実施例Bと比較例Bは同一品質)の2品質を用意した。 No. 8000 was an SHS grindstone containing about 63.5% diamond abrasive grains and 36.5% SiO 2 soft abrasive grains in volume ratio. In order to confirm the effect of sharpness due to the grinding wheel hardness, one point is Comparative Example C in which the amount of the binder is 0.30 parts by weight with respect to 1 part by weight of the abrasive grains and Example B and Comparative Example B in which the amount is 0.2 parts by weight. Example B and Comparative Example B were prepared in the same quality.

砥石強度は抗折力が9.1MPaと極端に低い値の砥石となっている。
もう1点は実施例B・比較例Bの品質を用いて、13種類の異なる形状を準備し、形状効果による加工物中心部の研磨マークの低減・面粗さ向上の評価を行った。
The grindstone strength is a grindstone with an extremely low bending strength of 9.1 MPa.
The other point was to prepare 13 different shapes using the quality of Example B and Comparative Example B, and evaluated the reduction of polishing marks and the improvement of surface roughness at the center of the workpiece due to the shape effect.

砥石形状は、図10のブロック型、図11のターボ型、図12のコンティニュアス型(以上は比較例)、図2の円弧三角形型、図3の円弧四角形型、図4〜図6の円弧五角形型、図7の円弧六角形型、図8の円弧七角形型を用いた。   The shape of the grindstone is the block type of FIG. 10, the turbo type of FIG. 11, the continuous type of FIG. 12 (the above is a comparative example), the arc triangle type of FIG. 2, the arc quadrangle type of FIG. An arc pentagon type, an arc hexagon type shown in FIG. 7, and an arc heptagon type shown in FIG. 8 were used.

円弧五角形型については、砥石幅W(横幅)を3mm、4mm、5mmの3パターン、セグメント間の隙間Gを0mm、3mm、6mmの3パターン、砥石の移動軌跡と軌道中心の移動量を2mm(図5)、4.5mm(図4)、10mm(図5)の3パターンを用いた。   For the arc pentagon type, the grindstone width W (width) is 3 patterns, 3 mm, 4 mm, and 5 mm, the gap G between the segments is 3 patterns, 0 mm, 3 mm, and 6 mm, and the movement trajectory of the grindstone and the movement amount of the trajectory center are 2 mm ( Three patterns of FIG. 5), 4.5 mm (FIG. 4), and 10 mm (FIG. 5) were used.

図2〜図8のカップ型砥石1は、砥石セグメント3に外接する凸円弧の辺の半径を、図1(図2)の砥石についてはR=130mm、図3の砥石についてはR=138mm、図4の砥石についてはR=150mm、図5の砥石についてはR=135mm、図6の砥石についてはR=190mm、図7の砥石についてはR=170mm、図8の砥石についてはR=185mmにした。   2 to 8, the radius of the side of the convex arc circumscribing the grindstone segment 3 is R = 130 mm for the grindstone of FIG. 1 (FIG. 2), R = 138 mm for the grindstone of FIG. 4 for the grindstone of FIG. 4, R = 135 mm for the grindstone of FIG. 5, R = 190 mm for the grindstone of FIG. 6, R = 170 mm for the grindstone of FIG. 7, and R = 185 mm for the grindstone of FIG. did.

これ等の寸法は、多角形の角数、及び砥石の移動軌跡と軌道中心の移動量によって異なってくる。   These dimensions vary depending on the number of polygonal corners and the movement trajectory of the grindstone and the amount of movement of the orbit center.

研磨面の軌道中心の移動量(砥石の径方向内端と径方向外端の径方向への振れ量)は、砥石幅+0.5mmを基本にした。   The amount of movement of the polishing surface at the center of the track (the amount of wobbling in the radial direction between the radially inner end and the radially outer end of the grinding wheel) was based on the grinding wheel width +0.5 mm.

実施例と比較例に用いた結合剤は同じものであり、その組成は表5の通りである。 The binders used in Examples and Comparative Examples are the same, and their compositions are as shown in Table 5.

また、単位砥粒1質量部に対する結合剤率は、実施例A及び比較例Aで0.25重量部、比較例Cは0.30重量部、実施例B及び比較例Bは全く同じ品質で0.2重量部である。   Moreover, the binder ratio with respect to 1 part by mass of unit abrasive grains is 0.25 parts by weight in Example A and Comparative Example A, 0.30 parts by weight in Comparative Example C, and Examples B and Comparative Example B have the same quality. 0.2 parts by weight.

砥粒と結合剤を均一混合後、各形状の所定の寸法に圧縮成形し、乾燥後、焼成した。焼成温度は実施例および比較例は同じ条件で最高焼成温度720℃で3時間保持した。砥粒と結合剤を均一混合後、各形状の所定の寸法に圧縮成形し、乾燥後、焼成した。   After the abrasive grains and the binder were uniformly mixed, they were compression molded into predetermined dimensions of each shape, dried and fired. The firing temperature was maintained for 3 hours at the maximum firing temperature of 720 ° C. under the same conditions in the examples and comparative examples. After the abrasive grains and the binder were uniformly mixed, they were compression molded into predetermined dimensions of each shape, dried and fired.

得られた砥石セグメントの砥石組織(体積比%、コンセントレーション)・砥石強度および硬度を表4に併記した。砥石強度は島津製作所製オートグラフAG−Xを用いて2点支持、1点荷重、スパン30mmの条件で測定した。   Table 4 shows the grinding wheel structure (volume ratio, concentration), grinding wheel strength and hardness of the obtained grinding wheel segment. The grindstone strength was measured using an autograph AG-X manufactured by Shimadzu Corporation under the conditions of two-point support, one-point load, and a span of 30 mm.

砥石硬度は、ロックウェルスーパーフィシャル硬さ試験機を使用して、鋼球圧子3.175mm、基準荷重29.4N、試験荷重196Nの条件下で測定した値を用いた。   The grinding wheel hardness was a value measured using a Rockwell superficial hardness tester under conditions of a steel ball indenter of 3.175 mm, a standard load of 29.4 N, and a test load of 196 N.

<使用形状>
砥石外径φ252mm、内径φ95mmの寸法の、図2〜図8、及び図10〜図12の計10種の砥石形状を用いた。
<Use shape>
A total of 10 types of grindstone shapes with dimensions of a grindstone outer diameter of 252 mm and an inner diameter of 95 mm were used as shown in FIGS. 2 to 8 and FIGS. 10 to 12.

4000番(平均粒径2.5μm)に関しては通常のブロック型で製作して切れ味の比較のみを行い、8000番(平均粒径1μ)の砥石に関しては2品種を選定し、1点は従来から用いている軟目硬度砥石を、もう1点は極軟目砥石を製作して切れ味を比較した。   For No. 4000 (average particle size 2.5 μm), only a comparison of sharpness was made with a normal block type. For the No. 8000 (average particle size 1 μ) grindstone, two types were selected, one point from the past The softness hardness whetstone used, and another point, an extremely softness whetstone was manufactured and the sharpness was compared.

また、砥石セグメントの貼り合わせ形状を13通り異ならせて、それぞれの形状による加工物の疵・研磨マークの低減効果を確認した。   Moreover, the bonding shape of the grindstone segments was varied in 13 ways, and the effect of reducing wrinkles / polishing marks on the workpiece by each shape was confirmed.

<評価に利用した試験装置>
図14に主要部を示した日本エンギス製の縦型研削盤を用いて加工物A(4インチサイズの炭化ケイ素ウェーハ)の加工を行った。研磨盤の詳細と加工条件を表6にまとめた。
<Test equipment used for evaluation>
The workpiece A (4 inch size silicon carbide wafer) was processed using a vertical grinder manufactured by Nippon Engis whose main part is shown in FIG. The details of the polishing machine and the processing conditions are summarized in Table 6.

図14の符号4は、カップ型砥石を装着した研磨盤の主軸、符号5は、加工物Aを保持して定位置で回転させる回転テーブルである。   Reference numeral 4 in FIG. 14 denotes a main spindle of a polishing machine equipped with a cup-type grindstone, and reference numeral 5 denotes a rotary table that holds the workpiece A and rotates it at a fixed position.

<実削試験>
実削試験は、加工物A(4インチの炭化ケイ素)の表面の研削加工を行った。
加工物Aに対しては、前加工として同様の研削加工をダイヤモンド砥粒粒径22〜36μm(600メッシュ)、コンセントレーション140のビトリファイド砥石を使用して施し、その加工物の表面の面粗さを0.8μmRa(中心線平均粗さ)に統一した。
<Actual cutting test>
In the actual cutting test, the surface of the workpiece A (4 inch silicon carbide) was ground.
For the work A, the same grinding as the pre-processing is performed using a vitrified grindstone with a diamond grain size of 22 to 36 μm (600 mesh) and a concentration 140, and the surface roughness of the surface of the work is obtained. Was unified to 0.8 μmRa (center line average roughness).

使用したカップ型砥石の寸法は、外径252mm、内径95mm、砥石セグメント厚み5mmである。   The dimensions of the cup-type grindstone used were an outer diameter of 252 mm, an inner diameter of 95 mm, and a grindstone segment thickness of 5 mm.

砥石の品質の種類は、4000番(平均粒径2.5μm)の砥石については、軟質砥粒を含むものと含まないものの2種類を用いて軟質砥粒添加の効果を確認した。   As for the type of quality of the grindstone, the effect of adding soft abrasive grains was confirmed using two types of grindstones having a number of 4000 (average particle size 2.5 μm), including those containing soft abrasive grains.

また、8000番(平均粒径:1μm)の砥石については、砥石硬度を異ならせた2種類を使用した。この8000番の砥石については、軟目の砥石品質を採用し、砥石形状を13種類に分けた。   Moreover, about the grindstone of No. 8000 (average particle diameter: 1 micrometer), 2 types with different grindstone hardness were used. For this # 8000 grindstone, soft grindstone quality was adopted and the grindstone shape was divided into 13 types.

砥石の回転数は2000rpmに統一し、加工物Aの回転数は、50rpmと100rpmの2通りとした。   The rotational speed of the grindstone was unified to 2000 rpm, and the rotational speed of the workpiece A was 50 rpm and 100 rpm.

切込み速度は、4000番の砥石では36μm、8000番の砥石では30μmに設定し、スパークアウトを10秒とった。   The cutting speed was set to 36 μm for the No. 4000 grindstone and 30 μm for the No. 8000 grindstone, and the spark-out was 10 seconds.

評価は、取代、砥石損耗量、仕上げ面粗さ、および研磨模様(疵)の有無を確認して行った。仕上げ面粗さはレーザー顕微鏡(キーエンス製VK−X100)を用いて測定した。
その評価結果を表7に示す。
The evaluation was performed by confirming the machining allowance, the grinding wheel wear amount, the finished surface roughness, and the presence or absence of the polishing pattern (wrinkles). The finished surface roughness was measured using a laser microscope (VK-X100 manufactured by Keyence).
The evaluation results are shown in Table 7.

<実削試験結果より>
1.軟質砥砥粒による影響
同程度の硬さを有する4000番(平均粒径:2.5μm)の砥石で軟質砥粒の効果を比較した比較例1と参考例1から、比較例1のように硬質砥粒がダイヤモンド砥粒を単独で使用した場合、0.3μm/secの切込速度においては取代は8.2μmと少なくて加工物を擦った面となっており、切れ味の悪い状態であることが分かる。
<From actual cutting test results>
1. Influence by soft abrasive grains From Comparative Example 1 and Reference Example 1 in which the effect of soft abrasive grains was compared with a No. 4000 (average particle diameter: 2.5 μm) grindstone having comparable hardness, as in Comparative Example 1 When diamond abrasive grains are used alone as hard abrasive grains, the cutting allowance is as low as 8.2 μm at a cutting speed of 0.3 μm / sec, and the surface is rubbed with the workpiece, resulting in poor sharpness. I understand that.

砥石が目詰まり状態となっている関係上、砥石損耗量は1.5μmと少ない値となっているが、砥石としての性能は全く発揮されていない。   Since the grindstone is clogged, the wear amount of the grindstone is as small as 1.5 μm, but the performance as a grindstone is not exhibited at all.

一方軟質砥粒を添加した参考例1の砥石は微粒にも係らず取代が21.6μmと多く、切れ味に優れ、砥石損耗量も1.9μmと少なくて良好な状態であり、仕上げ面粗さも粒度相応の粗さが確保されて砥石として有効に機能しており、実用に充分耐える性能を有している事が分かる。   On the other hand, the grinding wheel of Reference Example 1 to which soft abrasive grains are added has a large machining allowance of 21.6 μm regardless of the fine grains, is excellent in sharpness, has a small grinding wheel wear amount of 1.9 μm, and is in a good state, and has a finished surface roughness. It can be seen that the roughness corresponding to the particle size is ensured and functions effectively as a grindstone, and has a performance sufficient for practical use.

2.砥石硬度による影響
8000番(平均粒径1μm)で硬度を変えて試験した2品質のうち、比較例2の品質は、RL硬度−54の軟目品質にも係らず、取代が2.5μmと少なく、砥石損耗量は1.8μmと少ないが目詰まり状態にあり、通常の軟目硬度では超微粒領域での研削加工においてはまだ切れ味の悪い砥石であると言える。
2. Effect of grinding wheel hardness Among the two qualities tested with different hardness at No. 8000 (average particle size 1 μm), the quality of Comparative Example 2 was 2.5 μm, regardless of the soft quality of RL hardness −54. It is small, and the wear amount of the grinding wheel is as small as 1.8 μm, but it is in a clogged state, and it can be said that it is a grindstone that still has a poor sharpness in grinding processing in the ultrafine grain region with normal soft hardness.

一方、参考例2の硬度Hの砥石は、RL硬度−121と極軟目品質であるが、ブロック型でありながら、取代が8.4μmと良く稼げている。砥石損耗量は11.9μmとやや多い程度であり、超微粒領域の砥石では極軟目品質(−50以下。通常品には−50以下は無い)が有効であると言える。   On the other hand, the grindstone with hardness H of Reference Example 2 has an RL hardness of -121 and extremely soft quality, but has a good machining allowance of 8.4 μm despite being a block type. The amount of wear of the grinding wheel is as high as 11.9 μm, and it can be said that a very soft quality (−50 or less, normal product does not have −50 or less) is effective for the grinding wheel in the ultrafine grain region.

3.砥石形状による影響
形状による研削マークの改善対策は、8000番(平均粒径1μm)の砥石で行った。比較例3〜4と参考例2及び実施例3〜14が比較対象である。
3. Influence by grinding wheel shape The improvement measure of grinding marks by shape was performed with a grinding wheel of No. 8000 (average particle size 1 μm). Comparative Examples 3 to 4, Reference Example 2 and Examples 3 to 14 are comparison targets.

−1)・・・比較例2(ブロック型)
ブロック型は、砥石表面積的には他形状と同等レベルであるが、砥石長さが短い分個数が多く、その分砥石エッジの数が多くなり、エッジでの加工効果により取代は稼げて切れ味に優れた形状ではあるが、反面、砥石損耗量が多く、仕上げ面粗さも悪くて加工物中心部に研削マークが入っている(図21参照)。
3-1 ) Comparative Example 2 (block type)
The block type has the same level as the other shapes in terms of surface area of the grinding wheel, but the number of grinding wheel edges is short, and the number of grinding wheel edges increases accordingly. Although it is an excellent shape, on the other hand, the amount of wear of the grinding wheel is large, and the finished surface roughness is also poor, and a grinding mark is placed in the center of the workpiece (see FIG. 21).

3−)・・・比較例3(ターボ型)
ターボ型は砥石表面積が広く、耐摩耗性には優れているが、取代が少なく、仕上げ面粗さも悪く、加工物中心部に研削マークが入っている(図22参照)。
3 2) ... Comparative Example 3 (turbo)
The turbo type has a large grinding wheel surface area and excellent wear resistance, but has a small machining allowance, poor finished surface roughness, and a grinding mark in the center of the workpiece (see FIG. 22).

3−)・・・比較例4(コンティニュアス型)
コンティニュアス型は取代的には良好であり、耐摩耗性にも優れている。仕上げ面粗さも良く、砥石形状としては比較例の中では一番優れているが、加工物中心部の研削マークに関しては改善が見られない(図23参照)。
3-3) ... Comparative Example 4 (continuous type)
The continuous type is good in terms of stock and has excellent wear resistance. Although the finished surface roughness is good and the grinding wheel shape is the best among the comparative examples, no improvement is seen with respect to the grinding mark at the center of the workpiece (see FIG. 23).

実施例は、比較例の中で一番良かったコンティニュアス型を基本とし、回転する研削砥石(図14)の砥石軌道中心が回転する加工物Aの中心を常に通る研削パターンが無くなったもの、即ち、砥石軌道中心が砥石の回転に伴って径方向に移動し、エッジが同一の軌道を通らない砥石形状になっている。   The example is based on the continuous type which is the best of the comparative examples, and the grinding pattern in which the grinding wheel trajectory center of the rotating grinding wheel (FIG. 14) always passes through the center of the rotating workpiece A is eliminated. That is, the center of the grindstone track moves in the radial direction as the grindstone rotates, and the grindstone has a shape in which the edges do not pass through the same trajectory.

3−)・・・実施例3(図2の円弧三角形型:砥石幅W=4mm、セグメント間隙間G=3mm、図18に示した軌道中心の径方向移動量L=4.5mm)。
砥石の軌道中心が回転に伴って径方向に移動し、エッジが同一の軌道を通らない形態(多角形形状。実施例は全て正多角形)の最少角数である円弧三角形型で前述のR=130の設計で、砥石の軌道中心の移動量Lが4.5mmになる設定になっている。
3-4) ... Example 3 (arc triangular in Figure 2: the grindstone width W = 4 mm, the inter-segment gap G = 3 mm, the radial moving distance L = 4.5 mm of the track center as shown in FIG. 18).
The arc center of the grindstone moves in the radial direction as it rotates and the edges do not pass through the same trajectory (polygonal shape; all examples are regular polygons). In the design of = 130, the moving amount L at the center of the orbit of the grindstone is set to 4.5 mm.

このカップ型砥石の取代は、7.9μmと良好であり、砥石損耗量も5.3μmと良好である。仕上げ面粗さが改善されており、中心部の研削マークも消えている。   The machining allowance of this cup-type grindstone is as good as 7.9 μm, and the wear amount of the grindstone is as good as 5.3 μm. Finished surface roughness has been improved and the grinding mark in the center has also disappeared.

3−)・・・実施例4(円弧四角形型:砥石幅W=4mm、セグメント間隙間G=3mm、軌道中心の径方向移動量L=4.5mm)。
実施例3より一角多い偶数角多角形の円弧四角形型でR=138となっている。この製品は、実施例3よりやや取代が低下し、砥石損耗量は逆に少し増加している。中心部以外の面粗さは同様であるが、加工物の中心部に研削マークが少し残っており、面粗さが12nmRaとやや悪い。
3-5 ) Example 4 (circular quadrangular shape: grinding wheel width W = 4 mm, inter-segment gap G = 3 mm, radial movement amount L = 4.5 mm at the center of the track).
An even-numbered polygonal arc quadrangular shape which is one corner larger than that of the third embodiment is R = 138. In this product, the machining allowance is slightly lower than in Example 3, and the grinding wheel wear amount is slightly increased. The surface roughness other than the center is the same, but a little grinding mark remains in the center of the workpiece, and the surface roughness is slightly poor at 12 nmRa.

3−)・・・実施例5(円弧五角形型:砥石幅W=3mm、セグメント間隙間G=3mm、軌道中心の径方向移動量L=3.5mm)。
実施例4よりもさらに一角多い奇数角多角形の円弧五角形型である。この製品は砥石幅Wを3mmに設定した関係上、軌道中心の径方向移動量Lは3.5mmにした。取代は10.5μmと良好である。
3-6) ... Example 5 (arc pentagonal: grindstone width W = 3 mm, the inter-segment gap G = 3 mm, the radial movement of the track center L = 3.5 mm).
This is an odd-numbered polygonal arc pentagon shape that is one more corner than Example 4. In this product, since the grindstone width W was set to 3 mm, the radial movement amount L at the center of the track was set to 3.5 mm. The machining allowance is as good as 10.5 μm.

砥石損耗量は8.1μmとやや多い。中心部以外の面粗さは、9nmRa、中心部の面粗さは10nmRaであり、研削マークは見られない(図24参照)。   The amount of wear of the grinding wheel is slightly large at 8.1 μm. The surface roughness other than the center is 9 nmRa, the surface roughness of the center is 10 nmRa, and no grinding mark is seen (see FIG. 24).

3−)・・・実施例6(円弧五角形型:砥石幅W=4mm、セグメント間隙間G=0mm、軌道中心の径方向移動量L=4.5mm)。
実施例5と同じ奇数角多角形の円弧五角形型である。この製品は、砥石幅Wを4mmに設定した関係上、軌道中心の径方向移動量Lは4.5mmにした。取代は10.1μmと良好である。
3-7) ... Example 6 (arc pentagonal: grindstone width W = 4 mm, the inter-segment gap G = 0 mm, the radial moving distance L = 4.5 mm of the track center).
This is the same polygonal arc pentagon shape as the fifth embodiment. In this product, the radial movement amount L at the center of the orbit is set to 4.5 mm because the grindstone width W is set to 4 mm. The machining allowance is as good as 10.1 μm.

砥石損耗量は6.5μmと少ない。中心部以外の面粗さは、9nmRaである。また、中心部の面粗さは11nmRaであり、やや粗い。   The grinding wheel wear is as small as 6.5 μm. The surface roughness other than the central portion is 9 nmRa. Further, the surface roughness of the central portion is 11 nmRa, which is slightly rough.

3−)・・・実施例7(円弧五角形型:砥石幅W=4mm、セグメント間隙間G=3mm、軌道中心の径方向移動量L=4.5mm)。
実施例6と同じ奇数角多角形の円弧五角形型である。この製品は、セグメント間隙間Gを3mmに広げて研磨粉が外部に排出され易くした。砥石幅Wを4mmに設定した関係上、実施例6と同様に軌道中心の径方向移動量Lを4.5mmにした。
3-8) ... Example 7 (arc pentagonal: grindstone width W = 4 mm, the inter-segment gap G = 3 mm, the radial moving distance L = 4.5 mm of the track center).
This is an odd-numbered polygonal arc pentagon type as in the sixth embodiment. In this product, the gap G between the segments was widened to 3 mm so that the abrasive powder was easily discharged to the outside. Since the grindstone width W was set to 4 mm, the radial movement amount L at the center of the track was set to 4.5 mm as in Example 6.

取代は9.4μmで切れ味は良く、砥石損耗量は5.4μmと少なくて良好である。加工物の中心部以外の面粗さは、7nmRa、中心部の面粗さは8nmRaであり、最良の結果が得られている。   The machining allowance is 9.4 μm, the sharpness is good, and the wear amount of the grinding wheel is as small as 5.4 μm, which is good. The surface roughness of the workpiece other than the central portion is 7 nmRa, and the central portion has a surface roughness of 8 nmRa, and the best results are obtained.

研磨面の軌道が変動する形状であることから、加工物中心部には研削マークは全くできておらず、均一な加工面が得られている。   Since the polishing surface has a fluctuating shape, no grinding mark is formed at the center of the workpiece, and a uniform processed surface is obtained.

3−)・・・実施例8(実施例6と同じカップ型砥石を使用して加工物の回転数を実施例6のほぼ半分に設定した加工を行った)。
この条件での加工では、切れ味が向上して取代が11μmと多くなっているが、砥石損耗量が7.8μmとなってやや増加傾向にある。
3-9) ... Example 8 (was processed set at approximately half of Example 6 the rotational speed of the workpiece using the same cup-shaped grinding wheel as in Example 6).
In the processing under these conditions, the sharpness is improved and the machining allowance is as large as 11 μm, but the wear amount of the grindstone is 7.8 μm and is slightly increased.

ソフト(穏やか)な加工になった影響か、仕上げ面粗さは加工物の中心部以外も中心部も5nmRaと大幅に向上している。加工物の中心部の研削マークは全く見られない。   Perhaps due to the effect of soft processing, the roughness of the finished surface is significantly improved to 5 nmRa at the center as well as at the center of the workpiece. No grinding mark is seen at the center of the workpiece.

3−10)・・・実施例9(円弧五角形型:砥石幅W=4mm、セグメント間隙間G=3mm、軌道中心の径方向移動量L=2mm)。
これも実施例6と同じ奇数角多角形の円弧五角形型である。軌道中心の径方向移動量が半減した点が実施例6と相違する。
3-10) ... Example 9 (arc pentagonal: grindstone width W = 4 mm, the inter-segment gap G = 3 mm, the radial moving distance L = 2 mm of the track center).
This is also the odd-numbered polygonal arc pentagon type as in the sixth embodiment. The difference from the sixth embodiment is that the amount of radial movement at the center of the orbit is halved.

この製品の取代は9μmと良く、砥石損耗量が5.4μmと少なくて良好である。加工物の中心部以外の面粗さは、7nmRa、中心部の面粗さも8nmRaと良い状態で、中心部の研削マークは全く見られない。   The machining allowance of this product is as good as 9 μm, and the grinding wheel wear amount is as small as 5.4 μm. The surface roughness of the workpiece other than the central portion is 7 nmRa, the surface roughness of the central portion is also 8 nmRa, and no grinding mark is observed at the central portion.

3−11)・・・実施例10(円弧五角形型:砥石幅W=4mm、セグメント間隙間G=3mm、軌道中心の径方向移動量L=10mm)。
これも実施例6と同じ奇数角多角形の円弧五角形型である。軌道中心の径方向移動量Lは10mmに増やしている。
3-11) ... Example 10 (arc pentagonal: grindstone width W = 4 mm, the inter-segment gap G = 3 mm, the radial moving distance L = 10 mm of the track center).
This is also the odd-numbered polygonal arc pentagon type as in the sixth embodiment. The radial movement amount L at the center of the orbit is increased to 10 mm.

この製品は、取代が5.7μmに減少したが、砥石損耗量は6.3μmと少なくて良好である。加工物の中心部以外の面粗さは、9nmRaとまずまずであるが、中心部の面粗さは13nmRaと悪く、中心部に研削マークが若干生じている。   In this product, the machining allowance is reduced to 5.7 μm, but the wear amount of the grindstone is as small as 6.3 μm, which is good. The surface roughness of the workpiece other than the central portion is 9 nmRa, which is reasonable, but the central portion has a poor surface roughness of 13 nmRa, and some grinding marks are generated in the central portion.

3−12)・・・実施例11(円弧五角形型:砥石幅W=4mm、セグメント間隙間G=6mm、軌道中心の径方向移動量L=4.5mm)。
これは実施例6に対してセグメント間隙間Gを6mmに広げたものである。
3-12) ... Example 11 (arc pentagonal: grindstone width W = 4 mm, the inter-segment gap G = 6 mm, the radial moving distance L = 4.5 mm of the track center).
In this example, the inter-segment gap G is expanded to 6 mm with respect to Example 6.

この製品は、取代は6.8μmに減少し、砥石損耗量は12.5μmと増加している。加工物の中心部以外の面粗さは、11nmRa、中心部の面粗さも12nmRaとあまり良くない。中心部の研削マークは確認できなかった。これは、砥石の総表面積(研磨面の総面積)が狭くなったために加工面圧が高まり、その影響がでたのではないかと考えられる。   In this product, the machining allowance is reduced to 6.8 μm, and the grinding wheel wear amount is increased to 12.5 μm. The surface roughness of the workpiece other than the center is 11 nmRa, and the surface roughness of the center is not so good as 12 nmRa. The grinding mark in the center could not be confirmed. This is thought to be due to the fact that the processing surface pressure increased because the total surface area of the grindstone (the total area of the polishing surface) became narrow, and this was affected.

3−13)・・・実施例12(円弧五角形型:砥石幅W=5mm、セグメント間隙間G=3mm、軌道中心の径方向移動量L=5.5mm)。
実施例6に対して砥石幅Wを5mmに広げて砥石表面積を大きくしている。砥石幅Wを5mmにしたので、軌道中心の径方向移動量Lも5.5mmに増大させている。
3-13) ... Example 12 (arc pentagonal: grindstone width W = 5 mm, the inter-segment gap G = 3 mm, the radial movement of the track center L = 5.5 mm).
Compared to Example 6, the grinding wheel width W is increased to 5 mm to increase the grinding wheel surface area. Since the grindstone width W is 5 mm, the radial movement amount L at the center of the track is also increased to 5.5 mm.

この製品による取代は7.5μmとまずまずであり、砥石損耗量も4.9μmと少ない。加工物の中心部以外の面粗さは9nmRa、中心部の面粗さは10nmRaで中心部の研削マークは確認できなかった。これは、実施例10とは逆に、砥石の総表面積が広くなったために加工面圧が下がり、その影響がでたと考えられる。   The machining allowance with this product is reasonable at 7.5 μm, and the amount of wear on the grindstone is as small as 4.9 μm. The surface roughness of the workpiece other than the center portion was 9 nmRa, the surface roughness of the center portion was 10 nmRa, and the grinding mark in the center portion could not be confirmed. Contrary to Example 10, it is considered that the processing surface pressure was lowered due to the increase in the total surface area of the grindstone, and this was affected.

3−14)・・・実施例13(円弧六角形型:砥石幅W=4mm、セグメント間隙間G=3mm、軌道中心の径方向移動量L=4.5mm)。
多角形の角数をさらに一角増やして偶数角にした円弧六角形型のカップ型砥石である。
3-14) ... Example 13 (arc hexagonal type: grindstone width W = 4 mm, the inter-segment gap G = 3 mm, the radial moving distance L = 4.5 mm of the track center).
This is an arc hexagonal cup-type grindstone in which the number of polygons is further increased to an even number.

この製品は取代は7.5μmとまずまずであり、砥石損耗量も5.5μmと少ない。加工物の中心部以外の面粗さは9nmRaと比較的良好であるが、中心部の面粗さは13nmRaとやや粗く、研削マークも若干確認された。   This product has a reasonable machining allowance of 7.5 μm, and has a small grinding wheel wear amount of 5.5 μm. The surface roughness of the workpiece other than the central portion was relatively good at 9 nmRa, but the surface roughness at the central portion was slightly rough at 13 nmRa, and some grinding marks were also confirmed.

3−15)・・・実施例14(円弧七角形型:砥石幅W=4mm、セグメント間隙間G=3mm、軌道中心の径方向移動量L=4.5mm)。
多角形の角数をさらに多くした奇数角の円弧七角形型のカップ型砥石である。
3-15) ... Example 14 (arc heptagon type: grindstone width W = 4 mm, the inter-segment gap G = 3 mm, the radial moving distance L = 4.5 mm of the track center).
This is an odd-numbered arc heptagonal cup-type grindstone with more polygonal corners.

この製品の取代は8.3μmと良好であり、砥石損耗量も6.1μmと少ない。加工物の中心部以外の面粗さと中心部の面粗さはともに9nmRaと良好であり、加工物の中心部の研削マークも確認されなかった。   The machining allowance of this product is as good as 8.3 μm, and the wear amount of the grindstone is as small as 6.1 μm. The surface roughness other than the central portion of the workpiece and the surface roughness of the central portion are both as good as 9 nmRa, and the grinding mark at the central portion of the workpiece was not confirmed.

・まとめ
a.参考例1⇔比較例1
炭化ケイ素(SiC)を微粒砥石(平均粒径2.5μm)で研削する場合、ダイヤモンド砥粒単独では無く、軟質砥粒の添加が有効である。
・ Summary a. Reference Example 1 ⇔ Comparative Example 1
When grinding silicon carbide (SiC) with a fine-grained grindstone (average particle size 2.5 μm), it is effective to add soft abrasive grains instead of diamond abrasive grains alone.

b.参考例2⇔比較例2
超微粒領域の8000番(平均砥粒粒径1μm)では、気孔率をより大きくし、砥石硬度をより軟目品質に移行した極軟硬度砥石が有効である。
b. Reference Example 2 ⇔ Comparative Example 2
In the ultrafine grain region No. 8000 (average abrasive grain size 1 μm), an extremely soft hardness grindstone in which the porosity is increased and the grindstone hardness is shifted to a softer quality is effective.

c.参考例2及び比較例2〜4
砥石を真円の円周上に均一に貼った場合、ブロック型・ターボ型・コンティニュアス型のいずれも中心部の研削マーク生成の問題が解消されない。
c. Reference Example 2 and Comparative Examples 2-4
When the grindstone is evenly applied on the circumference of a perfect circle, the problem of generating a grinding mark in the center cannot be solved in any of the block type, turbo type, and continuous type.

d.砥石を疑似多角形にして砥石が1回転する間に軌道中心(回転中心から径方向内端と外端までの距離)が移動(変位)するようにした場合(実施例3〜14)。 d. When the grinding wheel is made into a pseudo polygon and the center of the trajectory (distance from the rotation center to the radially inner end and the outer end) moves (displaces) while the grinding wheel rotates once (Examples 3 to 14).

−1)・・・軌道中心の変位による効果
砥石幅+0.5(砥石幅W=4mmの場合、移動量Lは4.5mm)と移動量を半分の2mmにしたものについては顕著な有意差は見られないが、移動量Lを10mmと大きくしたものは取代が減少し、中心部の研削マークが微妙に生じて思わしくない。
d -1 ) ... Effects due to orbit center displacement Grinding wheel width + 0.5 (if the grinding wheel width W = 4 mm, the movement amount L is 4.5 mm) and the movement amount is halved to 2 mm. Although the difference is not seen, when the moving amount L is increased to 10 mm, the machining allowance is reduced, and the grinding mark in the center portion is slightly generated.

−2)・・・奇数角と偶数角の影響
偶数角の配列形態は、中心部を除く面粗さに関しては奇数角と変わらないが、中心部の研削マークが微妙に生じるきらいがあり面粗さを悪化させる。奇数角がより好ましいことが実験結果に現れている。
d- 2 ) ... Effect of odd-numbered and even-numbered angles The even-angled array configuration is the same as the odd-numbered surface with respect to the surface roughness excluding the central portion, but there is a tendency that the grinding mark in the central portion is slightly generated. Impairs roughness. Experimental results show that odd angles are more preferred.

−3)・・・砥石幅(3・4・5mm)の影響
砥石幅W=3mmは取代に優れるが、砥石損耗量がやや多く、加工面の面粗さもやや悪化する。
一方、砥石巾5mmでは逆に取代的にはやや低下するが、耐損耗性は向上する。取代と耐摩耗性のバランスが取れているのが4mm幅の製品であり、これは面粗さも良好である。
d −3 ) ... Influence of grinding wheel width (3, 4.5 mm) Grinding wheel width W = 3 mm is excellent in machining allowance, but the amount of grinding wheel wear is somewhat large, and the surface roughness of the processed surface is also slightly deteriorated.
On the other hand, when the grindstone width is 5 mm, the wear resistance is slightly reduced, but the wear resistance is improved. The balance between the machining allowance and the wear resistance is a product with a width of 4 mm, which has good surface roughness.

−4)・・・砥石セグメント間隙間G(0・3・6mm)の影響
砥石セグメント間隙間Gが0の製品は取代や砥石損耗量は良好であるが、面粗さでやや劣る。ただし、加工物中心部の研削マークは見られない。
d -4 ) ... Effect of grinding wheel segment gap G (0, 3.6 mm) Products with a grinding wheel segment gap G of 0 have good machining allowance and grinding wheel wear, but are slightly inferior in surface roughness. However, no grinding mark is seen at the center of the workpiece.

一方、砥石セグメント間隙間Gを6mmにした(あけすぎた)製品は、取代の低下や砥石損耗量の増加が見られ、加工面の面粗さも悪化する傾向にある。従って、砥石セグメント間隙間Gをあけすぎるのは好ましくないが、この製品による加工でも加工物中心部の研削マークは解消される。   On the other hand, in the products in which the gap G between the grindstone segments is 6 mm (too much), a reduction in machining allowance and an increase in the wear amount of the grindstone are seen, and the surface roughness of the processed surface tends to deteriorate. Accordingly, it is not preferable to make the gap G between the grindstone segments too much, but the grinding mark at the center of the workpiece is also eliminated by machining with this product.

砥石セグメント間隙間Gは3mmが取代、耐摩耗性、仕上げ面粗さの全てで良好であり、加工物の中心部の研削マークも無い加工を実現できる。   As for the gap G between the grindstone segments, 3 mm is good in all of the machining allowance, wear resistance, and finished surface roughness, and it is possible to realize processing without a grinding mark at the center of the workpiece.

1 カップ型砥石
2 台金
3 砥石セグメント
4 研磨盤の主軸
5 研磨盤の回転テーブル
A 加工物
M 研削マーク
W 砥石幅
G 砥石セグメント間の隙間間隔
L 砥石の軌道中心の移動量
S 多角形の凸円弧の辺
DESCRIPTION OF SYMBOLS 1 Cup type grindstone 2 Base metal 3 Grinding wheel segment 4 Grinding wheel spindle 5 Grinding wheel rotation table A Workpiece M Grinding mark W Grinding wheel width G Gap gap between grinding wheel segments L Movement amount of the grinding wheel track center S Polygonal convexity Arc side

Claims (8)

各々の粒径が3μm以下の硬質砥粒と軟質砥粒を組み合わせた複合砥粒を低融点ビトリファイドボンドで結合させた体積比での気孔率が55%以上の極軟目硬度の砥石を有し、その砥石は、研磨面となる表面に外部に開放された微細な気孔が無数に存在し、その砥石が、円盤状をなす台金の片面の外周側に偏った位置に研磨面の回転軌跡が一定の幅を持った輪を画く配置にして接合された研削盤用カップ型ビトリファイド砥石であって、前記砥石の配置が、
前記台金の中心から砥石の径方向外端までの距離と径方向内端までの距離が台金の外周部を1周する間に変化するようになされた研削盤用カップ型ビトリファイド砥石。
It has a grindstone with an extremely soft hardness with a porosity of 55% or more in a volume ratio in which composite abrasive grains, each of which has a particle size of 3 μm or less, combined with hard abrasive grains and soft abrasive grains are combined with a low melting point vitrified bond. The grinding wheel has numerous fine pores open to the outside on the surface that becomes the polishing surface, and the grinding wheel rotates in a position that is biased to the outer peripheral side of one side of the disk-shaped base metal. Is a cup-type vitrified grindstone for a grinder joined in an arrangement that describes a ring having a certain width, and the arrangement of the grindstone is as follows:
A cup-type vitrified grindstone for a grinding machine, wherein the distance from the center of the base metal to the radially outer end of the grindstone and the distance from the radially inner end of the base metal change during one round of the outer peripheral portion of the base metal.
前記砥石の砥石粒度、平均砥粒径、RL硬度及び、2点支持1点荷重での抗折力で表される砥石強度の関係が下表の通りに設定された請求項1に記載の研削盤用カップ型ビトリファイド砥石。
The grinding according to claim 1, wherein the relationship between the grindstone particle size, the average grind particle size, the RL hardness, and the grindstone strength expressed by the bending strength at a one-point load at two points is set as shown in the following table. Cup type vitrified grinding wheel for board.
前記複合砥粒の硬質砥粒がダイヤモンド砥粒または立方晶窒化ホウ素砥粒であり、前記軟質砥粒が酸化セリウム、シリカ、硫酸バリウムもしくは酸化ジルコニウムであり、前記硬質砥粒の体積比での割合が50〜90%、軟質砥粒の体積比での割合が10〜50%である請求項1又は2に記載の研削盤用カップ型ビトリファイド砥石。   The hard abrasive grains of the composite abrasive grains are diamond abrasive grains or cubic boron nitride abrasive grains, the soft abrasive grains are cerium oxide, silica, barium sulfate or zirconium oxide, and the ratio of the hard abrasive grains in the volume ratio The cup type vitrified grindstone for a grinding machine according to claim 1 or 2, wherein the ratio of the soft abrasive grains in the volume ratio is 10 to 50%. 前記砥石が、同一形状、同一サイズの複数の砥石セグメントを組み合わせて構成され、各砥石セグメントの個々の寸法は、幅:3〜6mm、長さ:9〜30mm、厚み:5〜10mmであり、その砥石セグメントが周方向に1〜10mmの隙間をあけて配列された請求項1〜3のいずれかに記載の研削盤用カップ型ビトリファイド砥石。   The grindstone is configured by combining a plurality of grindstone segments of the same shape and the same size, and the individual dimensions of each grindstone segment are width: 3-6 mm, length: 9-30 mm, thickness: 5-10 mm, The cup type vitrified grindstone for grinding machines according to any one of claims 1 to 3, wherein the grindstone segments are arranged with a gap of 1 to 10 mm in the circumferential direction. 前記砥石セグメントは、直線的に伸び、かつ、長さ方向の両端がR面である請求項4に記載の研削盤用カップ型ビトリファイド砥石。   The cup type vitrified grindstone for a grinding machine according to claim 4, wherein the grindstone segment extends linearly and both ends in the length direction are R surfaces. 前記砥石セグメントの配列が、一定曲率の凸円弧の辺を有する多角形を基本形にし、その多角形の各辺に沿って複数個の砥石セグメントが疑似の凸円弧を描くように並べられ、各コーナ部において隣り合う位置の砥石セグメントが所定の角度をもって離間した状態に配置された請求項1〜5のいずれかに記載の研削盤用カップ型ビトリファイド砥石。   The arrangement of the grindstone segments is based on a polygon having a convex arc side having a constant curvature, and a plurality of grindstone segments are arranged along each side of the polygon so as to draw a pseudo convex arc. The grindstone cup-type vitrified grindstone according to any one of claims 1 to 5, wherein the grindstone segments at positions adjacent to each other in the portion are arranged at a predetermined angle. 前記多角形が奇数角の正多角形であり、その正多角形の各凸円弧の辺に沿って複数個の砥石セグメントが並べられ、各コーナ部において隣り合う位置の砥石セグメントが、正多角形の角数をnとしたときに、{X=180°×(n−2)÷n}の式で求まる角度Xをもって離間状態に配置された請求項6に記載の研削盤用カップ型ビトリファイド砥石。   The polygon is an odd-numbered regular polygon, and a plurality of grindstone segments are arranged along the side of each convex arc of the regular polygon, and the grindstone segments at positions adjacent to each corner portion are regular polygons. The cup type vitrified grindstone for a grinder according to claim 6, wherein the cup type vitrified grindstone for a grinding machine is arranged in a separated state with an angle X determined by an expression of {X = 180 ° × (n-2) ÷ n}, where n is the number of corners. . 前記台金の中心から砥石の径方向外端までの距離と径方向内端までの距離が台金の外周部を1周する間の変化量が砥石の横幅よりも0.5〜2mm大きくなるように前記砥石セグメントの配列がなされた請求項4〜7のいずれかに記載の研削盤用カップ型ビトリファイド砥石。   The amount of change between the distance from the center of the base metal to the radially outer end of the grindstone and the distance from the radially inner end of the base metal to the outer circumference of the base metal is 0.5 to 2 mm larger than the lateral width of the grindstone. The grindstone cup type vitrified grindstone according to any one of claims 4 to 7, wherein the grindstone segments are arranged as described above.
JP2016179648A 2016-09-14 2016-09-14 Cup type vitrified grindstone for grinding machine Active JP6819994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016179648A JP6819994B2 (en) 2016-09-14 2016-09-14 Cup type vitrified grindstone for grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016179648A JP6819994B2 (en) 2016-09-14 2016-09-14 Cup type vitrified grindstone for grinding machine

Publications (2)

Publication Number Publication Date
JP2018043312A true JP2018043312A (en) 2018-03-22
JP6819994B2 JP6819994B2 (en) 2021-01-27

Family

ID=61692681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016179648A Active JP6819994B2 (en) 2016-09-14 2016-09-14 Cup type vitrified grindstone for grinding machine

Country Status (1)

Country Link
JP (1) JP6819994B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110303437A (en) * 2019-06-17 2019-10-08 郑州磨料磨具磨削研究所有限公司 A kind of glass-cutting resin wheel and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288882A (en) * 1999-04-02 2000-10-17 Shin Etsu Handotai Co Ltd Both-sided simultaneous grinding apparatus, cup-type grinding wheel and both-sided simultaneous grinding method
JP2001096467A (en) * 1999-07-27 2001-04-10 Nippei Toyama Corp Cup type grinding wheel
JP2006315113A (en) * 2005-05-11 2006-11-24 Mizuho:Kk Vitrified grindstone for finishing surface of glass ceramics
JP2015013321A (en) * 2013-07-03 2015-01-22 株式会社ディスコ Grinding wheel
JP2016000445A (en) * 2014-06-12 2016-01-07 日本グリース株式会社 Superfinishing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288882A (en) * 1999-04-02 2000-10-17 Shin Etsu Handotai Co Ltd Both-sided simultaneous grinding apparatus, cup-type grinding wheel and both-sided simultaneous grinding method
JP2001096467A (en) * 1999-07-27 2001-04-10 Nippei Toyama Corp Cup type grinding wheel
JP2006315113A (en) * 2005-05-11 2006-11-24 Mizuho:Kk Vitrified grindstone for finishing surface of glass ceramics
JP2015013321A (en) * 2013-07-03 2015-01-22 株式会社ディスコ Grinding wheel
JP2016000445A (en) * 2014-06-12 2016-01-07 日本グリース株式会社 Superfinishing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110303437A (en) * 2019-06-17 2019-10-08 郑州磨料磨具磨削研究所有限公司 A kind of glass-cutting resin wheel and preparation method thereof

Also Published As

Publication number Publication date
JP6819994B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP4742845B2 (en) Method for processing chamfered portion of semiconductor wafer and method for correcting groove shape of grindstone
JP5334040B2 (en) Spherical body polishing apparatus, spherical body polishing method, and spherical member manufacturing method
AU2010327959B2 (en) Abrasive article for use with a grinding wheel
JP5539339B2 (en) High porosity vitrified superabrasive product and manufacturing method
TW508287B (en) Super-fine polishing particle turntable for mirror finishing
TWI599454B (en) Abrasive article and method of use
KR20120085863A (en) Vitreous bonded abrasive
JP2017170554A (en) Vitrified grindstone for low pressure lapping for lapping machine and polishing method using the same
JP6819994B2 (en) Cup type vitrified grindstone for grinding machine
JP3050379B2 (en) Diamond wrap surface plate
JP4869695B2 (en) Vitrified grinding wheel manufacturing method
JP2003136410A (en) Super-abrasive grains vitrified bond grinding wheel
JP6631829B2 (en) Flatness / flatness correction method for lapping machines and grinding wheels
JP2004268200A (en) Composite resinoid grinding tool
JP2006218577A (en) Dresser for polishing cloth
JP2015199138A (en) Grindstone, polishing device, polishing method and method for producing ceramic member
JPH0615572A (en) Grinding wheel
JP2007196317A (en) Method of manufacturing vitrified superfinishing grinding wheel
JP2015202529A (en) Grinding wheel and cutting tool processed thereby
JP2004243465A (en) Diamond lapping surface plate
JPH0584666A (en) Manufacture for resin bond superabrasive grain grinding
TW200848214A (en) Cup-like grinding stone for grinding rear surface of semiconductor wafer and grinding method thereof
JP2003071723A (en) Vitrified grinding wheel
JP2023155970A (en) Hard metal bound diamond composite material surface machining tool
JP2002326123A (en) Gear honing stick

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R150 Certificate of patent or registration of utility model

Ref document number: 6819994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250