JP2018040770A5 - - Google Patents

Download PDF

Info

Publication number
JP2018040770A5
JP2018040770A5 JP2016176954A JP2016176954A JP2018040770A5 JP 2018040770 A5 JP2018040770 A5 JP 2018040770A5 JP 2016176954 A JP2016176954 A JP 2016176954A JP 2016176954 A JP2016176954 A JP 2016176954A JP 2018040770 A5 JP2018040770 A5 JP 2018040770A5
Authority
JP
Japan
Prior art keywords
bearing
bearing part
diagnostic
obtaining
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016176954A
Other languages
Japanese (ja)
Other versions
JP6762817B2 (en
JP2018040770A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2016176954A priority Critical patent/JP6762817B2/en
Priority claimed from JP2016176954A external-priority patent/JP6762817B2/en
Priority to PCT/JP2017/031821 priority patent/WO2018047774A1/en
Publication of JP2018040770A publication Critical patent/JP2018040770A/en
Publication of JP2018040770A5 publication Critical patent/JP2018040770A5/ja
Application granted granted Critical
Publication of JP6762817B2 publication Critical patent/JP6762817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

好ましくは、S−N曲線は、複数個の第1種定数と、故障破壊までの負荷回数Nと、合成応力Sを含む式で表される。合成応力Sを表す式は、複数個の第2種定数を含む。S−N曲線を求めるステップは、各試験用の軸受部品について、故障破壊するまでの複数回の転動疲労試験の負荷回数の合計をNとし、故障破壊したときの合成応力をSとした1つのサンプルを得るステップと、複数個の試験用の軸受部品についてのサンプルを用いて、複数個の第1種定数および複数個の第2種定数を推定するステップとを含む。 Preferably, the SN curve is represented by an expression including a plurality of first type constants, the number of times N of loads until failure and a composite stress S. The formula representing the composite stress S includes a plurality of second type constants. Determining a S- N curve, for bearing components for each test, a total of multiple loads the number of rolling contact fatigue test until failure fracture is N, the synthesis stress when failed disrupted is S Obtaining a single sample and estimating a plurality of first type constants and a plurality of second type constants using samples for a plurality of bearing parts for testing.

好ましくは、は、式(1)で表される。A、B、Sfは定数である。 Preferably, the formula is represented by formula (1). A, B, and Sf are constants.

Claims (19)

軸受部品の寿命診断方法であって、
複数個の試験用の軸受部品の各々について、故障破壊するまで複数回の転動疲労試験を行なうステップと、
前記複数個の試験用の軸受部品についての前記複数回の転動疲労試験の各々において、前記試験用の軸受部品の残留応力とミクロ応力との和である前記試験用の軸受部品の合成応力を求めるステップと、
前記複数個の試験用の軸受部品についての前記複数回の転動疲労試験の各々において、前記試験用の軸受部品にX線を照射することによって検出されるX線回折環からX線分析データを求めるステップと、
前記複数個の試験用の軸受部品についての、前記複数回の転動疲労試験における総負荷回数と、前記故障破壊が発生したときの前記試験用の軸受部品の合成応力との関係に基づいてS−N曲線を求めるステップと、
前記S−N曲線に基づいて、前記複数個の試験用の軸受部品についての前記複数回の転動疲労試験の各々における累積疲労度を求めるステップと、
前記試験用の軸受部品のX線分析データと、前記累積疲労度との関係を表わす対応テーブルを作成するステップと、
診断用の軸受部品の残留応力とミクロ応力との和である前記診断用の軸受部品の合成応力を求めるステップと、
前記診断用の軸受部品の合成応力と前記S−N曲線に基づいて、前記診断用の軸受部品の寿命を求めるステップと、
前記診断用の軸受部品にX線を照射することによって検出されるX線回折環からX線分析データを求めるステップと、
前記診断用の軸受部品のX線分析データと前記対応テーブルに基づいて、前記診断用の軸受部品の累積疲労度を求めるステップと、
前記診断用の軸受部品の寿命、および前記累積疲労度に基づいて、前記診断用の軸受部品の余寿命を求めるステップとを備えた軸受部品の寿命診断方法。
A life diagnosis method for bearing parts,
Performing a plurality of rolling fatigue tests on each of the plurality of test bearing parts until failure failure,
In each of the plurality of rolling fatigue tests on the plurality of test bearing parts, the combined stress of the test bearing parts, which is the sum of the residual stress and the micro stress of the test bearing parts, is calculated. Seeking steps,
In each of the plurality of rolling fatigue tests for the plurality of test bearing parts, X-ray analysis data is obtained from an X-ray diffraction ring detected by irradiating the test bearing parts with X-rays. Seeking steps,
S based on the relationship between the total number of loads in the multiple rolling fatigue tests for the plurality of test bearing parts and the combined stress of the test bearing parts when the failure occurs. Obtaining a -N curve;
Obtaining a cumulative fatigue degree in each of the plurality of rolling fatigue tests for the plurality of test bearing parts based on the SN curve;
Creating a correspondence table representing the relationship between the X-ray analysis data of the bearing component for the test and the cumulative fatigue level;
Determining a combined stress of the diagnostic bearing component that is the sum of the residual stress and the microstress of the diagnostic bearing component;
Determining the life of the diagnostic bearing component based on the combined stress of the diagnostic bearing component and the SN curve;
Obtaining X-ray analysis data from an X-ray diffraction ring detected by irradiating the diagnostic bearing component with X-rays;
Obtaining a cumulative fatigue level of the diagnostic bearing part based on the X-ray analysis data of the diagnostic bearing part and the correspondence table;
A method for diagnosing the life of a bearing component, comprising: determining the remaining life of the bearing component for diagnosis based on the life of the bearing component for diagnosis and the cumulative fatigue level.
前記試験用の軸受部品の合成応力を求めるステップは、
前記試験用の軸受部品の表面形状の測定結果から前記試験用の軸受部品のミクロ応力を求めるステップを含む、請求項1記載の軸受部品の寿命診断方法。
The step of obtaining the composite stress of the bearing component for testing is as follows:
The bearing part life diagnosis method according to claim 1, further comprising a step of obtaining a micro stress of the test bearing part from a measurement result of a surface shape of the test bearing part.
前記試験用の軸受部品の合成応力を求めるステップは、
前記試験用の軸受部品のX線回折結果から前記試験用の軸受部品の残留応力を求めるステップを含む、請求項1記載の軸受部品の寿命診断方法。
The step of obtaining the composite stress of the bearing component for testing is as follows:
The bearing part life diagnosis method according to claim 1, further comprising: obtaining a residual stress of the test bearing part from an X-ray diffraction result of the test bearing part.
前記診断用の軸受部品の合成応力を求めるステップは、
前記診断用の軸受部品の表面形状の測定結果から前記診断用の軸受部品のミクロ応力を求めるステップを含む、請求項1記載の軸受部品の寿命診断方法。
The step of obtaining the composite stress of the diagnostic bearing component is as follows:
The bearing part life diagnosis method according to claim 1, further comprising a step of obtaining a micro stress of the diagnostic bearing part from a measurement result of a surface shape of the diagnostic bearing part.
前記診断用の軸受部品の合成応力を求めるステップは、
前記診断用の軸受部品のX線回折結果から前記診断用の軸受部品の残留応力を求めるステップを含む、請求項1記載の軸受部品の寿命診断方法。
The step of obtaining the composite stress of the diagnostic bearing component is as follows:
The bearing part life diagnosis method according to claim 1, further comprising a step of obtaining a residual stress of the diagnostic bearing part from an X-ray diffraction result of the diagnostic bearing part.
前記S−N曲線は、複数個の第1種定数と、故障破壊までの負荷回数Nと、前記合成応力Sを含む式で表され、かつ前記合成応力Sを表す式は、複数個の第2種定数を含み、
前記S−N曲線を求めるステップは、
各試験用の軸受部品について、前記故障破壊するまでの前記複数回の転動疲労試験の負荷回数の合計をNとし、前記故障破壊したときの合成応力をSとした1つのサンプルを得るステップと、
前記複数個の試験用の軸受部品についての前記サンプルを用いて、前記複数個の第1種定数および前記複数個の第2種定数の値を推定するステップとを含む、請求項1記載の軸受部品の寿命診断方法。
The SN curve is expressed by a formula including a plurality of first type constants, a load count N until failure, and the composite stress S. Including two constants,
Determining the S- N curve is
Obtaining a sample for each bearing component for each test, where N is the total number of loads in the multiple rolling fatigue tests until failure failure, and S is the combined stress when failure occurs. ,
2. The bearing according to claim 1, further comprising: estimating values of the plurality of first type constants and the plurality of second type constants using the samples of the plurality of test bearing parts. Life diagnosis method for parts.
記式は、式(1)で表され、A、B、Sfは定数である、
Figure 2018040770
請求項6記載の軸受部品の寿命診断方法。
Before following formula is represented by the formula (1), A, B, Sf is a constant,
Figure 2018040770
The bearing part life diagnosis method according to claim 6.
前記累積疲労度を求めるステップは、
前記S−N曲線に基づいて、前記複数回の転動疲労試験の各々における前記合成応力での故障破壊までの負荷回数を求めるステップと、
前記複数回の転動疲労試験の各々における、実際の負荷回数と、前記故障破壊までの負荷回数の比で表される疲労度を求めるステップと、
前記複数回の転動疲労試験の各々における、前記転動疲労試験の疲労度と前記転動疲労試験よりも過去のすべての転動疲労試験の疲労度との合計を前記累積疲労度として算出するステップとを含む、請求項1記載の軸受部品の寿命診断方法。
The step of obtaining the cumulative fatigue level includes:
Based on the SN curve, obtaining the number of loads until failure failure at the combined stress in each of the multiple rolling fatigue tests;
In each of the plurality of rolling fatigue tests, a step of obtaining a fatigue level represented by a ratio of an actual load number and a load number until failure failure,
The sum of the fatigue level of the rolling fatigue test and the fatigue levels of all the rolling fatigue tests before the rolling fatigue test in each of the plurality of rolling fatigue tests is calculated as the cumulative fatigue level. The method for diagnosing the life of a bearing component according to claim 1, comprising: a step.
前記X線分析データは、環状の回折X線の中心角と強度との関係を表わすデータである、請求項1記載の軸受部品の寿命診断方法。   The bearing part life diagnosis method according to claim 1, wherein the X-ray analysis data is data representing a relationship between a central angle and an intensity of an annular diffraction X-ray. 前記X線分析データは、前記軸受部品に作用する6成分の残留応力である、請求項1記載の軸受部品の寿命診断方法。   The bearing part life diagnosis method according to claim 1, wherein the X-ray analysis data is residual stress of six components acting on the bearing part. 前記X線分析データは、環状の回折X線の中心角に対応して得られるピークの半価幅である、請求項1記載の軸受部品の寿命診断方法。   The bearing part life diagnosis method according to claim 1, wherein the X-ray analysis data is a half-value width of a peak obtained corresponding to a central angle of an annular diffraction X-ray. 前記X線分析データは、前記軸受部品の残留オーステナイトである、請求項1記載の軸受部品の寿命診断方法。   The bearing part life diagnosis method according to claim 1, wherein the X-ray analysis data is retained austenite of the bearing part. 前記X線分析データは、環状の回折X線の中心角と強度との関係を表わすデータ、前記軸受部品に作用する6成分の残留応力、環状の回折X線の中心角に対応して得られるピークの半価幅、および前記軸受部品の残留オーステナイトのうちの2つ以上の組合せで表現された値である、請求項1記載の軸受部品の寿命診断方法。   The X-ray analysis data is obtained corresponding to the data representing the relationship between the center angle and intensity of the annular diffraction X-ray, the six-component residual stress acting on the bearing part, and the center angle of the annular diffraction X-ray. The bearing part life diagnosis method according to claim 1, wherein the bearing part life is a value expressed by a combination of two or more of a half width of a peak and a retained austenite of the bearing part. 前記余寿命を求めるステップは、
累積疲労度をD、寿命をL、余寿命をRとしたときに、式(2)に従って、余寿命を算出するステップを含む、
R=L(1−D)・・・(2)
請求項1記載の軸受部品の寿命診断方法。
The step of obtaining the remaining life includes
Including a step of calculating the remaining life according to equation (2), where D is the cumulative fatigue level, L is the life, and R is the remaining life,
R = L (1-D) (2)
The bearing part life diagnosis method according to claim 1.
前記試験用の軸受部品の表面に存在する油膜の厚さと前記表面の形状の測定結果から得られる油膜パラメータが所定値以下のときに、前記試験用の軸受部品の合成応力を求めるステップが実行される、請求項1記載の軸受部品の寿命診断方法。   When the oil film parameter obtained from the measurement result of the thickness of the oil film present on the surface of the test bearing part and the shape of the surface is equal to or less than a predetermined value, the step of obtaining the combined stress of the bearing part for test is executed. The bearing part life diagnosis method according to claim 1. 前記診断用の軸受部品の表面に存在する油膜の厚さと前記表面の形状の測定結果から得られる油膜パラメータが所定値以下のときに、前記診断用の軸受部品の合成応力を求めるステップが実行される、請求項1記載の軸受部品の寿命診断方法。   When the oil film parameter obtained from the measurement result of the thickness of the oil film present on the surface of the diagnostic bearing part and the shape of the surface is equal to or less than a predetermined value, a step of obtaining a composite stress of the bearing part for diagnosis is executed. The bearing part life diagnosis method according to claim 1. 前記軸受部品の寿命診断方法は、
前記余寿命に基づいて、前記診断用の軸受部品が交換を要するか否か、または交換時期を通知するステップをさらに備える、請求項1記載の軸受部品の寿命診断方法。
The bearing component life diagnosis method is:
The bearing part life diagnosis method according to claim 1, further comprising a step of notifying whether or not the diagnosis bearing part requires replacement based on the remaining life, or a replacement time.
軸受部品の寿命診断装置であって、
複数個の試験用の軸受部品の各々について、故障破壊するまで複数回の転動疲労試験を行なったときに、前記複数個の試験用の軸受部品についての前記複数回の転動疲労試験の各々において、前記試験用の軸受部品の残留応力とミクロ応力との和である前記試験用の軸受部品の合成応力を求め、診断用の軸受部品の残留応力とミクロ応力との和である前記診断用の軸受部品の合成応力を求める合成応力算出部と、
前記複数個の試験用の軸受部品についての前記複数回の転動疲労試験の各々において、前記試験用の軸受部品にX線を照射することによって検出されるX線回折環からX線分析データを求め、前記診断用の軸受部品にX線を照射することによって検出されるX線回折環からX線分析データを求めるX線分析データ算出部と、
前記複数個の試験用の軸受部品についての、前記複数回の転動疲労試験における総負荷回数と、前記故障破壊が発生したときの前記試験用の軸受部品の合成応力との関係に基づいてS−N曲線を求めるS−N曲線算出部と、
前記S−N曲線に基づいて、前記複数個の試験用の軸受部品についての前記複数回の転動疲労試験の各々における累積疲労度を求める累積疲労度算出部と、
前記試験用の軸受部品のX線分析データと、前記累積疲労度との関係を表わす対応テーブルを作成する対応テーブル作成部と、
前記診断用の軸受部品のX線分析データと前記対応テーブルに基づいて、前記診断用の軸受部品の累積疲労度を求め、前記診断用の軸受部品の合成応力と前記S−N曲線に基づいて、前記診断用の軸受部品の寿命を求め、前記診断用の軸受部品の寿命、および前記診断用の軸受部品の累積疲労度に基づいて、前記診断用の軸受部品の余寿命を求める診断部とを備えた、軸受部品の寿命診断装置。
A life diagnosis device for bearing parts,
Each of the plurality of rolling fatigue tests on the plurality of test bearing parts when each of the plurality of test bearing parts is subjected to a plurality of rolling fatigue tests until failure. In the above, the composite stress of the test bearing part which is the sum of the residual stress and the micro stress of the test bearing part is obtained, and the diagnostic A combined stress calculation unit for determining a combined stress of the bearing parts of
In each of the plurality of rolling fatigue tests for the plurality of test bearing parts, X-ray analysis data is obtained from an X-ray diffraction ring detected by irradiating the test bearing parts with X-rays. An X-ray analysis data calculating unit for obtaining X-ray analysis data from an X-ray diffraction ring detected by irradiating the diagnostic bearing component with X-rays;
S based on the relationship between the total number of loads in the multiple rolling fatigue tests for the plurality of test bearing parts and the combined stress of the test bearing parts when the failure occurs. An SN curve calculation unit for obtaining an -N curve;
Based on the SN curve, a cumulative fatigue degree calculation unit for obtaining a cumulative fatigue degree in each of the plurality of rolling fatigue tests for the plurality of test bearing parts;
A correspondence table creation unit for creating a correspondence table representing the relationship between the X-ray analysis data of the bearing component for the test and the cumulative fatigue level;
Based on the X-ray analysis data of the diagnostic bearing part and the correspondence table, a cumulative fatigue level of the diagnostic bearing part is obtained, and based on the combined stress of the diagnostic bearing part and the SN curve. A diagnostic unit for obtaining a life of the diagnostic bearing component and obtaining a remaining life of the diagnostic bearing component based on a life of the diagnostic bearing component and a cumulative fatigue level of the diagnostic bearing component; A life diagnosis device for bearing parts, comprising:
軸受部品の寿命診断プログラムであって、
コンピュータに、
複数個の試験用の軸受部品の各々について、故障破壊するまで複数回の転動疲労試験を行なったときに、前記複数個の試験用の軸受部品についての前記複数回の転動疲労試験の各々において、前記試験用の軸受部品の残留応力とミクロ応力との和である前記試験用の軸受部品の合成応力を求めるステップと、
前記複数個の試験用の軸受部品についての前記複数回の転動疲労試験の各々において、前記試験用の軸受部品にX線を照射することによって検出されるX線回折環からX線分析データを求めるステップと、
前記複数個の試験用の軸受部品についての、前記複数回の転動疲労試験における総負荷回数と、前記故障破壊が発生したときの前記試験用の軸受部品の合成応力との関係に基づいてS−N曲線を求めるステップと、
前記S−N曲線に基づいて、前記複数個の試験用の軸受部品についての前記複数回の転動疲労試験の各々における累積疲労度を求めるステップと、
前記X線分析データと、前記累積疲労度との関係を表わす対応テーブルを作成するステップと、
診断用の軸受部品の残留応力とミクロ応力との和である前記診断用の軸受部品の合成応力を求めるステップと、
前記診断用の軸受部品の合成応力と前記S−N曲線に基づいて、前記診断用の軸受部品の寿命を推定するステップと、
前記診断用の軸受部品にX線を照射することによって検出されるX線回折環からX線分析データを求めるステップと、
前記診断用の軸受部品のX線分析データと前記対応テーブルに基づいて、前記診断用の軸受部品の累積疲労度を求めるステップと、
前記診断用の軸受部品の寿命、および前記累積疲労度に基づいて、前記診断用の軸受部品の余寿命を求めるステップとを実行させる、軸受部品の寿命診断プログラム。
A life diagnosis program for bearing parts,
On the computer,
Each of the plurality of rolling fatigue tests on the plurality of test bearing parts when each of the plurality of test bearing parts is subjected to a plurality of rolling fatigue tests until failure. A step of obtaining a composite stress of the test bearing part which is a sum of a residual stress and a micro stress of the test bearing part;
In each of the plurality of rolling fatigue tests for the plurality of test bearing parts, X-ray analysis data is obtained from an X-ray diffraction ring detected by irradiating the test bearing parts with X-rays. Seeking steps,
S based on the relationship between the total number of loads in the multiple rolling fatigue tests for the plurality of test bearing parts and the combined stress of the test bearing parts when the failure occurs. Obtaining a -N curve;
Obtaining a cumulative fatigue degree in each of the plurality of rolling fatigue tests for the plurality of test bearing parts based on the SN curve;
Creating a correspondence table representing the relationship between the X-ray analysis data and the cumulative fatigue level;
Determining a combined stress of the diagnostic bearing component that is the sum of the residual stress and the microstress of the diagnostic bearing component;
Estimating the life of the diagnostic bearing component based on the combined stress of the diagnostic bearing component and the SN curve;
Obtaining X-ray analysis data from an X-ray diffraction ring detected by irradiating the diagnostic bearing component with X-rays;
Based on the X-ray analysis data of the diagnostic bearing component and the correspondence table, obtaining a cumulative fatigue level of the diagnostic bearing component;
A bearing part life diagnosis program for executing a step of obtaining a remaining life of the diagnostic bearing part based on the life of the diagnostic bearing part and the cumulative fatigue level.
JP2016176954A 2016-09-09 2016-09-09 Bearing part life diagnosis method, bearing part life diagnosis device, and bearing part life diagnosis program Active JP6762817B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016176954A JP6762817B2 (en) 2016-09-09 2016-09-09 Bearing part life diagnosis method, bearing part life diagnosis device, and bearing part life diagnosis program
PCT/JP2017/031821 WO2018047774A1 (en) 2016-09-09 2017-09-04 Method for diagnosing service life of bearing component, device for diagnosing service life of bearing component, and program for diagnosing service life of bearing component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016176954A JP6762817B2 (en) 2016-09-09 2016-09-09 Bearing part life diagnosis method, bearing part life diagnosis device, and bearing part life diagnosis program

Publications (3)

Publication Number Publication Date
JP2018040770A JP2018040770A (en) 2018-03-15
JP2018040770A5 true JP2018040770A5 (en) 2019-10-10
JP6762817B2 JP6762817B2 (en) 2020-09-30

Family

ID=61625932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016176954A Active JP6762817B2 (en) 2016-09-09 2016-09-09 Bearing part life diagnosis method, bearing part life diagnosis device, and bearing part life diagnosis program

Country Status (1)

Country Link
JP (1) JP6762817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372155B2 (en) 2019-02-22 2023-10-31 Ntn株式会社 Method for estimating fatigue level of rolling parts, device for estimating fatigue level of rolling parts, program for estimating fatigue level of rolling parts

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760301B (en) * 2018-05-08 2020-03-31 中铁工程装备集团有限公司 Method for quantitatively estimating service life state of main bearing of tunnel boring machine
JP7064383B2 (en) * 2018-05-29 2022-05-10 Ntn株式会社 Performance evaluation method for rolling parts
CN110967208B (en) * 2019-12-11 2021-06-01 扬州大学 Crane reliability detection method for correcting residual stress based on unit compromise factor
AU2022312861A1 (en) 2021-07-16 2024-01-18 Asahi Kasei Kabushiki Kaisha Analysis system, analysis method, and analysis program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3675665B2 (en) * 1999-04-16 2005-07-27 光洋精工株式会社 Method of measuring fatigue level due to rolling fatigue
JP2002214224A (en) * 2001-01-22 2002-07-31 Idemitsu Kosan Co Ltd Apparatus and method for evaluating bearing fatigue life of lubricant
JP3952295B2 (en) * 2003-02-12 2007-08-01 Ntn株式会社 Bearing life prediction method
NL1023342C2 (en) * 2003-05-05 2004-11-09 Skf Ab Method for treating the surface of a machine element.
JP5339253B2 (en) * 2009-07-24 2013-11-13 国立大学法人金沢大学 X-ray stress measurement method
JP5958999B2 (en) * 2012-07-04 2016-08-02 Ntn株式会社 Bearing part inspection method and bearing part inspection apparatus
JP2015017661A (en) * 2013-07-11 2015-01-29 日本精工株式会社 Rolling bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372155B2 (en) 2019-02-22 2023-10-31 Ntn株式会社 Method for estimating fatigue level of rolling parts, device for estimating fatigue level of rolling parts, program for estimating fatigue level of rolling parts

Similar Documents

Publication Publication Date Title
JP2018040770A5 (en)
JP2018040769A5 (en)
CN105008887B (en) Use the turbine blade analysis of Fatigue-life of non-cpntact measurement and dynamic response reconfiguration technique
Blasón et al. A probabilistic analysis of Miner’s law for different loading conditions
KR101461858B1 (en) Component fracture evaluation device, component fracture evaluation method, and computer readable recording medium having computer program recorded thereon
Müller et al. Accuracy of fatigue limits estimated by the staircase method using different evaluation techniques
EP2423664A2 (en) Fatigue life estimation method and system
JP5958999B2 (en) Bearing part inspection method and bearing part inspection apparatus
EP3267341A1 (en) Residual stress estimation method and residual stress estimation device
JP2018040771A5 (en)
CN109344553A (en) A kind of height week Combined Fatigue Load effect flowering structure details life-span prediction method
CN110864902A (en) Rolling bearing early fault detection method based on fractional-order step entropy
CN110726542B (en) Analysis method for fatigue life of spring
Tokuno et al. Stress evaluation by voice: a novel stress evaluation technology
KR20130010627A (en) Method and computer-readable recording medium for estimating safe life of dynamic components
JPWO2022030591A5 (en)
WO2018194886A8 (en) Multidimensional acceleration and/or force gait analysis system for diagnosis
Vetter et al. The survival probability of shafts and shaft-hub connections
Tokuno et al. Stress evaluation using voice emotion recognition technology: A novel stress evaluation technology for disaster responders
CN117262237B (en) Aircraft cockpit lid skeleton simulation piece fatigue test method considering assembly dispersibility
KR101714851B1 (en) Signal analysis method and apparatus
JP2018084471A (en) Identification method of material parameter of rubber-like material
KR20170085474A (en) Methiod for counting fatigue damage in frequency domain applicable to multi-spectral loading pattern
Ståhl Concurrent Validity, Inra-unit, and Inter-unit Reliability of the Vmaxpro for Measuring Velocity
JP2022127190A5 (en)