JP2018037441A - Three-dimensional lamination layer chain type storage device and manufacturing method therefor - Google Patents

Three-dimensional lamination layer chain type storage device and manufacturing method therefor Download PDF

Info

Publication number
JP2018037441A
JP2018037441A JP2016166781A JP2016166781A JP2018037441A JP 2018037441 A JP2018037441 A JP 2018037441A JP 2016166781 A JP2016166781 A JP 2016166781A JP 2016166781 A JP2016166781 A JP 2016166781A JP 2018037441 A JP2018037441 A JP 2018037441A
Authority
JP
Japan
Prior art keywords
film
channel layer
interlayer insulating
insulating film
chain type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016166781A
Other languages
Japanese (ja)
Other versions
JP6758124B2 (en
Inventor
置田 陽一
Yoichi Okita
陽一 置田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2016166781A priority Critical patent/JP6758124B2/en
Publication of JP2018037441A publication Critical patent/JP2018037441A/en
Application granted granted Critical
Publication of JP6758124B2 publication Critical patent/JP6758124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional lamination layer chain type storage device and manufacturing method therefor, capable of achieving good storage operation by combining a three-dimensional lamination structure with a chain type storage structure.SOLUTION: A recessed part is formed on a plurality of gate electrodes laminated through an interlayer insulation film, using an eaves of the interlayer insulation film. A gate insulation film, a semiconductor channel layer and a memory substance film are sequentially formed at the recessed part, and the semiconductor channel layer is taken as a voltage application electrode for the memory substance film charged into the recessed part.SELECTED DRAWING: Figure 1

Description

本発明は、3次元積層チェーン型メモリ装置及びその製造方法に関するものである。   The present invention relates to a three-dimensional stacked chain type memory device and a manufacturing method thereof.

従来のEEPROMやフラッシュメモリと比較して高速の書き換えが可能で、且つ書き換え回数も大幅に大きく、DRAMに匹敵する容量、速度を目指した不揮発性メモリの開発が行なわれている。このような不揮発性メモリとしては、強誘電体のヒステリシスの残留分極を利用したFeRAM(Ferroelectric Random Access Memory)、GMR(巨大磁気抵抗)効果を動作原理とするMRAM(Magnetic Random Access Memory)、相変化膜の熱変化を利用したPCRAM(Phase Change Random Access Memory)、或いは、電界誘起巨大抵抗変化を動作原理とする抵抗変化膜を利用したRRAM(登録商標:Resistive Random Access Memory)などがある。   Non-volatile memories are being developed that can be rewritten at a higher speed than conventional EEPROMs and flash memories and have a significantly larger number of rewrites, aiming at a capacity and speed comparable to DRAMs. As such a nonvolatile memory, FeRAM (Ferroelectric Random Access Memory) using the residual polarization of the hysteresis of the ferroelectric, MRAM (Magnetic Random Access Memory) using the GMR effect as a principle of operation, phase change There is a PCRAM (Phase Change Random Access Memory) using a thermal change of a film, or an RRAM (registered trademark: Resistive Random Access Memory) using a resistance change film using an electric field induced giant resistance change as an operating principle.

このようなPCRAM等の不揮発性のメモリセルをDRAMに匹敵するメモリ容量とするためには高集積化する必要がある。高集積化のためには、相変化素子及びトランジスタの微細化が必要となる。しかし、リソグラフィーには限界があるため、微細化には限界がある。また、微細化に伴って相変化素子及びトランジスタの特性が劣化するので、設計通りの特性が得られない問題点がある。また、FeRAMやRRAM(登録商標)なども同様の問題点を有する。   In order to make such a non-volatile memory cell such as PCRAM have a memory capacity comparable to that of a DRAM, it is necessary to achieve high integration. For high integration, it is necessary to miniaturize phase change elements and transistors. However, since lithography is limited, there is a limit to miniaturization. In addition, since the characteristics of the phase change element and the transistor are deteriorated with the miniaturization, there is a problem that the characteristics as designed cannot be obtained. FeRAM, RRAM (registered trademark), and the like also have similar problems.

FeRAMにおいては、複数のセルを横方向に鎖状に接続したChainFeRAM(登録商標)が提案されている(例えば、特許文献1参照)。従来のFeRAMにおいてはワード線とビット線以外にプレート線を必要とするため、プレート電極を駆動する駆動線と選択したセルのプレート線を駆動するためのプレートデコーダ回路を必要としている。そのため、微細化や高速駆動が困難であった。   As FeRAM, ChainFeRAM (registered trademark) in which a plurality of cells are connected in a chain shape in the horizontal direction has been proposed (see, for example, Patent Document 1). Since the conventional FeRAM requires a plate line in addition to the word line and the bit line, a drive line for driving the plate electrode and a plate decoder circuit for driving the plate line of the selected cell are required. Therefore, miniaturization and high-speed driving are difficult.

そこで、ChainFeRAM(登録商標)においては、一つのトランジスタと一つのキャパシタを並列に接続して一つのセルとし、それを直列に接続して鎖状構造とすることで、プレート線を複数のセルで共有化している。そのため、大幅なセルサイズの縮小とプレートデコーダ回路の削減が可能になった。また、共有化したプレート線の抵抗を低減することができるため、プレート線駆動に必要な時間が短縮され、高速化が可能になる。   Therefore, in ChainFeRAM (registered trademark), one transistor and one capacitor are connected in parallel to form one cell, which is connected in series to form a chain structure, so that the plate line can be connected to a plurality of cells. Shared. As a result, the cell size can be greatly reduced and the number of plate decoder circuits can be reduced. Further, since the resistance of the shared plate line can be reduced, the time required for driving the plate line is shortened, and the speed can be increased.

また、ChainFeRAM(登録商標)では、スタンバイ状態のセルのセルトランジスタは全てオン状態であり、アクセスするセルのセルトランジスタのみをオフにする。この状態で、プレート線を駆動すると、アクセスするセルのみに電圧が印加されて強誘電体キャパシタのデータが読みだされるため、ランダムアクセスとなる。しかし、このようなChainFeRAM(登録商標)も2次元構造であるため、集積化には限界がある。   In ChainFeRAM (registered trademark), the cell transistors of the cells in the standby state are all turned on, and only the cell transistors of the cells to be accessed are turned off. When the plate line is driven in this state, a voltage is applied only to the cell to be accessed, and the ferroelectric capacitor data is read out, so that random access is performed. However, since such ChainFeRAM (registered trademark) also has a two-dimensional structure, integration is limited.

一方、PCRAMにおいては、メモリ素子を3次元的に積層した3次元積層チェーン型PCRAMが提案されている(例えば、特許文献2参照)。3次元積層チェーン型PCRAMでは、ゲート電極を層間絶縁膜を介して複数層積層し、積層体を貫通する貫通孔を形成し、貫通孔の側壁にゲート絶縁膜、チャネル層及び相変化膜を順次積層している。セルに情報を書き込む際には相変化膜に微弱な電流を流して相変化膜の結晶状態を変化させている。   On the other hand, as the PCRAM, a three-dimensional stacked chain type PCRAM in which memory elements are stacked three-dimensionally has been proposed (for example, see Patent Document 2). In a three-dimensional stacked chain type PCRAM, a plurality of gate electrodes are stacked via an interlayer insulating film, a through hole penetrating the stacked body is formed, and a gate insulating film, a channel layer, and a phase change film are sequentially formed on the side wall of the through hole. Laminated. When writing information to the cell, a weak current is passed through the phase change film to change the crystal state of the phase change film.

特開2001−257320号公報JP 2001-257320 A 特開2008−160004号公報JP 2008-160004 A

チェーン型のFeRAMにおいても、さらなる高集積化のために3次元構造を採用することが考えられる。例えば、3次元積層チェーン型PCRAMにおける相変化膜を強誘電体膜に置き換えて3次元化することが考えられる。しかし、相変化膜を強誘電体膜に置き換えただけでは、メモリとして動作しないという問題があるので、図36及び図37を参照してその事情を説明する。   Even in the chain type FeRAM, it is conceivable to adopt a three-dimensional structure for higher integration. For example, it is conceivable to replace the phase change film in a three-dimensional stacked chain type PCRAM with a ferroelectric film to make it three-dimensional. However, there is a problem that it does not operate as a memory only by replacing the phase change film with a ferroelectric film, and the circumstances will be described with reference to FIGS.

図39は、3次元積層チェーン型メモリ装置のセル構造の説明図であり、図39(a)は3次元積層チェーン型PCRAMのメモリセルの円筒状開口部を挟む円環ゲート構造の片側の断面図であり、図39(b)は3次元積層チェーン型FeRAMに適用した場合のメモリセルの円筒状開口部を挟む円環ゲート構造の片側の断面図である。図39(a)に示すように、3次元積層チェーン型PCRAMは、ゲート電極101を層間絶縁膜102を介して複数層積層し、積層体を貫通する貫通孔を形成し、貫通孔の側壁にゲート絶縁膜103、多結晶シリコンチャネル層104及び相変化膜105を順次積層して形成している。   FIG. 39 is an explanatory diagram of a cell structure of a three-dimensional stacked chain type memory device, and FIG. 39 (a) is a cross-sectional view of one side of an annular gate structure sandwiching a cylindrical opening of a memory cell of a three-dimensional stacked chain type PCRAM. FIG. 39B is a cross-sectional view of one side of an annular gate structure sandwiching a cylindrical opening of a memory cell when applied to a three-dimensional stacked chain type FeRAM. As shown in FIG. 39A, in the three-dimensional stacked chain type PCRAM, a plurality of gate electrodes 101 are stacked through an interlayer insulating film 102 to form a through hole penetrating the stacked body, and on the side wall of the through hole. A gate insulating film 103, a polycrystalline silicon channel layer 104, and a phase change film 105 are sequentially stacked.

一方、3次元積層チェーン型FeRAMに適用した場合には、ゲート電極111を層間絶縁膜112を介して複数層積層し、積層体を貫通する貫通孔を形成し、貫通孔の側壁にゲート絶縁膜113、多結晶シリコンチャネル層114及び強誘電体膜115を順次積層して形成することになる。したがって、3次元積層チェーン型PCRAMのメモリセルにおける相変化膜105を強誘電体膜115に置き換えただけの構造である。   On the other hand, when applied to a three-dimensionally stacked chain type FeRAM, a plurality of gate electrodes 111 are stacked via an interlayer insulating film 112, a through hole penetrating the stacked body is formed, and a gate insulating film is formed on a sidewall of the through hole. 113, the polycrystalline silicon channel layer 114, and the ferroelectric film 115 are sequentially stacked. Therefore, the phase change film 105 in the memory cell of the three-dimensional stacked chain type PCRAM is simply replaced with the ferroelectric film 115.

図40は、3次元積層チェーン型FeRAMの動作状態におけるバイアス状態の説明図であり、図40(a)はスタンバイ状態の説明図であり、図40(b)はアクティブ状態の説明図である。なお、各図における右上図は、等価回路図であり、右下図はヒステリシス特性を示している。   FIG. 40 is an explanatory diagram of the bias state in the operating state of the three-dimensional multilayer chain type FeRAM, FIG. 40 (a) is an explanatory diagram of the standby state, and FIG. 40 (b) is an explanatory diagram of the active state. Note that the upper right diagram in each figure is an equivalent circuit diagram, and the lower right diagram shows the hysteresis characteristics.

図40(a)に示すように、スタンバイ状態では、全てのトランジスタのゲートをオンにして、多結晶シリコンチャネル層114を同一電位に保持している。図40(b)に示すように、一つのセルを選択するアクティブ状態においては、選択した一つのセルのトランジスタのみをオフにして、多結晶シリコンチャネル層114の一端にVddを印加し、他端にVssを印加する。この時、選択した一つのセルのトランジスタのゲート電極113の直下の多結晶シリコンチャネル層114には電流が流れないので、当該個所の強誘電体層115の両端に電圧を印加しようとする。しかし、図から明らかなように、当該個所の強誘電体層115を電極で挟み込む構造ではないため、当該個所の強誘電体層115の両端に十分な電圧が印加されないため、メモリとして動作しないという問題がある。これらの問題はメモリ材料として強誘電体膜を用いたに場合に限らない。例えば、メモリ材料として相変化膜を用いた場合は、結晶構造を良好に変化させることが出来なくなり、抵抗変化膜を用いた場合には、十分な抵抗が変化が起こせなくなる問題がある。 As shown in FIG. 40A, in the standby state, the gates of all the transistors are turned on and the polycrystalline silicon channel layer 114 is held at the same potential. As shown in FIG. 40B, in the active state in which one cell is selected, only the transistor of the selected one cell is turned off, V dd is applied to one end of the polycrystalline silicon channel layer 114, and the other V ss is applied to the end. At this time, no current flows through the polycrystalline silicon channel layer 114 immediately below the gate electrode 113 of the transistor of one selected cell, so that a voltage is applied to both ends of the ferroelectric layer 115 at that location. However, as is apparent from the figure, since the ferroelectric layer 115 at that location is not sandwiched between electrodes, a sufficient voltage is not applied to both ends of the ferroelectric layer 115 at that location, so that it does not operate as a memory. There's a problem. These problems are not limited to the case where a ferroelectric film is used as a memory material. For example, when a phase change film is used as a memory material, the crystal structure cannot be changed satisfactorily, and when a resistance change film is used, there is a problem that sufficient resistance cannot be changed.

したがって、本発明ではメモリ材料が対向電極間に挟まれている構造が必要とされるメモリ素子を有効に機能させ、同時にそれらのメモリ素子を3次元に積層することで良好なメモリ動作をする3次元積層チェーン型メモリ装置を実現することを目的とする。   Therefore, in the present invention, a memory element that requires a structure in which a memory material is sandwiched between opposing electrodes is effectively functioned, and at the same time, these memory elements are stacked three-dimensionally to perform a good memory operation. An object of the present invention is to realize a three-dimensional stacked chain type memory device.

一つの態様では、3次元積層チェーン型メモリ装置は、層間絶縁膜を介して積層した複数のゲート電極と、前記層間絶縁膜及び複数のゲート電極を貫通する貫通孔と、前記貫通孔内において前記層間絶縁膜及び前記ゲート電極の露出部を覆うゲート絶縁膜と、前記ゲート絶縁膜を覆う半導体チャネル層と、前記半導体チャネル層を覆うメモリ物質膜とを少なくとも有し、前記貫通孔内において、前記層間絶縁膜が前記ゲート電極より突出して前記層間絶縁膜と前記ゲート電極の積層方向に沿って周期的な凹部を有し、前記メモリ物質膜が前記凹部に充填されて、前記半導体チャネル層が前記凹部に充填された前記メモリ物質膜に対する電圧印加電極となる。   In one aspect, the three-dimensional stacked chain type memory device includes a plurality of gate electrodes stacked via an interlayer insulating film, a through hole penetrating the interlayer insulating film and the plurality of gate electrodes, and the inside of the through hole. A gate insulating film covering the interlayer insulating film and the exposed portion of the gate electrode; a semiconductor channel layer covering the gate insulating film; and a memory material film covering the semiconductor channel layer. An interlayer insulating film protrudes from the gate electrode and has a periodic recess along a stacking direction of the interlayer insulating film and the gate electrode, the memory material film is filled in the recess, and the semiconductor channel layer is It becomes a voltage application electrode for the memory material film filled in the recess.

他の態様では、3次元積層チェーン型メモリ装置の製造方法は、層間絶縁膜を介して複数のゲート電極層を積層する工程と、前記層間絶縁膜及び複数のゲート電極層を貫通する開口部を形成する工程と、前記開口部内に露出するゲート電極層をサイドエッチングして凹部を形成する工程と、前記開口部内において前記層間絶縁膜と前記ゲート電極層の露出面にゲート絶縁膜を成膜する工程と、前記ゲート電極層の露出面に半導体チャネル層を前記半導体チャネル層に凹部が形成されるように成膜する工程と、前記半導体チャネル層の露出面に前記半導体チャネル層に形成された前記凹部を埋め込むようにメモリ物質膜を形成する工程とを少なくとも有する。   In another aspect, a method of manufacturing a three-dimensional stacked chain type memory device includes a step of stacking a plurality of gate electrode layers with an interlayer insulating film interposed therebetween, and an opening penetrating the interlayer insulating film and the plurality of gate electrode layers. Forming a recess, forming a recess by side etching the gate electrode layer exposed in the opening, and forming a gate insulating film on the exposed surface of the interlayer insulating film and the gate electrode layer in the opening. Forming a semiconductor channel layer on the exposed surface of the gate electrode layer so that a recess is formed in the semiconductor channel layer; and forming the semiconductor channel layer on the exposed surface of the semiconductor channel layer. Forming a memory material film so as to fill the recess.

一つの側面として、3次元積層構造とメモリ構造とを組み合わせて良好なメモリ動作をする3次元積層チェーン型メモリ装置を実現することが可能になる。   As one aspect, it is possible to realize a three-dimensional stacked chain type memory device that performs a good memory operation by combining a three-dimensional stacked structure and a memory structure.

本発明の実施の形態の3次元積層チェーン型メモリ装置の構成説明図である。1 is a configuration explanatory diagram of a three-dimensional stacked chain type memory device according to an embodiment of the present invention. 本発明の実施の形態の3次元積層チェーン型メモリ装置の要部断面図である。It is principal part sectional drawing of the three-dimensional lamination chain type memory device of an embodiment of the invention. 本発明の実施の形態の3次元積層チェーン型メモリ装置の等価回路図である。1 is an equivalent circuit diagram of a three-dimensional stacked chain type memory device according to an embodiment of the present invention. 本発明の実施の形態の3次元積層チェーン型メモリ装置の動作の説明図である。It is explanatory drawing of operation | movement of the three-dimensional lamination chain type memory device of an embodiment of the invention. 本発明の実施例1の3次元積層チェーン型FeRAMの概略的斜視図である。1 is a schematic perspective view of a three-dimensional multilayer chain type FeRAM according to a first embodiment of the present invention. 本発明の実施例1の3次元積層チェーン型FeRAMの説明図である。It is explanatory drawing of the three-dimensional laminated chain type FeRAM of Example 1 of this invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の途中までの説明図である。It is explanatory drawing to the middle of the manufacturing process of the three-dimensional lamination chain type FeRAM of Example 1 of the present invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図7以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 7 of the manufacturing process of the three-dimensional laminated chain type FeRAM of Example 1 of this invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図8以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 8 of the manufacturing process of the three-dimensional lamination chain type FeRAM of Example 1 of the present invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図9以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 9 of the manufacturing process of the three-dimensional laminated chain type FeRAM of Example 1 of this invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の10以降の途中までの説明図である。It is explanatory drawing to the middle after 10 of the manufacturing process of the three-dimensional lamination chain type FeRAM of Example 1 of the present invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図11以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 11 of the manufacturing process of the three-dimensional laminated chain type FeRAM of Example 1 of this invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図12以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 12 of the manufacturing process of the three-dimensional laminated chain type FeRAM of Example 1 of this invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図13以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 13 of the manufacturing process of the three-dimensional laminated chain type FeRAM of Example 1 of this invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図14以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 14 of the manufacturing process of the three-dimensional laminated chain type FeRAM of Example 1 of this invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図15以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 15 of the manufacturing process of the three-dimensional lamination chain type FeRAM of Example 1 of the present invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図16以降の途中までの説明図である。It is explanatory drawing to the middle of FIG. 16 or subsequent of the manufacturing process of the three-dimensional laminated chain type FeRAM of Example 1 of this invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図17以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 17 of the manufacturing process of the three-dimensional lamination chain type FeRAM of Example 1 of the present invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図18以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 18 of the manufacturing process of the three-dimensional laminated chain type FeRAM of Example 1 of this invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図19以降の途中までの説明図である。It is explanatory drawing to the middle after FIG. 19 of the manufacturing process of the three-dimensional lamination chain type FeRAM of Example 1 of the present invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図20以降の途中までの説明図である。It is explanatory drawing to the middle of FIG. 20 or subsequent of the manufacturing process of the three-dimensional laminated chain type FeRAM of Example 1 of this invention. 本発明の実施例1の3次元積層チェーン型FeRAMの製造工程の図21以降の説明図である。It is explanatory drawing after FIG. 21 of the manufacturing process of the three-dimensional laminated chain type FeRAM of Example 1 of this invention. 本発明の実施例2の3次元積層チェーン型FeRAMの説明図である。It is explanatory drawing of the three-dimensional laminated chain type FeRAM of Example 2 of this invention. 本発明の実施例3の3次元積層チェーン型FeRAMのメモリセル部の要部断面図である。It is principal part sectional drawing of the memory cell part of the three-dimensional lamination chain type FeRAM of Example 3 of the present invention. 本発明の実施例4の3次元積層チェーン型FeRAMのメモリセル部の要部断面図である。It is principal part sectional drawing of the memory cell part of the three-dimensional lamination chain type FeRAM of Example 4 of the present invention. 本発明の実施例5の3次元積層チェーン型FeRAMのメモリセル部の要部断面図である。It is principal part sectional drawing of the memory cell part of the three-dimensional lamination chain type FeRAM of Example 5 of the present invention. 本発明の実施例6の3次元積層チェーン型FeRAMの概略的断面図である。It is a schematic sectional drawing of the three-dimensional lamination chain type FeRAM of Example 6 of the present invention. 本発明の実施例6の3次元積層チェーン型FeRAMの途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle of the three-dimensional lamination chain type FeRAM of Example 6 of the present invention. 本発明の実施例6の3次元積層チェーン型FeRAMの図28以降の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle after FIG. 28 of the three-dimensional lamination chain type FeRAM of Example 6 of the present invention. 本発明の実施例6の3次元積層チェーン型FeRAMの図29以降の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle after FIG. 29 of the three-dimensional lamination chain type FeRAM of Example 6 of the present invention. 本発明の実施例6の3次元積層チェーン型FeRAMの図30以降の製造工程の説明図である。It is explanatory drawing of the manufacturing process after FIG. 30 of the three-dimensional lamination chain type FeRAM of Example 6 of the present invention. 本発明の実施例7の3次元積層チェーン型FeRAMの概略的断面図である。It is a schematic sectional drawing of the three-dimensional lamination chain type FeRAM of Example 7 of the present invention. 本発明の実施例7の3次元積層チェーン型FeRAMの途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle of the three-dimensional lamination chain type FeRAM of Example 7 of the present invention. 本発明の実施例7の3次元積層チェーン型FeRAMの図33以降の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle after FIG. 33 of the three-dimensional lamination chain type FeRAM of Example 7 of the present invention. 本発明の実施例7の3次元積層チェーン型FeRAMの図34以降の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process until the middle of FIG. 34 or subsequent of the three-dimensional lamination chain type FeRAM of Example 7 of the present invention. 本発明の実施例7の3次元積層チェーン型FeRAMの図35以降の製造工程の説明図である。It is explanatory drawing of the manufacturing process after FIG. 35 of the three-dimensional lamination chain type FeRAM of Example 7 of the present invention. 本発明の実施例8の3次元積層チェーン型PCRAMの説明図である。It is explanatory drawing of the three-dimensional laminated chain type PCRAM of Example 8 of this invention. 本発明の実施例9の3次元積層チェーン型RRAMの説明図である。It is explanatory drawing of the three-dimensional lamination chain type RRAM of Example 9 of this invention. 3次元積層チェーン型メモリ装置のセル構造の説明図である。It is explanatory drawing of the cell structure of a three-dimensional lamination chain type memory device. 3次元積層チェーン型FeRAMの動作状態におけるバイアス状態の説明図である。It is explanatory drawing of the bias state in the operation state of three-dimensional laminated chain type FeRAM.

ここで、図1乃至図4を参照して、本発明の実施の形態の3次元積層チェーン型メモリ装置を説明する。図1は、本発明の実施の形態の3次元積層チェーン型メモリ装置の構成説明図であり、上図はメモリセル部の概略的断面図であり、下図は上図において破線で囲ったキャパシタ部を示す要部斜視図である。上図に示すように、層間絶縁膜2を介して複数のゲート電極1を積層し、層間絶縁膜2及び複数のゲート電極1を貫通する開口部3を形成する。開口部3内において層間絶縁膜2及びゲート電極1の露出部を覆うようにゲート絶縁膜5、半導体チャネル層6及びメモリ物質膜7を設ける。この時、開口部3内において、層間絶縁膜2をゲート電極1より突出させて層間絶縁膜2とゲート電極1の積層方向に沿って周期的な凹部4を形成し、この凹部4にメモリ物質膜5が充填されるようにする。その結果、下図に示すように、メモリセル部において、メモリ物質層7は半導体チャネル層6により積層方向において挟み込まれた構造になるので、半導体チャネル層6が凹部4に充填されたメモリ物質膜7に対する電圧印加電極となる。   Here, with reference to FIG. 1 thru | or FIG. 4, the three-dimensional lamination | stacking chain type memory device of embodiment of this invention is demonstrated. FIG. 1 is an explanatory diagram of a configuration of a three-dimensional stacked chain type memory device according to an embodiment of the present invention. An upper diagram is a schematic sectional view of a memory cell unit, and a lower diagram is a capacitor unit surrounded by a broken line in the upper diagram. FIG. As shown in the upper diagram, a plurality of gate electrodes 1 are stacked with an interlayer insulating film 2 interposed therebetween, and an opening 3 penetrating the interlayer insulating film 2 and the plurality of gate electrodes 1 is formed. A gate insulating film 5, a semiconductor channel layer 6, and a memory material film 7 are provided so as to cover the exposed portion of the interlayer insulating film 2 and the gate electrode 1 in the opening 3. At this time, in the opening 3, the interlayer insulating film 2 protrudes from the gate electrode 1 to form a periodic recess 4 along the stacking direction of the interlayer insulating film 2 and the gate electrode 1. The membrane 5 is filled. As a result, as shown in the figure below, in the memory cell portion, the memory material layer 7 is sandwiched by the semiconductor channel layer 6 in the stacking direction, so that the memory material film 7 in which the semiconductor channel layer 6 is filled in the recess 4 is formed. Voltage application electrode.

図2は、本発明の実施の形態の3次元積層チェーン型メモリ装置の要部断面図であり、ここでは、図1におけるA−A′を結ぶ一点鎖線に沿った断面図を示している。開口部(5)において、絶縁体膜8をメモリ物質膜7、半導体チャネル層6及びゲート絶縁膜5は同心円環状に配置されており、その他の領域はゲート電極1となる。   FIG. 2 is a cross-sectional view of a main part of the three-dimensional stacked chain type memory device according to the embodiment of the present invention. Here, a cross-sectional view taken along the alternate long and short dash line connecting AA ′ in FIG. 1 is shown. In the opening (5), the insulator film 8, the memory material film 7, the semiconductor channel layer 6, and the gate insulating film 5 are arranged in a concentric ring shape, and the other region becomes the gate electrode 1.

図3は、本発明の実施の形態の3次元積層チェーン型メモリ装置の等価回路図であり、ここでは、図において破線で囲った4つのセルを積層した部分が3次元積層チェーン型メモリ装置のメモリブロックの等価回路となる。図に示すように、3次元積層チェーン型メモリ装置の回路構成としては、一つのメモリセルは並列に接続された一つのトランジスタと一つの強誘電体キャパシタで構成され、一つのメモリブロックは複数の前記メモリセルが直列に接続されることで構成され、そのメモリブロックの一端子がビット線に接続され、かつ他方の端子がプレート線に接続される。   FIG. 3 is an equivalent circuit diagram of the three-dimensional stacked chain type memory device according to the embodiment of the present invention. Here, a portion where four cells surrounded by a broken line in the figure are stacked is the three-dimensional stacked chain type memory device. This is an equivalent circuit of the memory block. As shown in the figure, as a circuit configuration of the three-dimensional stacked chain type memory device, one memory cell is composed of one transistor connected in parallel and one ferroelectric capacitor, and one memory block includes a plurality of memory blocks. The memory cells are connected in series, one terminal of the memory block is connected to a bit line, and the other terminal is connected to a plate line.

図4は、本発明の実施の形態の3次元積層チェーン型メモリ装置の動作の説明図であり、図4(a)はスタンバイ状態の説明図であり、図4(b)はアクティブ状態の説明図である。なお、図4(a)及び図4(b)において、左図はメモリセル部の概略的断面図であり、右上図は3次元積層チェーン型メモリ装置の等価回路図であり、右下図はヒステリシス特性の説明図である。   FIG. 4 is an explanatory diagram of the operation of the three-dimensional stacked chain type memory device according to the embodiment of the present invention, FIG. 4 (a) is an explanatory diagram of a standby state, and FIG. 4 (b) is an explanatory diagram of an active state. FIG. 4A and 4B, the left diagram is a schematic cross-sectional view of the memory cell portion, the upper right diagram is an equivalent circuit diagram of a three-dimensional stacked chain type memory device, and the lower right diagram is hysteresis. It is explanatory drawing of a characteristic.

図4(a)に示すように、スタンバイ状態では、全てのセルのトランジスタはオン状態であり、半導体チャネル層6の両端はビット線及びプレート線を介してVssの電圧が印加された状態となり、各セルのメモリ物質膜7には電圧が印加されない。図4(b)に示すように、プレート線にVddの電圧を印加し、選択したセルのトランジスタのみオフ状態とする。この時、選択したセルのトランジスタの半導体チャネル層6にはキャリアが流れないので、選択したセルのメモリ物質膜7に電圧が印加されて、データの書き込み或いは読み出しが行われることになる。 As shown in FIG. 4 (a), in the standby state, the transistors of all the cells are in the ON state, both ends of the semiconductor channel layer 6 becomes a state in which a voltage of V ss via the bit line and the plate line are applied No voltage is applied to the memory material film 7 of each cell. As shown in FIG. 4B, a voltage of V dd is applied to the plate line, and only the transistor of the selected cell is turned off. At this time, since carriers do not flow through the semiconductor channel layer 6 of the transistor of the selected cell, a voltage is applied to the memory material film 7 of the selected cell, and data is written or read.

ゲート電極1としては、多結晶シリコン、Coシリサイド或いはNiシリサイド等を用いることができる。また、ゲート電極1の高さは50nm〜120nm程度とし、直径は50nm以上とする。層間絶縁膜2としては、TEOS(Tetraethyl Orthosilicate)膜、熱CVDSiO膜、HDP(高密度プラズマ)−SiO膜や、SiOF膜、有機ポリマー系或いはポーラスシリカ系のLow−k膜を用いることができる。また、層間絶縁膜2の膜厚は50nm程度とし、凹部4を形成するための庇部の長さは50nm〜150nm程度とする。また、開口部3の直径は、100nm〜200nm程度とし、メモリ物質膜7形成後に残る開口部残留隙間の直径は、例えば、25nm以上になるようにする。但し、場合によっては0nmでも良い。ゲート絶縁膜5としては、TEOS膜、熱CVDSiO膜、HDP−SiO膜或いはALD(原子層堆積法)−SiO膜等を用いることができる。また、ゲート絶縁膜5の膜厚は5nm〜10nm程度とする。 As the gate electrode 1, polycrystalline silicon, Co silicide, Ni silicide, or the like can be used. The height of the gate electrode 1 is about 50 nm to 120 nm, and the diameter is 50 nm or more. As the interlayer insulating film 2, a TEOS (Tetraethyl Orthosilicate) film, a thermal CVD SiO 2 film, a HDP (high density plasma) -SiO 2 film, a SiOF film, an organic polymer-based or porous silica-based Low-k film may be used. it can. The film thickness of the interlayer insulating film 2 is about 50 nm, and the length of the flange for forming the recess 4 is about 50 nm to 150 nm. The diameter of the opening 3 is about 100 nm to 200 nm, and the diameter of the opening residual gap remaining after the formation of the memory material film 7 is, for example, 25 nm or more. However, 0 nm may be used in some cases. As the gate insulating film 5, TEOS film, thermal CVD SiO 2 film, it is possible to use a HDP-SiO 2 film or ALD (atomic layer deposition) -SiO 2 film, or the like. The thickness of the gate insulating film 5 is about 5 nm to 10 nm.

半導体チャネル層6としては、多結晶シリコン、アモルファスシリコン、原子層堆積法によるシリコン層等のシリコン系半導体層や、IGZO(In−Ga−Zn−O)等の酸化物系半導体層を用いることができる。また、半導体チャネル層6の厚さは、8nm〜15nm程度とする。なお、半導体チャネル層6を低抵抗化するために、成膜後にレーザアニールを施しても良い。   As the semiconductor channel layer 6, a silicon-based semiconductor layer such as polycrystalline silicon, amorphous silicon, or a silicon layer formed by atomic layer deposition, or an oxide-based semiconductor layer such as IGZO (In—Ga—Zn—O) is used. it can. The thickness of the semiconductor channel layer 6 is about 8 nm to 15 nm. In order to reduce the resistance of the semiconductor channel layer 6, laser annealing may be performed after the film formation.

メモリ物質膜7としては、強誘電体膜、相変化膜或いは抵抗変化膜のいずれかを用い、強誘電体膜を用いた場合には、3次元チェーン型FeRAMになり、相変化膜を用いた場合には、3次元チェーン型PCRAMになり、抵抗変化膜を用いた場合には、3次元チェーン型RRAM(RRAMは登録商標)となる。強誘電体膜としては、HfO系強誘電体材料、例えば、Al:HfO, Si:HfO, Gd:HfO, Y:HfO, HfZrO等や、バリア膜と強誘電体膜の積層構造、例えば、HfO/PZT, HfO/SBT(SrBiTa), HfO/BST(BaSr1−xTiO)等が挙げられる。相変化膜としては、例えば、GST(Ge−Sb−Te), Ga−Sb, Ga−Sb−Ge等が挙げられる。抵抗変化膜としては、例えば、HfO, NiO, TaO が挙げられる。メモリ物質膜7の厚さは、5nm〜200nm程度とする。メモリ物質膜7の厚さが5nm未満の場合は材料の耐圧が不足することが懸念され、200nmを超える場合はデバイス動作に十分な残留電荷が得られない懸念が生じる。 As the memory material film 7, any one of a ferroelectric film, a phase change film, and a resistance change film is used. When the ferroelectric film is used, a three-dimensional chain type FeRAM is formed, and a phase change film is used. In this case, it becomes a three-dimensional chain type PCRAM, and when a resistance change film is used, it becomes a three-dimensional chain type RRAM (RRAM is a registered trademark). As the ferroelectric film, an HfO X- based ferroelectric material, for example, Al: HfO 2 , Si: HfO 2 , Gd: HfO 2 , Y: HfO 2 , HfZrO, or the like, or a laminate of a barrier film and a ferroelectric film is used. Examples of the structure include HfO X / PZT, HfO X / SBT (SrBi 2 Ta 2 O 9 ), and HfO X / BST (Ba x Sr 1-x TiO 3 ). Examples of the phase change film include GST (Ge—Sb—Te), Ga—Sb, and Ga—Sb—Ge. Examples of the resistance change film include HfO X , NiO X , and TaO X. The thickness of the memory material film 7 is about 5 nm to 200 nm. When the thickness of the memory substance film 7 is less than 5 nm, there is a concern that the breakdown voltage of the material is insufficient, and when it exceeds 200 nm, there is a concern that a residual charge sufficient for device operation cannot be obtained.

メモリ物質膜7の半導体チャネル層6に接する側と反対の面は絶縁体膜8で覆っても良く、絶縁体膜8としては、TEOS膜、熱CVDSiO膜、HDP−SiO膜やLow−k膜を用いることができる。或いは、絶縁体膜8としては、水素或いは水分の拡散を防止する拡散防止膜を用いても良く、拡散防止膜としては、例えば、Al膜或いはSiN膜等が挙げられる。 Face opposite to the side in contact with the semiconductor channel layer 6 of the memory material layer 7 may be covered with an insulating film 8, the insulating film 8, and the TEOS film, thermal CVD SiO 2 film, HDP-SiO 2 film Low- A k film can be used. Alternatively, a diffusion preventing film that prevents diffusion of hydrogen or moisture may be used as the insulator film 8, and examples of the diffusion preventing film include an Al 2 O 3 film and a SiN film.

メモリ物質膜7の半導体チャネル層6に接する側と反対の面をTiN等の導電体膜により覆っても良く、結晶性改善の熱処理工程において、歪を与えることにより、メモリ物質膜7の特性が向上する。   The surface of the memory material film 7 opposite to the side in contact with the semiconductor channel layer 6 may be covered with a conductive film such as TiN. By applying strain in the heat treatment process for improving crystallinity, the characteristics of the memory material film 7 are improved. improves.

凹部4における半導体チャネル層6の側面を除いた表面にTiNやW等の半導体チャネル層6より導電率の高い導電体膜を設けても良い。このような導電体膜を設けることによって、半導体チャネル層6の実効的にソース・ドレイン領域となる部分の比抵抗を低減することができる。また、メモリ物質膜7を挟む部分が導電体膜になるのでメモリ物質膜7に十分な電圧を印加することができる。なお、成膜方法としては、MOCVD(有機金属気相成長)法を用いれば良い。   A conductor film having a higher conductivity than that of the semiconductor channel layer 6 such as TiN or W may be provided on the surface of the recess 4 except for the side surface of the semiconductor channel layer 6. By providing such a conductor film, it is possible to reduce the specific resistance of the portion of the semiconductor channel layer 6 that effectively becomes the source / drain region. In addition, since the portion sandwiching the memory material film 7 becomes a conductor film, a sufficient voltage can be applied to the memory material film 7. Note that a MOCVD (metal organic chemical vapor deposition) method may be used as a film formation method.

層間絶縁膜2の庇部を形成する張出部の端部の角部に、意図的にトリミングを施して丸みを設けても良い。このように、丸みを設けることによって、層間絶縁膜2による庇部にゲート絶縁膜5、半導体チャネル層6及びメモリ物質膜7を形成する原料ガスが入りやすくなるので、ボイドの発生を抑制することができる。   You may intentionally trim and provide roundness in the corner | angular part of the edge part of the overhang | projection part which forms the collar part of the interlayer insulation film 2. FIG. Thus, by providing the roundness, the source gas for forming the gate insulating film 5, the semiconductor channel layer 6, and the memory material film 7 can easily enter the collar portion of the interlayer insulating film 2, thereby suppressing generation of voids. Can do.

本発明の実施の形態においては、層間絶縁膜2に庇部を形成してメモリセル部においてゲート電極1とメモリ物質膜7が対向する部分に凹部4を形成しているので、凹部4に充填されたメモリ物質膜7の上下の両端部に半導体チャネル層6が接することになる。その結果、半導体チャネル層6によってメモリ物質膜7を図4(b)において上下から挟み込むことになるので、十分な電圧が印加され、メモリ素子として機能することになる。   In the embodiment of the present invention, the recess 4 is formed in the portion of the memory cell portion where the gate electrode 1 and the memory material film 7 face each other in the memory cell portion, so that the recess 4 is filled. The semiconductor channel layer 6 comes into contact with the upper and lower ends of the memory material film 7 formed. As a result, the memory material film 7 is sandwiched by the semiconductor channel layer 6 from above and below in FIG. 4B, so that a sufficient voltage is applied to function as a memory element.

次に、図5乃至図22を参照して、本発明の実施例1の3次元積層チェーン型FeRAMを説明する。図5は、本発明の実施例1の3次元積層チェーン型FeRAMの概略的斜視図であり、ここでは、3次元積層チェーン型FeRAM20のメモリセル部の引き出し部や入出力部などの図示及び説明は省略する。 図5に示すように、プレート引出線24半導体基板側に並列に複数本設けられる。プレート引出線24上に設けられるワード引出線23とメモリセル上部に設けられるビット引出線22は、それぞれプレート引出線24に対して直交する方向に並列に複数本設けられる。メモリセルのトランジスタのゲート電極となるn型多結晶Si層46は層間絶縁膜47で分離され、ゲート電極引出電極21は、ビット引出線22と逆方向に引き出される。ゲート電極引出線21、ビット引出線22、ワード引出線23及びプレート引出線24、それぞれビアを介して配線層に接続される。   Next, with reference to FIGS. 5 to 22, the three-dimensional multilayer chain type FeRAM according to the first embodiment of the present invention will be described. FIG. 5 is a schematic perspective view of the three-dimensional stacked chain type FeRAM according to the first embodiment of the present invention. Here, the drawing and input / output units of the memory cell portion of the three-dimensional stacked chain type FeRAM 20 are illustrated and described. Is omitted. As shown in FIG. 5, a plurality of plate lead lines 24 are provided in parallel on the semiconductor substrate side. A plurality of word lead lines 23 provided on the plate lead lines 24 and bit lead lines 22 provided above the memory cells are provided in parallel in a direction orthogonal to the plate lead lines 24. The n-type polycrystalline Si layer 46 that becomes the gate electrode of the transistor of the memory cell is separated by the interlayer insulating film 47, and the gate electrode lead electrode 21 is drawn in the direction opposite to the bit lead line 22. The gate electrode lead line 21, the bit lead line 22, the word lead line 23, and the plate lead line 24 are connected to the wiring layer through vias, respectively.

図6は、本発明の実施例1の3次元積層チェーン型FeRAMの説明図であり、右図が、概略的要部断面図であり、右図が対応する等価回路図である。なお、ここでは、後述する製造工程の説明図におけるB−B′を結ぶ一点鎖線に沿った断面図として示している。なお、ここでは、ゲート電極を2層積層した場合を示している。   FIG. 6 is an explanatory diagram of the three-dimensional stacked chain type FeRAM according to the first embodiment of the present invention. The right figure is a schematic cross-sectional view of the main part, and the right figure is a corresponding equivalent circuit diagram. Here, it is shown as a cross-sectional view along the alternate long and short dash line connecting BB 'in the explanatory view of the manufacturing process described later. Here, a case where two layers of gate electrodes are stacked is shown.

左図に示すように、Si基板31にn型アモルファスSi層37をワード線に繋がるゲート電極とする縦型トランジスタを形成し、チャネル層となるn型アモルファスSi層41をプレート線となるW層33に接続する。   As shown in the left figure, a vertical transistor having an n-type amorphous Si layer 37 as a gate electrode connected to a word line is formed on a Si substrate 31, and an n-type amorphous Si layer 41 serving as a channel layer is a W layer serving as a plate line. 33 is connected.

この縦型トランジスタを形成したSi基板31上に、窒化膜44及びSiO膜45を形成した後、層間絶縁膜47を介してn型多結晶Si層46,48からなる2層のゲート電極を積層し、その上にSiO膜49を設ける。SiO膜49乃至n型多結晶Si層46を貫通する開口部50を設ける。開口部50内において層間絶縁膜47及びn型多結晶Si層46,48の露出部を覆うようにゲート絶縁膜52、Siチャネル層53及び強誘電体膜54を順次成膜する。この時、開口部50内において、層間絶縁膜47及びSiO膜49をn型多結晶Si層46,48より突出させて層間絶縁膜47とn型多結晶Si層46,48の積層方向に沿って2か所の凹部51を形成し、この凹部51に強誘電体膜54が充填されるようにする。また、強誘電体膜54の対向する背面の間隙にはSiO膜55を埋め込む。その結果、互いに対向するn型多結晶Si層46,48同士の間に中空円筒状の強誘電体キャパシタが形成される。 A nitride film 44 and a SiO 2 film 45 are formed on the Si substrate 31 on which the vertical transistor is formed, and then a two-layer gate electrode composed of n-type polycrystalline Si layers 46 and 48 is formed via an interlayer insulating film 47. The SiO 2 film 49 is provided thereon. An opening 50 penetrating the SiO 2 film 49 to the n-type polycrystalline Si layer 46 is provided. A gate insulating film 52, an Si channel layer 53, and a ferroelectric film 54 are sequentially formed so as to cover the exposed portions of the interlayer insulating film 47 and the n-type polycrystalline Si layers 46 and 48 in the opening 50. At this time, the interlayer insulating film 47 and the SiO 2 film 49 are protruded from the n-type polycrystalline Si layers 46 and 48 in the opening 50 so that the interlayer insulating film 47 and the n-type polycrystalline Si layers 46 and 48 are stacked. Two recesses 51 are formed along the same, and the recesses 51 are filled with the ferroelectric film 54. Further, a SiO 2 film 55 is embedded in the gap between the opposing back surfaces of the ferroelectric film 54. As a result, a hollow cylindrical ferroelectric capacitor is formed between the n-type polycrystalline Si layers 46 and 48 facing each other.

右図に示すように、Siチャネル層53の上端部にはビット線56が接続され、左図には図示してないビット線選択トランジスタに接続され、下端部には、縦型トランジスタが接続され、縦型トランジスタのゲート電極には左図には図示してないワード線選択トランジスタが接続される。また、メモリセルのトランジスタのゲート電極となるn型アモルファスSi層46,48には左図には図示していないゲート選択トランジスタが夫々接続される。   As shown in the right figure, a bit line 56 is connected to the upper end of the Si channel layer 53, connected to a bit line selection transistor not shown in the left figure, and a vertical transistor is connected to the lower end. A word line selection transistor (not shown in the left diagram) is connected to the gate electrode of the vertical transistor. Further, n-type amorphous Si layers 46 and 48 serving as gate electrodes of the memory cell transistors are respectively connected to gate selection transistors (not shown).

次に、図7乃至図22を参照して、本発明の実施例1の3次元積層チェーン型FeRAMの製造工程を説明する。なお、各図における図(a)は平面図であり、図(b)は図(a)におけるA−A′を結ぶ一点鎖線に沿った断面図であり、図(c)は図(a)におけるB−B′を結ぶ一点鎖線に沿った断面図である。まず、図7に示すように、Si基板31上に、SiO膜32及びW層33を堆積したのち、ストライプ状にエッチングする。この時、ストライプ状にエッチングされたW層33がプレート線となる。 Next, with reference to FIGS. 7 to 22, a manufacturing process of the three-dimensional multilayer chain type FeRAM according to the first embodiment of the present invention will be described. In addition, the figure (a) in each figure is a top view, the figure (b) is sectional drawing along the dashed-dotted line which connects AA 'in figure (a), and figure (c) is figure (a). It is sectional drawing along the dashed-dotted line which connects BB 'in FIG. First, as shown in FIG. 7, an SiO 2 film 32 and a W layer 33 are deposited on the Si substrate 31, and then etched in a stripe shape. At this time, the W layer 33 etched in a stripe shape becomes a plate line.

次いで、図8に示すように、全面にSiO膜を堆積したのち、CMP(化学機械研磨)法により平坦化することによって、ストライプ状パターンの間をSiO膜34で埋め込む。次いで、全面にSiN膜35、SiO膜36、n型アモルファスシリコン層37及びSiO膜38を順次堆積する。 Next, as shown in FIG. 8, a SiO 2 film is deposited on the entire surface, and then planarized by a CMP (Chemical Mechanical Polishing) method, thereby filling the space between the stripe patterns with the SiO 2 film 34. Next, a SiN film 35, a SiO 2 film 36, an n-type amorphous silicon layer 37, and a SiO 2 film 38 are sequentially deposited on the entire surface.

次いで、図9に示すように、SiO2膜38乃至SiN膜35を、RIE(Reactive Ion Etching)法を用いて選択エッチングすることによって開口39を形成して、W層33を露出させる。   Next, as shown in FIG. 9, the SiO 2 film 38 to the SiN film 35 are selectively etched using a RIE (Reactive Ion Etching) method to form an opening 39 to expose the W layer 33.

次いで、図10に示すように、全面にゲート絶縁膜40を成膜する。次いで、図11に示すように、異方性エッチングにより平坦部に積層したゲート絶縁膜40を除去したのち、全面にn型アモルファスSi層41を堆積し、CMP法により平坦化して、開口部39にn型アモルファスSi層41を埋め込む。   Next, as shown in FIG. 10, a gate insulating film 40 is formed on the entire surface. Next, as shown in FIG. 11, after removing the gate insulating film 40 laminated on the flat portion by anisotropic etching, an n-type amorphous Si layer 41 is deposited on the entire surface, planarized by the CMP method, and the opening 39 is formed. An n-type amorphous Si layer 41 is embedded in

次いで、図12に示すように、W層33が延在するA−A′方向に沿って、分離溝42を形成する。この分離溝42によってワード線が切り出される。次いで、図13に示すように、全面にSiO膜43を堆積したのち、CMP法で平坦化することによって、分離溝42をSiO膜43で埋め込む。 Next, as shown in FIG. 12, the separation groove 42 is formed along the AA ′ direction in which the W layer 33 extends. The word line is cut out by the separation groove 42. Then, as shown in FIG. 13, after depositing the SiO 2 film 43 on the entire surface by flattening by CMP, embedding the isolation trench 42 in the SiO 2 film 43.

次いで、図14に示すように、全面にSiN膜44及びSiO膜45を堆積したのち、例えば、厚さが62nmのn型多結晶Si膜46、厚さが50nmのSiO膜からなる層間絶縁膜47、厚さが62nmのn型多結晶Si膜48及びSiO膜49を順次成膜する。なお、図14においては、B−B′に沿った断面図は省略する。 Next, as shown in FIG. 14, after an SiN film 44 and an SiO 2 film 45 are deposited on the entire surface, for example, an interlayer composed of an n-type polycrystalline Si film 46 having a thickness of 62 nm and an SiO 2 film having a thickness of 50 nm. An insulating film 47, an n-type polycrystalline Si film 48 having a thickness of 62 nm, and an SiO 2 film 49 are sequentially formed. In addition, in FIG. 14, sectional drawing along BB 'is abbreviate | omitted.

次いで、図15に示すように、n型アモルファスSi膜37が存在する領域においてSiN膜44に達する開口部50を形成する。ここでは、開口部50の直径は、例えば、100nmとする。なお、図15以降においては、A−A′を結ぶ断面図における下部構造の一部の図示は省略する。   Next, as shown in FIG. 15, an opening 50 reaching the SiN film 44 is formed in a region where the n-type amorphous Si film 37 exists. Here, the diameter of the opening 50 is, for example, 100 nm. In FIG. 15 and subsequent figures, a part of the lower structure in the cross-sectional view connecting AA ′ is not shown.

次いで、図16に示すように、マイクロ波エッチング装置を用いて多結晶Si/SiO2高選択比、例えば、選択比が22程度の等方性エッチングによりn多結晶Si層36,38をサイドエッチングして層間絶縁膜47及びSiO膜49の張出部が120mmの凹部51を形成する。なお、ここでは、エッチングガスとして、80ml/分の流量のCFと20ml/分の流量のOとの混合ガスを用いて、0.7Torrの雰囲気下で、ウェーハステージの温度を70℃とし、1300Wのパワーを印加する。 Next, as shown in FIG. 16, n polycrystalline silicon layers 36 and 38 are side-etched by isotropic etching with a polycrystalline Si / SiO 2 high selection ratio, for example, a selectivity ratio of about 22, using a microwave etching apparatus. As a result, the overhanging portions of the interlayer insulating film 47 and the SiO 2 film 49 form a recess 51 having a thickness of 120 mm. Here, as the etching gas, a mixed gas of CF 4 at a flow rate of 80 ml / min and O 2 at a flow rate of 20 ml / min is used, and the temperature of the wafer stage is set to 70 ° C. in an atmosphere of 0.7 Torr. A power of 1300 W is applied.

次いで、図17に示すように、ALD法を用いて開口部50の側面部分の厚さが例えば、6nmのSiO膜を開口部50の表面に堆積してゲート絶縁膜52とする。次いで、図18に示すように、異方性ドライエッチングにより、SiO膜49の平坦表面及びSiN膜44上に堆積したゲート絶縁膜52を除去する。次いで、露出しているSiN膜44を除去して開口部50において、n型アモルファスSi膜37を露出させる。 Next, as shown in FIG. 17, a SiO 2 film having a thickness of, for example, 6 nm on the side surface portion of the opening 50 is deposited on the surface of the opening 50 using the ALD method to form the gate insulating film 52. Next, as shown in FIG. 18, the flat surface of the SiO 2 film 49 and the gate insulating film 52 deposited on the SiN film 44 are removed by anisotropic dry etching. Next, the exposed SiN film 44 is removed, and the n-type amorphous Si film 37 is exposed in the opening 50.

次いで、図19に示すように、ALD法を用いて、全面に厚さが例えば、10nmのSiチャネル層53を堆積する。この場合のSiチャネル層53の比抵抗ρは任意であるが、ここでは、例えば、7.35×10−5Ω・mとする。 Next, as shown in FIG. 19, a Si channel layer 53 having a thickness of, for example, 10 nm is deposited on the entire surface by using the ALD method. In this case, the specific resistance ρ of the Si channel layer 53 is arbitrary, but here, for example, 7.35 × 10 −5 Ω · m.

次いで、図20に示すように、ALD法を用いて、厚さが、例えば、30nmのHfZrOからなる強誘電体膜54を形成することによって、凹部51を埋め込む。この時、図示は省略しているが、図4に示すように、強誘電体膜54の凹部51に位置する背面には凹部が形成される。この時、互いに対向する強誘電体膜54の対向面により形成される貫通穴の残留間隙の直径は28nmになる。次いで、全面にSiO膜55を堆積することによって、残留間隙を埋め込む。なお、このSiO膜55は図示を省略している強誘電体膜54の凹部51に位置する背面に形成された凹部内にも充填されている。 Next, as shown in FIG. 20, the ALD method is used to fill the recess 51 by forming a ferroelectric film 54 made of HfZrO with a thickness of, for example, 30 nm. At this time, although not shown, a recess is formed on the back surface of the ferroelectric film 54 located in the recess 51 as shown in FIG. At this time, the diameter of the residual gap of the through hole formed by the opposing surfaces of the ferroelectric films 54 facing each other is 28 nm. Next, a residual gap is filled by depositing a SiO 2 film 55 on the entire surface. The SiO 2 film 55 is also filled in a recess formed on the back surface of the ferroelectric film 54 (not shown) located on the recess 51.

次いで、図21に示すように、CMP法により、SiO膜49が露出するまで研磨することによって、SiO膜49の表面より上に堆積したSiO膜55、強誘電体膜54及びSiチャネル層53を研磨して平坦化する。 Then, as shown in FIG. 21, by CMP, by polishing until the SiO 2 film 49 is exposed, SiO 2 film 55 is deposited above the surface of the SiO 2 film 49, ferroelectric film 54 and the Si channel Layer 53 is polished and planarized.

次いで、図22に示すように、分離溝42で切り出されたワード線の延在方向に沿ってビット線56を形成することによって、本発明の実施例1の3次元積層チェーン型FeRAMの基本構造が完成する。   Next, as shown in FIG. 22, by forming the bit line 56 along the extending direction of the word line cut out by the separation groove 42, the basic structure of the three-dimensional stacked chain type FeRAM according to the first embodiment of the present invention. Is completed.

本発明の実施例1においては、層間絶縁膜47及びSiO膜49に庇部を形成して、ゲート電極となるn型多結晶シリコン46,48の側面に凹部51を形成し、この凹部51を埋め込むように強誘電体膜54を形成している。その結果、メモリセル部においては、強誘電体膜54は図において上下方向がSiチャネル層53に挟まれ、このSiチャネル層53が電圧印加電極となるので、強誘電体膜54に十分電圧が印加され、書き込み及び読み出しを確実に行うことが可能になる。 In Example 1 of the present invention, a flange portion is formed in the interlayer insulating film 47 and the SiO 2 film 49, and a recess 51 is formed on the side surface of the n-type polycrystalline silicon 46, 48 to be a gate electrode. A ferroelectric film 54 is formed so as to be embedded. As a result, in the memory cell portion, the ferroelectric film 54 is sandwiched between the Si channel layer 53 in the vertical direction in the figure, and the Si channel layer 53 serves as a voltage application electrode, so that a sufficient voltage is applied to the ferroelectric film 54. It is possible to perform writing and reading reliably.

次に、図23を参照して、本発明の実施例2の3次元積層チェーン型FeRAMを説明するが、メモリセルの積層数を4層にした以外は、上記の実施例1と同様である。図23は、本発明の実施例2の3次元積層チェーン型FeRAMの説明図である。   Next, referring to FIG. 23, the three-dimensional stacked chain type FeRAM according to the second embodiment of the present invention will be described, but is the same as the first embodiment except that the number of stacked memory cells is four. . FIG. 23 is an explanatory diagram of the three-dimensional stacked chain type FeRAM according to the second embodiment of the present invention.

図に示すように、Si基板31にn型アモルファスSi層37をワード線に繋がるゲート電極とする縦型トランジスタを形成し、チャネル層となるn型アモルファスSi層41をプレート線となるW層33に接続する。   As shown in the figure, a vertical transistor having an n-type amorphous Si layer 37 as a gate electrode connected to a word line is formed on a Si substrate 31, and an n-type amorphous Si layer 41 serving as a channel layer is used as a W layer 33 serving as a plate line. Connect to.

この縦型トランジスタを形成したSi基板31上に、SiN膜44及びSiO膜45を形成した後、層間絶縁膜47,57,59を介してn型多結晶Si層46,48,58,60からなる4層のゲート電極を積層し、その上にSiO膜49を設ける。次いで、開口部50を設けるが、開口部50内において、層間絶縁膜47,57,59及びSiO膜49をn型多結晶Si層46,48,58,60より突出させて層間絶縁膜47,57,59とn型多結晶Si層46,48,58,60の積層方向に沿って4か所の凹部51を形成する。開口部50内において層間絶縁膜47,57,59及びn型多結晶Si層46,48,58,60の露出部を覆うようにゲート絶縁膜52、Siチャネル層53及び強誘電体膜54を順次成膜し、この凹部51に強誘電体膜54が充填されるようにする。また、強誘電体膜54の対向する背面の間隙にはSiO膜55を埋め込む。その結果、互いに対向するn型多結晶Si層46,48,58,60同士の間に中空円筒状の強誘電体キャパシタが形成される。このように、3次元積層チェーン型FeRAMを構成する場合のゲート積層数は任意である。 After the SiN film 44 and the SiO 2 film 45 are formed on the Si substrate 31 on which the vertical transistor is formed, the n-type polycrystalline Si layers 46, 48, 58, 60 are interposed via the interlayer insulating films 47, 57, 59. A four-layer gate electrode made of is laminated, and an SiO 2 film 49 is provided thereon. Next, the opening 50 is provided. In the opening 50, the interlayer insulating films 47, 57, 59 and the SiO 2 film 49 are protruded from the n-type polycrystalline Si layers 46, 48, 58, 60, and the interlayer insulating film 47. , 57, 59 and n-type polycrystalline Si layers 46, 48, 58, 60 are formed in four recesses 51 along the stacking direction. In the opening 50, the gate insulating film 52, the Si channel layer 53, and the ferroelectric film 54 are formed so as to cover the exposed portions of the interlayer insulating films 47, 57, 59 and the n-type polycrystalline Si layers 46, 48, 58, 60. The film is sequentially formed so that the recess 51 is filled with the ferroelectric film 54. Further, a SiO 2 film 55 is embedded in the gap between the opposing back surfaces of the ferroelectric film 54. As a result, a hollow cylindrical ferroelectric capacitor is formed between the n-type polycrystalline Si layers 46, 48, 58, 60 facing each other. Thus, the number of gate stacks in the case of configuring a three-dimensional stacked chain type FeRAM is arbitrary.

次に、図24を参照して、本発明の実施例3の3次元積層チェーン型FeRAMを説明するが、Siチャネル層の凹部における側面以外の露出表面に、Siチャネル層の導電率の高い導電体膜を設けた以外は、上記の実施例2と基本的に同様である。図24は、本発明の実施例3の3次元積層チェーン型FeRAMのメモリセル部の要部断面図である。   Next, with reference to FIG. 24, the three-dimensional stacked chain type FeRAM according to the third embodiment of the present invention will be described. On the exposed surface other than the side surface in the recess of the Si channel layer, the conductivity of the Si channel layer having high conductivity is described. This is basically the same as Example 2 except that a body membrane is provided. FIG. 24 is a cross-sectional view of the main part of the memory cell portion of the three-dimensional multilayer chain type FeRAM according to Embodiment 3 of the present invention.

図に示すように、層間絶縁膜47,57,59を介してn型多結晶Si層46,48,58,60からなる4層のゲート電極を積層する。次いで、開口部50を設けるが、開口部50内において、層間絶縁膜47,57,59及びSiO膜49をn型多結晶Si層46,48,58,60より突出させて層間絶縁膜47,57,59とn型多結晶Si層46,48,58,60の積層方向に沿って4か所の凹部51を形成する。開口部50内において層間絶縁膜47,57,59及びn型多結晶Si層46,48,58,60の露出部を覆うようにゲート絶縁膜52及びSiチャネル層53を順次成膜する。 As shown in the figure, four layers of gate electrodes composed of n-type polycrystalline Si layers 46, 48, 58, 60 are stacked via interlayer insulating films 47, 57, 59. Next, the opening 50 is provided. In the opening 50, the interlayer insulating films 47, 57, 59 and the SiO 2 film 49 are protruded from the n-type polycrystalline Si layers 46, 48, 58, 60, and the interlayer insulating film 47. , 57, 59 and n-type polycrystalline Si layers 46, 48, 58, 60 are formed in four recesses 51 along the stacking direction. In the opening 50, the gate insulating film 52 and the Si channel layer 53 are sequentially formed so as to cover the exposed portions of the interlayer insulating films 47, 57, 59 and the n-type polycrystalline Si layers 46, 48, 58, 60.

次いで、MOCVD法を用いてSiチャネル層の導電率より高い導電体膜として、例えば、TiN膜61を堆積する。この時、MOCVD法では、凹部51のアスペクト比が大きい場合には、凹部の奥部まで原料ガスが拡散していかないので、TiN膜61はSiチャネル層53の凹部における側面には堆積せず、それ以外の露出表面に堆積する。次いで、この凹部51に強誘電体膜54が充填されるようにする。また、強誘電体膜54の対向する背面の間隙をSiO膜55で埋め込む。 Next, for example, a TiN film 61 is deposited as a conductor film having a higher conductivity than the Si channel layer by using MOCVD. At this time, in the MOCVD method, when the aspect ratio of the recess 51 is large, the source gas does not diffuse to the back of the recess, so the TiN film 61 is not deposited on the side surface of the recess of the Si channel layer 53, Deposit on other exposed surfaces. Next, the recess 51 is filled with the ferroelectric film 54. In addition, the gap between the opposing back surfaces of the ferroelectric film 54 is filled with the SiO 2 film 55.

その結果、Siチャネル層53において、実効的にソース・ドレイン領域となる部分は、TiN膜61との積層構造になるので全体の低抵抗化を図ることができる。また、互いに対向するn型多結晶Si層46,48,58,60同士の間に中空円筒状の強誘電体キャパシタが形成されるが、中空円筒状の強誘電体キャパシタの強誘電体膜54の上下面は低抵抗のTiN膜61と接するので、十分な電圧が印加されるようになる。   As a result, the portion of the Si channel layer 53 that effectively becomes the source / drain region has a laminated structure with the TiN film 61, so that the overall resistance can be reduced. Further, a hollow cylindrical ferroelectric capacitor is formed between the n-type polycrystalline Si layers 46, 48, 58, 60 facing each other. The ferroelectric film 54 of the hollow cylindrical ferroelectric capacitor is formed. Since the upper and lower surfaces are in contact with the low resistance TiN film 61, a sufficient voltage is applied.

次に、図25を参照して、本発明の実施例4の3次元積層チェーン型FeRAMを説明するが、強誘電体膜としてPZTを用いた以外は、上記の実施例2と基本的に同様である。図25は、本発明の実施例4の3次元積層チェーン型FeRAMのメモリセル部の説明図であり、上図はメモリセル部の概略的断面図であり、下図は上図において破線で囲ったキャパシタ部を示す要部斜視図である。   Next, with reference to FIG. 25, the three-dimensional multilayer chain type FeRAM according to the fourth embodiment of the present invention will be described, but basically the same as the second embodiment except that PZT is used as the ferroelectric film. It is. FIG. 25 is an explanatory diagram of the memory cell portion of the three-dimensional stacked chain type FeRAM according to the fourth embodiment of the present invention. The upper diagram is a schematic cross-sectional view of the memory cell portion, and the lower diagram is surrounded by a broken line in the upper diagram. It is a principal part perspective view which shows a capacitor part.

図に示すように、層間絶縁膜47,57,59を介してn型多結晶Si層46,48,58,60からなる4層のゲート電極を積層する。次いで、開口部50を設けるが、開口部50内において、層間絶縁膜47,57,59及びSiO2膜49をn型多結晶Si層46,48,58,60より突出させて層間絶縁膜47,57,59とn型多結晶Si層46,48,58,60の積層方向に沿って4か所の凹部51を形成する。開口部50内において層間絶縁膜47,57,59及びn型多結晶Si層46,48,58,60の露出部を覆うようにゲート絶縁膜52及びSiチャネル層53を順次成膜する。   As shown in the figure, four layers of gate electrodes composed of n-type polycrystalline Si layers 46, 48, 58, 60 are stacked via interlayer insulating films 47, 57, 59. Next, an opening 50 is provided. In the opening 50, the interlayer insulating films 47, 57, 59 and the SiO 2 film 49 are projected from the n-type polycrystalline Si layers 46, 48, 58, 60, and the interlayer insulating film 47, Four recesses 51 are formed along the stacking direction of 57, 59 and n-type polycrystalline Si layers 46, 48, 58, 60. In the opening 50, the gate insulating film 52 and the Si channel layer 53 are sequentially formed so as to cover the exposed portions of the interlayer insulating films 47, 57, 59 and the n-type polycrystalline Si layers 46, 48, 58, 60.

次いで、強誘電体膜として、PZT膜63を形成するが、その前に厚さが例えば5nmのHfO膜62をバリア膜として形成する。PZT膜63は、Siチャネル層53と合金化するので、合金化を防止するためにバリア膜を形成する。なお、強誘電体膜としてSBT膜やBST膜を用いた場合にもSiチャネル層53と合金化するので、バリア膜を設ける必要がある。また、PZT膜63の対向する背面の間隙はSiO膜55で埋め込む。 Next, a PZT film 63 is formed as a ferroelectric film, but before that, an HfO x film 62 having a thickness of, for example, 5 nm is formed as a barrier film. Since the PZT film 63 is alloyed with the Si channel layer 53, a barrier film is formed to prevent alloying. Even when an SBT film or a BST film is used as the ferroelectric film, it is alloyed with the Si channel layer 53, so that it is necessary to provide a barrier film. Further, the gap on the opposite back surface of the PZT film 63 is filled with the SiO 2 film 55.

このように、PZTを強誘電体膜としても用いても、バリア膜を設けることによって、PZT膜とSiチャネル層との合金化を防止することができるので、トランジスタ特性及び強誘電体特性が劣化することがない。   As described above, even when PZT is used as a ferroelectric film, by providing a barrier film, alloying of the PZT film and the Si channel layer can be prevented, so that transistor characteristics and ferroelectric characteristics are deteriorated. There is nothing to do.

次に、図26を参照して、本発明の実施例5の3次元積層チェーン型FeRAMを説明するが、強誘電体膜の対向する背面の間隙をTiN膜で充填した以外は、上記の実施例2と基本的に同様である。図26は、本発明の実施例5の3次元積層チェーン型FeRAMのメモリセル部の説明図であり、上図はメモリセル部の概略的断面図であり、下図は上図において破線で囲ったキャパシタ部を示す要部斜視図である。   Next, with reference to FIG. 26, the three-dimensional stacked chain type FeRAM according to the fifth embodiment of the present invention will be described. However, the above implementation is performed except that the gap on the opposite back surface of the ferroelectric film is filled with the TiN film. Basically the same as Example 2. FIG. 26 is an explanatory diagram of the memory cell portion of the three-dimensional stacked chain type FeRAM according to the fifth embodiment of the present invention. The upper diagram is a schematic cross-sectional view of the memory cell portion, and the lower diagram is surrounded by a broken line in the upper diagram. It is a principal part perspective view which shows a capacitor part.

図に示すように、層間絶縁膜47,57,59を介してn型多結晶Si層46,48,58,60からなる4層のゲート電極を積層する。次いで、開口部50を設けるが、開口部50内において、層間絶縁膜47,57,59及びSiO膜49をn型多結晶Si層46,48,58,60より突出させて層間絶縁膜47,57,59とn型多結晶Si層46,48,58,60の積層方向に沿って4か所の凹部51を形成する。開口部50内において層間絶縁膜47,57,59及びn型多結晶Si層46,48,58,60の露出部を覆うようにゲート絶縁膜52、Siチャネル層53及び強誘電体膜54を順次成膜する。 As shown in the figure, four layers of gate electrodes composed of n-type polycrystalline Si layers 46, 48, 58, 60 are stacked via interlayer insulating films 47, 57, 59. Next, the opening 50 is provided. In the opening 50, the interlayer insulating films 47, 57, 59 and the SiO 2 film 49 are protruded from the n-type polycrystalline Si layers 46, 48, 58, 60, and the interlayer insulating film 47. , 57, 59 and n-type polycrystalline Si layers 46, 48, 58, 60 are formed in four recesses 51 along the stacking direction. In the opening 50, the gate insulating film 52, the Si channel layer 53, and the ferroelectric film 54 are formed so as to cover the exposed portions of the interlayer insulating films 47, 57, 59 and the n-type polycrystalline Si layers 46, 48, 58, 60. Films are sequentially formed.

次いで、強誘電体膜54の対向する背面の間隙をTiN膜64で埋め込む。次いで、熱処理を行うことで、強誘電体膜54の結晶性を改善する。この時、TiN膜64を設けておくと、強誘電体膜54に歪が印加されるためにキャパシタ特性が向上する。このような作用効果は、強誘電体膜としてHfO系の強誘電体膜を用いた場合に顕著である。 Next, the gap between the opposing back surfaces of the ferroelectric film 54 is filled with the TiN film 64. Next, the crystallinity of the ferroelectric film 54 is improved by performing heat treatment. At this time, if the TiN film 64 is provided, since the strain is applied to the ferroelectric film 54, the capacitor characteristics are improved. Such an effect is remarkable when an HfO x -based ferroelectric film is used as the ferroelectric film.

次に、図27乃至図31を参照して、本発明の実施例6の3次元積層チェーン型FeRAMを説明するが、層間絶縁膜の張出部の端部の角に丸みを設けた以外は、上記の実施例2と基本的に同様である。図27は、本発明の実施例6の3次元積層チェーン型FeRAMの概略的断面図である。   Next, a three-dimensional multilayer chain type FeRAM according to Example 6 of the present invention will be described with reference to FIGS. 27 to 31 except that the corners of the end portions of the overhang portions of the interlayer insulating film are rounded. This is basically the same as the second embodiment. FIG. 27 is a schematic cross-sectional view of a three-dimensional multilayer chain type FeRAM according to Embodiment 6 of the present invention.

図に示すように、Si基板31にn型アモルファスSi層37をワード線に繋がるゲート電極とする縦型トランジスタを形成し、チャネル層となるn型アモルファスSi層41をプレート線となるW層33に接続する。   As shown in the figure, a vertical transistor having an n-type amorphous Si layer 37 as a gate electrode connected to a word line is formed on a Si substrate 31, and an n-type amorphous Si layer 41 serving as a channel layer is used as a W layer 33 serving as a plate line. Connect to.

この縦型トランジスタを形成したSi基板31上に、窒化膜44及びSiO膜45を形成した後、層間絶縁膜47,57,59を介してn型多結晶Si層46,48,58,60からなる4層のゲート電極を積層し、その上にSiO膜49を設ける。次いで、開口部50を設けるが、開口部50内において、層間絶縁膜47,57,59及びSiO膜49をn型多結晶Si層46,48,58,60より突出させて層間絶縁膜47,57,59とn型多結晶Si層46,48,58,60の積層方向に沿って4か所の凹部51を形成するとともに、層間絶縁膜47,57,59及びSiO膜49の張出部の端部の角に丸み65を持たせる。 After forming the nitride film 44 and the SiO 2 film 45 on the Si substrate 31 on which the vertical transistor is formed, the n-type polycrystalline Si layers 46, 48, 58, 60 are interposed via the interlayer insulating films 47, 57, 59. A four-layer gate electrode made of is laminated, and an SiO 2 film 49 is provided thereon. Next, the opening 50 is provided. In the opening 50, the interlayer insulating films 47, 57, 59 and the SiO 2 film 49 are protruded from the n-type polycrystalline Si layers 46, 48, 58, 60, and the interlayer insulating film 47. , 57, 59 and n-type polycrystalline Si layers 46, 48, 58, 60 are formed in four recesses 51 along the stacking direction, and the interlayer insulating films 47, 57, 59 and SiO 2 film 49 are stretched. A roundness 65 is provided at the corner of the end of the protruding portion.

次いで、開口部50内において層間絶縁膜47,57,59及びn型多結晶Si層46,48,58,60の露出部を覆うようにゲート絶縁膜52、Siチャネル層53及び強誘電体膜54を順次成膜し、この凹部51に強誘電体膜54が充填されるようにする。また、強誘電体膜54の対向する背面の間隙にはSiO膜55を埋め込む。 Next, the gate insulating film 52, the Si channel layer 53, and the ferroelectric film so as to cover the exposed portions of the interlayer insulating films 47, 57, 59 and the n-type polycrystalline Si layers 46, 48, 58, 60 in the opening 50. 54 are sequentially formed so that the recess 51 is filled with the ferroelectric film 54. Further, a SiO 2 film 55 is embedded in the gap between the opposing back surfaces of the ferroelectric film 54.

次に、図28乃至図31を参照して、本発明の実施例6の3次元積層チェーン型FeRAMの製造工程を説明する。まず、図28に示すように、上述の図14と同様にSi基板31上にトランジスタやプレート線等を形成したのち、マイクロ波エッチング装置を用いて多結晶Si/SiO高選択比、例えば、選択比が22程度の等方性エッチングによりn多結晶Si層46,48,58,60をサイドエッチングして層間絶縁膜47,57,59及びSiO膜49の張出部が120mmの凹部51を形成する。なお、ここでは、エッチングガスとして、80ml/分の流量のCFと20ml/分の流量のOとの混合ガスを用いて、0.7Torrの雰囲気下で、ウェーハステージの温度を70℃とし、1300Wのパワーを印加する。 Next, with reference to FIGS. 28 to 31, the manufacturing process of the three-dimensional multilayer chain type FeRAM according to the sixth embodiment of the present invention will be described. First, as shown in FIG. 28, after forming a transistor, a plate line or the like on the Si substrate 31 as in FIG. 14 described above, a polycrystalline Si / SiO 2 high selection ratio, for example, using a microwave etching apparatus, for example, The n polycrystal Si layers 46, 48, 58, 60 are side-etched by isotropic etching with a selectivity of about 22 so that the overhanging portions of the interlayer insulating films 47, 57, 59 and the SiO 2 film 49 are 120 mm concave portions 51. Form. Here, as the etching gas, a mixed gas of CF 4 at a flow rate of 80 ml / min and O 2 at a flow rate of 20 ml / min is used, and the temperature of the wafer stage is set to 70 ° C. in an atmosphere of 0.7 Torr. A power of 1300 W is applied.

次いで、図29に示すように、CFをエッチャントして等方性エッチングを施すことにより、層間絶縁膜47,57,59及びSiO膜49の張出部の端部の角をトリミングして丸み65を持たせる。 Next, as shown in FIG. 29, CF 4 is etched and isotropically etched to trim the corners of the end portions of the interlayer insulating films 47, 57, 59 and the SiO 2 film 49. Provide roundness 65.

次いで、図30に示すように、ALD法を用いて開口部50内において層間絶縁膜47,57,59及びn型多結晶Si層46,48,58,60の露出部を覆うようにゲート絶縁膜52、Siチャネル層53及び強誘電体膜54を順次成膜する。この時、層間絶縁膜47,57,59の端部の角に丸み65を形成しているので、庇部に原料ガスが入りやすくなるので、ボイドを発生することなく良好な成膜が可能になる。   Next, as shown in FIG. 30, gate insulation is performed using the ALD method so as to cover the exposed portions of the interlayer insulating films 47, 57, 59 and the n-type polycrystalline Si layers 46, 48, 58, 60 in the opening 50. A film 52, a Si channel layer 53, and a ferroelectric film 54 are sequentially formed. At this time, since the rounds 65 are formed at the corners of the end portions of the interlayer insulating films 47, 57, and 59, the source gas can easily enter the collar portion, so that favorable film formation can be performed without generating voids. Become.

次いで、図31に示すように、強誘電体膜54の対向する背面の間隙をSiO膜55により埋め込む。以降は、実施例1の製造工程と同様に、ビット線等を形成すれば良い。 Next, as shown in FIG. 31, the gap on the opposite back surface of the ferroelectric film 54 is filled with the SiO 2 film 55. Thereafter, a bit line or the like may be formed as in the manufacturing process of the first embodiment.

次に、図32乃至図36を参照して、本発明の実施例7の3次元積層チェーン型FeRAMを説明するが、強誘電体膜の背面に水素や水分の拡散を防止する拡散防止膜を設けた以外は、上記の実施例6と基本的に同様である。図32は、本発明の実施例7の3次元積層チェーン型FeRAMの概略的断面図である。   Next, a three-dimensional stacked chain type FeRAM according to Example 7 of the present invention will be described with reference to FIGS. 32 to 36. A diffusion prevention film for preventing diffusion of hydrogen and moisture is provided on the back surface of the ferroelectric film. Except for the provision, the configuration is basically the same as that of the sixth embodiment. FIG. 32 is a schematic cross-sectional view of a three-dimensional multilayer chain type FeRAM according to Example 7 of the present invention.

図に示すように、Si基板31にn型アモルファスSi層37をワード線に繋がるゲート電極とする縦型トランジスタを形成し、チャネル層となるn型アモルファスSi層41をプレート線となるW層33に接続する。   As shown in the figure, a vertical transistor having an n-type amorphous Si layer 37 as a gate electrode connected to a word line is formed on a Si substrate 31, and an n-type amorphous Si layer 41 serving as a channel layer is used as a W layer 33 serving as a plate line. Connect to.

この縦型トランジスタを形成したSi基板31上に、窒化膜44及びSiO膜45を形成した後、層間絶縁膜47,57,59を介してn型多結晶Si層46,48,58,60からなる4層のゲート電極を積層し、その上にSiO膜49を設ける。次いで、開口部50を設けるが、開口部50内において、層間絶縁膜47,57,59及びSiO膜49をn型多結晶Si層46,48,58,60より突出させて層間絶縁膜47,57,59とn型多結晶Si層46,48,58,60の積層方向に沿って4か所の凹部51を形成するとともに、層間絶縁膜47,57,59及びSiO膜49の張出部の端部の角に丸み65を持たせる。 After forming the nitride film 44 and the SiO 2 film 45 on the Si substrate 31 on which the vertical transistor is formed, the n-type polycrystalline Si layers 46, 48, 58, 60 are interposed via the interlayer insulating films 47, 57, 59. A four-layer gate electrode made of is laminated, and an SiO 2 film 49 is provided thereon. Next, the opening 50 is provided. In the opening 50, the interlayer insulating films 47, 57, 59 and the SiO 2 film 49 are protruded from the n-type polycrystalline Si layers 46, 48, 58, 60, and the interlayer insulating film 47. , 57, 59 and n-type polycrystalline Si layers 46, 48, 58, 60 are formed in four recesses 51 along the stacking direction, and the interlayer insulating films 47, 57, 59 and SiO 2 film 49 are stretched. A roundness 65 is provided at the corner of the end of the protruding portion.

次いで、開口部50内において層間絶縁膜47,57,59及びn型多結晶Si層46,48,58,60の露出部を覆うようにゲート絶縁膜52、Siチャネル層53、強誘電体膜54及び拡散防止膜66を順次成膜し、この凹部51に強誘電体膜54が充填されるようにする。また、強誘電体膜54の対向する背面の間隙はSiO膜55で埋め込む。 Next, the gate insulating film 52, the Si channel layer 53, and the ferroelectric film are formed so as to cover the exposed portions of the interlayer insulating films 47, 57, 59 and the n-type polycrystalline Si layers 46, 48, 58, 60 in the opening 50. 54 and a diffusion prevention film 66 are sequentially formed so that the recess 51 is filled with the ferroelectric film 54. Further, the gap between the opposing back surfaces of the ferroelectric film 54 is filled with the SiO 2 film 55.

次に、図33乃至図36を参照して、本発明の実施例7の3次元積層チェーン型FeRAMの製造工程を説明する。まず、上述の図28と同様に、Si基板31上にトランジスタやプレート線等を形成したのち、マイクロ波エッチング装置を用いて多結晶Si/SiO高選択比、例えば、選択比が22程度の等方性エッチングによりn多結晶Si層46,48,58,60をサイドエッチングして層間絶縁膜47,57,59及びSiO膜49の張出部が120mmの凹部51を形成する。なお、ここでは、エッチングガスとして、80ml/分の流量のCFと20ml/分の流量のOとの混合ガスを用いて、0.7Torrの雰囲気下で、ウェーハステージの温度を70℃とし、1300Wのパワーを印加する。 Next, with reference to FIGS. 33 to 36, a manufacturing process of the three-dimensional multilayer chain type FeRAM according to Embodiment 7 of the present invention will be described. First, similarly to FIG. 28 described above, after a transistor, a plate line or the like is formed on the Si substrate 31, a polycrystalline Si / SiO 2 high selection ratio, for example, a selection ratio of about 22 is selected using a microwave etching apparatus. The n polycrystal Si layers 46, 48, 58, 60 are side-etched by isotropic etching to form a recess 51 in which the protruding portions of the interlayer insulating films 47, 57, 59 and the SiO 2 film 49 are 120 mm. Here, as the etching gas, a mixed gas of CF 4 at a flow rate of 80 ml / min and O 2 at a flow rate of 20 ml / min is used, and the temperature of the wafer stage is set to 70 ° C. in an atmosphere of 0.7 Torr. A power of 1300 W is applied.

次いで、図33に示すように、CFをエッチャントして等方性エッチングを施すことにより、層間絶縁膜47,57,59及びSiO膜49の張出部の端部の角をトリミングして丸み65を持たせる。 Next, as shown in FIG. 33, CF 4 is etched and isotropically etched to trim the corners of the end portions of the interlayer insulating films 47, 57, 59 and the SiO 2 film 49. Provide roundness 65.

次いで、図34に示すように、ALD法を用いて開口部50内において層間絶縁膜47,57,59及びn型多結晶Si層46,48,58,60の露出部を覆うようにゲート絶縁膜52、Siチャネル層53及び強誘電体膜54を順次成膜する。この時、層間絶縁膜47,57,59の端部の角に丸み65を形成しているので、庇部に原料ガスが入りやすくなるので、ボイドを発生することなく良好な成膜が可能になる。   Next, as shown in FIG. 34, gate insulation is performed using the ALD method so as to cover the exposed portions of the interlayer insulating films 47, 57, 59 and the n-type polycrystalline Si layers 46, 48, 58, 60 in the opening 50. A film 52, a Si channel layer 53, and a ferroelectric film 54 are sequentially formed. At this time, since the rounds 65 are formed at the corners of the end portions of the interlayer insulating films 47, 57, and 59, the source gas can easily enter the collar portion, so that favorable film formation can be performed without generating voids. Become.

次いで、図35に示すように、厚さが例えば、20nmのAl膜を拡散防止膜66として成膜する。次いで、図36に示すように、拡散防止膜66の対向する背面の間隙をSiO膜55により埋め込む。以降は、実施例1の製造工程と同様に、ビット線等を形成すれば良い。 Next, as shown in FIG. 35, an Al 2 O 3 film having a thickness of, for example, 20 nm is formed as the diffusion preventing film 66. Next, as shown in FIG. 36, the gap on the opposite back surface of the diffusion prevention film 66 is filled with the SiO 2 film 55. Thereafter, a bit line or the like may be formed as in the manufacturing process of the first embodiment.

本発明の実施例7においては、強誘電体膜54の背面に拡散防止膜66を設けているので、水素や水分の侵入による強誘電体膜54の劣化を抑制することができる。なお、ここでは、拡散防止膜としてAl膜を用いているが、SiN膜を用いても良い。また、強誘電体膜としてBST膜やSBT膜を用いた場合にもPZT膜と同様に水素や水分によって劣化するので、拡散防止膜を設けることが望ましい。さらに、上述の実施例1乃至実施例5においても、拡散防止膜を設けても良いものである。 In the seventh embodiment of the present invention, since the diffusion prevention film 66 is provided on the back surface of the ferroelectric film 54, the deterioration of the ferroelectric film 54 due to the intrusion of hydrogen or moisture can be suppressed. Here, although an Al 2 O 3 film is used as the diffusion preventing film, a SiN film may be used. Further, when a BST film or SBT film is used as the ferroelectric film, it is deteriorated by hydrogen or moisture as in the case of the PZT film. Therefore, it is desirable to provide a diffusion prevention film. Further, in the above-described first to fifth embodiments, a diffusion preventing film may be provided.

次に、図37を参照して、本発明の実施例8の3次元積層チェーン型PCRAMを説明するが、メモリ物質膜として強誘電体膜の代わりに相変化膜を設けた以外は、基本的な構造及び製造工程は、上記の実施例2と同様である。図37は、本発明の実施例8の3次元積層チェーン型PCRAMの説明図であり、上図はメモリセル部の概略的断面図であり、下図は上図において破線で囲ったキャパシタ部を示す要部斜視図である。   Next, referring to FIG. 37, the three-dimensional stacked chain type PCRAM according to the eighth embodiment of the present invention will be described. Basically, a phase change film is provided as a memory material film instead of a ferroelectric film. The structure and manufacturing process are the same as those in the second embodiment. FIG. 37 is an explanatory diagram of a three-dimensional multilayer chain type PCRAM according to an eighth embodiment of the present invention. The upper diagram is a schematic cross-sectional view of a memory cell unit, and the lower diagram shows a capacitor unit surrounded by a broken line in the upper diagram. It is a principal part perspective view.

図に示すように、Si基板31にn型アモルファスSi層37をワード線に繋がるゲート電極とする縦型トランジスタを形成し、チャネル層となるn型アモルファスSi層41をプレート線となるW層33に接続する。   As shown in the figure, a vertical transistor having an n-type amorphous Si layer 37 as a gate electrode connected to a word line is formed on a Si substrate 31, and an n-type amorphous Si layer 41 serving as a channel layer is used as a W layer 33 serving as a plate line. Connect to.

この縦型トランジスタを形成したSi基板31上に、窒化膜44及びSiO膜45を形成した後、層間絶縁膜47,57,59を介してn型多結晶Si層46,48,58,60からなる4層のゲート電極を積層し、その上にSiO膜49を設ける。次いで、開口部50を設けるが、開口部50内において、層間絶縁膜47,57,59及びSiO膜49をn型多結晶Si層46,48,58,60より突出させて層間絶縁膜47,57,59とn型多結晶Si層46,48,58,60の積層方向に沿って4か所の凹部51を形成する。 After forming the nitride film 44 and the SiO 2 film 45 on the Si substrate 31 on which the vertical transistor is formed, the n-type polycrystalline Si layers 46, 48, 58, 60 are interposed via the interlayer insulating films 47, 57, 59. A four-layer gate electrode made of is laminated, and an SiO 2 film 49 is provided thereon. Next, the opening 50 is provided. In the opening 50, the interlayer insulating films 47, 57, 59 and the SiO 2 film 49 are protruded from the n-type polycrystalline Si layers 46, 48, 58, 60, and the interlayer insulating film 47. , 57, 59 and n-type polycrystalline Si layers 46, 48, 58, 60 are formed in four recesses 51 along the stacking direction.

開口部50内において層間絶縁膜47,57,59及びn型多結晶Si層46,48,58,60の露出部を覆うようにゲート絶縁膜52、Siチャネル層53及び相変化膜67を順次成膜し、この凹部51に相変化膜67が充填されるようにする。また、相変化膜67の対向する背面の間隙にはSiO膜55を埋め込む。その結果、互いに対向するn型多結晶Si層46,48,58,60同士の間に中空円筒状の相変化材料メモリ部が形成される。なお、ここでは、相変化膜67として、GST膜を用いる。 The gate insulating film 52, the Si channel layer 53, and the phase change film 67 are sequentially formed so as to cover the exposed portions of the interlayer insulating films 47, 57, 59 and the n-type polycrystalline Si layers 46, 48, 58, 60 in the opening 50. A film is formed so that the recess 51 is filled with the phase change film 67. Further, a SiO 2 film 55 is buried in the gap between the opposite back surfaces of the phase change film 67. As a result, a hollow cylindrical phase change material memory portion is formed between the n-type polycrystalline Si layers 46, 48, 58, 60 facing each other. Here, a GST film is used as the phase change film 67.

本発明の実施例8のように、メモリ物質膜として相変化膜を用いた場合にも、メモリセル部においては、相変化膜67は下図に示すように上下方向がSiチャネル層53に挟まれ、このSiチャネル層53が電圧印加電極となる。したがって、相変化膜67には十分電圧が印加されて電流が流れるので、相変化膜の結晶構造を良好に変化させることができる。なお、この実施例8においても実施例6と同様に層間絶縁膜の張出部の端部の角に丸みを持たせても良い。   Even when a phase change film is used as the memory material film as in the eighth embodiment of the present invention, in the memory cell portion, the phase change film 67 is sandwiched between the Si channel layers 53 in the vertical direction as shown below. The Si channel layer 53 serves as a voltage application electrode. Therefore, a sufficient voltage is applied to the phase change film 67 and a current flows, so that the crystal structure of the phase change film can be changed satisfactorily. In the eighth embodiment, as in the sixth embodiment, the corners of the overhang portions of the interlayer insulating film may be rounded.

次に、図38を参照して、本発明の実施例9の3次元積層チェーン型RRAM(RRAMは登録商標)を説明するが、メモリ物質膜として強誘電体膜の代わりに抵抗変化膜を設けた以外は、基本的な構造及び製造工程は、上記の実施例2と同様である。図38は、本発明の実施例9の3次元積層チェーン型RRAMの説明図であり、上図はメモリセル部の概略的断面図であり、下図は上図において破線で囲ったキャパシタ部を示す要部斜視図である。   Next, referring to FIG. 38, a three-dimensional stacked chain type RRAM (RRAM is a registered trademark) according to a ninth embodiment of the present invention will be described. A resistance change film is provided instead of a ferroelectric film as a memory material film. Except for the above, the basic structure and manufacturing process are the same as those of the second embodiment. FIG. 38 is an explanatory diagram of the three-dimensional multilayer chain type RRAM according to the ninth embodiment of the present invention. The upper diagram is a schematic cross-sectional view of the memory cell unit, and the lower diagram shows a capacitor unit surrounded by a broken line in the upper diagram. It is a principal part perspective view.

図に示すように、Si基板31にn型アモルファスSi層37をワード線に繋がるゲート電極とする縦型トランジスタを形成し、チャネル層となるn型アモルファスSi層41をプレート線となるW層33に接続する。   As shown in the figure, a vertical transistor having an n-type amorphous Si layer 37 as a gate electrode connected to a word line is formed on a Si substrate 31, and an n-type amorphous Si layer 41 serving as a channel layer is used as a W layer 33 serving as a plate line. Connect to.

この縦型トランジスタを形成したSi基板31上に、窒化膜44及びSiO膜45を形成した後、層間絶縁膜47,57,59を介してn型多結晶Si層46,48,58,60からなる4層のゲート電極を積層し、その上にSiO膜49を設ける。次いで、開口部50を設けるが、開口部50内において、層間絶縁膜47,57,59及びSiO膜49をn型多結晶Si層46,48,58,60より突出させて層間絶縁膜47,57,59とn型多結晶Si層46,48,58,60の積層方向に沿って4か所の凹部51を形成する。 After forming the nitride film 44 and the SiO 2 film 45 on the Si substrate 31 on which the vertical transistor is formed, the n-type polycrystalline Si layers 46, 48, 58, 60 are interposed via the interlayer insulating films 47, 57, 59. A four-layer gate electrode made of is laminated, and an SiO 2 film 49 is provided thereon. Next, the opening 50 is provided. In the opening 50, the interlayer insulating films 47, 57, 59 and the SiO 2 film 49 are protruded from the n-type polycrystalline Si layers 46, 48, 58, 60, and the interlayer insulating film 47. , 57, 59 and n-type polycrystalline Si layers 46, 48, 58, 60 are formed in four recesses 51 along the stacking direction.

開口部50内において層間絶縁膜47,57,59及びn型多結晶Si層46,48,58,60の露出部を覆うようにゲート絶縁膜52、Siチャネル層53及び抵抗変化膜68を順次成膜し、この凹部51に抵抗変化膜68が充填されるようにする。また、抵抗変化膜68の対向する背面の間隙にはSiO膜55を埋め込む。その結果、互いに対向するn型多結晶Si層46,48,58,60同士の間に中空円筒状の抵抗変化材料メモリが形成される。なお、ここでは、抵抗変化膜として、HfO膜を用いる。 The gate insulating film 52, the Si channel layer 53, and the resistance change film 68 are sequentially formed so as to cover the exposed portions of the interlayer insulating films 47, 57, 59 and the n-type polycrystalline Si layers 46, 48, 58, 60 in the opening 50. A film is formed so that the recess 51 is filled with the resistance change film 68. Further, a SiO 2 film 55 is embedded in the gap between the opposing back surfaces of the resistance change film 68. As a result, a hollow cylindrical resistance change material memory is formed between the n-type polycrystalline Si layers 46, 48, 58, 60 facing each other. Here, an HfO x film is used as the resistance change film.

本発明の実施例9のように、メモリ物質膜として抵抗変化膜を用いた場合にも、メモリセル部においては、抵抗変化膜68は下図に示すように上下方向がSiチャネル層53に挟まれ、このSiチャネル層53が電圧印加電極となる。したがって、抵抗変化膜68には十分電圧が印加されて電界誘起巨大抵抗変化により抵抗が変化する。なお、この実施例9においても、実施例6と同様に層間絶縁膜の張出部の端部の角に丸みを持たせても良い。   Even when a resistance change film is used as the memory material film as in the ninth embodiment of the present invention, in the memory cell portion, the resistance change film 68 is sandwiched between the Si channel layer 53 in the vertical direction as shown in the following figure. The Si channel layer 53 serves as a voltage application electrode. Therefore, a sufficient voltage is applied to the resistance change film 68, and the resistance changes due to the electric field induced giant resistance change. In the ninth embodiment, as in the sixth embodiment, the corners of the end portions of the overhang portions of the interlayer insulating film may be rounded.

ここで、実施例1乃至実施例9を含む本発明の実施の形態に関して、以下の付記を付す。
(付記1)層間絶縁膜を介して積層した複数のゲート電極と、前記層間絶縁膜及び複数のゲート電極を貫通する開口部と、前記開口部内において前記層間絶縁膜及び前記ゲート電極の露出部を覆うゲート絶縁膜と、前記ゲート絶縁膜を覆う半導体チャネル層と、前記半導体チャネル層を覆うメモリ物質膜とを少なくとも有し、前記開口部内において、前記層間絶縁膜が前記ゲート電極より突出して、前記層間絶縁膜と前記ゲート電極の積層方向に沿って周期的な凹部を有し、前記メモリ物質膜が前記凹部に充填されて、前記半導体チャネル層が前記凹部に充填された前記メモリ物質膜に対する電圧印加電極となる3次元積層チェーン型メモリ装置。
(付記2)前記メモリ物質膜が、強誘電体膜、相変化膜或いは抵抗変化膜のいずれかである付記1に記載の3次元積層チェーン型メモリ装置。
(付記3)前記半導体チャネル層とメモリ物質膜との間に合金化防止層をさらに有する付記1または付記2に記載の3次元積層チェーン型メモリ装置。
(付記4)前記メモリ物質膜の前記半導体チャネル層に接する側と反対の面が絶縁体膜により覆われている付記1乃至付記3のいずれか1に記載の3次元積層チェーン型メモリ装置。
(付記5)前記絶縁体膜が、水素或いは水分の拡散を防止する拡散防止膜である付記4に記載の3次元積層チェーン型メモリ装置。
(付記6)前記拡散防止膜が、アルミニウム酸化膜或いはシリコン窒化膜のいずれかである付記5に記載の3次元積層チェーン型メモリ装置。
(付記7)前記メモリ物質膜の前記半導体チャネル層に接する側と反対の面が導電体膜により覆われている付記1乃至付記3のいずれか1に記載の3次元積層チェーン型メモリ装置。
(付記8)前記導電体膜はTiN膜である付記7に記載の3次元積層チェーン型メモリ装置。
(付記9)前記半導体チャネル層の前記凹部における側面以外の露出表面に、前記半導体チャネル層より導電率の高い導電体膜をさらに有する付記1乃至付記8のいずれか1に記載の3次元積層チェーン型メモリ装置。
(付記10)層間絶縁膜を介して複数のゲート電極層を積層する工程と、前記層間絶縁膜及び複数のゲート電極層を貫通する開口部を形成する工程と、前記開口部内に露出するゲート電極層をサイドエッチングして凹部を形成する工程と、前記開口部内において前記層間絶縁膜と前記ゲート電極層の露出面にゲート絶縁膜を成膜する工程と、前記ゲート電極層の露出面に半導体チャネル層を前記半導体チャネル層に凹部が形成されるように成膜する工程と、前記半導体チャネル層の露出面に前記半導体チャネル層に形成された凹部を埋め込むようにメモリ物質膜を形成する工程とを少なくとも有する3次元積層チェーン型メモリ装置の製造方法。
(付記11)前記メモリ物質膜の前記半導体チャネル層に接する側と反対の露出面に絶縁体膜を成膜する工程をさらに有する付記10に記載の3次元積層チェーン型メモリ装置の製造方法。
(付記12)前記メモリ物質膜の前記半導体チャネル層に接する側と反対の露出面に導電体膜を成膜する工程と、前記導電体膜を設けた状態で熱処理を行う工程をさらに有する付記11に記載の3次元積層チェーン型メモリ装置の製造方法。
(付記13)前記ゲート絶縁膜の成膜工程の前に、前記層間絶縁膜の端部の角部をトリミングして丸みを持たせる工程をさらに有する付記10乃至付記12のいずれか1に記載の3次元積層チェーン型メモリ装置の製造方法。
Here, the following supplementary notes are attached to the embodiments of the present invention including Examples 1 to 9.
(Supplementary Note 1) A plurality of gate electrodes stacked via an interlayer insulating film, an opening penetrating the interlayer insulating film and the plurality of gate electrodes, and an exposed portion of the interlayer insulating film and the gate electrode in the opening A gate insulating film covering the semiconductor channel layer covering the gate insulating film; and a memory material film covering the semiconductor channel layer, wherein the interlayer insulating film protrudes from the gate electrode in the opening, A voltage applied to the memory material film having a periodic recess along the stacking direction of the interlayer insulating film and the gate electrode, the memory material film filling the recess, and the semiconductor channel layer filling the recess A three-dimensional stacked chain type memory device serving as an application electrode.
(Supplementary note 2) The three-dimensional stacked chain memory device according to supplementary note 1, wherein the memory substance film is any one of a ferroelectric film, a phase change film, and a resistance change film.
(Supplementary note 3) The three-dimensional stacked chain type memory device according to supplementary note 1 or supplementary note 2, further comprising an alloying prevention layer between the semiconductor channel layer and the memory material film.
(Supplementary note 4) The three-dimensional stacked chain type memory device according to any one of supplementary notes 1 to 3, wherein a surface of the memory material film opposite to a side in contact with the semiconductor channel layer is covered with an insulator film.
(Supplementary note 5) The three-dimensional stacked chain memory device according to supplementary note 4, wherein the insulator film is a diffusion prevention film that prevents diffusion of hydrogen or moisture.
(Supplementary note 6) The three-dimensional stacked chain memory device according to supplementary note 5, wherein the diffusion prevention film is either an aluminum oxide film or a silicon nitride film.
(Supplementary note 7) The three-dimensional stacked chain memory device according to any one of supplementary notes 1 to 3, wherein a surface of the memory material film opposite to a side in contact with the semiconductor channel layer is covered with a conductor film.
(Supplementary note 8) The three-dimensional stacked chain memory device according to supplementary note 7, wherein the conductor film is a TiN film.
(Supplementary note 9) The three-dimensional laminated chain according to any one of supplementary notes 1 to 8, further comprising a conductor film having a higher conductivity than the semiconductor channel layer on an exposed surface of the semiconductor channel layer other than the side surface in the recess. Type memory device.
(Additional remark 10) The process of laminating | stacking a some gate electrode layer through an interlayer insulation film, The process of forming the opening part which penetrates the said interlayer insulation film and a some gate electrode layer, The gate electrode exposed in the said opening part Forming a recess by side etching the layer; forming a gate insulating film on the exposed surface of the interlayer insulating film and the gate electrode layer in the opening; and a semiconductor channel on the exposed surface of the gate electrode layer Forming a layer so that a recess is formed in the semiconductor channel layer; and forming a memory material film so as to embed the recess formed in the semiconductor channel layer on the exposed surface of the semiconductor channel layer. A manufacturing method of at least a three-dimensional stacked chain type memory device.
(Supplementary note 11) The method for manufacturing a three-dimensional stacked chain type memory device according to supplementary note 10, further comprising a step of forming an insulator film on an exposed surface of the memory material film opposite to the side in contact with the semiconductor channel layer.
(Supplementary note 12) The method further includes the step of forming a conductive film on the exposed surface of the memory material film opposite to the side in contact with the semiconductor channel layer, and the step of performing a heat treatment in a state where the conductive film is provided. A manufacturing method of the three-dimensional stacked chain type memory device described in 1.
(Additional remark 13) Before the film-forming process of the said gate insulating film, Trimming the corner | angular part of the edge part of the said interlayer insulating film further has the process of giving roundness, Any one of Additional remark 10 thru | or Additional remark 12 A method of manufacturing a three-dimensional stacked chain type memory device.

1 ゲート電極
2 層間絶縁膜
3 開口部
4 凹部
5 ゲート絶縁膜
6 半導体チャネル層
7 メモリ物質膜
8 絶縁体膜
20 3次元積層チェーン型FeRAM
21 ゲート電極引出線
22 ビット引出線
23 ワード引出線
24 プレート引出線
31 シリコン基板
32 SiO
33 W層
34 SiO
35 SiN膜
36 SiO
37 n型アモルファスSi層
38 SiO
39 開口部
40 ゲート絶縁膜
41 n型アモルファスSi層
42 分離溝
43 SiO
44 SiN膜
45 SiO
46,58,58,60 n型多結晶Si層
47,57,59 層間絶縁膜
48 n型多結晶Si層
49 SiO
50 開口部
51 凹部
52 ゲート絶縁膜
53 Siチャネル層
54 強誘電体膜
55 SiO
56 ビット線
61 TiN膜
62 HfO
63 PZT膜
64 TiN膜
65 丸み
66 拡散防止膜
67 相変化膜
68 抵抗変化膜
101,111 ゲート電極
102,112 層間絶縁膜
103,113 ゲート絶縁膜
104,114 多結晶シリコンチャネル層
105 相変化膜
115 強誘電体膜
DESCRIPTION OF SYMBOLS 1 Gate electrode 2 Interlayer insulating film 3 Opening part 4 Recessed part 5 Gate insulating film 6 Semiconductor channel layer 7 Memory material film 8 Insulator film 20 Three-dimensional laminated chain type FeRAM
21 gate electrode lead line 22 bit lead line 23 word lead line 24 plate lead line 31 silicon substrate 32 SiO 2 film 33 W layer 34 SiO 2 film 35 SiN film 36 SiO 2 film 37 n-type amorphous Si layer 38 SiO 2 film 39 Opening Portion 40 Gate insulating film 41 n-type amorphous Si layer 42 isolation trench 43 SiO 2 film 44 SiN film 45 SiO 2 films 46, 58, 58, 60 n-type polycrystalline Si layers 47, 57, 59 Inter-layer insulating film 48 n-type poly Crystal Si layer 49 SiO 2 film 50 Opening 51 Recess 52 Gate insulating film 53 Si channel layer 54 Ferroelectric film 55 SiO 2 film 56 Bit line 61 TiN film 62 HfO x film 63 PZT film 64 TiN film 65 Rounding 66 Diffusion prevention Film 67 Phase change film 68 Resistance change film 101, 111 Gate electrode 102, 112 Interlayer insulating film 103, 113 Gate insulating films 104 and 114 Polycrystalline silicon channel layer 105 Phase change film 115 Ferroelectric film

Claims (8)

層間絶縁膜を介して積層した複数のゲート電極と、
前記層間絶縁膜及び複数のゲート電極を貫通する開口部と、
前記開口部内において前記層間絶縁膜及び前記ゲート電極の露出部を覆うゲート絶縁膜と、
前記ゲート絶縁膜を覆う半導体チャネル層と、
前記半導体チャネル層を覆うメモリ物質膜と
を少なくとも有し、
前記開口部内において、前記層間絶縁膜が前記ゲート電極より突出して、前記層間絶縁膜と前記ゲート電極の積層方向に沿って周期的な凹部を有し、
前記メモリ物質膜が前記凹部に充填されて、前記半導体チャネル層が前記凹部に充填された前記メモリ物質膜に対する電圧印加電極となる3次元積層チェーン型メモリ装置。
A plurality of gate electrodes stacked via an interlayer insulating film;
An opening penetrating the interlayer insulating film and the plurality of gate electrodes;
A gate insulating film covering the interlayer insulating film and the exposed portion of the gate electrode in the opening;
A semiconductor channel layer covering the gate insulating film;
And at least a memory material film covering the semiconductor channel layer,
In the opening, the interlayer insulating film protrudes from the gate electrode, and has a periodic recess along the stacking direction of the interlayer insulating film and the gate electrode,
A three-dimensional stacked chain memory device in which the memory material film is filled in the recess, and the semiconductor channel layer serves as a voltage application electrode for the memory material film filled in the recess.
前記メモリ物質膜が、強誘電体膜、相変化膜或いは抵抗変化膜のいずれかである請求項1に記載の3次元積層チェーン型メモリ装置。   The three-dimensionally stacked chain type memory device according to claim 1, wherein the memory material film is one of a ferroelectric film, a phase change film, and a resistance change film. 前記メモリ物質膜の前記半導体チャネル層に接する側と反対の面が絶縁体膜により覆われている請求項1または請求項2に記載の3次元積層チェーン型メモリ装置。   3. The three-dimensionally stacked chain type memory device according to claim 1, wherein a surface of the memory material film opposite to a side in contact with the semiconductor channel layer is covered with an insulator film. 前記メモリ物質膜の前記半導体チャネル層に接する側と反対の面が導電体膜により覆われている請求項1または請求項2に記載の3次元積層チェーン型メモリ装置。   3. The three-dimensional stacked chain memory device according to claim 1, wherein a surface of the memory material film opposite to a side in contact with the semiconductor channel layer is covered with a conductor film. 前記半導体チャネル層の前記凹部における側面以外の露出表面に、前記半導体チャネル層より導電率の高い導電体膜をさらに有する請求項1乃至請求項4のいずれか1項に記載の3次元積層チェーン型メモリ装置。   5. The three-dimensional stacked chain type according to claim 1, further comprising a conductor film having a higher conductivity than the semiconductor channel layer on an exposed surface other than a side surface of the recess of the semiconductor channel layer. Memory device. 層間絶縁膜を介して複数のゲート電極層を積層する工程と、
前記層間絶縁膜及び複数のゲート電極層を貫通する開口部を形成する工程と、
前記開口部内に露出するゲート電極層をサイドエッチングして凹部を形成する工程と、
前記開口部内において前記層間絶縁膜と前記ゲート電極層の露出面にゲート絶縁膜を成膜する工程と、
前記ゲート電極層の露出面に半導体チャネル層を前記半導体チャネル層に凹部が形成されるように成膜する工程と、
前記半導体チャネル層の露出面に前記半導体チャネル層に形成された前記凹部を埋め込むようにメモリ物質膜を形成する工程と
を少なくとも有する3次元積層チェーン型メモリ装置の製造方法。
Laminating a plurality of gate electrode layers via an interlayer insulating film;
Forming an opening that penetrates the interlayer insulating film and the plurality of gate electrode layers;
Forming a recess by side-etching the gate electrode layer exposed in the opening;
Forming a gate insulating film on the exposed surface of the interlayer insulating film and the gate electrode layer in the opening;
Forming a semiconductor channel layer on the exposed surface of the gate electrode layer such that a recess is formed in the semiconductor channel layer;
Forming a memory material film so as to embed the recess formed in the semiconductor channel layer on an exposed surface of the semiconductor channel layer.
前記メモリ物質膜の前記半導体チャネル層に接する側と反対の露出面に導電体膜を成膜する工程と、
前記導電体膜を設けた状態で熱処理を行う工程をさらに有する請求項6に記載の3次元積層チェーン型メモリ装置の製造方法。
Depositing a conductor film on an exposed surface of the memory material film opposite to the side in contact with the semiconductor channel layer;
The method of manufacturing a three-dimensionally stacked chain type memory device according to claim 6, further comprising a step of performing a heat treatment in a state where the conductor film is provided.
前記ゲート絶縁膜の成膜工程の前に、前記層間絶縁膜の端部の角部をトリミングして丸みを持たせる工程をさらに有する請求項6または請求項7に記載の3次元積層チェーン型メモリ装置の製造方法。   8. The three-dimensional stacked chain type memory according to claim 6, further comprising a step of trimming a corner portion of the end portion of the interlayer insulating film to make it round before the step of forming the gate insulating film. Device manufacturing method.
JP2016166781A 2016-08-29 2016-08-29 Manufacturing method of 3D stacked chain type memory device Active JP6758124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016166781A JP6758124B2 (en) 2016-08-29 2016-08-29 Manufacturing method of 3D stacked chain type memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016166781A JP6758124B2 (en) 2016-08-29 2016-08-29 Manufacturing method of 3D stacked chain type memory device

Publications (2)

Publication Number Publication Date
JP2018037441A true JP2018037441A (en) 2018-03-08
JP6758124B2 JP6758124B2 (en) 2020-09-23

Family

ID=61567625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166781A Active JP6758124B2 (en) 2016-08-29 2016-08-29 Manufacturing method of 3D stacked chain type memory device

Country Status (1)

Country Link
JP (1) JP6758124B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200114714A (en) * 2019-03-29 2020-10-07 한양대학교 산학협력단 Three dimensional flash memory based on ferro dielectric material and manufacturing method thereof
WO2020204314A1 (en) * 2019-03-29 2020-10-08 한양대학교 산학협력단 Ferroelectric material-based three-dimensional flash memory, and manufacture therefor
US20220059549A1 (en) * 2020-05-05 2022-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming a mfmis memory device
WO2022064317A1 (en) * 2020-09-25 2022-03-31 株式会社半導体エネルギー研究所 Imaging device and electronic apparatus
KR20220103575A (en) * 2021-01-15 2022-07-22 매크로닉스 인터내셔널 컴퍼니 리미티드 Memory device
US11437403B2 (en) * 2019-09-18 2022-09-06 Kioxia Corporation Ferroelectric memory device
US11488979B2 (en) * 2020-05-19 2022-11-01 SK Hynix Inc. Semiconductor device of three-dimensional structure including ferroelectric layer
US11723211B2 (en) 2020-09-18 2023-08-08 Kioxia Corporation Semiconductor memory device having ferroelectric field effect transistor
US11917805B2 (en) 2020-12-22 2024-02-27 Samsung Electronics Co., Ltd. Semiconductor memory device
US11968833B2 (en) 2021-01-15 2024-04-23 Macronix International Co., Ltd. Memory device with vertically separated channels

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066603A (en) * 2006-09-08 2008-03-21 Toshiba Corp Semiconductor memory device and its manufacturing method
JP2013161978A (en) * 2012-02-06 2013-08-19 National Institute Of Advanced Industrial & Technology Semiconductor storage device and manufacturing method of the same
US20140145137A1 (en) * 2012-11-28 2014-05-29 Hyunsu Ju Resistive Random Access Memory Devices Having Variable Resistance Layers
JP2015015334A (en) * 2013-07-04 2015-01-22 株式会社東芝 Semiconductor device and dielectric film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066603A (en) * 2006-09-08 2008-03-21 Toshiba Corp Semiconductor memory device and its manufacturing method
JP2013161978A (en) * 2012-02-06 2013-08-19 National Institute Of Advanced Industrial & Technology Semiconductor storage device and manufacturing method of the same
US20140145137A1 (en) * 2012-11-28 2014-05-29 Hyunsu Ju Resistive Random Access Memory Devices Having Variable Resistance Layers
JP2015015334A (en) * 2013-07-04 2015-01-22 株式会社東芝 Semiconductor device and dielectric film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515333B2 (en) 2019-03-29 2022-11-29 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Ferroelectric material-based three-dimensional flash memory, and manufacture thereof
WO2020204314A1 (en) * 2019-03-29 2020-10-08 한양대학교 산학협력단 Ferroelectric material-based three-dimensional flash memory, and manufacture therefor
KR102201016B1 (en) * 2019-03-29 2021-01-11 한양대학교 산학협력단 Three dimensional flash memory based on ferro dielectric material and manufacturing method thereof
KR20200114714A (en) * 2019-03-29 2020-10-07 한양대학교 산학협력단 Three dimensional flash memory based on ferro dielectric material and manufacturing method thereof
US11437403B2 (en) * 2019-09-18 2022-09-06 Kioxia Corporation Ferroelectric memory device
US20220059549A1 (en) * 2020-05-05 2022-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming a mfmis memory device
US11925030B2 (en) * 2020-05-05 2024-03-05 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming a MFMIS memory device
US11488979B2 (en) * 2020-05-19 2022-11-01 SK Hynix Inc. Semiconductor device of three-dimensional structure including ferroelectric layer
US11723211B2 (en) 2020-09-18 2023-08-08 Kioxia Corporation Semiconductor memory device having ferroelectric field effect transistor
WO2022064317A1 (en) * 2020-09-25 2022-03-31 株式会社半導体エネルギー研究所 Imaging device and electronic apparatus
US11917805B2 (en) 2020-12-22 2024-02-27 Samsung Electronics Co., Ltd. Semiconductor memory device
KR102558751B1 (en) 2021-01-15 2023-07-24 매크로닉스 인터내셔널 컴퍼니 리미티드 Memory device
JP2022109849A (en) * 2021-01-15 2022-07-28 旺宏電子股▲ふん▼有限公司 memory device
JP7331305B2 (en) 2021-01-15 2023-08-23 旺宏電子股▲ふん▼有限公司 memory device
KR20220103575A (en) * 2021-01-15 2022-07-22 매크로닉스 인터내셔널 컴퍼니 리미티드 Memory device
US11968833B2 (en) 2021-01-15 2024-04-23 Macronix International Co., Ltd. Memory device with vertically separated channels

Also Published As

Publication number Publication date
JP6758124B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6758124B2 (en) Manufacturing method of 3D stacked chain type memory device
CN109585646B (en) Memory device and method of manufacturing the same
US11825660B2 (en) Semiconductor device having ferroelectric material and method of fabricating the same
US10861878B2 (en) Semiconductor device having ferroelectric layer and method of manufacturing the same
US10403631B1 (en) Three-dimensional ferroelectric memory devices
CN109037231B (en) Semiconductor device including ferroelectric layer and method of manufacturing the same
JP6563390B2 (en) Manufacturing method of F-RAM
KR20180051991A (en) Nonvolatile Memory Device and Method of Manufacturing the same
US20120056253A1 (en) Semiconductor memory device and manufacturing method thereof
US11844203B1 (en) Conductive and insulative hydrogen barrier layer for memory devices
JP2018067664A (en) Semiconductor memory device, semiconductor memory, and semiconductor system
CN107710412A (en) The method that ferroelectric RAM is manufactured on the bottom electrode and barrier oxide layer being pre-patterned
JP4533919B2 (en) Method for manufacturing nonvolatile semiconductor memory
JP2007053309A (en) Data memory device
JP2022022181A (en) Three-dimensional memory device and method
JP2008235815A (en) Nonvolatile memory
TWI831272B (en) Transistor structure and methods of forming the same
JP2006086292A (en) Semiconductor memory device and its manufacturing method
WO2022176549A1 (en) Semiconductor storage device
EP4274400A1 (en) Semiconductor device
JP2022101741A (en) Semiconductor storage device and manufacturing method thereof
TW202306164A (en) Transistor structure and methods of forming the same
KR100465832B1 (en) Ferroelectric Random Access Memory and fabricating method of the same
CN117177569A (en) Semiconductor memory device having a memory cell with a memory cell having a memory cell with a memory cell
JP2008034866A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200708

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200710

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200901

R150 Certificate of patent or registration of utility model

Ref document number: 6758124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150