JP2018035979A - Method of inspecting heat pump system, and heat pump system - Google Patents

Method of inspecting heat pump system, and heat pump system Download PDF

Info

Publication number
JP2018035979A
JP2018035979A JP2016168129A JP2016168129A JP2018035979A JP 2018035979 A JP2018035979 A JP 2018035979A JP 2016168129 A JP2016168129 A JP 2016168129A JP 2016168129 A JP2016168129 A JP 2016168129A JP 2018035979 A JP2018035979 A JP 2018035979A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat
cooling water
circulation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016168129A
Other languages
Japanese (ja)
Other versions
JP6739292B2 (en
Inventor
若林 努
Tsutomu Wakabayashi
努 若林
貴史 宮越
Takashi Miyakoshi
貴史 宮越
優磨 古橋
Yuma Furuhashi
優磨 古橋
和真 広田
Kazuma Hirota
和真 広田
齋藤 潔
Kiyoshi Saito
潔 齋藤
慶祐 大野
Keisuke Ono
慶祐 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016168129A priority Critical patent/JP6739292B2/en
Publication of JP2018035979A publication Critical patent/JP2018035979A/en
Application granted granted Critical
Publication of JP6739292B2 publication Critical patent/JP6739292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

PROBLEM TO BE SOLVED: To provide a method of inspecting a heat pump system that can correctly recognize a refrigerant filling amount for a refrigerant circulation path.SOLUTION: A method of inspecting a heat pump system has: a status value detecting process of detecting, after letting a refrigerant sent out from compression means 5 flow to a first heat exchanger 8, a second expansion valve V2 and a third heat exchanger 10 in order in a cutoff state in which the refrigerant is not circulated via the first expansion valve V1 and a second heat exchanger 14, a status value of a refrigerant being circulated while performing an inspecting operation by switching the circulation state of the refrigerant so that the refrigerant returns to the compression means 5; and a refrigerant filling amount determination process of determining, based upon the status value detected in the status value detecting process, whether the filling amount of the refrigerant present in a refrigerant circulation path 3 is proper.SELECTED DRAWING: Figure 2

Description

本発明は、冷媒循環路を流れる冷媒を用いて熱交換対象流体の冷却又は加熱を行うヒートポンプシステムの検査方法、及び、ヒートポンプシステムに関する。   The present invention relates to a heat pump system inspection method for cooling or heating a heat exchange target fluid using a refrigerant flowing in a refrigerant circuit, and a heat pump system.

冷媒循環路を流れる冷媒と、例えば空調対象空間の空気などの熱交換対象流体との熱交換を行わせることで、その空調対象空間に対する冷房又は暖房を行うヒートポンプシステムには、冷媒循環路の途中に圧縮機や凝縮器及び蒸発器として機能する熱交換器などが設けられている。このようなヒートポンプシステムでは、冷媒循環路の途中から冷媒が漏れ出すという故障が発生することもある。そのような冷媒の漏れを検知するために、従来から、冷媒循環路からの冷媒の漏洩の有無を診断するための検査方法が提案されている。   In a heat pump system that cools or heats the air-conditioning target space by performing heat exchange between the refrigerant flowing through the refrigerant circulation path and the heat-exchange target fluid such as air in the air-conditioning target space, Are provided with a heat exchanger functioning as a compressor, a condenser, and an evaporator. In such a heat pump system, a failure that the refrigerant leaks from the middle of the refrigerant circuit may occur. In order to detect such refrigerant leakage, conventionally, an inspection method for diagnosing the presence or absence of refrigerant leakage from the refrigerant circuit has been proposed.

例えば、特許文献1(特許第5245575号公報)には、圧縮機と熱源側熱交換器(凝縮器)と膨張機構と利用側熱交換器(蒸発器)とを有して、冷房運転を行うことが可能なヒートポンプシステムが記載されている。そして、冷房運転を行いながら、熱源側熱交換器(凝縮器)の出口における冷媒の過冷却度を検出して、冷媒回路内に充填されている冷媒量の適否を判定する冷媒量判定運転モードを実行することが記載されている。   For example, Patent Document 1 (Japanese Patent No. 5245575) includes a compressor, a heat source side heat exchanger (condenser), an expansion mechanism, and a use side heat exchanger (evaporator), and performs a cooling operation. A possible heat pump system is described. Then, while performing the cooling operation, the refrigerant amount determination operation mode for detecting the degree of refrigerant subcooling at the outlet of the heat source side heat exchanger (condenser) and determining the suitability of the refrigerant amount charged in the refrigerant circuit. Is described.

このように、特許文献1に記載の発明では、例えば実際に運転を行う場合と同様の経路で、圧縮機、凝縮器、蒸発器などに対して冷媒を循環させながら冷媒の状態を検出し、その検出値に基づいて冷媒の漏れの状態を判定しようとしている。   Thus, in the invention described in Patent Document 1, for example, the state of the refrigerant is detected while circulating the refrigerant with respect to the compressor, the condenser, the evaporator, and the like in the same route as when actually operating, An attempt is made to determine the state of refrigerant leakage based on the detected value.

特許第5245575号公報Japanese Patent No. 5245575

但し、室内熱交換器及び室外熱交換器が凝縮器及び蒸発器の何れかとして機能する通常のヒートポンプシステムでは、室内熱交換器が室外熱交換器から離れた場所に設けられており、室内熱交換器に至るまでの冷媒循環路の長さは様々である。また、室内熱交換器で冷媒と熱交換する熱交換対象流体の温度も様々であり、さらに室内熱交換器の設置個数も異なる。そのため、実際に運転を行う場合と同様の経路で冷媒を流しながら冷媒の状態を検出しても、その検出値は、冷媒循環路におけるその時点での冷媒充填量(即ち、冷媒の漏れが発生しているか否か)だけに依存して変化するのではなく、冷媒循環路の長さ、室内熱交換器及び室外熱交換器での熱交換の状況、室内熱交換器の設置個数等によっても変化する。
以上のように、従来の検査方法では、実際に運転を行う場合と同様の経路で冷媒を循環させながら冷媒の状態を検出しているため、冷媒循環路における冷媒充填量の適否を正しく認識できない可能性がある。
However, in a normal heat pump system in which the indoor heat exchanger and the outdoor heat exchanger function as either a condenser or an evaporator, the indoor heat exchanger is provided at a location away from the outdoor heat exchanger, The length of the refrigerant circuit leading to the exchanger varies. Moreover, the temperature of the heat exchange target fluid that exchanges heat with the refrigerant in the indoor heat exchanger varies, and the number of indoor heat exchangers installed is also different. For this reason, even if the state of the refrigerant is detected while flowing the refrigerant through the same path as in the actual operation, the detected value is the amount of refrigerant charged at that point in the refrigerant circuit (that is, refrigerant leakage occurs) It depends on the length of the refrigerant circuit, the state of heat exchange in the indoor heat exchanger and the outdoor heat exchanger, the number of indoor heat exchangers installed, etc. Change.
As described above, in the conventional inspection method, since the state of the refrigerant is detected while circulating the refrigerant through the same path as in the actual operation, it is not possible to correctly recognize whether the refrigerant charging amount in the refrigerant circulation path is appropriate. there is a possibility.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、冷媒循環路における冷媒充填量の適否を正しく認識できるヒートポンプシステムの検査方法、及び、ヒートポンプシステムを提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a heat pump system inspection method and a heat pump system that can correctly recognize the suitability of the refrigerant charge amount in the refrigerant circuit.

上記目的を達成するための本発明に係るヒートポンプシステムの検査方法の特徴構成は、冷媒が循環する冷媒循環路と、エンジンと、前記エンジンによって駆動され、前記冷媒循環路を流れる冷媒を圧縮する圧縮手段と、前記冷媒循環路を流れる冷媒と外気との間での熱交換を行わせることができる第1熱交換器と、前記冷媒循環路を流れる冷媒と熱交換対象流体との間での熱交換を行わせることができる第2熱交換器と、前記第2熱交換器に流入する冷媒を膨張させる第1膨張弁と、前記冷媒循環路を流れる冷媒と前記エンジンから放出される排熱との間での熱交換を行わせることができる第3熱交換器と、前記第3熱交換器に流入する冷媒を膨張させる第2膨張弁とを備え、
前記第2膨張弁及び前記第3熱交換器を経由して冷媒を循環させない状態で、前記圧縮手段から送出された冷媒が前記第1熱交換器と前記第1膨張弁と前記第2熱交換器とを順に通流した後で前記圧縮手段に帰還するように冷媒の循環状態を切り替えることで、蒸発器として作用する前記第2熱交換器において、前記冷媒循環路を流れる冷媒によって前記熱交換対象流体を冷却する冷房運転を行うことができるヒートポンプシステムの検査方法であって、
前記第1膨張弁及び前記第2熱交換器を経由して冷媒を循環させない遮断状態で、前記圧縮手段から送出された冷媒を前記第1熱交換器と前記第2膨張弁と前記第3熱交換器とを順に通流させた後で前記圧縮手段に帰還させるように冷媒の循環状態を切り替えて検査運転を行いながら、循環中の冷媒の状態値を検出する状態値検出工程と、
前記状態値検出工程で検出した前記状態値に基づいて、前記冷媒循環路内に存在する冷媒充填量の適否を判定する冷媒充填量判定工程とを有する点にある。
In order to achieve the above object, the characteristic configuration of the inspection method of the heat pump system according to the present invention includes a refrigerant circulation path through which a refrigerant circulates, an engine, and compression that compresses the refrigerant that is driven by the engine and flows through the refrigerant circulation path. Means, a first heat exchanger capable of performing heat exchange between the refrigerant flowing through the refrigerant circulation path and the outside air, and heat between the refrigerant flowing through the refrigerant circulation path and the heat exchange target fluid A second heat exchanger that can be exchanged, a first expansion valve that expands the refrigerant flowing into the second heat exchanger, a refrigerant that flows through the refrigerant circuit, and exhaust heat that is released from the engine. A third heat exchanger capable of performing heat exchange between the first heat exchanger and a second expansion valve for expanding the refrigerant flowing into the third heat exchanger,
The refrigerant sent from the compression means is not circulated through the second expansion valve and the third heat exchanger, and the refrigerant sent from the compression means is the first heat exchanger, the first expansion valve, and the second heat exchange. In the second heat exchanger acting as an evaporator, the heat exchange is performed by the refrigerant flowing through the refrigerant circulation path by switching the circulation state of the refrigerant so as to return to the compression means after sequentially flowing through the evaporator. An inspection method for a heat pump system capable of performing a cooling operation for cooling a target fluid,
In the shut-off state in which the refrigerant is not circulated via the first expansion valve and the second heat exchanger, the refrigerant sent from the compression means is used as the first heat exchanger, the second expansion valve, and the third heat. A state value detection step of detecting the state value of the circulating refrigerant while performing the inspection operation by switching the circulation state of the refrigerant so as to be returned to the compression means after sequentially flowing through the exchanger;
A refrigerant charge amount determination step of determining whether or not the refrigerant charge amount existing in the refrigerant circulation path is appropriate based on the state value detected in the state value detection step.

上記特徴構成によれば、検査運転を行いながら状態値検出工程を実施するとき、圧縮手段から送出された冷媒が、第1熱交換器と第2膨張弁と第3熱交換器とを順に通流した後で圧縮手段に帰還し、冷房運転時に用いられる第1膨張弁及び第2熱交換器には冷媒を循環させない。このとき、冷房運転時には蒸発器として作用する第2熱交換器には冷媒は循環しないが、第3熱交換器において冷媒循環路を流れる冷媒とエンジンから放出される排熱との間での熱交換を行わせることで、第3熱交換器はヒートポンプサイクルの中の蒸発器として作用する。このように、状態値検出工程を実施するとき、冷媒は、熱交換対象流体との熱交換が行われる第2熱交換器を経由しない状態で循環しているため、第2熱交換器を通って冷媒を流すのに要する冷媒循環路の長さ、熱交換対象流体の温度及び量に応じて変化する第2熱交換器での熱交換の状況、第2熱交換器の設置個数等など、冷媒の状態値が変化し得る要因の多くを排除した状態で、循環中の冷媒の状態値を正確に検出できる。
加えて、状態値検出工程では、循環中の冷媒の状態値を検出するため、循環が停止している間での冷媒の状態値を検出する場合と比べて、定常状態となったことを判断しやすく、より正確な冷媒の状態値が検出されることが期待できる。
According to the above characteristic configuration, when the state value detection step is performed while performing the inspection operation, the refrigerant sent from the compression means passes through the first heat exchanger, the second expansion valve, and the third heat exchanger in order. After flowing, the refrigerant returns to the compression means, and the refrigerant is not circulated through the first expansion valve and the second heat exchanger used during the cooling operation. At this time, the refrigerant does not circulate in the second heat exchanger acting as an evaporator during cooling operation, but the heat between the refrigerant flowing through the refrigerant circulation path and the exhaust heat released from the engine in the third heat exchanger. By performing the exchange, the third heat exchanger acts as an evaporator in the heat pump cycle. Thus, when the state value detection step is performed, the refrigerant circulates without passing through the second heat exchanger in which heat exchange with the heat exchange target fluid is performed, and thus passes through the second heat exchanger. The length of the refrigerant circulation path required to flow the refrigerant, the heat exchange status in the second heat exchanger that changes according to the temperature and amount of the heat exchange target fluid, the number of installed second heat exchangers, etc. The state value of the circulating refrigerant can be accurately detected in a state where many of the factors that can change the state value of the refrigerant are eliminated.
In addition, in the state value detection process, since the state value of the circulating refrigerant is detected, it is determined that the steady state is obtained as compared with the case where the state value of the refrigerant is detected while the circulation is stopped. It can be expected that a more accurate refrigerant state value is detected.

更に、第2熱交換器が、居室などの空気との熱交換を行う室内熱交換器であったとしても、その室内熱交換器での熱交換(例えば、居室の空気の冷却など)は行われないので、状態値検出工程を実施するとき不意に冷気が居室へ供給されることなどを回避できる。   Furthermore, even if the second heat exchanger is an indoor heat exchanger that exchanges heat with air in a room or the like, heat exchange (for example, cooling of the air in the room) is not performed in the indoor heat exchanger. Therefore, it is possible to prevent the cold air from being unexpectedly supplied to the room when the state value detection step is performed.

そして、冷媒充填量判定工程において、状態値検出工程で検出した正確な状態値と所定の基準値との比較結果に基づいて、冷媒循環路内に存在する冷媒充填量の適否を判定できる。従って、冷媒循環路における冷媒充填量を正しく認識できるヒートポンプシステムの検査方法を提供できる。   In the refrigerant charge amount determination step, it is possible to determine whether the refrigerant charge amount existing in the refrigerant circulation path is appropriate based on the comparison result between the accurate state value detected in the state value detection step and the predetermined reference value. Accordingly, it is possible to provide an inspection method for a heat pump system that can correctly recognize the refrigerant charging amount in the refrigerant circuit.

本発明に係るヒートポンプシステムの検査方法の別の特徴構成は、前記状態値検出工程において前記状態値を検出するとき、前記検査運転を行うことで循環中の冷媒の前記第3熱交換器での蒸発圧力を、前記冷房運転を行うことで循環中の冷媒の前記第2熱交換器での蒸発圧力よりも低下させる点にある。   Another characteristic configuration of the inspection method of the heat pump system according to the present invention is that when the state value is detected in the state value detection step, the inspection operation is performed to perform circulating refrigerant in the third heat exchanger. The evaporating pressure lies in that the cooling operation is performed to lower the evaporating pressure of the circulating refrigerant in the second heat exchanger.

上記特徴構成によれば、検査運転を行うことで循環中の冷媒の蒸発器(第3熱交換器)での蒸発圧力は、冷房運転を行うことで循環中の冷媒の蒸発器(第2熱交換器)での蒸発圧力よりも低下する。ヒートポンプサイクルにおいて蒸発圧力が低下するということは、凝縮圧力や圧縮機入口で冷媒の過熱度が同程度の場合、冷媒を圧縮する動力に対して冷媒を蒸発させるのに必要な熱量割合が小さくなることを意味するので、エンジン排熱割合が少ない場合でも、ヒートポンプサイクルの運転が可能になる。   According to the above characteristic configuration, the evaporating pressure in the circulating refrigerant evaporator (third heat exchanger) by performing the inspection operation is equal to the circulating refrigerant evaporator (second heat) by performing the cooling operation. It will be lower than the evaporation pressure at the exchanger. When the evaporation pressure is reduced in the heat pump cycle, when the condensation pressure and the degree of superheat of the refrigerant at the compressor inlet are the same, the amount of heat necessary for evaporating the refrigerant with respect to the power for compressing the refrigerant becomes small. This means that the heat pump cycle can be operated even when the engine exhaust heat ratio is small.

本発明に係るヒートポンプシステムの検査方法の更に別の特徴構成は、前記状態値は、冷媒の過冷却度である点にある。   Still another characteristic configuration of the inspection method for the heat pump system according to the present invention is that the state value is a degree of supercooling of the refrigerant.

上記特徴構成によれば、ヒートポンプサイクルを運転するとき、凝縮圧力、蒸発圧力、過熱度は制御対象となる可能性が高いが、過冷却度は運転制御の結果として現れる項目であり、且つ冷媒充填量との相関が強い。そのため、冷媒の過冷却度に基づいて、冷媒充填量の適否の適切に判定できる。   According to the above characteristic configuration, when operating the heat pump cycle, the condensation pressure, the evaporation pressure, and the degree of superheat are likely to be controlled, but the degree of supercooling is an item that appears as a result of the operation control, and the refrigerant is charged. Strong correlation with quantity. Therefore, it is possible to appropriately determine whether the refrigerant charging amount is appropriate based on the degree of supercooling of the refrigerant.

本発明に係るヒートポンプシステムの検査方法の更に別の特徴構成は、前記ヒートポンプシステムは、前記エンジンから放出される排熱を回収する冷却水が循環する冷却水循環路を備え、前記第3熱交換器では、前記冷媒循環路を流れる冷媒と前記冷却水循環路を流れる冷却水との間での熱交換を行わせることができ、
前記状態値検出工程において前記状態値を検出するとき、前記冷却水循環路を通って前記第3熱交換器に供給される冷却水の単位時間当たりの流量を設定冷却水量以下にする点にある。
Still another characteristic configuration of the inspection method for the heat pump system according to the present invention is that the heat pump system includes a cooling water circulation path through which cooling water for recovering exhaust heat released from the engine circulates, and the third heat exchanger. Then, heat exchange between the refrigerant flowing through the refrigerant circulation path and the cooling water flowing through the cooling water circulation path can be performed,
When the state value is detected in the state value detection step, the flow rate per unit time of the cooling water supplied to the third heat exchanger through the cooling water circulation path is set to a set cooling water amount or less.

上記特徴構成によれば、第3熱交換器に供給される冷却水の単位時間当たりの流量を設定冷却水量以下に低下させると、冷媒の蒸発器としての第3熱交換器では、冷却水から冷媒に対する熱交換性能が低下する。そのため、凝縮圧力や圧縮機入口の冷媒の過熱度が同程度の場合は蒸発圧力が下がるようになり、エンジン排熱割合が少ない場合でも、ヒートポンプサイクルの運転が可能になる。   According to the above characteristic configuration, when the flow rate per unit time of the cooling water supplied to the third heat exchanger is reduced below the set cooling water amount, the third heat exchanger as the refrigerant evaporator The heat exchange performance with respect to the refrigerant decreases. For this reason, when the condensation pressure and the superheat degree of the refrigerant at the compressor inlet are approximately the same, the evaporation pressure decreases, and the heat pump cycle can be operated even when the engine exhaust heat ratio is small.

本発明に係るヒートポンプシステムの検査方法の更に別の特徴構成は、前記冷却水循環路は、冷却水が前記第3熱交換器をバイパスして循環できる第1バイパス路と、当該第1バイパス路への冷却水の分配状態を調節可能な冷却水分配器とを有し、
前記状態値検出工程において前記状態値を検出するとき、前記冷却水循環路を通って前記第3熱交換器に供給される冷却水の単位時間当たりの流量を前記冷却水分配器を用いて前記設定冷却水量以下にする点にある。
Still another characteristic configuration of the inspection method of the heat pump system according to the present invention is that the cooling water circulation path includes a first bypass path through which the cooling water can circulate bypassing the third heat exchanger, and the first bypass path. A cooling water distributor capable of adjusting the distribution state of the cooling water of
When the state value is detected in the state value detection step, the flow rate per unit time of the cooling water supplied to the third heat exchanger through the cooling water circulation path is set using the cooling water distributor. The point is to make it less than the amount of water.

上記特徴構成によれば、冷却水分配器の動作により、第3熱交換器に供給される冷却水の単位時間当たりの流量を設定冷却水量以下に低下させることができる。   According to the above characteristic configuration, the flow rate of the cooling water supplied to the third heat exchanger per unit time can be reduced below the set cooling water amount by the operation of the cooling water distributor.

本発明に係るヒートポンプシステムの検査方法の更に別の特徴構成は、前記冷却水循環路には、冷却水の単位時間当たりの流量を調節可能な冷却水ポンプが設けられ、
前記状態値検出工程において前記状態値を検出するとき、前記冷却水循環路を通って前記第3熱交換器に供給される冷却水の単位時間当たりの流量を前記冷却水ポンプを用いて前記設定冷却水量以下にする点にある。
Still another characteristic configuration of the inspection method of the heat pump system according to the present invention is that the cooling water circulation path is provided with a cooling water pump capable of adjusting a flow rate per unit time of the cooling water,
When the state value is detected in the state value detecting step, the flow rate per unit time of the cooling water supplied to the third heat exchanger through the cooling water circulation path is set using the cooling water pump. The point is to make it less than the amount of water.

上記特徴構成によれば、冷却水ポンプの動作により、第3熱交換器に供給される冷却水の単位時間当たりの流量を設定冷却水量以下に低下させることができる。   According to the above characteristic configuration, the flow rate per unit time of the cooling water supplied to the third heat exchanger can be reduced below the set cooling water amount by the operation of the cooling water pump.

本発明に係るヒートポンプシステムの検査方法の更に別の特徴構成は、前記冷媒循環路は、冷媒が前記第3熱交換器及び前記第2熱交換器をバイパスして循環できる第2バイパス路と、当該第2バイパス路への冷媒の分配状態を調節可能な冷媒分配器とを有し、
前記状態値検出工程において前記状態値を検出するとき、前記冷媒循環路を通って前記第3熱交換器に供給される冷媒の単位時間当たりの流量を前記冷媒分配器を用いて設定冷媒流量以下にする点にある。
Still another characteristic configuration of the inspection method of the heat pump system according to the present invention is that the refrigerant circulation path includes a second bypass path through which the refrigerant can circulate bypassing the third heat exchanger and the second heat exchanger; A refrigerant distributor capable of adjusting a refrigerant distribution state to the second bypass path,
When detecting the state value in the state value detecting step, the flow rate per unit time of the refrigerant supplied to the third heat exchanger through the refrigerant circulation path is equal to or lower than the set refrigerant flow rate using the refrigerant distributor. It is in the point to make.

上記特徴構成によれば、第3熱交換器に供給される冷媒の単位時間当たりの流量を設定冷媒流量以下に低下させると、冷媒の蒸発器としての第3熱交換器では、冷却水から冷媒に対する熱交換性能が低下する。そのため、凝縮圧力や圧縮機入口の冷媒の過熱度が同程度の場合は蒸発圧力が下がるようになり、エンジン排熱割合が少ない場合でも、ヒートポンプサイクルの運転が可能になる。   According to the above characteristic configuration, when the flow rate per unit time of the refrigerant supplied to the third heat exchanger is reduced below the set refrigerant flow rate, in the third heat exchanger as the refrigerant evaporator, from the cooling water to the refrigerant The heat exchange performance against is reduced. For this reason, when the condensation pressure and the superheat degree of the refrigerant at the compressor inlet are approximately the same, the evaporation pressure decreases, and the heat pump cycle can be operated even when the engine exhaust heat ratio is small.

本発明に係るヒートポンプシステムの検査方法の更に別の特徴構成は、前記ヒートポンプシステムは、前記エンジンから放出される排熱を回収する冷却水が循環する冷却水循環路と、外気を流動させる室外ファンとを備え、
前記冷却水循環路では、前記エンジンから放出される排熱を回収した後の冷却水が分岐部で第1流路部分と第2流路部分とに分岐して流れ、前記第1流路部分と前記第2流路部分とを流れた冷却水が合流部で合流した後で再び前記エンジンから放出される排熱の回収を行うように冷却水が循環可能であり、
前記第2流路部分の途中には、当該第2流路部分を流れる冷却水と外気との間での熱交換を行わせることができる第4熱交換器が設けられ、
前記第3熱交換器では、前記冷媒循環路を流れる冷媒と前記第1流路部分を流れる冷却水との間での熱交換を行わせることができ、
前記室外ファンが動作することで、前記第1熱交換器で前記冷媒循環路を流れる冷媒と熱交換した後の外気が、前記第4熱交換器で前記第2流路部分を流れる冷却水と熱交換するように流動し、
前記状態値検出工程において前記状態値を検出するとき、前記第4熱交換器で外気と熱交換する前後での冷却水の温度差が設定温度差以内になるように前記室外ファンの回転速度を調節する点にある。
Still another characteristic configuration of the inspection method for the heat pump system according to the present invention is that the heat pump system includes a cooling water circulation path through which cooling water for recovering exhaust heat released from the engine circulates, and an outdoor fan for flowing outside air. With
In the cooling water circulation path, the cooling water after recovering the exhaust heat released from the engine branches and flows into the first flow path part and the second flow path part at the branch part, and the first flow path part and The cooling water can be circulated so as to collect the exhaust heat released from the engine again after the cooling water that has flowed through the second flow path portion merges at the merge portion.
In the middle of the second flow path portion, a fourth heat exchanger capable of performing heat exchange between the cooling water flowing through the second flow path portion and the outside air is provided,
In the third heat exchanger, heat exchange can be performed between the refrigerant flowing through the refrigerant circulation path and the cooling water flowing through the first flow path portion,
When the outdoor fan operates, the outside air after heat exchange with the refrigerant flowing through the refrigerant circulation path in the first heat exchanger is performed by cooling water flowing through the second flow path portion in the fourth heat exchanger. Flows to exchange heat,
When detecting the state value in the state value detecting step, the rotational speed of the outdoor fan is set so that the temperature difference between the cooling water before and after the heat exchange with the outside air in the fourth heat exchanger is within a set temperature difference. The point is to adjust.

上記特徴構成によれば、状態値検出工程において状態値を検出するとき、室外ファンの回転速度が調節されて、冷却水は第4熱交換器において設定温度差以内の温度変化を受けただけでエンジンに帰還する。つまり、冷却水が回収したエンジンの排熱は、第4熱交換器で殆ど失われることがない。そのため、第3熱交換器での熱交換性能を低下させるために、冷却水の一部を第4熱交換器に流す必要がある場合でも、エンジン排熱が不足しないようにできる。   According to the above characteristic configuration, when the state value is detected in the state value detection step, the rotational speed of the outdoor fan is adjusted, and the cooling water is only subjected to a temperature change within the set temperature difference in the fourth heat exchanger. Return to the engine. That is, the exhaust heat of the engine recovered by the cooling water is hardly lost in the fourth heat exchanger. Therefore, even when it is necessary to flow a part of the cooling water to the fourth heat exchanger in order to reduce the heat exchange performance in the third heat exchanger, the engine exhaust heat can be prevented from being insufficient.

本発明に係るヒートポンプシステムの検査方法の更に別の特徴構成は、前記ヒートポンプシステムは、外気を流動させる室外ファンを備え、前記室外ファンが動作することで流動する外気が、前記第1熱交換器で前記冷媒循環路を流れる冷媒と熱交換するように構成され、
前記状態値検出工程において前記状態値を検出するとき、前記第1熱交換器での冷媒の凝縮圧力が目標値になるように前記室外ファンの回転速度を調節する点にある。
Still another characteristic configuration of the inspection method for the heat pump system according to the present invention is that the heat pump system includes an outdoor fan for flowing outside air, and the outside air flowing when the outdoor fan is operated is the first heat exchanger. And configured to exchange heat with the refrigerant flowing through the refrigerant circulation path,
When the state value is detected in the state value detecting step, the rotational speed of the outdoor fan is adjusted so that the condensation pressure of the refrigerant in the first heat exchanger becomes a target value.

第1熱交換器において所定の冷媒の凝縮性能を発揮させるために室外ファンに対して動作指令を与えても、経時変化により室外ファンや第1熱交換器の性能が変化した場合には、第1熱交換器での冷媒の凝縮性能が変化する可能性がある。その場合、第1熱交換器での冷媒の凝縮圧力が目標値から逸脱することになる。
ところが本特徴構成では、状態値検出工程において状態値を検出するとき、第1熱交換器での冷媒の凝縮圧力が目標値になるように室外ファンの回転速度を調節するので、第1熱交換器での冷媒の凝縮圧力が目標値になることが確保される。
Even if an operation command is given to the outdoor fan in order to exert a predetermined refrigerant condensing performance in the first heat exchanger, if the performance of the outdoor fan or the first heat exchanger changes due to aging, There is a possibility that the condensation performance of the refrigerant in one heat exchanger will change. In that case, the condensation pressure of the refrigerant in the first heat exchanger deviates from the target value.
However, in this feature configuration, when the state value is detected in the state value detection step, the rotational speed of the outdoor fan is adjusted so that the refrigerant condensing pressure in the first heat exchanger becomes the target value. It is ensured that the condensing pressure of the refrigerant in the vessel reaches the target value.

本発明に係るヒートポンプシステムの検査方法の更に別の特徴構成は、前記圧縮手段は、前記エンジンによって駆動されて冷媒を圧縮する複数台の圧縮機と、前記エンジンから前記複数台の圧縮機のそれぞれへの駆動力の伝達状態を調節可能な駆動力伝達機構とを備え、
前記状態値検出工程において前記状態値を検出するとき、前記駆動力伝達機構が、前記複数台の圧縮機のうちの一部の前記圧縮機のみに前記エンジンの駆動力を伝達する点にある。
Still another characteristic configuration of the inspection method for the heat pump system according to the present invention is that the compression unit includes a plurality of compressors driven by the engine to compress refrigerant, and each of the plurality of compressors from the engine. A driving force transmission mechanism capable of adjusting the transmission state of the driving force to
When the state value is detected in the state value detecting step, the driving force transmission mechanism transmits the driving force of the engine only to some of the compressors of the plurality of compressors.

冷媒循環路に同じ冷媒流量を流す場合なら、動作する圧縮機の数が多く、圧縮機の排除容積の合計が大きいほど、エンジンの回転速度は低く(即ち、トルクは大きく)なり、動作する圧縮機の数が少なく、圧縮機の排除容積の合計が小さいほど、エンジンの回転速度は高く(即ち、トルクは小さく)なる。各圧縮機の効率が同じ場合は、この時に必要な動力は両者同じである。また、エンジンの特性として、トルクが大きいほど熱効率は高くなり、トルクが小さいほど熱効率は低くなる傾向がある。そのため、動作する圧縮機の数が少なくなれば、回転速度が高く(トルクが小さく)なるのに伴ってエンジンの熱効率が低く(エンジン排熱効率が高く)なり、エンジンの排熱割合が高まる。
そこで本特徴構成では、状態値検出工程において前記状態値を検出するとき、駆動力伝達機構が、複数台の圧縮機のうちの一部の圧縮機のみにエンジンの駆動力を伝達する。つまり、エンジンの排熱割合を高めた状態で状態値検出工程を実施できる。
If the same flow rate of refrigerant flows through the refrigerant circuit, the more compressors that operate and the greater the total compressor displacement, the lower the engine speed (ie, the greater the torque) and the higher the operating compression. The smaller the number of machines and the smaller the total displacement volume of the compressor, the higher the rotational speed of the engine (ie, the smaller the torque). If the efficiency of each compressor is the same, the power required at this time is the same. Further, as engine characteristics, thermal efficiency tends to increase as torque increases, and thermal efficiency tends to decrease as torque decreases. Therefore, if the number of operating compressors is reduced, the thermal efficiency of the engine is reduced (engine exhaust heat efficiency is increased) as the rotational speed is increased (torque is reduced), and the exhaust heat ratio of the engine is increased.
Therefore, in this characteristic configuration, when the state value is detected in the state value detection step, the driving force transmission mechanism transmits the driving force of the engine only to some of the compressors out of the plurality of compressors. That is, the state value detection process can be performed in a state where the exhaust heat ratio of the engine is increased.

本発明に係るヒートポンプシステムの検査方法の更に別の特徴構成は、前記状態値検出工程において前記状態値を検出するとき、前記検査運転時の前記エンジンの回転速度及びトルクに対して同じ回転速度及びトルクで前記冷房運転をするとした場合に比べて前記エンジンの排熱割合を大きくすることができるエンジン運転設定で前記エンジンを運転する点にある。   Still another characteristic configuration of the inspection method of the heat pump system according to the present invention is that when the state value is detected in the state value detection step, the same rotation speed and torque as the rotation speed and torque of the engine during the inspection operation are detected. Compared to the case where the cooling operation is performed by torque, the engine is operated at an engine operation setting which can increase the exhaust heat ratio of the engine.

上記特徴構成によれば、点火時期のリタードや空気比調整(リーン度低減)等で、排ガス特性や燃焼安定性をあまり悪化させない範囲で意図的に熱効率を低下させ、エンジンの排熱割合を増加させることで、蒸発圧力の低下度合いを抑制できる。   According to the above characteristic configuration, the ignition timing retard and air ratio adjustment (lean degree reduction) etc. intentionally reduce the thermal efficiency and increase the engine exhaust heat ratio within a range that does not deteriorate the exhaust gas characteristics and combustion stability so much By making it, the fall degree of evaporation pressure can be suppressed.

本発明に係るヒートポンプシステムの検査方法の更に別の特徴構成は、前記遮断状態において冷媒が滞留している区間の体積と、当該区間に滞留している冷媒の密度とに基づいて滞留冷媒量を導出する滞留冷媒量導出工程を有し、
前記冷媒充填量判定工程において、前記状態値検出工程で検出した前記状態値と所定の基準値との比較結果と、前記滞留冷媒量とに基づいて、前記冷媒循環路内に存在する冷媒充填量の適否を判定する点にある。
Still another characteristic configuration of the inspection method for the heat pump system according to the present invention is that the amount of refrigerant staying is determined based on the volume of the section in which the refrigerant stays in the shut-off state and the density of the refrigerant staying in the section. A deriving refrigerant amount deriving step for deriving;
In the refrigerant charge amount determination step, the refrigerant charge amount existing in the refrigerant circulation path based on the comparison result between the state value detected in the state value detection step and a predetermined reference value and the amount of the retained refrigerant The point is to determine the suitability of the.

上記特徴構成によれば、冷媒循環路内には存在するが、検査運転時に冷媒循環路を循環していない滞留冷媒量の存在を考慮して、冷媒循環路内に存在する冷媒充填量の適否を正確に判定できる。   According to the above characteristic configuration, the suitability of the refrigerant charging amount existing in the refrigerant circulation path is considered in consideration of the existence of the amount of the remaining refrigerant that is present in the refrigerant circulation path but is not circulating in the refrigerant circulation path during the inspection operation. Can be determined accurately.

本発明に係るヒートポンプシステムの検査方法の更に別の特徴構成は、前記ヒートポンプシステムは、遠隔操作により前記冷媒循環路における冷媒の循環状態を切り替え可能に構成されている点にある。   Still another characteristic configuration of the inspection method for the heat pump system according to the present invention is that the heat pump system is configured to be able to switch a circulation state of the refrigerant in the refrigerant circulation path by remote control.

上記特徴構成によれば、状態値検出工程を実施するときの冷媒循環路における冷媒の循環状態と、状態値検出工程を実施しないときの冷媒循環路における冷媒の循環状態とを、遠隔操作により切り替えることができる。その結果、状態値検出工程を実施するときに、作業員が現場に出向くこと等は不要になる。   According to the above characteristic configuration, the refrigerant circulation state in the refrigerant circuit when the state value detection step is performed and the refrigerant circulation state in the refrigerant circuit when the state value detection step is not performed are switched by remote operation. be able to. As a result, when the state value detection process is performed, it is not necessary for the worker to go to the site.

本発明に係るヒートポンプシステムの特徴構成は、冷媒が循環する冷媒循環路と、エンジンと、前記エンジンによって駆動され、前記冷媒循環路を流れる冷媒を圧縮する圧縮手段と、前記冷媒循環路を流れる冷媒と外気との間での熱交換を行わせることができる第1熱交換器と、前記冷媒循環路を流れる冷媒と熱交換対象流体との間での熱交換を行わせることができる第2熱交換器と、前記第2熱交換器に流入する冷媒を膨張させる第1膨張弁と、前記冷媒循環路を流れる冷媒と前記エンジンから放出される排熱との間での熱交換を行わせることができる第3熱交換器と、前記第3熱交換器に流入する冷媒を膨張させる第2膨張弁と、制御装置とを備え、
前記制御装置が、前記第2膨張弁及び前記第3熱交換器を経由して冷媒を循環させない状態で、前記圧縮手段から送出された冷媒が前記第1熱交換器と前記第1膨張弁と前記第2熱交換器とを順に通流した後で前記圧縮手段に帰還するように冷媒の循環状態を切り替えることで、蒸発器として作用する前記第2熱交換器において、前記冷媒循環路を流れる冷媒によって前記熱交換対象流体を冷却する冷房運転を行うことができるヒートポンプシステムであって、
前記制御装置が、前記第1膨張弁及び前記第2熱交換器を経由して冷媒を循環させない遮断状態で、前記圧縮手段から送出された冷媒を前記第1熱交換器と前記第2膨張弁と前記第3熱交換器とを順に通流させた後で前記圧縮手段に帰還させるように冷媒の循環状態を切り替えて検査運転を行わせながら検出した、循環中の冷媒の状態値に基づいて、前記冷媒循環路内に存在する冷媒充填量の適否を判定する点にある。
The characteristic configuration of the heat pump system according to the present invention includes a refrigerant circulation path through which a refrigerant circulates, an engine, compression means that is driven by the engine and that flows through the refrigerant circulation path, and a refrigerant that flows through the refrigerant circulation path The first heat exchanger that can exchange heat between the outside air and the second heat that can exchange heat between the refrigerant flowing through the refrigerant circulation path and the heat exchange target fluid Heat exchange between the exchanger, the first expansion valve that expands the refrigerant flowing into the second heat exchanger, and the refrigerant flowing through the refrigerant circuit and the exhaust heat released from the engine. A third heat exchanger capable of expanding, a second expansion valve for expanding the refrigerant flowing into the third heat exchanger, and a control device,
In a state where the control device does not circulate the refrigerant via the second expansion valve and the third heat exchanger, the refrigerant sent from the compression means is the first heat exchanger, the first expansion valve, In the second heat exchanger acting as an evaporator, the refrigerant flows in the refrigerant circulation path by switching the refrigerant circulation state so as to return to the compression means after sequentially flowing through the second heat exchanger. A heat pump system capable of performing a cooling operation for cooling the heat exchange target fluid with a refrigerant,
In the shut-off state in which the control device does not circulate the refrigerant via the first expansion valve and the second heat exchanger, the refrigerant sent from the compression means is sent to the first heat exchanger and the second expansion valve. And the third heat exchanger in order, and then, based on the state value of the circulating refrigerant detected while performing the inspection operation by switching the circulating state of the refrigerant so as to be returned to the compression means The point is that the suitability of the refrigerant charge amount existing in the refrigerant circulation path is determined.

上記特徴構成によれば、検査運転を行いながら循環中の冷媒の状態値を検出するとき、圧縮手段から送出された冷媒は、第1熱交換器と第2膨張弁と第3熱交換器とを順に通流した後で圧縮手段に帰還し、冷房運転時に用いられる第1膨張弁及び第2熱交換器には冷媒を循環させない。このとき、冷房運転時には蒸発器として作用する第2熱交換器には冷媒は循環しないが、第3熱交換器において冷媒循環路を流れる冷媒とエンジンから放出される排熱との間での熱交換を行わせることで、第3熱交換器はヒートポンプサイクルの中の蒸発器として作用する。このように、循環中の冷媒の状態値を検出するとき、冷媒は、熱交換対象流体との熱交換が行われる第2熱交換器を経由しない状態で循環している。そのため、第2熱交換器を通って冷媒を流すのに要する冷媒循環路の長さ、熱交換対象流体の温度及び量に応じて変化する第2熱交換器での熱交換の状況、第2熱交換器の設置個数等など、冷媒の状態値が変化し得る要因の多くを排除した状態で、循環中の冷媒の状態値を正確に検出できる。
加えて、循環中の冷媒の状態値を検出するため、循環が停止している間での冷媒の状態値を検出する場合と比べて、定常状態となったことを判断しやすく、より正確な冷媒の状態値が検出されることが期待できる。
According to the above characteristic configuration, when the state value of the circulating refrigerant is detected while performing the inspection operation, the refrigerant sent from the compression means is the first heat exchanger, the second expansion valve, and the third heat exchanger. Are sequentially returned to the compression means, and the refrigerant is not circulated through the first expansion valve and the second heat exchanger used during the cooling operation. At this time, the refrigerant does not circulate in the second heat exchanger acting as an evaporator during cooling operation, but the heat between the refrigerant flowing through the refrigerant circulation path and the exhaust heat released from the engine in the third heat exchanger. By performing the exchange, the third heat exchanger acts as an evaporator in the heat pump cycle. Thus, when detecting the state value of the circulating refrigerant, the refrigerant circulates without passing through the second heat exchanger in which heat exchange with the heat exchange target fluid is performed. Therefore, the state of heat exchange in the second heat exchanger that changes according to the length of the refrigerant circulation path required to flow the refrigerant through the second heat exchanger, the temperature and the amount of the heat exchange target fluid, The state value of the circulating refrigerant can be accurately detected in a state where many factors that can change the state value of the refrigerant, such as the number of installed heat exchangers, are eliminated.
In addition, since the state value of the refrigerant being circulated is detected, it is easier to determine that the state has reached a steady state than when detecting the state value of the refrigerant while the circulation is stopped. It can be expected that the state value of the refrigerant is detected.

更に、第2熱交換器が、居室などの空気との熱交換を行う室内熱交換器であったとしても、その室内熱交換器での熱交換(例えば、居室の空気の冷却など)は行われないので、循環中の冷媒の状態値を検出する間に、不意に冷気が居室へ供給されることなどを回避できる。   Furthermore, even if the second heat exchanger is an indoor heat exchanger that exchanges heat with air in a room or the like, heat exchange (for example, cooling of the air in the room) is not performed in the indoor heat exchanger. Therefore, it is possible to prevent the cold air from being unexpectedly supplied to the living room while detecting the state value of the circulating refrigerant.

そして、制御装置は、検査運転を行いながら検出した循環中の冷媒の正確な状態値と所定の基準値との比較結果に基づいて、冷媒循環路内に存在する冷媒充填量の適否を判定できる。従って、冷媒循環路における冷媒充填量を正しく認識できるヒートポンプシステムを提供できる。   Then, the control device can determine the suitability of the refrigerant charge amount existing in the refrigerant circulation path based on the comparison result between the accurate state value of the circulating refrigerant detected during the inspection operation and the predetermined reference value. . Therefore, it is possible to provide a heat pump system that can correctly recognize the refrigerant charge amount in the refrigerant circuit.

ヒートポンプシステムの構成を示す図であり、冷房運転を行うときの冷媒の循環状態を説明する図である。It is a figure which shows the structure of a heat pump system, and is a figure explaining the circulation state of the refrigerant | coolant when performing a cooling operation. ヒートポンプシステムの構成を示す図であり、検査運転を行うときの冷媒の循環状態を説明する図である。It is a figure which shows the structure of a heat pump system, and is a figure explaining the circulation state of a refrigerant | coolant at the time of performing test | inspection driving | operation. ヒートポンプシステムのp−h線図である。It is a ph diagram of a heat pump system. 蒸発圧力とCOPcとの関係を示す模式図である。It is a schematic diagram which shows the relationship between evaporation pressure and COPc. 冷媒充填量と過冷却度との対応関係を示す模式図である。It is a schematic diagram which shows the correspondence of a refrigerant | coolant filling amount and a supercooling degree. 圧縮手段の別の構成を示す図である。It is a figure which shows another structure of a compression means. 冷媒及び冷却水の循環状態を説明する図である。It is a figure explaining the circulation state of a refrigerant and cooling water. 冷媒及び冷却水の循環状態を説明する図である。It is a figure explaining the circulation state of a refrigerant and cooling water. ヒートポンプシステムの別の構成を示す図であり、冷房運転を行うときの冷媒の循環状態を説明する図である。It is a figure which shows another structure of a heat pump system, and is a figure explaining the circulation state of a refrigerant | coolant at the time of performing a cooling operation. ヒートポンプシステムの別の構成を示す図であり、検査運転を行うときの冷媒の循環状態を説明する図である。It is a figure which shows another structure of a heat pump system, and is a figure explaining the circulation state of a refrigerant | coolant when performing test | inspection driving | operation.

<第1実施形態>
以下に図面を参照して本発明の第1実施形態に係るヒートポンプシステムの検査方法、及び、その検査方法を実行可能に構成されたヒートポンプシステムについて説明する。
図1は、ヒートポンプシステムの構成を示す図である。また、図1では、ヒートポンプシステムにおいて、空調対象空間の空気を冷却するための冷房運転を行っているときの冷媒及び冷却水の循環状態を示し、冷媒及び冷却水の流れる経路を太実線で描いている。つまり、空調対象空間の空気が熱交換対象流体となる。図示するように、ヒートポンプシステムは、冷媒が循環する冷媒循環路3と、エンジン4と、エンジン4によって駆動され、冷媒循環路3を流れる冷媒を圧縮する圧縮手段としての圧縮機5と、冷媒循環路3を流れる冷媒と外気との間での熱交換を行わせることができる第1熱交換器8と、冷媒循環路3を流れる冷媒と空調対象空間の空気(「熱交換対象流体」の一例)との間での熱交換を行わせることができる第2熱交換器14と、室内熱交換器14に流入する冷媒を膨張させる弁(第1膨張弁)V1と、冷媒循環路3を流れる冷媒とエンジン4から放出される排熱との間での熱交換を行わせることができる第3熱交換器10と、第3熱交換器10に流入する冷媒を膨張させる弁(第2膨張弁)V2とを備える。加えて、ヒートポンプシステムは、制御装置20を備える。
尚、以下の説明では、第1熱交換器8のことを室外熱交換器と記載し、第2熱交換器14のことを室内熱交換器と記載し、第3熱交換器10のことを排熱回収用熱交換器と記載することもある。
<First Embodiment>
A heat pump system inspection method according to a first embodiment of the present invention and a heat pump system configured to execute the inspection method will be described below with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration of a heat pump system. Further, FIG. 1 shows the circulation state of the refrigerant and the cooling water when the cooling operation for cooling the air in the air-conditioning target space is performed in the heat pump system, and the flow path of the refrigerant and the cooling water is drawn with a bold solid line. ing. That is, the air in the air conditioning target space becomes the heat exchange target fluid. As shown, the heat pump system includes a refrigerant circulation path 3 through which refrigerant circulates, an engine 4, a compressor 5 that is driven by the engine 4 and compresses refrigerant flowing through the refrigerant circulation path 3, and refrigerant circulation. The first heat exchanger 8 capable of performing heat exchange between the refrigerant flowing through the passage 3 and the outside air, the refrigerant flowing through the refrigerant circulation passage 3, and the air in the air-conditioning target space (an example of “heat exchange target fluid”) ), A second heat exchanger 14 that can exchange heat with the indoor heat exchanger 14, a valve (first expansion valve) V1 that expands the refrigerant flowing into the indoor heat exchanger 14, and a refrigerant circulation path 3 A third heat exchanger 10 capable of performing heat exchange between the refrigerant and exhaust heat released from the engine 4, and a valve (second expansion valve) for expanding the refrigerant flowing into the third heat exchanger 10 ) V2. In addition, the heat pump system includes a control device 20.
In the following description, the first heat exchanger 8 is described as an outdoor heat exchanger, the second heat exchanger 14 is described as an indoor heat exchanger, and the third heat exchanger 10 is described. It may be described as a heat exchanger for exhaust heat recovery.

更に、図1に示す例では、ヒートポンプシステムは、オイルセパレータ6、四方弁7、アキュムレータ11などの機器も備えている。オイルセパレータ6は、冷媒中に含まれる油成分を分離して圧縮機5の吸入側に戻すために設けてある。オイルセパレータ6に接続されている副循環路3dが、冷媒から分離された油成分を圧縮機5に戻すために利用される。
本実施形態では、室内機12の筐体13内に室内熱交換器14及び弁V1が収容され、室外機1の筐体2にその他の機器が収容されている。
Furthermore, in the example shown in FIG. 1, the heat pump system also includes devices such as an oil separator 6, a four-way valve 7, and an accumulator 11. The oil separator 6 is provided to separate the oil component contained in the refrigerant and return it to the suction side of the compressor 5. The auxiliary circulation path 3 d connected to the oil separator 6 is used to return the oil component separated from the refrigerant to the compressor 5.
In the present embodiment, the indoor heat exchanger 14 and the valve V <b> 1 are accommodated in the housing 13 of the indoor unit 12, and other devices are accommodated in the housing 2 of the outdoor unit 1.

エンジン4は、天然ガスなどの燃料を消費して運転される。そして、エンジン4の駆動力が圧縮機5に伝達される。図1には示していないが、エンジン4から圧縮機5への駆動力の伝達を仲介するクラッチなどの動力伝達機構を設けてもよい。エンジン4の動作(例えば回転速度など)は、制御装置20が制御する。   The engine 4 is operated by consuming fuel such as natural gas. Then, the driving force of the engine 4 is transmitted to the compressor 5. Although not shown in FIG. 1, a power transmission mechanism such as a clutch that mediates transmission of driving force from the engine 4 to the compressor 5 may be provided. The control device 20 controls the operation of the engine 4 (for example, the rotational speed).

圧縮機5から送出された冷媒は、冷媒循環路3を流れる。冷媒循環路3の途中には、後述するような各種の複数の弁が設けられており、それらの弁の開閉状態が切り替わることで、冷媒循環路3における冷媒の循環経路が切り替わる。この冷媒の循環経路の切り替え(即ち、各種の弁の開閉状態の切り替え)は、主に制御装置20が遠隔操作により制御する。例えば、制御装置20との間でインターネット等の通信回線を介して接続されたサーバ装置(図示せず)などから制御装置20に対して指令を与え、制御装置20がその指令を実行することで、上述したような冷媒の循環経路の切り替えが行われる。   The refrigerant sent out from the compressor 5 flows through the refrigerant circuit 3. In the middle of the refrigerant circulation path 3, various valves as described later are provided, and the circulation path of the refrigerant in the refrigerant circulation path 3 is switched by switching the open / close state of these valves. The switching of the refrigerant circulation path (that is, switching of the open / close state of various valves) is mainly controlled by the control device 20 by remote operation. For example, a command is given to the control device 20 from a server device (not shown) connected to the control device 20 via a communication line such as the Internet, and the control device 20 executes the command. The refrigerant circulation path is switched as described above.

〔冷媒循環路3〕
冷媒循環路3は、圧縮機5から送出された冷媒が室外熱交換器8及び室内熱交換器14を経由して循環するときに流れる主循環路3aと、圧縮機5から送出された冷媒がその主循環路3aから分岐して循環するときに流れる副循環路3b,3c,3dとで構成される。
[Refrigerant circuit 3]
The refrigerant circulation path 3 includes a main circulation path 3a that flows when the refrigerant sent from the compressor 5 circulates via the outdoor heat exchanger 8 and the indoor heat exchanger 14, and the refrigerant sent from the compressor 5. The secondary circulation paths 3b, 3c, 3d flow when circulating from the main circulation path 3a.

主循環路3a(3)は、冷媒が、圧縮機5とオイルセパレータ6と四方弁7と室外熱交換器8と弁V3と弁V1と室内熱交換器14と弁V4と四方弁7とアキュムレータ11とを順に流れる経路である。本実施形態では、弁V3及び弁V4は、室外機1の筐体2に収容されている。
副循環路3b(3)は、冷媒が、室外熱交換器8と弁V3との間の分岐部50で主循環路3aから分岐して、弁V2と排熱回収用熱交換器10とを順に流れた後、四方弁7とアキュムレータ11との間の合流部51で主循環路3aに合流するときに流れる経路である。
副循環路3c(3)は、冷媒が、室外熱交換器8と弁V3との間の分岐部50で主循環路3aから分岐して、弁V5を流れた後、排熱回収用熱交換器10とアキュムレータ11との間で副循環路3bに合流するときに流れる経路である。
副循環路3d(3)は、冷媒が、オイルセパレータ6で主循環路3aから分岐して、弁V6を流れた後、アキュムレータ11と圧縮機5との間で主循環路3aに合流するときに流れる経路である。
The main circulation path 3a (3) is composed of a compressor 5, an oil separator 6, a four-way valve 7, an outdoor heat exchanger 8, a valve V3, a valve V1, an indoor heat exchanger 14, a valve V4, a four-way valve 7 and an accumulator. 11 is a route that flows in order. In the present embodiment, the valve V3 and the valve V4 are accommodated in the housing 2 of the outdoor unit 1.
In the auxiliary circulation path 3b (3), the refrigerant branches off from the main circulation path 3a at the branch portion 50 between the outdoor heat exchanger 8 and the valve V3, and the valve V2 and the heat exchanger 10 for exhaust heat recovery are connected. This is a path that flows when the merging portion 51 between the four-way valve 7 and the accumulator 11 merges with the main circulation path 3a after flowing in sequence.
In the auxiliary circulation path 3c (3), the refrigerant branches from the main circulation path 3a at the branching portion 50 between the outdoor heat exchanger 8 and the valve V3, flows through the valve V5, and then performs heat exchange for exhaust heat recovery. This is a path that flows when joining the auxiliary circuit 3b between the vessel 10 and the accumulator 11.
The auxiliary circulation path 3d (3) is used when the refrigerant branches from the main circulation path 3a by the oil separator 6 and flows through the valve V6, and then joins the main circulation path 3a between the accumulator 11 and the compressor 5. It is a route that flows through.

〔冷却水循環路15〕
エンジン4を運転することで放出される熱は、冷却水循環路15を流れる冷却水によって回収される。冷却水循環路15の途中には、後述するような各種の複数の弁が設けられており、それらの弁の開閉状態が切り替わることで、冷却水循環路15における冷却水の循環経路が切り替わる。この冷却水の循環経路の切り替え(即ち、各種の弁の開閉状態の切り替え)は、三方弁等を用いて制御装置20が遠隔操作により制御する。尚、制御が必要でない場合は、温度により自動的に開閉状態が調整されるワックス弁等を用いることができる。
[Cooling water circuit 15]
The heat released by operating the engine 4 is recovered by the cooling water flowing through the cooling water circulation path 15. A plurality of various valves as described later are provided in the middle of the cooling water circulation path 15, and the circulation path of the cooling water in the cooling water circulation path 15 is switched by switching the open / close state of these valves. Switching of the cooling water circulation path (that is, switching of the open / close state of various valves) is controlled by the control device 20 by remote control using a three-way valve or the like. When control is not required, a wax valve or the like whose opening / closing state is automatically adjusted according to temperature can be used.

冷却水循環路15は、エンジン4の排熱を回収した冷却水が排熱回収用熱交換器10を経由して循環するときに流れる第1流路部分15aと、エンジン4の排熱を回収した冷却水がその第1流路部分15aをバイパスして循環するときに流れる第2流路部分15bと、共通して流れる共通流路部分15cと、迂回路15dとで構成される。第1流路部分15aと第2流路部分15bとは、分岐部18で分岐し、合流部16で合流する。エンジン4の排熱を回収した後の冷却水が、第1流路部分15aと第2流路部分15bとに分岐する分岐部18には、冷却水分配器としての弁V7が設けられている。分岐部18と第4熱交換器9との間の第2流路部分15bの途中には弁V8が設けられている。尚、以下の説明では、第4熱交換器9のことを放熱用熱交換器と記載することもある。   The cooling water circulation path 15 collects the first flow path portion 15 a that flows when the cooling water that has recovered the exhaust heat of the engine 4 circulates via the exhaust heat recovery heat exchanger 10 and the exhaust heat of the engine 4. The second flow path portion 15b flows when the cooling water circulates bypassing the first flow path portion 15a, the common flow path portion 15c that flows in common, and the detour path 15d. The first flow path portion 15 a and the second flow path portion 15 b are branched at the branch portion 18 and merged at the merge portion 16. A valve V7 as a cooling water distributor is provided at the branching portion 18 where the cooling water after recovering the exhaust heat of the engine 4 branches into the first flow path portion 15a and the second flow path portion 15b. A valve V8 is provided in the middle of the second flow path portion 15b between the branch portion 18 and the fourth heat exchanger 9. In the following description, the fourth heat exchanger 9 may be referred to as a heat dissipation heat exchanger.

第1流路部分15aは、冷却水が、エンジン4と弁(冷却水分配器)V7と排熱回収用熱交換器10とを流れた後で合流部16に至り、共通流路部分15cを通ってエンジン4に戻るときに流れる流路である。
第2流路部分15bは、冷却水が、エンジン4と弁(冷却水分配器)V7と弁V8と放熱用熱交換器9とを流れた後で合流部16に至り、共通流路部分15cを通ってエンジン4に戻るときに流れる流路である。
共通流路部分15cには冷却水ポンプP1が設けられており、冷却水ポンプP1が動作することで冷却水循環路15に冷却水が流れる。
迂回路15dは、冷却水が、第2流路部分15bの途中で弁V8によって分流されることで、放熱用熱交換器9を迂回して循環するときに流れる流路である。迂回路15dを流れる冷媒は、共通流路部分15cの途中に合流される。
The first flow path portion 15a reaches the junction 16 after the cooling water flows through the engine 4, the valve (cooling water distributor) V7, and the exhaust heat recovery heat exchanger 10, and passes through the common flow path portion 15c. The flow path flows when returning to the engine 4.
The second flow path portion 15b reaches the merging portion 16 after the cooling water flows through the engine 4, the valve (cooling water distributor) V7, the valve V8, and the heat dissipation heat exchanger 9, and the common flow path portion 15c passes through the common flow path portion 15c. It is a flow path that flows when returning to the engine 4 through.
The common flow path portion 15c is provided with a cooling water pump P1, and the cooling water flows into the cooling water circulation path 15 by operating the cooling water pump P1.
The detour circuit 15d is a flow path that flows when the cooling water circulates around the heat dissipation heat exchanger 9 by being diverted by the valve V8 in the middle of the second flow path portion 15b. The refrigerant flowing through the detour 15d is joined in the middle of the common flow path portion 15c.

放熱用熱交換器9は、第2流路部分15bを流れる冷却水から放熱させることができる装置である。放熱用熱交換器9には室外ファンFが併設されている。そして、室外ファンFが動作すると、室外機1の内部に取り込まれた外気が室外熱交換器8と放熱用熱交換器9とを順に流れ、その後、室外機1の外部に排出される。つまり、室外ファンFによって取り込まれた外気は、先ず室外熱交換器8において冷媒循環路3の主循環路3aを流れる冷媒と熱交換し、その後で放熱用熱交換器9において冷却水循環路15の第2流路部分15bを流れる冷却水と熱交換する。   The heat exchanger 9 for heat dissipation is a device that can dissipate heat from the cooling water flowing through the second flow path portion 15b. The heat radiating heat exchanger 9 is provided with an outdoor fan F. When the outdoor fan F operates, the outside air taken into the outdoor unit 1 sequentially flows through the outdoor heat exchanger 8 and the heat dissipation heat exchanger 9, and is then discharged to the outside of the outdoor unit 1. That is, the outside air taken in by the outdoor fan F is first exchanged with the refrigerant flowing in the main circulation path 3a of the refrigerant circulation path 3 in the outdoor heat exchanger 8, and then in the heat dissipation heat exchanger 9 the cooling water circulation path 15 Heat exchange is performed with the cooling water flowing through the second flow path portion 15b.

〔冷房運転〕
図1に示すように、制御装置20は、冷媒の循環状態を切り替えながら室内熱交換器14を通流する冷媒によって空調対象空間の空気を冷却する冷房運転を行う。図中では、冷媒及び冷却水の流れる経路を太実線で描いている。この場合、室外熱交換器8は凝縮器として作用し、室内熱交換器14は蒸発器として作用する。
[Cooling operation]
As shown in FIG. 1, the control device 20 performs a cooling operation in which the air in the air-conditioning target space is cooled by the refrigerant flowing through the indoor heat exchanger 14 while switching the refrigerant circulation state. In the figure, the paths through which the refrigerant and the cooling water flow are drawn with thick solid lines. In this case, the outdoor heat exchanger 8 acts as a condenser, and the indoor heat exchanger 14 acts as an evaporator.

具体的には、圧縮機5から送出された冷媒は、冷媒循環路3の主循環路3aを通ってオイルセパレータ6に流入し、その後、四方弁7に至る。四方弁7は、圧縮機5から送出された冷媒が先ず室外熱交換器8に流入するように切り替えられている。弁V3及び弁V1及び弁V4は開放される。尚、副循環路3bの途中にある弁V2が閉止されることで副循環路3bの排熱回収用熱交換器10には冷媒は流れず、及び、副循環路3cの途中にある弁V5が閉止されることで副循環路3cには冷媒は流れない。従って、圧縮機5から送出された冷媒は、室外熱交換器8と弁V3と弁V1と室内熱交換器14と弁V4と四方弁7とアキュムレータ11とを順に流れた後、圧縮機5に帰還する。このとき、弁V1は膨張弁として作用し、設定する開度に応じて冷媒の圧力が低下させられる。また、弁V6は、オイル戻しの必要に応じて、適切な開度で調整されている。   Specifically, the refrigerant sent from the compressor 5 flows into the oil separator 6 through the main circulation path 3 a of the refrigerant circulation path 3, and then reaches the four-way valve 7. The four-way valve 7 is switched so that the refrigerant sent from the compressor 5 first flows into the outdoor heat exchanger 8. Valve V3, valve V1, and valve V4 are opened. The valve V2 in the middle of the sub-circulation path 3b is closed, so that no refrigerant flows into the heat exchanger 10 for exhaust heat recovery in the sub-circulation path 3b, and the valve V5 in the middle of the sub-circulation path 3c. Is closed, the refrigerant does not flow into the auxiliary circulation path 3c. Therefore, the refrigerant sent out from the compressor 5 flows through the outdoor heat exchanger 8, the valve V 3, the valve V 1, the indoor heat exchanger 14, the valve V 4, the four-way valve 7, and the accumulator 11 in order, and then enters the compressor 5. Return. At this time, the valve V1 acts as an expansion valve, and the pressure of the refrigerant is reduced according to the opening degree to be set. Further, the valve V6 is adjusted at an appropriate opening degree according to the need for oil return.

このように、図1に示す例では、弁(第2膨張弁)V2及び排熱回収用熱交換器(第3熱交換器)10を経由して冷媒を循環させない状態で、圧縮機5から送出された冷媒が室外熱交換器(第1熱交換器)8と弁(第1膨張弁)V1と室内熱交換器(第2熱交換器)14とを順に通流した後で圧縮機5に帰還するように冷媒の循環状態を切り替えることで、蒸発器として作用する室内熱交換器(第2熱交換器)14において、冷媒循環路3を流れる冷媒によって空調対象空間の空気(熱交換対象流体)を冷却する冷房運転を行っている。尚、説明は省略するが、四方弁7を切り替えることで、冷媒の循環方向を変化させて、空調対象空間の空気を加熱する暖房運転を行うこともできる。   As described above, in the example shown in FIG. 1, the compressor 5 is not circulated through the valve (second expansion valve) V <b> 2 and the exhaust heat recovery heat exchanger (third heat exchanger) 10. The sent refrigerant flows through the outdoor heat exchanger (first heat exchanger) 8, the valve (first expansion valve) V 1, and the indoor heat exchanger (second heat exchanger) 14 in order, and then the compressor 5. In the indoor heat exchanger (second heat exchanger) 14 acting as an evaporator, the air in the air-conditioning target space (heat exchange target) is changed by the refrigerant flowing through the refrigerant circulation path 3 by switching the circulation state of the refrigerant so as to return to Cooling operation is performed to cool the fluid. In addition, although description is abbreviate | omitted, the heating operation which heats the air of the space for air-conditioning by changing the circulation direction of a refrigerant | coolant by switching the four-way valve 7 can also be performed.

この冷房運転が行われているとき、制御装置20は、冷却水循環路15において、エンジン4から排熱を回収した冷却水を第2流路部分15bに流して、放熱用熱交換器9において冷却水からの放熱を行わせる。具体的には、制御装置20は、冷却水ポンプP1を動作させることで共通流路部分15cに冷却水を流し、及び、エンジン4から排熱を回収した冷却水の全量が第2流路部分15bに流れるように弁V7を動作させ、及び、迂回路15dを冷却水が流れないように弁V8を動作させ、及び、放熱用熱交換器9に外気が導入されて、冷却水からの放熱が行われるように室外ファンFを動作させる。また、制御装置20が室外ファンFを動作させると、室外熱交換器8にも外気が導入される。
また、エンジン4に戻ってくる冷却水の温度を所定の温度にする或いはエンジン4から排出される冷却水の温度を所定の温度にするために、一部の冷却水を第1流路部分15aや迂回路15dに流す場合がある。図1に示す例では、一部の冷却水を第1流路部分15aに流す状態を示している。
When this cooling operation is performed, the control device 20 causes the cooling water recovered from the engine 4 in the cooling water circulation path 15 to flow into the second flow path portion 15 b and is cooled in the heat dissipation heat exchanger 9. Let the heat dissipate from the water. Specifically, the control device 20 causes the cooling water to flow through the common flow path portion 15c by operating the cooling water pump P1, and the total amount of the cooling water from which the exhaust heat is recovered from the engine 4 is the second flow path portion. The valve V7 is operated so as to flow to 15b, the valve V8 is operated so that the cooling water does not flow through the bypass 15d, and the outside air is introduced into the heat exchanger 9 for heat radiation, and heat is radiated from the cooling water. The outdoor fan F is operated so as to be performed. Further, when the control device 20 operates the outdoor fan F, outside air is also introduced into the outdoor heat exchanger 8.
Further, in order to set the temperature of the cooling water returning to the engine 4 to a predetermined temperature or to set the temperature of the cooling water discharged from the engine 4 to a predetermined temperature, a part of the cooling water is supplied to the first flow path portion 15a. Or the detour 15d. In the example shown in FIG. 1, a state in which a part of the cooling water flows through the first flow path portion 15a is shown.

〔検査運転〕
次に、ヒートポンプシステムの検査方法について説明する。この検査方法は、状態値検出工程と、冷媒充填量判定工程とを有する。
[Inspection operation]
Next, an inspection method for the heat pump system will be described. This inspection method includes a state value detection step and a refrigerant filling amount determination step.

図2は、ヒートポンプシステムにおいて、状態値検出工程を実施するときの冷媒の循環状態を説明する図である。具体的には、図2に示す例において、圧縮機5から送出された冷媒は、冷媒循環路3の主循環路3aを通ってオイルセパレータ6に流入し、その後、四方弁7に至る。四方弁7は、圧縮機5から送出された冷媒が先ず室外熱交換器8に流入するように切り替えられている。このとき、弁V1及び弁V5は閉止され、弁V2及び弁V3及び弁V4は開放されている。従って、圧縮機5から送出された冷媒は、室外熱交換器8と弁V2と排熱回収用熱交換器10とアキュムレータ11とを順に流れた後、圧縮機5に帰還する。このとき、弁V2は膨張弁として作用し、設定する開度に応じて冷媒の圧力が低下させられる。また、弁V6は、オイル戻しの必要に応じて、適切な開度で調整されている。   FIG. 2 is a diagram illustrating a refrigerant circulation state when the state value detection step is performed in the heat pump system. Specifically, in the example shown in FIG. 2, the refrigerant sent from the compressor 5 flows into the oil separator 6 through the main circulation path 3 a of the refrigerant circulation path 3 and then reaches the four-way valve 7. The four-way valve 7 is switched so that the refrigerant sent from the compressor 5 first flows into the outdoor heat exchanger 8. At this time, the valve V1 and the valve V5 are closed, and the valve V2, the valve V3, and the valve V4 are opened. Therefore, the refrigerant sent out from the compressor 5 sequentially flows through the outdoor heat exchanger 8, the valve V2, the exhaust heat recovery heat exchanger 10, and the accumulator 11, and then returns to the compressor 5. At this time, the valve V2 acts as an expansion valve, and the pressure of the refrigerant is reduced according to the opening degree to be set. Further, the valve V6 is adjusted at an appropriate opening degree according to the need for oil return.

この検査運転が行われているとき、制御装置20は、冷却水循環路15において、エンジン4から排熱を回収した冷却水を第1流路部分15aに流して、排熱回収用熱交換器10において冷却水からの放熱を行わせ、その熱を冷媒循環路3を流れる冷媒に伝達する。つまり、排熱回収用熱交換器10において、冷却水循環路15の第1流路部分15aを流れる冷却水と、副循環路3bを流れる冷媒との間での熱交換が行われることで、エンジン4から回収した排熱が冷媒に伝達される。その結果、排熱回収用熱交換器10は、エンジン4から回収した排熱を副循環路3bに流れる冷媒に吸熱させる蒸発器として作用させることができる。具体的には、制御装置20は、冷却水ポンプP1を動作させることで共通流路部分15cに冷却水を流し、及び、エンジン4から排熱を回収した冷却水が第1流路部分15aに流れるように弁V7を動作させる。尚、図2に示す例では、冷却水の全量が第1流路部分15a及び共通流路部分15cに流れる場合を示しているが、エンジン4に戻ってくる冷却水の温度を所定の温度にする或いはエンジン4から排出される冷却水の温度を所定の温度にするために、一部の冷却水は第2流路部分15bや迂回路15dに流す場合がある。また、制御装置20は、室外熱交換器8に外気が導入されるように室外ファンFを動作させる。このように、検査運転では、上記冷房運転において蒸発器として作用する室内熱交換器14に代えて、排熱回収用熱交換器10が蒸発器として作用する。   When this inspection operation is being performed, the control device 20 causes the cooling water recovered from the engine 4 in the cooling water circulation path 15 to flow the cooling water from the engine 4 to the first flow path portion 15a, and the heat exchanger 10 for exhaust heat recovery. The heat is dissipated from the cooling water and the heat is transferred to the refrigerant flowing through the refrigerant circulation path 3. That is, in the heat exchanger 10 for exhaust heat recovery, heat exchange is performed between the cooling water that flows through the first flow path portion 15a of the cooling water circulation path 15 and the refrigerant that flows through the auxiliary circulation path 3b. The exhaust heat recovered from 4 is transmitted to the refrigerant. As a result, the exhaust heat recovery heat exchanger 10 can act as an evaporator that absorbs the exhaust heat recovered from the engine 4 into the refrigerant flowing in the sub-circulation path 3b. Specifically, the control device 20 causes the cooling water to flow through the common flow path portion 15c by operating the cooling water pump P1, and the cooling water that has recovered the exhaust heat from the engine 4 flows into the first flow path portion 15a. The valve V7 is operated so as to flow. The example shown in FIG. 2 shows the case where the entire amount of cooling water flows through the first flow path portion 15a and the common flow path portion 15c, but the temperature of the cooling water returning to the engine 4 is set to a predetermined temperature. Alternatively, in order to set the temperature of the cooling water discharged from the engine 4 to a predetermined temperature, a part of the cooling water may flow to the second flow path portion 15b or the detour 15d. In addition, the control device 20 operates the outdoor fan F so that outside air is introduced into the outdoor heat exchanger 8. Thus, in the inspection operation, the exhaust heat recovery heat exchanger 10 functions as an evaporator instead of the indoor heat exchanger 14 that functions as an evaporator in the cooling operation.

ヒートポンプシステムの検査方法において、状態値検出工程は、弁(第1膨張弁)V1及び室内熱交換器(第2熱交換器)14を経由して冷媒を循環させない遮断状態で、圧縮手段5から送出された冷媒を室外熱交換器8と弁(第2膨張弁)V2と排熱回収用熱交換器10とを順に通流させた後で圧縮手段5に帰還させるように冷媒の循環状態を切り替えて検査運転を行いながら、循環中の冷媒の状態値を検出する工程である。
冷媒充填量判定工程は、状態値検出工程で検出した状態値に基づいて、冷媒循環路3内に存在する冷媒充填量の適否を判定する工程である。
この検査方法は、冷媒循環路3内に冷媒を新たに充填するときにその冷媒充填量の適否を判定するため、或いは、冷媒循環路3への冷媒の充填を完了した後、冷媒循環路3内の冷媒充填量の適否(即ち、冷媒循環路3からの冷媒の漏れの有無)を判定するため等に利用できる。
In the inspection method of the heat pump system, the state value detection step is performed from the compression means 5 in a shut-off state in which the refrigerant is not circulated via the valve (first expansion valve) V1 and the indoor heat exchanger (second heat exchanger) 14. The refrigerant is circulated in such a manner that the sent refrigerant is passed through the outdoor heat exchanger 8, the valve (second expansion valve) V2, and the exhaust heat recovery heat exchanger 10 in order, and then returned to the compression means 5. This is a step of detecting the state value of the circulating refrigerant while performing the inspection operation by switching.
The refrigerant filling amount determination step is a step of determining suitability of the refrigerant filling amount existing in the refrigerant circulation path 3 based on the state value detected in the state value detection step.
In this inspection method, when the refrigerant is newly filled in the refrigerant circuit 3, it is determined whether or not the refrigerant charging amount is appropriate, or after the refrigerant has been charged into the refrigerant circuit 3, the refrigerant circuit 3 It can be used to determine whether or not the amount of refrigerant in the refrigerant is appropriate (that is, whether or not refrigerant leaks from the refrigerant circulation path 3).

図1に示した冷房運転での冷媒の循環状態から図2に示した検査運転での冷媒の循環状態(遮断状態)への移行は、以下のような各弁の操作により実施できる。
例えば、図1に示した冷房運転を行っているとき、弁V1を所定の開度で開き、弁V2を閉止し、弁V3及び弁V4を開放し、弁V5を閉止した状態で冷媒を循環させている。そして、図2に示した検査運転を行うとき、弁V1を閉止し、弁V2を所定の開度で開いて冷媒を循環させる。検査運転でも、弁V3及び弁V4は開放した状態のまま及び弁V5は閉止した状態のままである。
The transition from the refrigerant circulation state in the cooling operation shown in FIG. 1 to the refrigerant circulation state (blocking state) in the inspection operation shown in FIG. 2 can be performed by operating the valves as follows.
For example, during the cooling operation shown in FIG. 1, the valve V1 is opened at a predetermined opening, the valve V2 is closed, the valves V3 and V4 are opened, and the refrigerant is circulated with the valve V5 closed. I am letting. When the inspection operation shown in FIG. 2 is performed, the valve V1 is closed and the valve V2 is opened at a predetermined opening to circulate the refrigerant. Even in the inspection operation, the valve V3 and the valve V4 remain open and the valve V5 remains closed.

このように、状態値検出工程を実施するときの冷媒循環路3における冷媒の循環状態(図1の循環状態)と、状態値検出工程を実施しないときの冷媒循環路3における冷媒の循環状態(図2の循環状態)とは、制御装置20による各弁の遠隔操作により切り替えることができる。また、図1から図2への冷却水の循環経路の切り替えも、制御装置20による遠隔操作により行うことができる。冷却水の弁がワックス弁等の場合は、その開度は自動調整される。その結果、状態値検出工程を実施するときに、作業員が現場に出向くこと等は不要になる。   Thus, the refrigerant circulation state in the refrigerant circulation path 3 when the state value detection step is performed (circulation state in FIG. 1) and the refrigerant circulation state in the refrigerant circulation path 3 when the state value detection step is not performed ( The circulation state in FIG. 2 can be switched by remote control of each valve by the control device 20. The switching of the cooling water circulation path from FIG. 1 to FIG. 2 can also be performed by remote control by the control device 20. When the cooling water valve is a wax valve or the like, the opening degree is automatically adjusted. As a result, when the state value detection process is performed, it is not necessary for the worker to go to the site.

そして、状態値検出工程は、上記冷媒移動工程が実施された後、弁V1及び室内熱交換器14を経由して冷媒を循環させない遮断状態に維持されている間に、圧縮機5から送出された冷媒を室外熱交換器8と弁(第2膨張弁)V2と排熱回収用熱交換器(第3熱交換器)10とを順に通流させた後で圧縮機5に帰還させるように冷媒の循環状態を切り替えて、循環中の冷媒の状態値を検出する工程である。   Then, the state value detection step is sent out from the compressor 5 while the refrigerant moving step is carried out and is maintained in a shut-off state in which the refrigerant is not circulated via the valve V1 and the indoor heat exchanger 14. The refrigerant is passed through the outdoor heat exchanger 8, the valve (second expansion valve) V2, and the exhaust heat recovery heat exchanger (third heat exchanger) 10 in this order, and then returned to the compressor 5. This is a step of detecting the state value of the circulating refrigerant by switching the circulation state of the refrigerant.

図3は、ヒートポンプシステムのp−h線図である。図3では、飽和液線及び飽和蒸気線を一点鎖線で描き、等温線を破線で描くと共に、凝縮温度を40℃、過冷却度を5K(ケルビン)、過熱度を5K、圧縮効率を75%に設定した場合に、蒸発温度を−30℃〜10℃まで変化させたときの各COPc(冷房時の成績係数)の値を示す。冷媒はR410Aである。ここで、図中に示すCOPcは、冷媒を蒸発させるために必要な熱量をΔh2とし、圧縮機5の動力をΔh1とした場合、「Δh2/Δh1」で表される。図3に示すように、蒸発温度を下げるほど、COPc(蒸発熱量/圧縮動力)は低下する。図4は、凝縮温度Tcを30℃〜50℃の間で変化させた場合での蒸発圧力とCOPcとの関係を示す模式図である。冷媒はR410Aである。何れの凝縮温度でも、蒸発圧力が下がれば、COPcが低下するため、エンジン軸端効率が高い場合のヒートバランス、即ち、エンジン排熱割合が少ない場合でも、ヒートポンプサイクルの運転が可能になる。つまり、制御装置20は、状態値検出工程において状態値を検出するとき、検査運転を行うことで循環中の冷媒の排熱回収用熱交換器10での蒸発圧力を、冷房運転を行うことで循環中の冷媒の室内熱交換器(第2熱交換器)14での蒸発圧力よりも低下させることが好ましい。そして、ヒートポンプサイクルにおいて蒸発圧力が低下するということは、冷媒を圧縮するための動力に対して冷媒を蒸発させるのに必要な熱量割合が小さくなることを意味するので、エンジン排熱割合が少ない場合でもヒートポンプサイクルの運転が可能になる。   FIG. 3 is a ph diagram of the heat pump system. In FIG. 3, a saturated liquid line and a saturated vapor line are drawn with a one-dot chain line, an isotherm is drawn with a broken line, a condensation temperature is 40 ° C., a supercooling degree is 5K (Kelvin), a superheating degree is 5K, and a compression efficiency is 75%. The value of each COPc (coefficient of performance during cooling) when the evaporation temperature is changed from −30 ° C. to 10 ° C. is shown. The refrigerant is R410A. Here, COPc shown in the figure is represented by “Δh2 / Δh1”, where Δh2 is the amount of heat necessary for evaporating the refrigerant and Δh1 is the power of the compressor 5. As shown in FIG. 3, the COPc (heat of evaporation / compression power) decreases as the evaporation temperature decreases. FIG. 4 is a schematic diagram showing the relationship between the evaporation pressure and COPc when the condensation temperature Tc is changed between 30 ° C. and 50 ° C. The refrigerant is R410A. At any condensation temperature, the COPc decreases as the evaporation pressure decreases, so that the heat pump cycle can be operated even when the heat balance when the engine shaft end efficiency is high, that is, when the engine exhaust heat ratio is small. That is, when detecting the state value in the state value detection step, the control device 20 performs the cooling operation by performing the cooling operation on the evaporating pressure in the exhaust heat recovery heat exchanger 10 of the circulating refrigerant by performing the inspection operation. It is preferable to lower the evaporation pressure of the circulating refrigerant in the indoor heat exchanger (second heat exchanger) 14. When the evaporation pressure decreases in the heat pump cycle, it means that the amount of heat necessary to evaporate the refrigerant with respect to the power for compressing the refrigerant becomes small, so the engine exhaust heat ratio is small. But the heat pump cycle can be operated.

上記状態値検出工程で検出する状態値は、例えば、冷媒の過冷却度である。過冷却度は、膨張弁(弁V2)の上流側、若しくは室外熱交換器8の下流側での圧力から算出できる凝縮温度から、その場所の冷媒温度を減算した値に相当する。例えば、図1及び図2の位置Xで、室外熱交換器8の下流側での冷媒の圧力及び温度を測定して、測定された圧力から換算できる凝縮温度から、測定された冷媒温度を減算することで、冷媒の過冷却度を導出できる。或いは、図1及び図2の位置Yで、膨張弁(弁V2)の上流側での冷媒の圧力及び温度を測定して、測定された圧力から換算できる凝縮温度から、測定された冷媒温度を減算することで、冷媒の過冷却度を導出できる。
図5は、冷媒充填量と過冷却度との対応関係を示す模式図である。図示するように、冷媒充填量が少なくなるにつれて、過冷却度が小さくなることが分かる。つまり、状態値としての過冷却度を指標として、冷媒充填量の多少を判断できることが分かる。
The state value detected in the state value detection step is, for example, the degree of supercooling of the refrigerant. The degree of supercooling corresponds to a value obtained by subtracting the refrigerant temperature at the location from the condensation temperature that can be calculated from the pressure upstream of the expansion valve (valve V2) or downstream of the outdoor heat exchanger 8. For example, the pressure and temperature of the refrigerant on the downstream side of the outdoor heat exchanger 8 are measured at the position X in FIGS. 1 and 2, and the measured refrigerant temperature is subtracted from the condensation temperature that can be converted from the measured pressure. By doing so, the degree of supercooling of the refrigerant can be derived. Alternatively, at the position Y in FIGS. 1 and 2, the refrigerant pressure and temperature on the upstream side of the expansion valve (valve V2) are measured, and the measured refrigerant temperature is calculated from the condensing temperature that can be converted from the measured pressure. By subtracting, the degree of supercooling of the refrigerant can be derived.
FIG. 5 is a schematic diagram illustrating a correspondence relationship between the refrigerant charging amount and the degree of supercooling. As shown in the figure, it can be seen that the degree of supercooling decreases as the refrigerant charge amount decreases. That is, it can be seen that the amount of refrigerant charging can be determined using the degree of supercooling as the state value as an index.

具体的には、制御装置20は、弁V1及び室内熱交換器14を経由して冷媒を循環させない遮断状態に維持されている間、p−h線図で所定の凝縮温度(例えば40℃など)及び所定の蒸発温度(例えば−10℃など)となるように上記検査運転を行って冷媒を循環させながら、その循環中の冷媒の過冷却度を検出する。そして、制御装置20は、予め記憶装置30に記憶させている、過冷却度と冷媒充填量との対応関係と、状態値検出工程で検出した過冷却度とに基づいて、冷媒充填量の多少及びその程度を判定できる。例えば、図5に示す対応関係例に基づくと、制御装置20は、状態値検出工程で検出した過冷却度が10Kであれば、冷媒充填量は100%(基準量)であると判定する。これに対して、制御装置20は、状態値検出工程で検出した過冷却度が2Kであれば冷媒充填量が80%である(基準量より少ない)と判定し、過冷却度が14Kであれば冷媒充填量が110%である(基準量より多い)と判定する。更に、制御装置20は、冷媒循環路3内に存在する冷媒充填量が上記基準量よりも少ないことを示している場合には、冷媒充填量が不足している、或いは、冷媒循環路3内から冷媒が漏れているというように、冷媒充填量が適当ではないとの判定結果を下すことができる。
このように、本実施形態では、制御装置20が弁(第1膨張弁)V1及び室内熱交換器14を経由して冷媒を循環させない遮断状態で、圧縮手段5から送出された冷媒を室外熱交換器8と弁(第2膨張弁)V2と排熱回収用熱交換器10とを順に通流させた後で圧縮手段5に帰還させるように冷媒の循環状態を切り替えて検査運転を行わせながら検出した、循環中の冷媒の状態値に基づいて、冷媒循環路3内に存在する冷媒充填量の適否を判定する。
Specifically, the control device 20 maintains a predetermined condensation temperature (for example, 40 ° C. or the like) in a ph diagram while being maintained in a shut-off state in which the refrigerant is not circulated via the valve V1 and the indoor heat exchanger 14. ) And a predetermined evaporation temperature (for example, −10 ° C., etc.), the degree of supercooling of the circulating refrigerant is detected while circulating the refrigerant by performing the above-described inspection operation. Then, the control device 20 stores the amount of the refrigerant filling amount based on the correspondence relationship between the degree of supercooling and the refrigerant filling amount stored in the storage device 30 in advance and the degree of supercooling detected in the state value detection step. And the degree thereof. For example, based on the correspondence example shown in FIG. 5, if the degree of supercooling detected in the state value detection step is 10K, the control device 20 determines that the refrigerant charging amount is 100% (reference amount). In contrast, if the degree of supercooling detected in the state value detection step is 2K, the control device 20 determines that the refrigerant charging amount is 80% (less than the reference amount), and if the degree of supercooling is 14K. It is determined that the refrigerant charging amount is 110% (more than the reference amount). Further, when the control device 20 indicates that the refrigerant filling amount existing in the refrigerant circuit 3 is smaller than the reference amount, the control device 20 is short of the refrigerant filling amount, or in the refrigerant circuit 3. As a result, it is possible to obtain a determination result that the refrigerant charging amount is not appropriate, such as that the refrigerant is leaking from.
As described above, in the present embodiment, the control device 20 converts the refrigerant sent from the compression unit 5 to the outdoor heat in a shut-off state in which the refrigerant is not circulated via the valve (first expansion valve) V1 and the indoor heat exchanger 14. After the exchanger 8, the valve (second expansion valve) V 2, and the exhaust heat recovery heat exchanger 10 are passed in order, the inspection operation is performed by switching the circulation state of the refrigerant so as to return to the compression means 5. On the basis of the detected state value of the circulating refrigerant, the suitability of the refrigerant charging amount existing in the refrigerant circulation path 3 is determined.

このように、図2に示した検査運転では、空調対象空間の空気との熱交換が行われる室内熱交換器14を経由しない状態で冷媒が循環しているため、室内熱交換器14を通って冷媒を流すのに要する冷媒循環路3の長さ、空調対象空間の空気の温度及び量に応じて変化する室内熱交換器14での熱交換の状況、室内熱交換器14の設置個数等など、冷媒の状態値が変化し得る要因の多くを排除した状態で、循環中の冷媒の状態値を検出できる。   As described above, in the inspection operation shown in FIG. 2, since the refrigerant circulates without passing through the indoor heat exchanger 14 where heat exchange with the air in the air-conditioning target space is performed, the refrigerant passes through the indoor heat exchanger 14. The length of the refrigerant circulation path 3 required for the refrigerant to flow, the state of heat exchange in the indoor heat exchanger 14 that changes according to the temperature and amount of air in the air-conditioning target space, the number of indoor heat exchangers 14 installed, etc. The state value of the circulating refrigerant can be detected in a state in which many of the factors that can change the state value of the refrigerant are eliminated.

次に、状態値検出工程において状態値を検出するときの検査運転の具体的な内容について説明する。   Next, specific contents of the inspection operation when the state value is detected in the state value detection step will be described.

〔検査運転において、排熱回収用熱交換器10に供給される冷却水の流量を調節する〕
上述したように、ヒートポンプシステムは、エンジン4から放出される排熱を回収する冷却水が循環する冷却水循環路15を備え、排熱回収用熱交換器10では、冷媒循環路3を流れる冷媒と冷却水循環路15を流れる冷却水との間での熱交換を行わせることができる。
そして、制御装置20は、状態値検出工程において状態値を検出するとき、冷却水循環路15を通って排熱回収用熱交換器10に供給される冷却水の単位時間当たりの流量を設定冷却水量以下にする。つまり、排熱回収用熱交換器10に供給される冷却水の単位時間当たりの流量を設定冷却水量以下に低下させると、冷媒の蒸発器としての排熱回収用熱交換器10では、冷却水から冷媒に対する熱交換性能が低下する。そのため、凝縮圧力や圧縮機入口の冷媒の過熱度が同程度の場合は蒸発圧力が下がるようになり、エンジン排熱割合が少ない場合でも、ヒートポンプサイクルの運転が可能になる。
[Adjusting the flow rate of cooling water supplied to the heat exchanger 10 for exhaust heat recovery in the inspection operation]
As described above, the heat pump system includes the cooling water circulation path 15 through which the cooling water for recovering the exhaust heat released from the engine 4 circulates. In the heat exchanger 10 for exhaust heat recovery, the refrigerant flowing through the refrigerant circulation path 3 Heat exchange with the cooling water flowing through the cooling water circulation path 15 can be performed.
When the controller 20 detects the state value in the state value detection step, the controller 20 sets the flow rate per unit time of the cooling water supplied to the exhaust heat recovery heat exchanger 10 through the cooling water circulation path 15. Below. In other words, when the flow rate per unit time of the cooling water supplied to the exhaust heat recovery heat exchanger 10 is reduced below the set cooling water amount, the exhaust heat recovery heat exchanger 10 as the refrigerant evaporator Therefore, the heat exchange performance with respect to the refrigerant decreases. For this reason, when the condensation pressure and the superheat degree of the refrigerant at the compressor inlet are approximately the same, the evaporation pressure decreases, and the heat pump cycle can be operated even when the engine exhaust heat ratio is small.

具体的には、冷却水循環路15は、冷却水が排熱回収用熱交換器10をバイパスして循環できる第1バイパス路(第2流路部分15b、迂回路15d)と、その第1バイパス路(第2流路部分15b、迂回路15d)への冷却水の分配状態を調節可能な冷却水分配器としての弁V7及び弁V8とを有する。つまり、図7に示すように、制御装置20は、冷却水を第1流路部分15aと第2流路部分15bとに分配して流すことができる。或いは、図示は省略するが、迂回路15dに冷却水を分配して流すこともできる。   Specifically, the cooling water circulation path 15 includes a first bypass path (second flow path portion 15b and detour path 15d) through which the cooling water can circulate bypassing the exhaust heat recovery heat exchanger 10, and the first bypass. It has the valve V7 and the valve V8 as a cooling water distributor which can adjust the distribution state of the cooling water to a channel | path (2nd flow-path part 15b, detour 15d). That is, as shown in FIG. 7, the control device 20 can distribute and flow the cooling water into the first flow path portion 15a and the second flow path portion 15b. Or although illustration is abbreviate | omitted, a cooling water can also be distributed and sent to the detour 15d.

そして、制御装置20は、状態値検出工程において状態値を検出するとき、冷却水循環路15を通って排熱回収用熱交換器10に供給される冷却水の単位時間当たりの流量、即ち、冷却水循環路15の第1流路部分15aを通って排熱回収用熱交換器10に供給される冷却水の単位時間あたりの流量を冷却水分配器(弁V7、弁V8)を用いて設定冷却水量以下にすることができる。例えば、制御装置20は、冷却水ポンプP1によって共通流路部分15cを流れる冷却水の単位時間あたりの流量を一定にしつつ、弁V7によって冷却水を第1流路部分15aと第2流路部分15bとに分配して流すことで、冷却水循環路15の第1流路部分15aを通って排熱回収用熱交換器10に供給される冷却水の単位時間あたりの流量を弁V7を用いて設定冷却水量以下にすることができる。   When the control device 20 detects the state value in the state value detection step, the flow rate of the cooling water supplied to the exhaust heat recovery heat exchanger 10 through the cooling water circulation path 15 per unit time, that is, the cooling The flow rate per unit time of the cooling water supplied to the heat exchanger 10 for exhaust heat recovery through the first flow path portion 15a of the water circulation path 15 is set using the cooling water distributor (valve V7, valve V8). It can be: For example, the control device 20 uses the valve V7 to supply cooling water to the first flow path portion 15a and the second flow path portion while maintaining a constant flow rate per unit time of the cooling water flowing through the common flow path portion 15c by the cooling water pump P1. The flow rate per unit time of the cooling water supplied to the heat exchanger 10 for exhaust heat recovery through the first flow path portion 15a of the cooling water circulation path 15 is distributed using the valve V7. The amount of cooling water can be set below the set amount.

或いは、冷却水循環路15には、冷却水の単位時間当たりの流量を調節可能な冷却水ポンプP1が設けられている。よって、制御装置20は、弁V7によって冷却水を第1流路部分15aと第2流路部分15bとに分配して流さなくても、状態値検出工程において状態値を検出するとき、冷却水循環路15を通って排熱回収用熱交換器10に供給される冷却水の単位時間当たりの流量を冷却水ポンプP1を用いて設定冷却水量以下にすることができる。   Alternatively, the cooling water circulation path 15 is provided with a cooling water pump P1 capable of adjusting the flow rate per unit time of the cooling water. Therefore, the control device 20 does not distribute the cooling water to the first flow path portion 15a and the second flow path portion 15b by the valve V7, but does not circulate the cooling water when detecting the state value in the state value detection step. The flow rate per unit time of the cooling water supplied to the heat exchanger 10 for exhaust heat recovery through the path 15 can be made equal to or less than the set cooling water amount using the cooling water pump P1.

〔検査運転において、排熱回収用熱交換器10に供給される冷媒の流量を調節する〕
冷媒循環路3は、冷媒が排熱回収用熱交換器10及び室内熱交換器14をバイパスして循環できる第2バイパス路(副循環路3c)と、当該第2バイパス路(副循環路3c)への冷媒の分配状態を調節可能な冷媒分配器としての弁V5とを有する。本実施形態では、この冷媒分配器としての弁V5は、副循環路3cの途中に設けられた開閉弁又は開閉量を調節可能な弁である。よって、弁V5が閉止されていれば副循環路3cには冷媒は分配されず(流れず)、弁V5が開放されていれば副循環路3cには冷媒は分配される(流れる)。また、弁V5の開閉量を調節すれば、副循環路3cに流れる冷媒の流量を調節できる。このようにして、図8に示すように、制御装置20は、冷媒を冷媒循環路3のうちの副循環路3bと副循環路3cとに分配して流すことができる。そして、副循環路3cを流れる冷媒の流量が増加すれば、冷媒循環路3のうちの副循環路3bを流れる冷媒の流量は減少し、副循環路3cを流れる冷媒の流量が減少すれば、冷媒循環路3のうちの副循環路3bを流れる冷媒の流量は増加する。そして、制御装置20は、状態値検出工程において状態値を検出するとき、冷媒循環路3を通って排熱回収用熱交換器10に供給される冷媒の単位時間当たりの流量を冷媒分配器としての弁V5を用いて設定冷媒流量以下にすることができる。つまり、排熱回収用熱交換器10に供給される冷媒の単位時間当たりの流量を設定冷媒流量以下に低下させると、冷媒の蒸発器としての排熱回収用熱交換器10では、冷却水から冷媒に対する熱交換性能が低下する。そのため、凝縮圧力や圧縮機入口の冷媒の過熱度が同程度の場合は蒸発圧力が下がるようになり、エンジン排熱量が少ない場合でも、ヒートポンプサイクルの運転が可能になる。
[Adjusting the flow rate of the refrigerant supplied to the heat exchanger 10 for exhaust heat recovery in the inspection operation]
The refrigerant circulation path 3 includes a second bypass path (sub-circulation path 3c) through which the refrigerant can circulate by bypassing the exhaust heat recovery heat exchanger 10 and the indoor heat exchanger 14, and the second bypass path (sub-circulation path 3c). And a valve V5 as a refrigerant distributor capable of adjusting the refrigerant distribution state to the above. In the present embodiment, the valve V5 as the refrigerant distributor is an on-off valve provided in the middle of the auxiliary circulation path 3c or a valve capable of adjusting the on-off amount. Therefore, if the valve V5 is closed, the refrigerant is not distributed (does not flow) to the auxiliary circuit 3c, and if the valve V5 is opened, the refrigerant is distributed (flows) to the auxiliary circuit 3c. Moreover, if the opening / closing amount of the valve V5 is adjusted, the flow rate of the refrigerant flowing through the auxiliary circulation path 3c can be adjusted. In this way, as shown in FIG. 8, the control device 20 can distribute the refrigerant to the sub-circulation path 3 b and the sub-circulation path 3 c in the refrigerant circulation path 3. If the flow rate of the refrigerant flowing through the sub-circulation path 3c increases, the flow rate of the refrigerant flowing through the sub-circulation path 3b of the refrigerant circulation path 3 decreases, and if the flow rate of the refrigerant flowing through the sub-circulation path 3c decreases, The flow rate of the refrigerant flowing through the sub circulation path 3b of the refrigerant circulation path 3 increases. When the controller 20 detects the state value in the state value detection step, the flow rate per unit time of the refrigerant supplied to the exhaust heat recovery heat exchanger 10 through the refrigerant circulation path 3 is used as a refrigerant distributor. The flow rate of the refrigerant can be reduced below the set flow rate using the valve V5. That is, when the flow rate per unit time of the refrigerant supplied to the heat exchanger 10 for exhaust heat recovery is reduced to a set refrigerant flow rate or less, the heat exchanger 10 for exhaust heat recovery as an evaporator of the refrigerant uses the cooling water. The heat exchange performance with respect to the refrigerant decreases. Therefore, when the condensation pressure and the degree of superheat of the refrigerant at the compressor inlet are approximately the same, the evaporation pressure decreases, and the heat pump cycle can be operated even when the engine exhaust heat amount is small.

<第2実施形態>
上記状態値検出工程において状態値を検出するときの検査運転の具体的な内容については適宜変更可能である。例えば、以下に記載するような室外ファンFの動作制御を行ってもよい。
Second Embodiment
The specific contents of the inspection operation when the state value is detected in the state value detection step can be changed as appropriate. For example, the operation control of the outdoor fan F as described below may be performed.

上述したように、ヒートポンプシステムは、エンジン4から放出される排熱を回収する冷却水が循環する冷却水循環路15と、外気を流動させる室外ファンFとを備える。図7に示した場合では、冷却水循環路15では、エンジン4から放出される排熱を回収した後の冷却水が分岐部18で第1流路部分15aと第2流路部分15bとに分岐して流れ、第1流路部分15aと第2流路部分15bとを流れた冷却水が合流部16で合流した後で再びエンジン4から放出される排熱の回収を行うように冷却水が循環可能である。冷却水循環路15の第2流路部分15bの途中には、当該第2流路部分15bを流れる冷却水と外気との間での熱交換を行わせることができる放熱用熱交換器9が設けられる。室外ファンFが動作することで、室外熱交換器8で冷媒循環路3を流れる冷媒と熱交換した後の外気が、放熱用熱交換器9で第2流路部分15bを流れる冷却水と熱交換するように流動する。
そして、制御装置20は、状態値検出工程において状態値を検出するとき、放熱用熱交換器9で外気と熱交換する前後での冷却水の温度差が設定温度差以内になるように室外ファンFの回転速度を調節する。本実施形態では、制御装置20は、温度センサT1で測定される放熱用熱交換器9の上流側での冷却水温度と、温度センサT2で測定される放熱用熱交換器9の下流側での冷却水温度とに基づいて、放熱用熱交換器9で外気と熱交換する前後での冷却水の温度差を導出できる。
As described above, the heat pump system includes the cooling water circulation path 15 through which the cooling water for recovering the exhaust heat released from the engine 4 circulates and the outdoor fan F that allows the outside air to flow. In the case shown in FIG. 7, in the cooling water circulation path 15, the cooling water after collecting the exhaust heat released from the engine 4 branches into the first flow path portion 15 a and the second flow path portion 15 b at the branch portion 18. So that the cooling water flowing through the first flow path portion 15a and the second flow path portion 15b merges at the merging portion 16 so that the exhaust heat released from the engine 4 is recovered again. It can be circulated. In the middle of the second flow path portion 15b of the cooling water circulation path 15, there is provided a heat dissipation heat exchanger 9 that can exchange heat between the cooling water flowing through the second flow path portion 15b and the outside air. It is done. When the outdoor fan F is operated, the outdoor air after heat exchange with the refrigerant flowing through the refrigerant circulation path 3 in the outdoor heat exchanger 8 becomes the cooling water and heat flowing through the second flow path portion 15b in the heat dissipation heat exchanger 9. Flow to exchange.
When the control device 20 detects the state value in the state value detection step, the outdoor fan is set so that the temperature difference between the cooling water before and after heat exchange with the outside air by the heat radiating heat exchanger 9 is within the set temperature difference. Adjust the rotation speed of F. In the present embodiment, the control device 20 has a coolant temperature upstream of the heat dissipation heat exchanger 9 measured by the temperature sensor T1 and a downstream side of the heat dissipation heat exchanger 9 measured by the temperature sensor T2. Based on the cooling water temperature, the temperature difference between the cooling water before and after heat exchange with the outside air by the heat-dissipating heat exchanger 9 can be derived.

このような運転が行われることで、状態値検出工程において状態値を検出するとき、室外ファンFの回転速度が調節されて、冷却水は放熱用熱交換器9において設定温度差以内の温度変化を受けただけでエンジン4に帰還する。つまり、冷却水が回収したエンジン4の排熱は、放熱用熱交換器9で殆ど失われることがない。そのため、排熱回収用熱交換器10での熱交換性能を低下させるために、冷却水の一部を放熱用熱交換器9に流す必要がある場合でも、エンジン排熱が不足しないようにできる。   By performing such an operation, when the state value is detected in the state value detection step, the rotational speed of the outdoor fan F is adjusted, and the cooling water changes in temperature within a set temperature difference in the heat-dissipating heat exchanger 9. Return to the engine 4 just by receiving. That is, the exhaust heat of the engine 4 recovered by the cooling water is hardly lost in the heat dissipation heat exchanger 9. Therefore, in order to reduce the heat exchange performance in the heat exchanger 10 for exhaust heat recovery, even if it is necessary to flow a part of the cooling water to the heat exchanger 9 for heat dissipation, engine exhaust heat can be prevented from being insufficient. .

<第3実施形態>
室外熱交換器8において所定の冷媒の凝縮性能を発揮させるために室外ファンFに対して動作指令を与えても、経時変化により室外ファンFや室外熱交換器8の性能が変化した場合には、室外熱交換器8での冷媒の凝縮性能が変化する可能性がある。その場合、室外熱交換器8での冷媒の凝縮圧力が目標値から逸脱することになる。
そこで、制御装置20は、状態値検出工程において状態値を検出するとき、例えば図1及び図2に示した位置Xに設けられるセンサ(図示せず)で測定される、室外熱交換器8での冷媒の凝縮圧力が目標値になるように室外ファンFの回転速度を調節する。これにより、状態値検出工程において状態値を検出するとき、室外熱交換器8での冷媒の凝縮圧力が目標値になるように室外ファンFの回転速度を調節するので、室外熱交換器8での冷媒の凝縮圧力が目標値になることが確保される。このとき、凝縮圧力の目標値を固定にしてもいいし、外気温度に応じて変化させてもよい。
<Third Embodiment>
Even if an operation command is given to the outdoor fan F in order to exert a predetermined refrigerant condensing performance in the outdoor heat exchanger 8, if the performance of the outdoor fan F or the outdoor heat exchanger 8 changes due to aging, The refrigerant condensing performance in the outdoor heat exchanger 8 may change. In that case, the condensation pressure of the refrigerant in the outdoor heat exchanger 8 deviates from the target value.
Therefore, when detecting the state value in the state value detecting step, the control device 20 uses the outdoor heat exchanger 8 measured by a sensor (not shown) provided at the position X shown in FIGS. 1 and 2, for example. The rotational speed of the outdoor fan F is adjusted so that the condensing pressure of the refrigerant becomes the target value. Thus, when the state value is detected in the state value detection step, the rotational speed of the outdoor fan F is adjusted so that the refrigerant condensation pressure in the outdoor heat exchanger 8 becomes the target value. It is ensured that the condensation pressure of the refrigerant reaches the target value. At this time, the target value of the condensation pressure may be fixed or may be changed according to the outside air temperature.

<第4実施形態>
上記実施形態では、圧縮手段5が1台の圧縮機で構成される例を説明したが、圧縮手段5が複数台の圧縮機で構成されてもよい。
図6は、圧縮手段5の別の構成を示す図である。図示するように、圧縮手段5を、エンジン4によって駆動されて冷媒を圧縮する複数台の圧縮機と、エンジン4から複数台の圧縮機のそれぞれへの駆動力の伝達状態を調節可能な駆動力伝達機構40とを備えて構成することもできる。そして、制御装置20は、状態値検出工程において状態値を検出するとき、駆動力伝達機構40によって、複数台の圧縮機のうちの一部の圧縮機のみにエンジン4の駆動力を伝達させる。
<Fourth embodiment>
In the above embodiment, the example in which the compression unit 5 is configured by one compressor has been described, but the compression unit 5 may be configured by a plurality of compressors.
FIG. 6 is a diagram showing another configuration of the compression means 5. As shown in the figure, the compression means 5 includes a plurality of compressors that are driven by the engine 4 to compress the refrigerant, and a driving force that can adjust the transmission state of the driving force from the engine 4 to each of the plurality of compressors. A transmission mechanism 40 can also be provided. When the state value is detected in the state value detection step, the control device 20 causes the driving force transmission mechanism 40 to transmit the driving force of the engine 4 only to some of the compressors.

図6に示す例では、圧縮手段5が、第1圧縮機5a及び第2圧縮機5bという2台の圧縮機を備えている。第1圧縮機5aと第2圧縮機5bとは、冷媒循環路3の途中で並列に設けられている。エンジン4の駆動力は、一次側プーリー41及びベルト44及び二次側プーリー42を介して第1圧縮機5aに伝達され、及び、一次側プーリー41及びベルト44及び二次側プーリー43を介して第2圧縮機5bに伝達される。二次側プーリー42と第1圧縮機5aとの間にはクラッチ45が設けられ、二次側プーリー43と第2圧縮機5bとの間にはクラッチ46が設けられる。これら一次側プーリー41と、二次側プーリー42と、二次側プーリー43と、ベルト44と、クラッチ45と、クラッチ46とによって駆動力伝達機構40が構成される。そして、制御装置20が、クラッチ45とクラッチ46との動作状態を切り替えて圧縮機の運転台数を変更することで、冷媒循環路3での冷媒の循環量を調節することができる。   In the example shown in FIG. 6, the compressing means 5 includes two compressors, a first compressor 5a and a second compressor 5b. The first compressor 5 a and the second compressor 5 b are provided in parallel in the refrigerant circulation path 3. The driving force of the engine 4 is transmitted to the first compressor 5a via the primary pulley 41, the belt 44, and the secondary pulley 42, and via the primary pulley 41, the belt 44, and the secondary pulley 43. It is transmitted to the second compressor 5b. A clutch 45 is provided between the secondary pulley 42 and the first compressor 5a, and a clutch 46 is provided between the secondary pulley 43 and the second compressor 5b. The primary pulley 41, the secondary pulley 42, the secondary pulley 43, the belt 44, the clutch 45, and the clutch 46 constitute a driving force transmission mechanism 40. And the control apparatus 20 can adjust the circulation amount of the refrigerant | coolant in the refrigerant | coolant circulation path 3 by switching the operation state of the clutch 45 and the clutch 46, and changing the operating number of compressors.

同じ冷媒流量を流す場合なら、動作する圧縮機の数が多く、圧縮手段5の排除容積の合計が大きいほど、エンジン4の回転速度は低く(即ち、トルクは大きく)なり、動作する圧縮機の数が少なく、圧縮手段5の排除容積の合計が小さいほど、エンジン4の回転速度は高く(即ち、トルクは小さく)なる。各圧縮機の効率が同じ場合は、この時に必要な動力は両者同じである。また、エンジン4の特性として、トルクが大きいほど熱効率は高くなり、トルクが小さいほど熱効率は低くなる傾向がある。そのため、動作する圧縮機の数が少なくなれば、回転速度が高く(トルクが小さく)なるのに伴ってエンジンの熱効率が低く(エンジン排熱効率が高く)なり、エンジン4の排熱割合が高まる。   If the same refrigerant flow rate is used, the number of operating compressors increases, and the larger the total displacement volume of the compression means 5, the lower the rotational speed of the engine 4 (that is, the greater the torque). The smaller the number and the smaller the total excluded volume of the compression means 5, the higher the rotational speed of the engine 4 (that is, the smaller the torque). If the efficiency of each compressor is the same, the power required at this time is the same. Further, as a characteristic of the engine 4, thermal efficiency tends to increase as torque increases, and thermal efficiency tends to decrease as torque decreases. Therefore, if the number of operating compressors is reduced, the thermal efficiency of the engine is lowered (engine exhaust heat efficiency is increased) as the rotational speed is increased (torque is reduced), and the exhaust heat ratio of the engine 4 is increased.

そこで、制御装置20は、状態値検出工程において状態値を検出するとき、駆動力伝達機構40によって、複数台の圧縮機のうちの一部の圧縮機のみにエンジン4の駆動力を伝達させる。例えば、図6に示す例では、制御装置20は、圧縮機5a及び圧縮機5bのどちらか1台の圧縮機を選択し、その圧縮機のみにエンジン4の駆動力が伝達されるように、駆動力伝達機構40を動作させる。つまり、エンジン4の排熱割合を高めた状態で状態値検出工程を実施できる。   Therefore, when detecting the state value in the state value detecting step, the control device 20 causes the driving force transmission mechanism 40 to transmit the driving force of the engine 4 only to some of the compressors. For example, in the example illustrated in FIG. 6, the control device 20 selects one of the compressor 5a and the compressor 5b, and the driving force of the engine 4 is transmitted only to the compressor. The driving force transmission mechanism 40 is operated. That is, the state value detection step can be performed with the exhaust heat ratio of the engine 4 increased.

<第5実施形態>
上記冷房運転を行うときのエンジン4の動作と、上記検査運転を行うときのエンジン4の動作とを異ならせてもよい。
具体的には、制御装置20は、状態値検出工程において状態値を検出するとき、検査運転時のエンジン4の回転速度及びトルクに対して同じ回転速度及びトルクで冷房運転をするとした場合に比べてエンジン4の排熱割合を大きくすることができるエンジン運転設定でエンジン4を運転してもよい。
<Fifth Embodiment>
The operation of the engine 4 when the cooling operation is performed may be different from the operation of the engine 4 when the inspection operation is performed.
Specifically, when the control device 20 detects the state value in the state value detection step, the control device 20 performs the cooling operation at the same rotation speed and torque with respect to the rotation speed and torque of the engine 4 during the inspection operation. The engine 4 may be operated with an engine operation setting that can increase the exhaust heat ratio of the engine 4.

例えば、制御装置20は、エンジン4の点火時期のリタードや空気比調整(リーン度低減)等で、排ガス特性や燃焼安定性をあまり悪化させない範囲で意図的に熱効率を低下させ、エンジン4の排熱割合を増加させることで、蒸発圧力の低下度合いを抑制できる。つまり、通常の冷房運転では、排ガスを考慮しながらできる限りエンジン4の熱効率が高くなるようなエンジン4の設定(点火時期とか空気比等)をして運転させ、検査運転では意図的にエンジン4の熱効率が低くなる(排熱割合が多くなる)ような設定(点火時期を遅らせたり、空気比のリーン度合いを低減)をして運転させることができる。   For example, the control device 20 intentionally lowers the thermal efficiency within a range in which the exhaust gas characteristics and the combustion stability are not deteriorated so much by retarding the ignition timing of the engine 4 and adjusting the air ratio (lean degree reduction). By increasing the heat rate, the degree of decrease in evaporation pressure can be suppressed. In other words, in normal cooling operation, the engine 4 is set so that the thermal efficiency of the engine 4 is as high as possible in consideration of exhaust gas (ignition timing, air ratio, etc.). Can be operated with a setting (delaying the ignition timing or reducing the lean degree of the air ratio) such that the thermal efficiency of the engine becomes low (the exhaust heat ratio increases).

<第6実施形態>
検査運転時に冷媒が循環していない(冷媒が滞留している)箇所の冷媒循環路3に存在している滞留冷媒量を考慮して、冷媒循環路3内に存在する冷媒充填量の適否を判定してもよい。
<Sixth Embodiment>
Considering the amount of refrigerant remaining in the refrigerant circulation path 3 where the refrigerant is not circulated (refrigerant is accumulated) at the time of the inspection operation, whether or not the refrigerant charging amount existing in the refrigerant circulation path 3 is appropriate is determined. You may judge.

具体的には、制御装置20は、遮断状態において冷媒が滞留している区間の体積と、当該区間に滞留している冷媒の密度とに基づいて滞留冷媒量を導出する滞留冷媒量導出工程を実行し、冷媒充填量判定工程において、状態値検出工程で検出した状態値と所定の基準値との比較結果と、滞留冷媒量とに基づいて、冷媒循環路3内に存在する冷媒充填量の適否を判定する。   Specifically, the control device 20 performs a staying refrigerant amount deriving step of deriving the staying refrigerant amount based on the volume of the section where the refrigerant stays in the shut-off state and the density of the refrigerant staying in the section. And in the refrigerant filling amount determination step, based on the comparison result between the state value detected in the state value detection step and the predetermined reference value, and the amount of retained refrigerant, the refrigerant filling amount existing in the refrigerant circulation path 3 Judge the suitability.

具体的に説明すると、図1に示す冷房運転から図2に示す検査運転に切り替えるために弁V1が閉止されたとき、冷媒循環路3の主循環路3aの分岐部50と合流部51との間(以下、「滞留部」と記載することもある)では冷媒が滞留する。このとき、分岐部50と弁V1との間の主循環路3aには密度の大きい液相の冷媒が滞留し、室内熱交換器14と合流部との間の主循環路3aには密度の小さい気相の冷媒が滞留する。本実施形態の滞留冷媒量導出工程では、分岐部50と弁V1との間の主循環路3aに滞留している密度の大きい液相の冷媒の量を導出する。例えば、分岐部50と弁V1との間の区間の主循環路3aの容積が既知であれば、そこでの冷媒の温度及び圧力を測定することでこの区間に滞留している冷媒の密度が算出でき、分岐部50と弁V1との間の区間に残されている滞留冷媒量を導出できる。そして、制御装置20は、導出した滞留冷媒量に基づいて、冷媒循環路3全体の冷媒充填量を導出するという補正を行うことができる。   More specifically, when the valve V1 is closed in order to switch from the cooling operation shown in FIG. 1 to the inspection operation shown in FIG. 2, the branching portion 50 and the merging portion 51 of the main circulation path 3a of the refrigerant circulation path 3 The refrigerant stays in the interval (hereinafter sometimes referred to as “retaining part”). At this time, a high-density liquid-phase refrigerant stays in the main circulation path 3a between the branch portion 50 and the valve V1, and the main circulation path 3a between the indoor heat exchanger 14 and the merge section has a density. A small vapor phase refrigerant stays. In the staying refrigerant amount deriving step of the present embodiment, the amount of liquid-phase refrigerant having a high density staying in the main circulation path 3a between the branch portion 50 and the valve V1 is derived. For example, if the volume of the main circulation path 3a in the section between the branch 50 and the valve V1 is known, the density of the refrigerant staying in this section is calculated by measuring the temperature and pressure of the refrigerant there. The amount of the remaining refrigerant remaining in the section between the branching portion 50 and the valve V1 can be derived. And the control apparatus 20 can perform correction | amendment of deriving | leading-out the refrigerant | coolant filling amount of the refrigerant circulation path 3 whole based on the derived | required refrigerant | coolant amount.

具体的には、冷媒充填量判定工程において制御装置20は、状態値検出工程で検出した状態値と所定の基準値との比較結果から、冷媒循環路3の冷媒充填量を算出した後、滞留冷媒量導出工程で導出した滞留冷媒量を用いて、滞留部も含めた冷媒循環路3全体の冷媒充填量を算出し、冷媒漏洩を判定する。例えば、上述のように滞留している冷媒の温度が基準値よりも低い場合、冷媒の密度は増加するため、滞留部には基準よりも多くの質量の冷媒が存在することになり、冷媒漏洩が無い場合でも冷媒充填量判定工程では基準値未満の冷媒充填量と判定される。逆に、滞留している冷媒の密度が低い場合は、滞留部には基準よりも少ない質量の冷媒が存在することになり、冷媒漏洩があった場合でも冷媒充填量判定工程では基準値相当の冷媒充填量と判定される可能性がある。しかし、上述のような滞留冷媒量の導出を行って、滞留部も含めた冷媒循環路3全体の冷媒充填量を算出するという補正を行うことで、そのような影響を抑制できる。特に、室外機1と室内機12との距離が長く、滞留部となる配管の体積が大きくなる場合に、有効である。このように、冷媒循環路3内には存在するが、検査運転時に冷媒循環路3を循環していない滞留冷媒量の存在を考慮して、冷媒循環路3内に存在する冷媒充填量の適否を正確に判定できる。   Specifically, in the refrigerant filling amount determination step, the control device 20 calculates the refrigerant filling amount in the refrigerant circulation path 3 from the comparison result between the state value detected in the state value detection step and a predetermined reference value, and then stays there. Using the accumulated refrigerant amount derived in the refrigerant amount deriving step, the refrigerant charge amount of the entire refrigerant circulation path 3 including the accumulated portion is calculated, and refrigerant leakage is determined. For example, when the temperature of the refrigerant staying as described above is lower than the reference value, the density of the refrigerant increases, so that a refrigerant having a mass larger than the reference exists in the staying portion, and the refrigerant leaks. Even when there is no refrigerant, the refrigerant charging amount determining step determines that the refrigerant charging amount is less than the reference value. On the contrary, when the density of the refrigerant staying is low, there is a refrigerant with a mass less than the reference in the staying portion, and even if there is a refrigerant leak, the refrigerant filling amount determination step corresponds to the reference value. There is a possibility that the refrigerant charging amount is determined. However, such an influence can be suppressed by performing the correction of calculating the refrigerant filling amount of the entire refrigerant circulation path 3 including the staying portion by deriving the amount of the staying refrigerant as described above. In particular, this is effective when the distance between the outdoor unit 1 and the indoor unit 12 is long and the volume of the pipe serving as the staying portion becomes large. As described above, in consideration of the amount of the remaining refrigerant that is present in the refrigerant circulation path 3 but is not circulated through the refrigerant circulation path 3 at the time of the inspection operation, whether or not the refrigerant charging amount existing in the refrigerant circulation path 3 is appropriate. Can be determined accurately.

<別実施形態>
<1>
上記実施形態では、ヒートポンプシステムの構成について具体例を挙げて説明したが、その構成については適宜変更可能である。
例えば、上記実施形態では、冷却水循環路15が第1流路部分15a及び第2流路部分15b及び共通流路部分15c及び迂回路15dとで構成され、各所に弁が設けられる例を説明したが、それらの構成は適宜変更可能である。迂回路15dがない状態でも構わない。
<Another embodiment>
<1>
In the said embodiment, although the specific example was given and demonstrated about the structure of the heat pump system, about the structure, it can change suitably.
For example, in the above-described embodiment, the cooling water circulation path 15 is configured by the first flow path portion 15a, the second flow path portion 15b, the common flow path portion 15c, and the detour path 15d, and an example in which valves are provided in various places has been described. However, those configurations can be changed as appropriate. A state without the detour 15d may be used.

他にも、冷媒循環路3の途中に熱交換器を追加で設けてもよい。例えば、図9及び図10に示すのは、ヒートポンプシステムの別の構成を示す図である。具体的には、図9は冷房運転を行うときの冷媒の循環状態を説明する図であり、図10は検査運転を行うときの冷媒の循環状態を説明する図である。この例では、冷媒循環路3の主循環路3a及び副循環路3cの途中に第5熱交換器17を設けてある。そして、第5熱交換器17で、主循環路3aに存在する冷媒と、副循環路3cに存在する冷媒との間での熱交換が行われる。尚、図9及び図10では、第5熱交換器17は分岐部50と弁V3の間に設置されているが、室外熱交換器8と分岐部50の間に設置することも可能である。   In addition, a heat exchanger may be additionally provided in the middle of the refrigerant circulation path 3. For example, FIG. 9 and FIG. 10 are diagrams showing another configuration of the heat pump system. Specifically, FIG. 9 is a diagram illustrating the circulation state of the refrigerant when performing the cooling operation, and FIG. 10 is a diagram illustrating the circulation state of the refrigerant when performing the inspection operation. In this example, the 5th heat exchanger 17 is provided in the middle of the main circuit 3a and the sub circuit 3c of the refrigerant circuit 3. Then, in the fifth heat exchanger 17, heat exchange is performed between the refrigerant existing in the main circulation path 3a and the refrigerant existing in the sub circulation path 3c. 9 and 10, the fifth heat exchanger 17 is installed between the branch portion 50 and the valve V3. However, the fifth heat exchanger 17 may be installed between the outdoor heat exchanger 8 and the branch portion 50. .

図9に示す冷房運転では、主循環路3aを冷媒が流れ、副循環路3cの途中に設けられた弁V5が所定の開度に調節されることで副循環路3cにも冷媒が流れる。それにより、第5熱交換器17で主循環路3aを流れる冷媒と副循環路3cを流れる冷媒との間での熱交換が行われる。つまり、第5熱交換器17は過冷却器として機能する。   In the cooling operation shown in FIG. 9, the refrigerant flows through the main circuit 3a, and the refrigerant flows through the sub circuit 3c by adjusting the valve V5 provided in the middle of the sub circuit 3c to a predetermined opening degree. As a result, the fifth heat exchanger 17 exchanges heat between the refrigerant flowing through the main circulation path 3a and the refrigerant flowing through the sub circulation path 3c. That is, the fifth heat exchanger 17 functions as a supercooler.

図10に示す検査運転では、弁V1が閉止されることで主循環路3aには冷媒は流れないが、上記実施形態で説明したように、主循環路3aの分岐部50と合流部51との間では冷媒が滞留する。
また、上記実施形態で説明したように、検査運転において、副循環路3cの途中に設けられた弁V5を所定の開度に調節して副循環路3cに冷媒して、検査運転中に排熱回収用熱交換器10に供給される冷媒の流量を調節することもできる。但し、検査運転中にこのような排熱回収用熱交換器10に供給される冷媒流量の調節を行わないのであれば、弁V5を閉止しておけばよい。
In the inspection operation shown in FIG. 10, the refrigerant does not flow into the main circulation path 3 a by closing the valve V <b> 1, but as described in the above embodiment, the branch part 50 and the merge part 51 of the main circulation path 3 a The refrigerant stays in between.
Further, as described in the above embodiment, in the inspection operation, the valve V5 provided in the middle of the auxiliary circulation path 3c is adjusted to a predetermined opening degree to be cooled in the auxiliary circulation path 3c and discharged during the inspection operation. The flow rate of the refrigerant supplied to the heat recovery heat exchanger 10 can also be adjusted. However, if the flow rate of the refrigerant supplied to the exhaust heat recovery heat exchanger 10 is not adjusted during the inspection operation, the valve V5 may be closed.

<2>
上記第4実施形態では、複数台の圧縮機5a,5bがエンジン4によって駆動されるヒートポンプシステムを説明したが、例えば複数台の圧縮機5a,5bの一部が電動モータによって駆動されるヒートポンプシステムに変更してもよい。
<2>
In the fourth embodiment, the heat pump system in which the plurality of compressors 5a and 5b are driven by the engine 4 has been described. For example, a heat pump system in which a part of the plurality of compressors 5a and 5b is driven by an electric motor. You may change to

<3>
上記実施形態では、ヒートポンプシステムがエンジン4を備えることで、エンジン4の駆動力が圧縮機5に伝達され及びエンジン4の排熱が排熱回収用熱交換器(第3熱交換器)10に与えられる例を説明したが、ヒートポンプシステムがエンジン4に代えて燃料電池及び電動モータを備えた構成を採用してもよい。この場合、燃料電池の発電電力によって動作する電動モータが圧縮機5を駆動し、燃料電池の排熱が排熱回収用熱交換器10に与えられるような構成となる。
<3>
In the above embodiment, the heat pump system includes the engine 4, whereby the driving force of the engine 4 is transmitted to the compressor 5, and the exhaust heat of the engine 4 is transferred to the exhaust heat recovery heat exchanger (third heat exchanger) 10. Although the given example has been described, a configuration in which the heat pump system includes a fuel cell and an electric motor instead of the engine 4 may be adopted. In this case, the electric motor operated by the power generated by the fuel cell drives the compressor 5, and the exhaust heat of the fuel cell is provided to the exhaust heat recovery heat exchanger 10.

<4>
上記実施形態では、状態値検出工程で検出する状態値が冷媒の過冷却度である場合を例示したが、冷媒充填量の変化に応じた過冷却度の変化は、冷媒充填量に応じたp−h線図の変化の一例に過ぎず、状態値として過冷却度とは別の値、即ち、過冷却度とは別のp−h線図に現れる値を状態値として用いてもよい。
<4>
In the above embodiment, the case where the state value detected in the state value detection step is the degree of supercooling of the refrigerant, but the change in the degree of supercooling according to the change in the refrigerant filling amount is p according to the refrigerant filling amount. It is merely an example of a change in the -h diagram, and a value different from the degree of supercooling as the state value, that is, a value appearing in a ph diagram different from the degree of supercooling may be used as the state value.

<5>
上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用でき、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変できる。
<5>
The configurations disclosed in the above-described embodiments (including the other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in the other embodiments as long as no contradiction arises, and are disclosed in this specification. The embodiment is an exemplification, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.

本発明は、冷媒循環路における冷媒充填量を正しく認識できるヒートポンプシステムの検査方法に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for an inspection method for a heat pump system that can correctly recognize the refrigerant charge amount in the refrigerant circuit.

3 冷媒循環路
4 エンジン
5 圧縮機(圧縮手段)
5a 圧縮機
5b 圧縮機
8 室外熱交換器(第1熱交換器)
9 放熱用熱交換器(第4熱交換器)
10 排熱回収用熱交換器(第3熱交換器)
14 室内熱交換器(第2熱交換器)
15 冷却水循環路
15a 第1流路部分
15b 第2流路部分
15c 共通流路部分
16 合流部
20 制御装置
40 駆動力伝達機構
F 室外ファン
V1 弁(第1膨張弁)
V2 弁(第2膨張弁)
V5 弁(冷媒分配器)
V7 弁(冷却水分配器)
V8 弁(冷却水分配器)
3 Refrigerant circuit 4 Engine 5 Compressor (compression means)
5a Compressor 5b Compressor 8 Outdoor heat exchanger (first heat exchanger)
9 Heat exchanger for heat dissipation (4th heat exchanger)
10 Heat exchanger for exhaust heat recovery (3rd heat exchanger)
14 Indoor heat exchanger (second heat exchanger)
15 Cooling water circulation path 15a 1st flow path part 15b 2nd flow path part 15c Common flow path part 16 Merging part 20 Control device 40 Driving force transmission mechanism F Outdoor fan V1 valve (1st expansion valve)
V2 valve (second expansion valve)
V5 valve (refrigerant distributor)
V7 valve (cooling water distributor)
V8 valve (cooling water distributor)

Claims (14)

冷媒が循環する冷媒循環路と、エンジンと、前記エンジンによって駆動され、前記冷媒循環路を流れる冷媒を圧縮する圧縮手段と、前記冷媒循環路を流れる冷媒と外気との間での熱交換を行わせることができる第1熱交換器と、前記冷媒循環路を流れる冷媒と熱交換対象流体との間での熱交換を行わせることができる第2熱交換器と、前記第2熱交換器に流入する冷媒を膨張させる第1膨張弁と、前記冷媒循環路を流れる冷媒と前記エンジンから放出される排熱との間での熱交換を行わせることができる第3熱交換器と、前記第3熱交換器に流入する冷媒を膨張させる第2膨張弁とを備え、
前記第2膨張弁及び前記第3熱交換器を経由して冷媒を循環させない状態で、前記圧縮手段から送出された冷媒が前記第1熱交換器と前記第1膨張弁と前記第2熱交換器とを順に通流した後で前記圧縮手段に帰還するように冷媒の循環状態を切り替えることで、蒸発器として作用する前記第2熱交換器において、前記冷媒循環路を流れる冷媒によって前記熱交換対象流体を冷却する冷房運転を行うことができるヒートポンプシステムの検査方法であって、
前記第1膨張弁及び前記第2熱交換器を経由して冷媒を循環させない遮断状態で、前記圧縮手段から送出された冷媒を前記第1熱交換器と前記第2膨張弁と前記第3熱交換器とを順に通流させた後で前記圧縮手段に帰還させるように冷媒の循環状態を切り替えて検査運転を行いながら、循環中の冷媒の状態値を検出する状態値検出工程と、
前記状態値検出工程で検出した前記状態値に基づいて、前記冷媒循環路内に存在する冷媒充填量の適否を判定する冷媒充填量判定工程とを有するヒートポンプシステムの検査方法。
A refrigerant circulation path through which the refrigerant circulates, an engine, a compression unit that is driven by the engine and compresses the refrigerant flowing through the refrigerant circulation path, and performs heat exchange between the refrigerant flowing through the refrigerant circulation path and the outside air A first heat exchanger capable of generating heat, a second heat exchanger capable of performing heat exchange between the refrigerant flowing through the refrigerant circulation path and the heat exchange target fluid, and the second heat exchanger. A first expansion valve for expanding the refrigerant flowing in; a third heat exchanger capable of performing heat exchange between the refrigerant flowing through the refrigerant circuit and the exhaust heat released from the engine; A second expansion valve that expands the refrigerant flowing into the three heat exchangers,
The refrigerant sent from the compression means is not circulated through the second expansion valve and the third heat exchanger, and the refrigerant sent from the compression means is the first heat exchanger, the first expansion valve, and the second heat exchange. In the second heat exchanger acting as an evaporator, the heat exchange is performed by the refrigerant flowing through the refrigerant circulation path by switching the circulation state of the refrigerant so as to return to the compression means after sequentially flowing through the evaporator. An inspection method for a heat pump system capable of performing a cooling operation for cooling a target fluid,
In the shut-off state in which the refrigerant is not circulated via the first expansion valve and the second heat exchanger, the refrigerant sent from the compression means is used as the first heat exchanger, the second expansion valve, and the third heat. A state value detection step of detecting the state value of the circulating refrigerant while performing the inspection operation by switching the circulation state of the refrigerant so as to be returned to the compression means after sequentially flowing through the exchanger;
A method for inspecting a heat pump system, comprising: a refrigerant charge amount determination step for determining whether or not a refrigerant charge amount existing in the refrigerant circulation path is appropriate based on the state value detected in the state value detection step.
前記状態値検出工程において前記状態値を検出するとき、前記検査運転を行うことで循環中の冷媒の前記第3熱交換器での蒸発圧力を、前記冷房運転を行うことで循環中の冷媒の前記第2熱交換器での蒸発圧力よりも低下させる請求項1に記載のヒートポンプシステムの検査方法。   When the state value is detected in the state value detection step, the evaporating pressure of the circulating refrigerant in the third heat exchanger is performed by performing the inspection operation, and the circulating refrigerant is recovered by performing the cooling operation. The method for inspecting a heat pump system according to claim 1, wherein the inspection method is lower than an evaporation pressure in the second heat exchanger. 前記状態値は、冷媒の過冷却度である請求項1又は2に記載のヒートポンプシステムの検査方法。   The heat pump system inspection method according to claim 1, wherein the state value is a degree of supercooling of the refrigerant. 前記ヒートポンプシステムは、前記エンジンから放出される排熱を回収する冷却水が循環する冷却水循環路を備え、前記第3熱交換器では、前記冷媒循環路を流れる冷媒と前記冷却水循環路を流れる冷却水との間での熱交換を行わせることができ、
前記状態値検出工程において前記状態値を検出するとき、前記冷却水循環路を通って前記第3熱交換器に供給される冷却水の単位時間当たりの流量を設定冷却水量以下にする請求項1〜3の何れか一項に記載のヒートポンプシステムの検査方法。
The heat pump system includes a cooling water circulation path through which cooling water for recovering exhaust heat released from the engine circulates, and in the third heat exchanger, the refrigerant flowing through the refrigerant circulation path and the cooling flowing through the cooling water circulation path Heat exchange with water,
When detecting the said state value in the said state value detection process, the flow rate per unit time of the cooling water supplied to the said 3rd heat exchanger through the said cooling water circulation path is made into below setting cooling water amount. The inspection method of the heat pump system as described in any one of 3.
前記冷却水循環路は、冷却水が前記第3熱交換器をバイパスして循環できる第1バイパス路と、当該第1バイパス路への冷却水の分配状態を調節可能な冷却水分配器とを有し、
前記状態値検出工程において前記状態値を検出するとき、前記冷却水循環路を通って前記第3熱交換器に供給される冷却水の単位時間当たりの流量を前記冷却水分配器を用いて前記設定冷却水量以下にする請求項4に記載のヒートポンプシステムの検査方法。
The cooling water circulation path includes a first bypass path through which the cooling water can circulate bypassing the third heat exchanger, and a cooling water distributor capable of adjusting a distribution state of the cooling water to the first bypass path. ,
When the state value is detected in the state value detection step, the flow rate per unit time of the cooling water supplied to the third heat exchanger through the cooling water circulation path is set using the cooling water distributor. The inspection method for the heat pump system according to claim 4, wherein the amount is less than or equal to the amount of water.
前記冷却水循環路には、冷却水の単位時間当たりの流量を調節可能な冷却水ポンプが設けられ、
前記状態値検出工程において前記状態値を検出するとき、前記冷却水循環路を通って前記第3熱交換器に供給される冷却水の単位時間当たりの流量を前記冷却水ポンプを用いて前記設定冷却水量以下にする請求項4又は5に記載のヒートポンプシステムの検査方法。
The cooling water circulation path is provided with a cooling water pump capable of adjusting the flow rate per unit time of the cooling water,
When the state value is detected in the state value detecting step, the flow rate per unit time of the cooling water supplied to the third heat exchanger through the cooling water circulation path is set using the cooling water pump. The method for inspecting a heat pump system according to claim 4 or 5, wherein the amount is not more than the amount of water.
前記冷媒循環路は、冷媒が前記第3熱交換器及び前記第2熱交換器をバイパスして循環できる第2バイパス路と、当該第2バイパス路への冷媒の分配状態を調節可能な冷媒分配器とを有し、
前記状態値検出工程において前記状態値を検出するとき、前記冷媒循環路を通って前記第3熱交換器に供給される冷媒の単位時間当たりの流量を前記冷媒分配器を用いて設定冷媒流量以下にする請求項1〜6の何れか一項に記載のヒートポンプシステムの検査方法。
The refrigerant circulation path includes a second bypass path through which the refrigerant can circulate bypassing the third heat exchanger and the second heat exchanger, and a refrigerant distribution capable of adjusting a distribution state of the refrigerant to the second bypass path. And
When detecting the state value in the state value detecting step, the flow rate per unit time of the refrigerant supplied to the third heat exchanger through the refrigerant circulation path is equal to or lower than the set refrigerant flow rate using the refrigerant distributor. The inspection method for the heat pump system according to any one of claims 1 to 6.
前記ヒートポンプシステムは、前記エンジンから放出される排熱を回収する冷却水が循環する冷却水循環路と、外気を流動させる室外ファンとを備え、
前記冷却水循環路では、前記エンジンから放出される排熱を回収した後の冷却水が分岐部で第1流路部分と第2流路部分とに分岐して流れ、前記第1流路部分と前記第2流路部分とを流れた冷却水が合流部で合流した後で再び前記エンジンから放出される排熱の回収を行うように冷却水が循環可能であり、
前記第2流路部分の途中には、当該第2流路部分を流れる冷却水と外気との間での熱交換を行わせることができる第4熱交換器が設けられ、
前記第3熱交換器では、前記冷媒循環路を流れる冷媒と前記第1流路部分を流れる冷却水との間での熱交換を行わせることができ、
前記室外ファンが動作することで、前記第1熱交換器で前記冷媒循環路を流れる冷媒と熱交換した後の外気が、前記第4熱交換器で前記第2流路部分を流れる冷却水と熱交換するように流動し、
前記状態値検出工程において前記状態値を検出するとき、前記第4熱交換器で外気と熱交換する前後での冷却水の温度差が設定温度差以内になるように前記室外ファンの回転速度を調節する請求項1〜7の何れか一項に記載のヒートポンプシステムの検査方法。
The heat pump system includes a cooling water circulation path through which cooling water for recovering exhaust heat released from the engine circulates, and an outdoor fan for flowing outside air,
In the cooling water circulation path, the cooling water after recovering the exhaust heat released from the engine branches and flows into the first flow path part and the second flow path part at the branch part, and the first flow path part and The cooling water can be circulated so as to collect the exhaust heat released from the engine again after the cooling water that has flowed through the second flow path portion merges at the merge portion.
In the middle of the second flow path portion, a fourth heat exchanger capable of performing heat exchange between the cooling water flowing through the second flow path portion and the outside air is provided,
In the third heat exchanger, heat exchange can be performed between the refrigerant flowing through the refrigerant circulation path and the cooling water flowing through the first flow path portion,
When the outdoor fan operates, the outside air after heat exchange with the refrigerant flowing through the refrigerant circulation path in the first heat exchanger is performed by cooling water flowing through the second flow path portion in the fourth heat exchanger. Flows to exchange heat,
When detecting the state value in the state value detecting step, the rotational speed of the outdoor fan is set so that the temperature difference between the cooling water before and after the heat exchange with the outside air in the fourth heat exchanger is within a set temperature difference. The inspection method of the heat pump system according to any one of claims 1 to 7, which is adjusted.
前記ヒートポンプシステムは、外気を流動させる室外ファンを備え、前記室外ファンが動作することで流動する外気が、前記第1熱交換器で前記冷媒循環路を流れる冷媒と熱交換するように構成され、
前記状態値検出工程において前記状態値を検出するとき、前記第1熱交換器での冷媒の凝縮圧力が目標値になるように前記室外ファンの回転速度を調節する請求項1〜7の何れか一項に記載のヒートポンプシステムの検査方法。
The heat pump system includes an outdoor fan that causes the outside air to flow, and the outside air that flows when the outdoor fan operates is configured to exchange heat with the refrigerant that flows through the refrigerant circulation path in the first heat exchanger.
8. The rotation speed of the outdoor fan is adjusted so that the condensation pressure of the refrigerant in the first heat exchanger becomes a target value when the state value is detected in the state value detection step. The inspection method for the heat pump system according to one item.
前記圧縮手段は、前記エンジンによって駆動されて冷媒を圧縮する複数台の圧縮機と、前記エンジンから前記複数台の圧縮機のそれぞれへの駆動力の伝達状態を調節可能な駆動力伝達機構とを備え、
前記状態値検出工程において前記状態値を検出するとき、前記駆動力伝達機構が、前記複数台の圧縮機のうちの一部の前記圧縮機のみに前記エンジンの駆動力を伝達する請求項1〜9の何れか一項に記載のヒートポンプシステムの検査方法。
The compression means includes a plurality of compressors driven by the engine to compress the refrigerant, and a driving force transmission mechanism capable of adjusting a transmission state of the driving force from the engine to each of the plurality of compressors. Prepared,
The driving force transmission mechanism transmits the driving force of the engine only to some of the compressors of the plurality of compressors when detecting the state value in the state value detecting step. The inspection method of the heat pump system as described in any one of Claims 9.
前記状態値検出工程において前記状態値を検出するとき、前記検査運転時の前記エンジンの回転速度及びトルクに対して同じ回転速度及びトルクで前記冷房運転をするとした場合に比べて前記エンジンの排熱割合を大きくすることができるエンジン運転設定で前記エンジンを運転する請求項1〜10の何れか一項に記載のヒートポンプシステムの検査方法。   When the state value is detected in the state value detection step, the exhaust heat of the engine is larger than when the cooling operation is performed at the same rotation speed and torque as the rotation speed and torque of the engine during the inspection operation. The inspection method of the heat pump system according to any one of claims 1 to 10, wherein the engine is operated with an engine operation setting capable of increasing a ratio. 前記遮断状態において冷媒が滞留している区間の体積と、当該区間に滞留している冷媒の密度とに基づいて滞留冷媒量を導出する滞留冷媒量導出工程を有し、
前記冷媒充填量判定工程において、前記状態値検出工程で検出した前記状態値と所定の基準値との比較結果と、前記滞留冷媒量とに基づいて、前記冷媒循環路内に存在する冷媒充填量の適否を判定する請求項1〜11の何れか一項に記載のヒートポンプシステムの検査方法。
A residence refrigerant amount deriving step for deriving the amount of residence refrigerant based on the volume of the section in which the refrigerant stays in the shut-off state and the density of the refrigerant staying in the section;
In the refrigerant charge amount determination step, the refrigerant charge amount existing in the refrigerant circulation path based on the comparison result between the state value detected in the state value detection step and a predetermined reference value and the amount of the retained refrigerant The inspection method for a heat pump system according to any one of claims 1 to 11, wherein the suitability is determined.
前記ヒートポンプシステムは、遠隔操作により前記冷媒循環路における冷媒の循環状態を切り替え可能に構成されている請求項1〜12の何れか一項に記載のヒートポンプシステムの検査方法。   The heat pump system inspection method according to any one of claims 1 to 12, wherein the heat pump system is configured to be able to switch a circulation state of the refrigerant in the refrigerant circulation path by a remote operation. 冷媒が循環する冷媒循環路と、エンジンと、前記エンジンによって駆動され、前記冷媒循環路を流れる冷媒を圧縮する圧縮手段と、前記冷媒循環路を流れる冷媒と外気との間での熱交換を行わせることができる第1熱交換器と、前記冷媒循環路を流れる冷媒と熱交換対象流体との間での熱交換を行わせることができる第2熱交換器と、前記第2熱交換器に流入する冷媒を膨張させる第1膨張弁と、前記冷媒循環路を流れる冷媒と前記エンジンから放出される排熱との間での熱交換を行わせることができる第3熱交換器と、前記第3熱交換器に流入する冷媒を膨張させる第2膨張弁と、制御装置とを備え、
前記制御装置が、前記第2膨張弁及び前記第3熱交換器を経由して冷媒を循環させない状態で、前記圧縮手段から送出された冷媒が前記第1熱交換器と前記第1膨張弁と前記第2熱交換器とを順に通流した後で前記圧縮手段に帰還するように冷媒の循環状態を切り替えることで、蒸発器として作用する前記第2熱交換器において、前記冷媒循環路を流れる冷媒によって前記熱交換対象流体を冷却する冷房運転を行うことができるヒートポンプシステムであって、
前記制御装置が、前記第1膨張弁及び前記第2熱交換器を経由して冷媒を循環させない遮断状態で、前記圧縮手段から送出された冷媒を前記第1熱交換器と前記第2膨張弁と前記第3熱交換器とを順に通流させた後で前記圧縮手段に帰還させるように冷媒の循環状態を切り替えて検査運転を行わせながら検出した、循環中の冷媒の状態値に基づいて、前記冷媒循環路内に存在する冷媒充填量の適否を判定するヒートポンプシステム。
A refrigerant circulation path through which the refrigerant circulates, an engine, a compression unit that is driven by the engine and compresses the refrigerant flowing through the refrigerant circulation path, and performs heat exchange between the refrigerant flowing through the refrigerant circulation path and the outside air A first heat exchanger capable of generating heat, a second heat exchanger capable of performing heat exchange between the refrigerant flowing through the refrigerant circulation path and the heat exchange target fluid, and the second heat exchanger. A first expansion valve for expanding the refrigerant flowing in; a third heat exchanger capable of performing heat exchange between the refrigerant flowing through the refrigerant circuit and the exhaust heat released from the engine; A second expansion valve for expanding the refrigerant flowing into the three heat exchangers, and a control device;
In a state where the control device does not circulate the refrigerant via the second expansion valve and the third heat exchanger, the refrigerant sent from the compression means is the first heat exchanger, the first expansion valve, In the second heat exchanger acting as an evaporator, the refrigerant flows in the refrigerant circulation path by switching the refrigerant circulation state so as to return to the compression means after sequentially flowing through the second heat exchanger. A heat pump system capable of performing a cooling operation for cooling the heat exchange target fluid with a refrigerant,
In the shut-off state in which the control device does not circulate the refrigerant via the first expansion valve and the second heat exchanger, the refrigerant sent from the compression means is sent to the first heat exchanger and the second expansion valve. And the third heat exchanger in order, and then, based on the state value of the circulating refrigerant detected while performing the inspection operation by switching the circulating state of the refrigerant so as to be returned to the compression means A heat pump system for determining the suitability of the refrigerant filling amount existing in the refrigerant circulation path.
JP2016168129A 2016-08-30 2016-08-30 Method for inspecting heat pump system and heat pump system Active JP6739292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016168129A JP6739292B2 (en) 2016-08-30 2016-08-30 Method for inspecting heat pump system and heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016168129A JP6739292B2 (en) 2016-08-30 2016-08-30 Method for inspecting heat pump system and heat pump system

Publications (2)

Publication Number Publication Date
JP2018035979A true JP2018035979A (en) 2018-03-08
JP6739292B2 JP6739292B2 (en) 2020-08-12

Family

ID=61566426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016168129A Active JP6739292B2 (en) 2016-08-30 2016-08-30 Method for inspecting heat pump system and heat pump system

Country Status (1)

Country Link
JP (1) JP6739292B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190121561A (en) * 2018-04-18 2019-10-28 엘지전자 주식회사 Air conditioner
KR20190121563A (en) * 2018-04-18 2019-10-28 엘지전자 주식회사 Air conditioner and Control method of the same
JP2019190744A (en) * 2018-04-25 2019-10-31 大阪瓦斯株式会社 Heat pump system inspection method and heat pump system
WO2022211342A1 (en) * 2021-04-02 2022-10-06 한온시스템 주식회사 Thermal management system, control method therefor, and compressor included therein

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190121561A (en) * 2018-04-18 2019-10-28 엘지전자 주식회사 Air conditioner
KR20190121563A (en) * 2018-04-18 2019-10-28 엘지전자 주식회사 Air conditioner and Control method of the same
KR102462872B1 (en) * 2018-04-18 2022-11-03 엘지전자 주식회사 Air conditioner and Control method of the same
KR102462874B1 (en) * 2018-04-18 2022-11-03 엘지전자 주식회사 Air conditioner
JP2019190744A (en) * 2018-04-25 2019-10-31 大阪瓦斯株式会社 Heat pump system inspection method and heat pump system
WO2022211342A1 (en) * 2021-04-02 2022-10-06 한온시스템 주식회사 Thermal management system, control method therefor, and compressor included therein

Also Published As

Publication number Publication date
JP6739292B2 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
JP5234167B2 (en) Leakage diagnostic device
US9709308B2 (en) Heat pump device and refrigerant bypass method
US9746212B2 (en) Refrigerating and air-conditioning apparatus
JP4989511B2 (en) Air conditioner
US10082324B2 (en) Refrigeration apparatus having leakage or charge deficiency determining feature
US20150059380A1 (en) Air-conditioning apparatus
JP6404727B2 (en) heat pump
JP6739292B2 (en) Method for inspecting heat pump system and heat pump system
US20140345310A1 (en) Refrigeration cycle apparatus
EP2354724A2 (en) Air conditioner and method for controlling air conditioner
CN105102909A (en) System for refrigerant charge verification
WO2007126055A1 (en) Air conditioner
JPWO2018078729A1 (en) Refrigeration cycle equipment
JP7401795B2 (en) Refrigerant leak determination system
JP5164527B2 (en) Air conditioner
JP6551593B2 (en) Refrigerant amount estimation method and air conditioner
JP2006242506A (en) Thermal storage type air conditioner
JP2014202385A (en) Refrigeration cycle device
JP2015075259A (en) Refrigeration device
JP6979921B2 (en) Inspection method of heat pump system and heat pump system
JP2004020070A (en) Heat pump type cold-hot water heater
JP5826722B2 (en) Dual refrigeration equipment
JP2017067397A (en) Refrigerator
WO2018189826A1 (en) Refrigeration cycle device
JP7348547B2 (en) Heat source unit and refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200721

R150 Certificate of patent or registration of utility model

Ref document number: 6739292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350