JP2018034095A - Method for regenerating cation exchange resin, method for treating liquid to be treated, and treatment facility containing cation exchange resin - Google Patents

Method for regenerating cation exchange resin, method for treating liquid to be treated, and treatment facility containing cation exchange resin Download PDF

Info

Publication number
JP2018034095A
JP2018034095A JP2016167898A JP2016167898A JP2018034095A JP 2018034095 A JP2018034095 A JP 2018034095A JP 2016167898 A JP2016167898 A JP 2016167898A JP 2016167898 A JP2016167898 A JP 2016167898A JP 2018034095 A JP2018034095 A JP 2018034095A
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
liquid
metal
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016167898A
Other languages
Japanese (ja)
Other versions
JP6786308B2 (en
Inventor
安達 太起夫
Takio Adachi
太起夫 安達
剛 篠木
Takeshi Shinoki
剛 篠木
大樹 久保
Daiki Kubo
大樹 久保
博司 大庭
Hiroshi Oba
博司 大庭
信行 松本
Nobuyuki Matsumoto
信行 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tsukishima Kankyo Engineering Ltd
Original Assignee
Osaka Gas Co Ltd
Tsukishima Kankyo Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tsukishima Kankyo Engineering Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016167898A priority Critical patent/JP6786308B2/en
Publication of JP2018034095A publication Critical patent/JP2018034095A/en
Application granted granted Critical
Publication of JP6786308B2 publication Critical patent/JP6786308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus capable of accurately regenerating a cation exchange resin.SOLUTION: When a cation exchange resin is regenerated which is used for removing metal ions by the cation exchange resin and captures the metal, a strongly acidic cation exchange resin is used as the cation exchange resin, and the strongly acidic cation exchange resin and at least one aqueous solution of a regenerant of an organic acid and organic acid alkali metal salt having an acid dissociation index (pKa) is 1.0 or less are brought into contact with each other, and the metal is eluted.SELECTED DRAWING: None

Description

本発明は、陽イオン交換樹脂の再生方法、被処理液の処理方法及び陽イオン交換樹脂を含む処理設備に関する。   The present invention relates to a method for regenerating a cation exchange resin, a method for treating a liquid to be treated, and a treatment facility including the cation exchange resin.

高温高圧下すなわち亜臨界条件下で廃水中の処理物を転換/改質又は分解する技術として、触媒を使用せずに亜臨界水の反応性を利用する設備や触媒を使用して実施する設備が知られている。例えば水熱ガス化設備では触媒を用いて温度200〜350℃程度、圧力5〜15MPaG程度の高温高圧条件下(亜臨界条件下)で廃水中の有機物をメタンなどの有価ガスに転換し回収する。   Equipment that uses the reactivity of subcritical water without using a catalyst or equipment that uses a catalyst as a technology to convert / reform or decompose the wastewater treatment under high temperature and high pressure, that is, subcritical conditions It has been known. For example, hydrothermal gasification equipment uses a catalyst to convert organic matter in wastewater into valuable gas such as methane and recover it under high temperature and high pressure conditions (subcritical conditions) at a temperature of about 200 to 350 ° C. and a pressure of about 5 to 15 MPaG. .

ここで、水における亜臨界条件とは、広義には100℃超〜374℃、狭義には250℃程度〜374℃の高温高圧下で液相が共存する領域である。対象となる廃水中の処理物とは、例えば有機物や、硝酸根を除くシアン化物やアンモニアなどの窒素化合物及び硫酸根を除く硫黄化合物のような被酸化性無機物である。   Here, the subcritical condition in water is a region where the liquid phase coexists under a high temperature and high pressure of over 100 ° C. to 374 ° C. in a broad sense and about 250 ° C. to 374 ° C. in a narrow sense. The treated wastewater to be treated is, for example, an organic matter, an oxidizable inorganic substance such as a cyanide excluding nitrate radical, a nitrogen compound such as ammonia, and a sulfur compound excluding sulfate radical.

これらの処理設備では、耐食性のすぐれた材料が使用される。
一般に耐食性のすぐれた材料は表面に不導体膜が形成されており、その被膜が外的要因によって局部的に破壊し、孔蝕あるいは応力腐食割れの起点となる。
応力腐食割れは環境、材料、応力の3因子が同時・適度に関与するときに発生する。塩化物イオンの存在下で応力腐食割れを生じる金属として、低合金鋼、オーステナイト系ステンレス鋼、マルテンサイト系ステンレス鋼、Al−Mg合金、Al−Cu−Mg合金、Al−Mg−Zn合金、Al−Zn−Mg−Mn合金、Al−Zn−Mg−Cu−Mn合金、チタン、チタン合金がある。特にステンレス鋼の応力腐食割れは塩化物イオンを含む環境で発生しやすいといわれている。
応力腐食割れはごく短時間でも生成し、しかも、亜臨界条件下では高温高圧下での容器であることによる重大な懸念を予め払拭しておく必要がある。
In these treatment facilities, materials having excellent corrosion resistance are used.
In general, a material having excellent corrosion resistance has a non-conductive film formed on the surface, and the coating is locally broken by an external factor, and becomes a starting point of pitting corrosion or stress corrosion cracking.
Stress corrosion cracking occurs when the three factors of environment, material, and stress are simultaneously and moderately involved. Low-alloy steel, austenitic stainless steel, martensitic stainless steel, Al-Mg alloy, Al-Cu-Mg alloy, Al-Mg-Zn alloy, Al as metals that cause stress corrosion cracking in the presence of chloride ions -Zn-Mg-Mn alloy, Al-Zn-Mg-Cu-Mn alloy, titanium, titanium alloy. In particular, it is said that stress corrosion cracking of stainless steel is likely to occur in an environment containing chloride ions.
Stress corrosion cracking is generated even in a very short time, and it is necessary to wipe out in advance the serious concern of being a container under high temperature and high pressure under subcritical conditions.

このため、これらの金属を接液部に持つ材料で構成されるシステムでは、応力腐食割れを防ぐために塩素濃度(有機体塩素を含む)が十分に低いことが要求される。   For this reason, in a system composed of materials having these metals in the wetted part, the chlorine concentration (including organic chlorine) is required to be sufficiently low in order to prevent stress corrosion cracking.

また、反応中の金属類の析出を防ぐためアルカリ金属以外の金属濃度も十分に低いことが要求される。金属類は、溶液のpHが変わったり、有機物の分解や転換などで金属錯体の配位子が除かれたりすると加水分解して沈殿し、設備の閉塞の原因になることがある。   Moreover, in order to prevent precipitation of metals during the reaction, it is required that the metal concentration other than the alkali metal is sufficiently low. Metals may hydrolyze and precipitate when the pH of the solution changes or the ligand of the metal complex is removed due to decomposition or conversion of organic matter, which may cause blockage of equipment.

金属類を除去する方法の一つに陽イオン交換樹脂によるイオン交換法がある。一般的な陽イオン交換樹脂の用途として、硬水の軟水化処理があり、Na型の強酸性陽イオン交換樹脂を用いCa、Mgなどの金属類をNa置換し、その樹脂の再生には10%程度のNaCl水溶液が用いられている。   One method for removing metals is an ion exchange method using a cation exchange resin. As a general cation exchange resin, there is softening treatment of hard water, and Na-type strongly acidic cation exchange resin is used to replace metals such as Ca and Mg with Na. A moderate NaCl aqueous solution is used.

高温高圧下すなわち亜臨界状態で稼働する設備に供給する液の前処理として、陽イオン交換樹脂を用いて金属イオンを除去することが考えられる。なお、これらの亜臨界条件で稼働する設備の例としては特許文献1〜3のものがある。   As a pretreatment of the liquid supplied to equipment operating under high temperature and high pressure, that is, in a subcritical state, it is conceivable to remove metal ions using a cation exchange resin. In addition, there exists a thing of patent documents 1-3 as an example of the equipment which operate | moves on these subcritical conditions.

特開2009−178657号公報JP 2009-178657 A 特開2004−352756号公報JP 2004-352756 A 特許第5330751号公報Japanese Patent No. 5330751

しかるに、陽イオン交換樹脂の再生にNaCl水や塩酸水溶液を用いる場合、洗浄を十分に行い、Clイオン濃度を十分に低くしないと接液部の金属に腐食割れが発生する可能性が大きくなる。応力腐食割れは炭素鋼などの全面腐食の場合と異なり非常に短時間(場合によっては数時間)で設備材を腐食し細孔を発生する。   However, when NaCl water or hydrochloric acid aqueous solution is used for the regeneration of the cation exchange resin, there is a high possibility that corrosion cracking will occur in the metal in the wetted part unless the Cl ion concentration is sufficiently lowered. Stress corrosion cracking corrodes the equipment material in a very short time (in some cases, several hours) unlike the case of general corrosion such as carbon steel, and generates pores.

試みに、洗浄方法の探索の過程で、NaCl水を用いて再生後、再生剤と同一流れで純水を流してみたが、樹脂量の30倍以上流しても塩化物イオン濃度は数ppm程度にしかならないことが分かった。
再生に用いるNaCl濃度は数%以上であるので数ppm以下とするためには4〜5 桁以上の洗浄効果が必要になる。洗浄操作における不注意による高濃度NaClの混入にも注意が必要になる。
In an attempt to search for a cleaning method, after regeneration using NaCl water, pure water was flowed in the same flow as the regenerant, but the chloride ion concentration was about several ppm even when flowing more than 30 times the amount of resin. I understood that it was only possible.
Since the NaCl concentration used for regeneration is several percent or more, a cleaning effect of 4 to 5 digits or more is necessary to make it several ppm or less. Care must also be taken when high-concentration NaCl is mixed due to carelessness in the washing operation.

塩化物以外のイオン、例えば炭酸根、硫酸根、硝酸根、リン酸根からなる塩又は酸を用いることも考えられる。
この場合、処理対象液に例えばカルシウムイオンが含有されていた場合には、再生時に炭酸カルシウムや硫酸カルシウム、リン酸カルシウムの沈殿が生成する可能性がある。また、炭酸根の場合、気泡発生の可能性もあり溶離の不完全や樹脂の交換能力を阻害する可能性もある。硝酸根の場合、排水中のN分の増大になり環境上好ましくなく、高濃度の硝酸は樹脂を酸化・改質させてしまう。
It is also conceivable to use ions or salts other than chlorides, such as carbonates, sulfates, nitrates, phosphates.
In this case, for example, when calcium ions are contained in the treatment target liquid, precipitation of calcium carbonate, calcium sulfate, and calcium phosphate may occur during regeneration. In the case of carbonate radicals, bubbles may be generated, which may cause incomplete elution or hinder resin exchange ability. In the case of nitrate radicals, the N content in the wastewater is increased, which is unfavorable for the environment, and high concentrations of nitric acid oxidize and modify the resin.

そこで、本発明が解決しようとする主たる課題は、陽イオン交換樹脂の再生を適確に行い得る方法及び装置を提供することにある。   Therefore, a main problem to be solved by the present invention is to provide a method and apparatus capable of accurately regenerating the cation exchange resin.

この課題を解決するための本発明は、陽イオン交換樹脂により金属イオンを除去するに供した、前記金属を捕捉した陽イオン交換樹脂を再生するに際し、
前記陽イオン交換樹脂として、強酸性陽イオン交換樹脂を用い、この強酸性陽イオン交換樹脂と、有機酸及び有機酸アルカリ金属塩の少なくとも一種の再生剤とを接触させて前記金属を溶離することを特徴とする陽イオン交換樹脂の再生方法である。
The present invention for solving this problem is used for removing metal ions with a cation exchange resin, and when regenerating the cation exchange resin capturing the metal,
A strong acidic cation exchange resin is used as the cation exchange resin, and the strong acid cation exchange resin is contacted with at least one regenerant of an organic acid and an organic acid alkali metal salt to elute the metal. This is a method for regenerating a cation exchange resin.

イオン交換樹脂による金属類の吸脱着性は、イオン交換樹脂のイオン交換基に結合している金属イオンと水相側に溶解する金属イオンとの平衡関係に依存する。有機酸は多くの金属と錯体をつくるため、溶離時に、より水相側に平衡が移行することになり、陽イオン交換樹脂表面上の金属除去を、NaCl水を用いる場合より良好に行い得る。   The adsorption / desorption property of metals by the ion exchange resin depends on the equilibrium relationship between the metal ion bonded to the ion exchange group of the ion exchange resin and the metal ion dissolved on the water phase side. Since an organic acid forms a complex with many metals, the equilibrium shifts to the aqueous phase side at the time of elution, and metal removal on the surface of the cation exchange resin can be performed better than when NaCl water is used.

スルホ基を有する陽イオン交換樹脂を使用できる。   A cation exchange resin having a sulfo group can be used.

また、前記再生剤としては、有機酸アルカリ金属塩として酢酸ナトリウム及びプロピオン酸ナトリウム、酸として酸解離指数(pka)2.0以下、好ましくは1.0以下、特に好ましくは0.6以下の有機酸の、一種又はそれらを併用するものから選ぶことができる。特に、有機酸アルカリ金属塩として酢酸ナトリウムは安価な薬剤であるほか、脱着効果が高い。実用上プロピオン酸ナトリウムの使用も望ましい。   Examples of the regenerant include sodium acetate and sodium propionate as organic acid alkali metal salts, and acid dissociation index (pka) of 2.0 or less, preferably 1.0 or less, particularly preferably 0.6 or less as an acid. The acid can be selected from one or a combination thereof. In particular, sodium acetate as an organic acid alkali metal salt is an inexpensive drug and has a high desorption effect. In practice, the use of sodium propionate is also desirable.

他方、本発明は、接液部が塩化物イオンによる応力腐食割れが発生する可能性のある金属材料を含む材料で構成される装置において亜臨界条件すなわち高温高圧条件下で処理物を含む液の処理に供給する液を、前記陽イオン交換樹脂に通液して金属イオンを除去するに供した、前記金属を含む陽イオン交換樹脂を再生するのに適している。
特に、再生剤は有機酸アルカリ金属塩及び又は有機酸であるので、仮に、ごく少量が残留し移行したとしても、もともと廃水中の有機物や被酸化性無機物を処理する設備であるので、有機酸及び有機酸アルカリ金属塩は処理され問題を生じない又は小さい。
On the other hand, according to the present invention, the liquid contact portion of a liquid containing a processed material under a subcritical condition, that is, a high temperature and high pressure condition, is used in an apparatus composed of a material containing a metal material in which stress corrosion cracking due to chloride ions may occur. The liquid supplied to the treatment is suitable for regenerating the cation exchange resin containing the metal, which is used to remove the metal ions by passing through the cation exchange resin.
In particular, since the regenerant is an organic acid alkali metal salt and / or organic acid, even if a very small amount remains and migrates, it is originally a facility for treating organic substances and oxidizable inorganic substances in wastewater. And the organic acid alkali metal salts are treated and cause no problems or are small.

本発明の処理液の処理方法は、
有機物及び/又は被酸化性無機物を含む被処理液を強酸性陽イオン交換樹脂に通液して金属イオンを除去する金属イオン除去工程と、
接液部が塩化物イオンによる応力腐食割れが発生する可能性のある金属で構成される装置において亜臨界条件下で前記被処理液を処理する処理工程と、
有機酸アルカリ金属塩及び有機酸の少なくとも一種の水溶液を前記陽イオン交換樹脂に通液する再生工程と、を含む。
The processing method of the processing liquid of the present invention includes:
A metal ion removing step of removing a metal ion by passing a liquid to be treated containing an organic substance and / or an oxidizable inorganic substance through a strongly acidic cation exchange resin;
A treatment step of treating the liquid to be treated under subcritical conditions in an apparatus composed of a metal in which a wetted part may cause stress corrosion cracking due to chloride ions;
A regeneration step of passing at least one aqueous solution of an organic acid alkali metal salt and an organic acid through the cation exchange resin.

本発明の装置的な面からみて、
接液部が塩化物イオンによる応力腐食割れが発生する可能性のある金属で構成される装置において亜臨界条件下で有機物や被酸化性無機物を含む液を処理する処理設備と、
前記処理設備に供給するに先だって被処理液を通液する強酸性陽イオン交換樹脂を有する並列配置の複数のイオン交換処理槽又は一系列配置のイオン交換処理層と、を備え、
前記被処理液を通液する第1のイオン交換処理槽と、再生剤を通液する第2のイオン交換処理槽との間で、通液種を交互に変更する通液変更手段、あるいは一系列のイオン交換処理槽で通液種を経時的に変更する手段を有し、
前記再生剤は有機酸アルカリ金属塩及び有機酸の少なくとも一種の水溶液であることを特徴とする強酸性陽イオン交換樹脂を含む処理設備が提案される。
From the device aspect of the present invention,
A treatment facility for treating a liquid containing an organic substance or an oxidizable inorganic substance under a subcritical condition in an apparatus composed of a metal in which a wetted part may cause stress corrosion cracking due to chloride ions;
A plurality of ion-exchange treatment tanks arranged in parallel or having a series of ion-exchange treatment layers having a strongly acidic cation exchange resin through which a liquid to be treated is passed before being supplied to the treatment facility,
A liquid flow changing means for alternately changing the liquid flow type between the first ion exchange treatment tank through which the liquid to be treated is passed and the second ion exchange treatment tank through which the regenerant is passed. Having means for changing the flow type over time in a series of ion exchange treatment tanks;
A treatment facility including a strongly acidic cation exchange resin is proposed, wherein the regenerant is an aqueous solution of at least one organic acid alkali metal salt and organic acid.

以上のとおり、本発明によれば、陽イオン交換樹脂の再生を適確に行い得る。
他方、亜臨界条件下で有機物や被酸化性無機物を含む液の処理に供給する液から金属イオンを除去する陽イオン交換樹脂の再生の場合には、再生剤(溶離剤)の有機酸成分が一部残留したとしても目的の設備が有機物や被酸化性無機物を処理する設備なので影響はほとんどない。
As described above, according to the present invention, the cation exchange resin can be properly regenerated.
On the other hand, in the case of regeneration of a cation exchange resin that removes metal ions from a liquid supplied to the treatment of a liquid containing an organic substance or an oxidizable inorganic substance under subcritical conditions, the organic acid component of the regenerant (eluent) is Even if a part of the material remains, there is almost no effect because the target equipment is equipment that treats organic substances and oxidizable inorganic substances.

本発明の処理設備例の概要図である。It is a schematic diagram of the example of processing equipment of the present invention. 実験装置の概要図である。It is a schematic diagram of an experimental device. 破過曲線を示すグラフである。It is a graph which shows a breakthrough curve.

まず、陽イオン交換樹脂と再生方法の理論的な説明を行ったうえで、後に本発明を実施するための形態を説明する。   First, after theoretically explaining the cation exchange resin and the regeneration method, a mode for carrying out the present invention will be described later.

陽イオン交換樹脂は樹脂母材(R)にスルホ基、カルボキシル基、酸性水酸基などが結合している高分子酸であり、スルホ基を持つ強酸性陽イオン交換樹脂とカルボキシル基や酸性水酸基を持つ弱酸性陽イオン交換樹脂に大別される。
強酸性陽イオン交換樹脂をR−SO3H、弱酸性陽イオン交換樹脂をR−COOHとあらわすと、水溶液中でH+が解離した状態では各々R−SO3 -、R−COO-とあらわすことができる。このとき、樹脂自体は陰に荷電するので電気的中性を保つために、陰に荷電した部分に陽イオンを対立イオンとして保有する。この対立イオンは液相側にあるため、可動性であり他の陽イオンと容易に場所を交換し得る。
The cation exchange resin is a polymer acid in which a sulfo group, a carboxyl group, an acidic hydroxyl group and the like are bonded to the resin matrix (R), and has a strongly acidic cation exchange resin having a sulfo group and a carboxyl group or an acidic hydroxyl group. Broadly divided into weakly acidic cation exchange resins.
The strongly acidic cation exchange resin R-SO 3 H, when a weakly acidic cation exchange resin represents the R-COOH, each in a state in which H + is dissociated in aqueous solution R-SO 3 -, R- COO - expressed as be able to. At this time, since the resin itself is negatively charged, a cation is held as an counter ion in the negatively charged portion in order to maintain electrical neutrality. Since this counter ion is on the liquid phase side, it is mobile and can easily exchange places with other cations.

陽イオンの交換吸着特性は、強酸性陽イオン交換樹脂と弱酸性陽イオン交換樹脂とで異なり、この機構について例示して説明する。   Cation exchange adsorption characteristics differ between strongly acidic cation exchange resins and weakly acidic cation exchange resins, and this mechanism will be exemplified and described.

(強酸性陽イオン交換樹脂)
強酸性陽イオン交換樹脂では、イオン交換樹脂の持つスルホ基は、強酸性は示すが配位結合性はほとんど示さない基であるので、交換する陽イオンの選択性は、陽イオンの電荷や水和イオン半径、イオン濃度に基づく質量作用則などに左右されるといわれている。
すなわち、一般に価数の高い陽イオンは価数の低い陽イオンより強く交換吸着し、1価のイオンを生成するアルカリ金属内、2価のイオンを生成するアルカリ土類金属内では、原子番号が大きくなるほど強い交換吸着性がある。
アルカリ金属内で見ると次の順位で交換吸着力が強い。

Figure 2018034095
(Strongly acidic cation exchange resin)
In strongly acidic cation exchange resins, the sulfo group of the ion exchange resin is a group that shows strong acidity but little coordination, so the selectivity of the cation to be exchanged depends on the charge of the cation or water. It is said that it depends on the mass action law based on the sum ion radius and ion concentration.
That is, in general, a cation having a high valence is exchanged and adsorbed more strongly than a cation having a low valence, and the atomic number is within an alkali metal that produces a monovalent ion, and within an alkaline earth metal that produces a divalent ion. The larger the value, the stronger the exchange adsorptivity.
When viewed in the alkali metal, the exchange adsorption power is strong in the following order.
Figure 2018034095

これは水和イオン半径が、原子番号が大きいほど小さくなる順位に相当している。
すなわち、原子番号が大きくなるとイオン半径は大きくなり、一方荷電量は同一であるので水和水個数が減少し、その結果原子番号が大きい方が水和イオン半径が小さくなる傾向になる。
This corresponds to a rank in which the hydrated ion radius decreases as the atomic number increases.
That is, as the atomic number increases, the ionic radius increases. On the other hand, since the charge amount is the same, the number of hydrated waters decreases, and as a result, the larger the atomic number, the smaller the hydrated ion radius tends to be.

本発明者らは、陽イオン交換樹脂の再生にNa塩を用いて検討したが、Na塩で交換可能であればNa以降のアルカリ金属でも可能なことになる。   The present inventors have studied the regeneration of the cation exchange resin using Na salt, but if it can be exchanged with Na salt, an alkali metal after Na can be used.

一方、Li塩であるが、これは質量作用則から考えることができる。
Caが吸着されている強酸性イオン交換樹脂をCH3COOLi溶液で溶離することを考える。
ここで、溶離したCa2+イオンは実際には酢酸イオンと一配位錯体Ca(OOCCH3+を一部形成するが、加水分解性金属をCaで代表させていることと錯体の生成はCaの溶離を優位に進める方向に働くのでここでは無視する。
この反応は一般には以下のように記述される。

Figure 2018034095
このとき、選択係数KLi Caは式(2)の逆方向での表現であるので以下の式であらわされる。
Figure 2018034095
On the other hand, although it is Li salt, this can be considered from a mass action law.
Consider eluting a strongly acidic ion exchange resin on which Ca is adsorbed with a CH 3 COOLi solution.
Here, the eluted Ca 2+ ion actually forms a part of the one-coordination complex Ca (OOCCH 3 ) + with the acetate ion, but the hydrolyzable metal is represented by Ca and the formation of the complex Since it works in a direction that promotes the elution of Ca, it is ignored here.
This reaction is generally described as follows.
Figure 2018034095
At this time, since the selection coefficient K Li Ca is expressed in the reverse direction of the equation (2), it is expressed by the following equation.
Figure 2018034095

「Perry's Chemical Engineers' Handbook, seventh edition,16-14」には、架橋度8%の強酸性陽イオン交換樹脂に対しKLi Ca =5.16が与えられており、また同資料にはKLi Na=1.98が与えられていることから、Na+型をCa2+で置換する反応

Figure 2018034095
の選択係数は
Figure 2018034095
すなわち、
Figure 2018034095
となる。 "Perry's Chemical Engineers' Handbook, seventh edition, 16-14 " in is given a K Li Ca = 5.16 to cross-linking degree of 8% of a strongly acidic cation exchange resin, also in the article K Li Since Na = 1.98 is given, the reaction to replace the Na + form with Ca 2+
Figure 2018034095
Is the selection factor
Figure 2018034095
That is,
Figure 2018034095
It becomes.

イオン交換樹脂の再生度を再生剤が酢酸ナトリウムと同程度、すなわち、

Figure 2018034095
とするには([Li+]/[Na+])2=1.977、すなわち[Li+]/[ Na+]=1.41が得られ、平衡を考えた場合、再生剤として使用する酢酸リチウムの濃度を酢酸ナトリウムの場合に対しモル濃度で1.41倍にすればよいことがわかる。 The regenerative amount of the ion exchange resin is the same as that of sodium acetate, that is,
Figure 2018034095
([Li + ] / [Na + ]) 2 = 1.977, ie, [Li + ] / [Na + ] = 1.41 is obtained, and is used as a regenerant when equilibrium is considered. It can be seen that the lithium acetate concentration may be 1.41 times the molar concentration of sodium acetate.

アルカリ金属イオンは水溶液中では全解離する金属であり酢酸ナトリウムで実施した再生効果は酢酸のアルカリ金属塩全般で実施可能なことが分かる。   It can be seen that the alkali metal ion is a metal that dissociates completely in an aqueous solution, and the regeneration effect performed with sodium acetate can be performed with all alkali metal salts of acetic acid.

強酸性陽イオン交換樹脂は酸によっても再生することができる。
イオン交換樹脂のH型再生では、一般的に塩酸等の無機酸を用いて行われている。
これは、前記アルカリ金属内での交換順位に対し、H+イオンは以下の順位になること

Figure 2018034095
ならびに、強酸に対しては強酸性陽イオン交換樹脂(スルホ基)の見かけの酸解離指数(pka')が2程度であることから、例えば2.0以下、好ましくは1.0以下、特に好ましくは0.6以下の酸を使用することで、スルホ基のH+の解離が少なくなりH型として再生される。 Strong acid cation exchange resins can also be regenerated with acids.
In the H-type regeneration of the ion exchange resin, generally, an inorganic acid such as hydrochloric acid is used.
This means that H + ions are in the following order relative to the exchange order in the alkali metal.
Figure 2018034095
In addition, the strong acid cation exchange resin (sulfo group) has an apparent acid dissociation index (pka ′) of about 2 with respect to a strong acid, for example, 2.0 or less, preferably 1.0 or less, particularly preferably By using an acid of 0.6 or less, the dissociation of H + of the sulfo group is reduced and it is regenerated as the H type.

本発明者らは、R(−SO3 -2Ca2+ に保持されているCa2+を、有機酸を用いて再生できないかについても検討した。
有機酸として、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸などのスルホン酸は非常に強酸であり、酸解離指数(pka)が各々−1.92、−1.68、−2.8など硝酸や硫酸と同程度かそれより強い酸と言われており、これらの酸で再生できることはほぼ自明であるので、カルボン酸類から選定することとし、最も一般的な有機酸である酢酸、酸解離指数が小さく(酸性度が大きく)、解離したCa2+と錯体を作りやすいクエン酸を選定した。シュウ酸も考えられたが、シュウ酸はCa2+と沈殿を作り、Ca2+は廃水等加水分解性金属含有溶液中に混在する可能性の大きい金属であるので除いた。
The present inventors have, R (-SO 3 -) a Ca 2+ held in 2 Ca 2+, it was also examined whether not play with organic acids.
As organic acids, sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, and benzenesulfonic acid are very strong acids, and nitric acid such as acid dissociation index (pka) of -1.92, -1.68, and -2.8, respectively. It is said that the acid can be regenerated with these acids, and it is almost obvious that it can be regenerated with these acids, so select from carboxylic acids, acetic acid, acid dissociation index, the most common organic acid. Citric acid with a small (high acidity) and easy to form a complex with dissociated Ca 2+ was selected. Oxalic acid was also considered, but oxalic acid formed a precipitate with Ca 2+ and was excluded because Ca 2+ is a metal that is likely to be mixed in a hydrolyzable metal-containing solution such as wastewater.

代表的なカルボン酸のイオン強度0.1での酸解離指数(pka)及びCa2+錯体の安定度指数を以下に示す。
ただし、多段解離する酸については1段目の解離指数(pka1)を、安定度指数は1段解離カルボン酸錯体の値を示した。
pka1 log KML
ギ酸(HCOOH) 3.65 −
酢酸(CH3COOH) 4.65 0.5
シュウ酸((COOH)2) 1.1 沈殿
クエン酸(C(OH)(CH2COOH)2COOH)3.0 10.9
安息香酸(C65COOH) 4.7 −
The acid dissociation index (pka) of a typical carboxylic acid at an ionic strength of 0.1 and the stability index of a Ca 2+ complex are shown below.
However, for the acid that dissociates in multiple stages, the dissociation index (pka 1 ) of the first stage was shown, and the stability index showed the value of the first-stage dissociated carboxylic acid complex.
pka 1 log K ML
Formic acid (HCOOH) 3.65 −
Acetic acid (CH 3 COOH) 4.65 0.5
Oxalic acid ((COOH) 2 ) 1.1 Precipitated citric acid (C (OH) (CH 2 COOH) 2 COOH) 3.0 10.9
Benzoic acid (C 6 H 5 COOH) 4.7 −

酢酸とクエン酸について、濃度としては通常のNaCl溶液での再生で行われる濃度10wt%と同重量モル濃度となるように各々10wt%、32.8wt%と調整した水溶液でCa飽和した強酸性陽イオン交換樹脂に対し通液したがほとんど(H型に)再生されなかった。
さらに強い酸性度を持つ有機酸である必要があると考えられた。
Concentrations of acetic acid and citric acid were strongly acidic positively saturated with Ca in an aqueous solution adjusted to 10 wt% and 32.8 wt%, respectively, so as to have a concentration of 10 wt% and the same molar concentration as that obtained by regeneration with a normal NaCl solution. Although liquid was passed through the ion exchange resin, it was hardly regenerated (to H type).
It was thought that the organic acid had a stronger acidity.

陽イオン交換樹脂をH型に再生する場合、H+イオン濃度を高くすることで行われる。強酸性陽イオン交換樹脂のH型への再生は3〜8%のHCl水溶液で行われることが多く、この濃度はおおよそ1〜2mol/Lに相当し、HClは全解離するのでH+濃度も同じ値となる。すなわちpHで見れば、0〜−0.3程度となる。使用する有機酸の溶解度は物質により異なるが、常用的な有機酸濃度を最大5mol/Lとしたとき、pH0となる酸解離指数(pka)は0.60が計算される。後述する実施例2において酢酸やクエン酸が有効でなかった理由としてこれらの有機酸の酸解離指数が大きかったことが考えられる。 When the cation exchange resin is regenerated to H type, it is performed by increasing the H + ion concentration. Regeneration of strongly acidic cation exchange resin to H-type is often performed with 3 to 8% HCl aqueous solution, and this concentration corresponds to approximately 1 to 2 mol / L. Since HCl is totally dissociated, H + concentration is also high. It becomes the same value. That is, when it sees by pH, it will be about 0--0.3. The solubility of the organic acid used varies depending on the substance, but when the usual organic acid concentration is 5 mol / L at the maximum, the acid dissociation index (pka) at which the pH becomes 0 is calculated as 0.60. It can be considered that the acid dissociation index of these organic acids was large as the reason why acetic acid and citric acid were not effective in Example 2 described later.

すなわち有機酸を用いて有効にH型に再生する場合、有機酸の酸解離指数(pka)は2.0以下、好ましくは1.0以下、特に好ましくは0.6以下であるとよい。   That is, when the organic acid is used to effectively regenerate the H-form, the acid dissociation index (pka) of the organic acid is 2.0 or less, preferably 1.0 or less, particularly preferably 0.6 or less.

(弱酸性陽イオン交換樹脂)
弱酸性陽イオン交換樹脂にはR−COOH型やR−PO(OH)2型などあるが、R−COOHで代表させると、無機系イオン交換反応としては、以下があげられる。

Figure 2018034095
Figure 2018034095
Figure 2018034095
Figure 2018034095
(Weakly acidic cation exchange resin)
Weakly acidic cation exchange resins include R-COOH type and R-PO (OH) 2 type. When represented by R-COOH, examples of inorganic ion exchange reactions include the following.
Figure 2018034095
Figure 2018034095
Figure 2018034095
Figure 2018034095

本発明の目的である加水分解性の金属を除く操作は、H型の樹脂を使用して式(10)に相当する反応で金属を除き、弱酸ないし強酸でH型に再生するか、Na型樹脂を使用して式(12)に相当する反応の逆反応でNa型に再生することになる。
弱酸性陽イオン交換樹脂の見かけ上の酸解離指数pka'は概略5〜6と言われており、pH4以下の弱酸でもH型に再生できる。
式(9)による除去では対象金属が加水分解性金属なので逆反応再生では金属の大半は水酸化物の沈殿として析出し、式(10)及び式(12)の逆反応が対象となる。
しかし、式(10)による吸着操作では酸が生成し、金属除去の後に中和操作が必要になる。また、式(12)では、正反応は容易に起きるが逆反応はイオン交換樹脂の持つ配位子の錯体形成により吸着した金属を中性塩で除くことは困難又は起きたとしても僅かであるといわれている。
したがって、対象液のpHを変動させないためにNa型を用いて加水分解性金属を除去する場合、再生のためには、いったん弱酸又は強酸でH型にしたのち、式(9)又は式(10)に相当する反応でNa型に戻す必要がある。
The operation of removing the hydrolyzable metal, which is the object of the present invention, is to remove the metal by a reaction corresponding to the formula (10) using an H-type resin and regenerate it into a H-type with a weak or strong acid, or Na-type. The resin is used to regenerate Na-type by the reverse reaction of the reaction corresponding to the formula (12).
The apparent acid dissociation index pka ′ of the weakly acidic cation exchange resin is said to be approximately 5 to 6, and even a weak acid having a pH of 4 or less can be regenerated into the H-type.
In the removal by the formula (9), since the target metal is a hydrolyzable metal, most of the metal is precipitated as a hydroxide precipitate in the reverse reaction regeneration, and the reverse reactions of the formulas (10) and (12) are targeted.
However, in the adsorption operation according to the formula (10), an acid is generated, and a neutralization operation is necessary after removing the metal. Further, in the formula (12), the forward reaction occurs easily, but the reverse reaction is difficult or slight even if it is difficult or difficult to remove the metal adsorbed by the complex formation of the ligand possessed by the ion exchange resin. It is said that.
Therefore, when the hydrolyzable metal is removed using Na type so as not to fluctuate the pH of the target liquid, for regeneration, it is once made H type with a weak acid or strong acid, and then the formula (9) or (10 ) In the reaction corresponding to

強酸性陽イオン交換樹脂では式(12)に相当する複分解反応は可逆的で、質量作用則に基づき実施できる。このため、単に加水分解性の金属をイオン交換で除き、これを再生する場合は強酸性陽イオン交換樹脂をNa型として用いることで対象溶液のpHを変動することなく容易に実施することができる。   With a strongly acidic cation exchange resin, the metathesis reaction corresponding to formula (12) is reversible and can be carried out based on the mass action law. For this reason, when a hydrolyzable metal is simply removed by ion exchange and is regenerated, it can be easily carried out without changing the pH of the target solution by using a strongly acidic cation exchange resin as the Na type. .

本発明者らは、強酸性陽イオン交換樹脂により金属イオンを除去するに供した、前記金属を捕捉した強酸性陽イオン交換樹脂を再生するに際し、有機酸アルカリ金属塩及び酸解離指数(pka)が2.0以下、好ましくは1.0以下、特に好ましくは0.6以下の有機酸の少なくとも一種の再生剤を使用することが有効であることを知見した。   When the present inventors regenerated the strong acid cation exchange resin capturing the metal, which was used for removing metal ions by the strong acid cation exchange resin, the organic acid alkali metal salt and the acid dissociation index (pka) Has been found to be effective to use at least one organic acid regenerating agent having an organic acid value of 2.0 or less, preferably 1.0 or less, particularly preferably 0.6 or less.

本発明の再生剤としては、酸として酸解離指数(pka)が2.0以下、好ましくは0.6以下の有機酸、酢酸ナトリウム又はプロピオン酸ナトリウムなどの有機酸アルカリ金属塩を使用できる。これらの有機酸及び有機酸アルカリ金属塩は、一種又はそれらを併用して使用できる。
後述の実験例に示されているように、有機酸アルカリ金属塩が望ましく、とりわけ酢酸ナトリウム及びプロピオン酸ナトリウムは好適なものである。
As the regenerating agent of the present invention, an organic acid alkali metal salt such as an organic acid, sodium acetate or sodium propionate having an acid dissociation index (pka) of 2.0 or less, preferably 0.6 or less can be used as an acid. These organic acids and organic acid alkali metal salts can be used alone or in combination.
As shown in the experimental examples described later, organic acid alkali metal salts are desirable, and sodium acetate and sodium propionate are particularly preferable.

シュウ酸は酸解離指数が低く、比較的酸性度の強い酸であるが、Caと沈殿を形成するのでCaが混在しやすい水溶液処理系では好ましくない。   Oxalic acid is an acid having a low acid dissociation index and a relatively strong acidity, but it forms a precipitate with Ca and is not preferable in an aqueous solution treatment system in which Ca is likely to be mixed.

強酸性陽イオン交換樹脂としては、三菱化学社製ダイヤイオン(登録商標)、ゲル型のSKシリーズのもの、ゲル型均一粒径のUKBシリーズのもの、ポーラス型のSKシリーズのもの、ハイポーラス型のHKP25・RCPシリーズのもの、オルガノ社販売アンバーライト(登録商標)200CT(商品名)、室町化学社販売ダウエックスマラソン(登録商標)C、ダウエックスモノスフィア(登録商標)C、ピュロライト株式会社販売AシリーズやCシリーズなどのものを使用できる。   Strongly acidic cation exchange resins include Diaion (registered trademark) manufactured by Mitsubishi Chemical Corporation, gel-type SK series, gel-type UKB series, porous-type SK series, and high-porous type. Of the HKP25 / RCP series, Amberlite (registered trademark) 200CT (trade name) sold by Organo, Dowex Marathon (registered trademark) C, Dowex Monosphere (registered trademark) C, Purolite, sold by Muromachi Chemical Co., Ltd. A series or C series can be used.

次に、図1に示す装置構成例をもって説明する。
高温高圧下すなわち亜臨界状態下で廃水中の有機物や被酸化性無機物を転換/改質又は分解する技術としては、触媒を使用せずに亜臨界水の反応性を利用する設備と触媒を使用して実施する装置が知られている。
Next, description will be made with reference to the apparatus configuration example shown in FIG.
As a technology for converting / reforming or decomposing organic substances and oxidizable inorganic substances in wastewater under high temperature and high pressure, that is, under subcritical conditions, facilities and catalysts that utilize the reactivity of subcritical water without using catalysts are used. An apparatus to be implemented is known.

ここで、水における亜臨界条件とは、広義には100超〜374℃、狭義には250程度〜374℃の高温高圧下で液相が共存する領域である。亜臨界水の高反応性を利用して有機物を転換あるいは加水分解する装置、一般にはジンマーマンプロセスと呼ばれる温度150〜350℃で酸素又は空気の存在により有機物や被酸化性無機物を酸化する装置、触媒を用いて温度200〜350℃で有機物をメタン等の有価ガスに転換する水熱ガス化装置、触媒を用いて温度150〜300℃で酸素又は空気の存在により有機物や被酸化性無機物を酸化する装置が知られている。   Here, the subcritical condition in water is a region where the liquid phase coexists under high temperature and high pressure of over 100 to 374 ° C. in a broad sense and about 250 to 374 ° C. in a narrow sense. An apparatus that converts or hydrolyzes organic substances using the high reactivity of subcritical water, an apparatus that generally oxidizes organic substances and oxidizable inorganic substances in the presence of oxygen or air at a temperature of 150 to 350 ° C., called the Zimmermann process, and a catalyst Hydrothermal gasifier that converts organic substances into valuable gases such as methane at a temperature of 200 to 350 ° C. using a catalyst, and oxidizes organic substances and oxidizable inorganic substances in the presence of oxygen or air at a temperature of 150 to 300 ° C. using a catalyst. The device is known.

被酸化性無機物としては、硝酸根を除くシアン化物やアンモニアなどの窒素化合物及び硫酸根を除く硫黄化合物などが挙げられる。
具体的には、アンモニア、ヒドラジン、ヒドロキシルアミン、アジ化水素酸、シアン化水素酸、シアン酸、チオシアン酸、次亜硝酸、亜硝酸、硫化水素酸、チオ硫酸、亜ジチオン酸、亜硫酸、二亜硫酸、ジチオン酸、ポリチオン酸及びこれらの酸のアルカリ金属塩等を指す。
Examples of the oxidizable inorganic substance include cyanide except for nitrate radicals, nitrogen compounds such as ammonia, and sulfur compounds other than sulfate radicals.
Specifically, ammonia, hydrazine, hydroxylamine, hydrazoic acid, hydrocyanic acid, cyanic acid, thiocyanic acid, hyponitrous acid, nitrous acid, hydrosulfuric acid, thiosulfuric acid, dithionic acid, sulfurous acid, disulfurous acid, dithione It refers to acids, polythioic acids and alkali metal salts of these acids.

2は廃液処理装置であり、接液部が塩化物イオンによる応力腐食割れが発生する可能性のある金属を含む材料で構成され(例ではステンレス鋼)、亜臨界条件下で有機物や被酸化性無機物を含む液の処理を行う、例では水熱ガス化装置で示しているが、例えば他の装置であってもよい。
接液部が塩化物イオンによる応力腐食割れが発生する可能性のある金属として、低合金鋼、オーステナイト系ステンレス鋼、マルテンサイト系ステンレス鋼、Al−Mg合金、Al−Cu−Mg合金、Al−Mg−Zn合金、Al−Zn−Mg−Mn合金、Al−Zn−Mg−Cu−Mn合金、チタン、チタン合金から1つ以上を採用することが可能である。前記以外の材料と組み合わせて使用することもでき、他の材料に前記接液部が塩化物イオンによる応力腐食割れが発生する可能性のある金属のうち複数を組み合わせることも可能である。なお、合金鋼とは、鋼の性質を変え、使用目的に合う特性を得るために合金元素Ni、Cr、Moなどを1種類以上添加した鋼で、これらの合金元素の合計量が10.5%以下の場合を低合金鋼という。
2 is a waste liquid treatment device, and the wetted part is made of a material containing metal that may cause stress corrosion cracking due to chloride ions (for example, stainless steel), and it is organic and oxidizable under subcritical conditions. In the example, a liquid containing an inorganic substance is processed, and the hydrothermal gasifier is shown. However, other apparatuses may be used, for example.
Metals that may cause stress corrosion cracking due to chloride ions at the wetted parts include low alloy steel, austenitic stainless steel, martensitic stainless steel, Al-Mg alloy, Al-Cu-Mg alloy, Al- One or more of Mg—Zn alloy, Al—Zn—Mg—Mn alloy, Al—Zn—Mg—Cu—Mn alloy, titanium, and titanium alloy can be employed. It can also be used in combination with materials other than those described above, and it is also possible to combine a plurality of metals in which the liquid contact portion may cause stress corrosion cracking due to chloride ions in other materials. The alloy steel is a steel to which one or more alloy elements Ni, Cr, Mo and the like are added in order to change the properties of the steel and obtain characteristics suitable for the purpose of use, and the total amount of these alloy elements is 10.5. % Or less is called low alloy steel.

この廃液処理装置2に対して、これに供給する液を、陽イオン交換樹脂に通液して金属イオンを除去するために、強酸性陽イオン交換樹脂を内装する陽イオン交換樹脂槽1A、1Bを設ける。   Cation exchange resin tanks 1A and 1B containing a strongly acidic cation exchange resin in order to remove the metal ions by passing the liquid supplied to the waste liquid treatment apparatus 2 through the cation exchange resin. Is provided.

陽イオン交換樹脂槽1A、1Bの運転態様に限定されないが、時間的なロスを避けるために、一方の槽で金属イオン交換を行い、他方の槽では液の(置換)洗浄−溶離(再生)−純水洗浄を行うように運転するのが望ましい。
例えば、一方の陽イオン交換樹脂槽1Aでは10日〜2週間かけてイオン交換を行い、他方の槽では液の置換−溶離(再生)−純水洗浄を1日程度で行うものである。イオン交換が終了した時点で、槽の交替運転を行う。
Although not limited to the operation mode of the cation exchange resin tanks 1A and 1B, in order to avoid time loss, metal ion exchange is performed in one tank, and (substitution) washing and elution (regeneration) of liquid in the other tank. -It is desirable to operate to perform pure water cleaning.
For example, in one cation exchange resin tank 1A, ion exchange is performed over 10 days to 2 weeks, and in the other tank, liquid replacement-elution (regeneration) -pure water washing is performed in about one day. When the ion exchange is completed, the tank is replaced.

装置構成例は陽イオン交換樹脂槽を2槽として交互に切替、連続的に処理する例を示したが、樹脂の再生に必要な時間が金属イオン交換操作を行う時間に比べ短時間で済むので、1系列として再生時は金属イオン交換処理を停止する操作でもよい。   The device configuration example shows an example in which two cation exchange resin tanks are alternately switched and continuously processed, but the time required for resin regeneration is shorter than the time required for the metal ion exchange operation. An operation for stopping the metal ion exchange process at the time of regeneration as one series may be used.

処理装置2に対して、処理原液10を陽イオン交換樹脂槽1Aに流通した後に、処理水流路13を介して供給する。処理装置2は例えば200℃〜350℃で、5MPa〜15MPaの高温・高圧で操作され、水熱ガス化処理である場合、回収燃料ガス14及び処理水15が排出される。   The processing stock solution 10 is supplied to the processing apparatus 2 through the processing water flow path 13 after flowing into the cation exchange resin tank 1A. The processing apparatus 2 is operated at a high temperature and a high pressure of, for example, 200 ° C. to 350 ° C. and 5 MPa to 15 MPa, and in the case of hydrothermal gasification processing, the recovered fuel gas 14 and the treated water 15 are discharged.

処理装置2での操作が進行し、例えば陽イオン交換樹脂槽1Aでのイオン交換操作が金属イオン破過開始前の適正な時点になったならば、陽イオン交換樹脂槽1Aでのイオン交換を停止し、陽イオン交換樹脂槽1Bでのイオン交換に換える。
停止した陽イオン交換樹脂槽1Aに対して(置換)純水洗浄液30を、流路31aを通して流し、その洗浄液は流路32aを介して排水流路33から排出する。
If the operation in the processing apparatus 2 proceeds and, for example, the ion exchange operation in the cation exchange resin tank 1A is at an appropriate time before the start of the metal ion breakthrough, the ion exchange in the cation exchange resin tank 1A is performed. Stop and change to ion exchange in the cation exchange resin tank 1B.
The (substituted) pure water cleaning liquid 30 is caused to flow through the flow path 31a to the stopped cation exchange resin tank 1A, and the cleaning liquid is discharged from the drain flow path 33 through the flow path 32a.

その後、溶離液(再生液)20を陽イオン交換樹脂槽1Aに流通させ、排溶離液は流路22aを介して溶離液排水として排出する。
溶離処理が終了したならば、純水洗浄液30を、流路31aを通して流し、その洗浄液は流路32aを介して排水流路33から排出する。
Thereafter, the eluent (regeneration liquid) 20 is circulated through the cation exchange resin tank 1A, and the discharged eluent is discharged as eluent wastewater through the flow path 22a.
When the elution process is completed, the pure water cleaning liquid 30 is flowed through the flow path 31a, and the cleaning liquid is discharged from the drain flow path 33 through the flow path 32a.

かかる操作は、時間差をもって、陽イオン交換樹脂槽1Bについても行われる。ここでは、その説明は、煩瑣を避けるために行わないこととするが、番号10代は、処理原液10の処理系を、番号20代は、溶離液(再生液)20による処理系を、番号30代は、洗浄液30の処理系を示すものであることを述べることによって、操作の手順は明らかであろう。   Such an operation is also performed for the cation exchange resin tank 1B with a time difference. Here, the description will not be made in order to avoid inconvenience, but the number 10 generation refers to the processing system of the processing stock solution 10, and the number 20 generation refers to the processing system using the eluent (regeneration solution) 20. The operation procedure will be clear by stating that the thirties represent a treatment system for the cleaning liquid 30.

前述のように、ステンレス鋼に代表される高耐食性金属を接液部に持つ設備では亜臨界条件での耐食性から応力腐食割れを防ぐために塩素濃度(有機体塩素を含む)が十分に低いことが要求される。   As mentioned above, in equipment that has a high corrosion resistance metal typified by stainless steel in the wetted part, the chlorine concentration (including organic chlorine) must be low enough to prevent stress corrosion cracking from corrosion resistance under subcritical conditions. Required.

処理装置2での操作は、例えば既述の特許文献1〜3に開示のものである。   The operation in the processing device 2 is disclosed in, for example, the aforementioned Patent Documents 1 to 3.

次に実施例を示す。
(比較例1)
実験装置は、図2に示すもので、被処理液タンク40からポンプ41により被処理液を、強酸性陽イオン交換樹脂を充填したイオン交換カラム42に送り、排液は回収液タンク43に回収するものである。
強酸性陽イオン交換樹脂としては、ピュロライト株式会社販売C−150/1621を使用した。
Examples will now be described.
(Comparative Example 1)
The experimental apparatus is shown in FIG. 2, and the liquid to be treated is sent from the liquid tank 40 to be treated by the pump 41 to the ion exchange column 42 filled with the strongly acidic cation exchange resin, and the waste liquid is collected in the collection liquid tank 43. To do.
As a strongly acidic cation exchange resin, Purolite Co., Ltd. C-150 / 1621 was used.

かかる実験装置において、Ca濃度を250mg/kg程度に調整した被処理液を通液し、純水で置換し、10wt%NaCl溶液を通液し、最後に純水で洗浄する操作を12回吸脱着を繰り返し、被処理液を通液時に処理液のCa濃度を分析することでその破過曲線を調べたものである。   In such an experimental apparatus, the operation of passing a liquid to be treated with a Ca concentration adjusted to about 250 mg / kg, replacing with pure water, passing a 10 wt% NaCl solution, and finally washing with pure water was absorbed 12 times. The breakthrough curve was examined by repeating desorption and analyzing the Ca concentration of the treatment liquid when the treatment liquid was passed through.

12回目の結果を図3に示した。
12回目以前の破過曲線はわずかではあるが移動しており、まだ吸脱着の安定には至らないような兆候であったが再生剤量及び洗浄水量をこれまでの2倍にした12回目では破過曲線は高吸着側に後退すると共に、その後に行う再生操作で得られる処理液のCa分析結果ではCa収支は98.3%とほぼ100%に近い値が得られた。
十分な再生剤量及び十分な洗浄水量とすれば、陽イオン交換樹脂のCa蓄積は十分に抑制できることを確認できた。
The results of the twelfth time are shown in FIG.
The breakthrough curve before the 12th time moved slightly, but it was a sign that the adsorption / desorption was not yet stable, but at the 12th time the amount of regenerant and washing water was doubled so far. The breakthrough curve retreated to the high adsorption side, and the Ca balance of the treatment liquid obtained by the subsequent regeneration operation was 98.3%, a value close to 100%.
It was confirmed that the Ca accumulation of the cation exchange resin can be sufficiently suppressed if the amount of the regenerant and the amount of the washing water are sufficient.

(実施例1)
溶離剤(再生剤)として他のアルカリ金属塩として、14wt酢酸ナトリウム水溶液を使用して前項の陽イオン交換樹脂をそのまま用い、引き続き同様の実験を行った。酢酸ナトリウム水溶液の濃度は、10wt%NaCl水溶液と重量モル濃度が同一となる濃度とした。
結果を図3に併示した。酢酸ナトリウムの有効性が分かる。
Example 1
The same experiment was carried out continuously using the cation exchange resin as described above as it was, using a 14 wt sodium acetate aqueous solution as the other alkali metal salt as an eluent (regenerant). The concentration of the sodium acetate aqueous solution was set to the same concentration as that of the 10 wt% NaCl aqueous solution.
The results are shown in FIG. The effectiveness of sodium acetate can be seen.

(実施例2)
他の有機酸や有機酸アルカリ金属塩の効果を検討するため、同じ実験装置を使用し、Ca濃度を500mg/kg程度に調整した被処理液を通液流量6g/分で1800gの通液を行い、予めCa飽和させておいた樹脂に対し以下の操作を行なった。
(1)純水置換(1.3ml/分で120分間の通液で160mlを採取した)、(2)再生剤通液(1.3ml/分で96分間の通液で128mlを採取した)、(3)純水洗浄(2.6ml/分で360分間の通液で960mlを採取した)、(4)被処理液通液(6ml/分でCaの吸着を行った)の順で、各操作を行った。
(Example 2)
In order to examine the effects of other organic acids and organic acid alkali metal salts, the same experimental apparatus was used, and the liquid to be treated was adjusted to a Ca concentration of about 500 mg / kg. The following operation was performed on the resin that had been saturated with Ca in advance.
(1) Pure water replacement (160 ml was collected by passing 120 minutes at 1.3 ml / min), (2) Regenerant flowing (128 ml was collected by passing 96 minutes at 1.3 ml / min) , (3) pure water washing (960 ml was collected at a flow rate of 2.6 ml / min for 360 minutes), (4) liquid to be treated (Ca was adsorbed at 6 ml / min), in that order. Each operation was performed.

(4)の被処理液通液では通液開始から20分間隔で各125gを採取し、これらを3回行った後、引き続き4回目として1425gを通液した。この3回目の通液試料をCa分析用とした。有機酸や有機酸アルカリ金属塩の効果を検討するため(3)における再生剤を10wt%酢酸、32.8%クエン酸、16.7wt%プロピオン酸ナトリウムとして比較した。なおこれらの水溶液は10wt%NaCl水溶液及び14wt%酢酸ナトリウム水溶液と重量モル濃度が同一となる濃度(1.7mol/kg)とした。   In (4) passing the liquid to be treated, 125 g of each was sampled at intervals of 20 minutes from the start of the liquid flow, and after performing these three times, 1425 g was passed for the fourth time. This third flow-through sample was used for Ca analysis. In order to examine the effects of organic acids and organic acid alkali metal salts, the regenerant in (3) was compared as 10 wt% acetic acid, 32.8% citric acid, and 16.7 wt% sodium propionate. In addition, these aqueous solution was made into the density | concentration (1.7 mol / kg) in which a molar concentration is the same as 10 wt% NaCl aqueous solution and 14 wt% sodium acetate aqueous solution.

(4)における3回目の被処理液通液後のサンプルについてCa濃度を測定した。その際、試料を蒸発乾固後450℃で強熱し、(1+2)HClを10ml加え、加熱溶解・ろ過を行ない、定容後ICP発光分光分析を行った。
結果を表1に示す。

Figure 2018034095
The Ca concentration of the sample after the third treatment liquid flow in (4) was measured. At that time, the sample was evaporated to dryness and ignited at 450 ° C., 10 ml of (1 + 2) HCl was added, dissolved under heating and filtered, and after constant volume, ICP emission spectroscopic analysis was performed.
The results are shown in Table 1.
Figure 2018034095

表1によれば、プロピオン酸ナトリウムの有効性が明確になったが、酢酸及びクエン酸の有機酸は、効果が小さいことが分かった。   According to Table 1, although the effectiveness of sodium propionate became clear, it turned out that the organic acid of an acetic acid and a citric acid has little effect.

上記の実験結果群及び他の知見も踏まえれば、酸として酸解離指数(pka)が2.0以下好ましくは0.6以下の有機酸、塩として酢酸ナトリウム又はプロピオン酸ナトリウムなどの有機酸アルカリ金属塩を使用できる。これらの有機酸及び有機酸アルカリ金属は、一種又はそれらを併用して使用できることが分かった。   Based on the above experimental result group and other findings, the acid dissociation index (pka) is 2.0 or less, preferably 0.6 or less as an acid, and the salt is an organic acid alkali metal such as sodium acetate or sodium propionate. Salt can be used. It was found that these organic acids and organic acid alkali metals can be used alone or in combination.

本実施例においては、亜臨界条件下で液相が共存する領域で使用される設備への適用について開示したが、亜臨界条件下以外の条件において塩化物イオンが存在する液体と接液部が塩化物イオンによる応力腐食割れが発生する可能性のある金属材料を含む材料で構成される設備においても幅広く適用することができる。例えば常圧で80℃〜沸点以下の条件で軟水が使用される設備にも適用が可能である。適用例としては、ボイラへの給水配管や廃液燃焼炉の下部に設けられた冷却缶やその排水配管などが挙げられる。   In the present embodiment, the application to the equipment used in the region where the liquid phase coexists under the subcritical condition is disclosed, but the liquid and the wetted part where chloride ions exist under the condition other than the subcritical condition The present invention can also be widely applied to facilities composed of materials including metal materials that may cause stress corrosion cracking due to chloride ions. For example, the present invention can be applied to facilities in which soft water is used under conditions of 80 ° C. to boiling point at normal pressure. Application examples include a water supply pipe to the boiler, a cooling can provided at the lower part of the waste liquid combustion furnace, and its drain pipe.

1A,1B・・・イオン交換樹脂槽、2・・・水熱ガス化処理装置、10・・・被処理液流路、11a,12a,11b,12b・・・流路、13・・・処理水流路、14・・・回収燃料ガス流路、15・・・水熱ガス化処理水流路、20・・・溶離液供給流路、21a,2a,21b,22b・・・溶離液槽流路、23・・・溶離液排水流路、30・・・洗浄液流路、31a,32a,31b,32b・・・洗浄液流路、33・・・洗浄液排水流路。 DESCRIPTION OF SYMBOLS 1A, 1B ... Ion exchange resin tank, 2 ... Hydrothermal gasification processing apparatus, 10 ... Liquid flow path to be processed, 11a, 12a, 11b, 12b ... Flow path, 13 ... Processing Water channel, 14 ... recovered fuel gas channel, 15 ... hydrothermal gasification treated water channel, 20 ... eluent supply channel, 21a, 2a, 21b, 22b ... eluent tank channel , 23... Eluent drainage channel, 30... Cleaning fluid channel, 31a, 32a, 31b, 32b... Cleaning fluid channel, 33.

Claims (9)

陽イオン交換樹脂により金属イオンを除去するに供した、前記金属を捕捉した陽イオン交換樹脂を再生するに際し、
前記陽イオン交換樹脂として、強酸性陽イオン交換樹脂を用い、この強酸性陽イオン交換樹脂と、有機酸アルカリ金属塩及び有機酸の少なくとも一種を含む再生剤の水溶液とを接触させて前記金属を溶離することを特徴とする陽イオン交換樹脂の再生方法。
When regenerating the cation exchange resin that has captured the metal, the metal ion is removed by the cation exchange resin.
As the cation exchange resin, a strong acid cation exchange resin is used, and the strong acid cation exchange resin is brought into contact with an aqueous solution of a regenerant containing at least one of an organic acid alkali metal salt and an organic acid, thereby bringing the metal into contact. A method for regenerating a cation exchange resin, characterized by elution.
前記陽イオン交換樹脂は、スルホ基を有する陽イオン交換樹脂である請求項1記載の陽イオン交換樹脂の再生方法。   The method for regenerating a cation exchange resin according to claim 1, wherein the cation exchange resin is a cation exchange resin having a sulfo group. 前記再生剤は、有機酸アルカリ金属塩として酢酸ナトリウム及びプロピオン酸ナトリウム、酸として酸解離指数が2.0以下である有機酸から選ばれる群の少なくとも一種又はそれらを併用するものからなる請求項1記載の陽イオン交換樹脂の再生方法。   2. The regenerant comprises at least one selected from the group consisting of sodium acetate and sodium propionate as the alkali metal salt of an organic acid, and an organic acid having an acid dissociation index of 2.0 or less as an acid, or a combination thereof. The regeneration method of cation exchange resin as described. 接液部が塩化物イオンの存在下で応力腐食割れを生じる可能性のある金属材料を含む材料で構成される容器を用いて液中の有機物及び/又は被酸化性無機物を高圧下で処理する廃液処理工程に供給する液を、前記陽イオン交換樹脂に通液して金属イオンを除去するに供した、前記金属を含む陽イオン交換樹脂を再生する請求項1〜3のいずれか1項に記載の陽イオン交換樹脂の再生方法。   Treating organic substances and / or oxidizable inorganic substances in the liquid under high pressure using a container composed of a material containing a metal material in which the wetted part may cause stress corrosion cracking in the presence of chloride ions The liquid supplied to the waste liquid treatment step is passed through the cation exchange resin to remove metal ions, and the cation exchange resin containing the metal is regenerated. The regeneration method of cation exchange resin as described. 前記廃液処理工程は、100℃超〜374℃で高圧下水溶液相が存在する領域で行う処理工程であることを特徴とする請求項4記載の強酸性陽イオン交換樹脂の再生方法。   5. The method for regenerating a strongly acidic cation exchange resin according to claim 4, wherein the waste liquid treatment step is a treatment step performed in a region where the aqueous phase is present under high pressure at a temperature exceeding 100 ° C. to 374 ° C. 前記廃液処理工程は、接液部が塩化物イオンの存在下で応力腐食割れを生じる可能性のある金属材料で構成される容器において廃液処理する装置を使用し、かつ、
100℃超〜374℃で高圧下水溶液相が存在する領域で行う処理を行うものである請求項1〜3のいずれか1項に記載の陽イオン交換樹脂の再生方法。
The waste liquid treatment step uses an apparatus for waste liquid treatment in a container composed of a metal material in which the liquid contact portion may cause stress corrosion cracking in the presence of chloride ions, and
The method for regenerating a cation exchange resin according to any one of claims 1 to 3, wherein the treatment is carried out in a region where the aqueous phase exists under high pressure at a temperature exceeding 100 ° C to 374 ° C.
前記金属材料が、低合金鋼、オーステナイト系ステンレス鋼、マルテンサイト系ステンレス鋼のうち少なくとも1つを含む材料であることを特徴とする請求項4に記載の陽イオン交換樹脂の再生方法。   The method for regenerating a cation exchange resin according to claim 4, wherein the metal material is a material containing at least one of low alloy steel, austenitic stainless steel, and martensitic stainless steel. 有機物及び/又は被酸化性無機物を含む被処理液を強酸性陽イオン交換樹脂に通液して金属イオンを除去する金属イオン除去工程と、
接液部が塩化物イオンによる応力腐食割れが発生する可能性のある金属で構成される装置において亜臨界条件下で前記被処理液を処理する処理工程と、
有機酸アルカリ金属塩及び有機酸の少なくとも一種の水溶液を前記陽イオン交換樹脂に通液する再生工程と、
を含むことを特徴とする被処理液の処理方法。
A metal ion removing step of removing a metal ion by passing a liquid to be treated containing an organic substance and / or an oxidizable inorganic substance through a strongly acidic cation exchange resin;
A treatment step of treating the liquid to be treated under subcritical conditions in an apparatus composed of a metal in which a wetted part may cause stress corrosion cracking due to chloride ions;
A regeneration step of passing an aqueous solution of at least one organic acid alkali metal salt and organic acid through the cation exchange resin;
A method for treating a liquid to be treated, comprising:
接液部が塩化物イオンによる応力腐食割れが発生する可能性のある金属で構成される装置において亜臨界条件下で有機物及び/又は被酸化性無機物を含む液を処理する処理設備と、 前記廃液処理設備に供給するに先だって被処理液を通液する強酸性陽イオン交換樹脂を有する並列配置の複数のイオン交換処理槽と、を備え、
前記被処理液を通液する第1のイオン交換処理槽と、再生剤を通液する第2のイオン交換処理槽との間で、通液種を交互に変更する通液変更手段あるいは一系列のイオン交換処理槽で通液種を経時的に変更する手段を有し、
前記再生剤は、有機酸アルカリ金属塩及び有機酸の少なくとも一種の水溶液であることを特徴とする陽イオン交換樹脂を含む処理設備。
A treatment facility for treating a liquid containing an organic substance and / or an oxidizable inorganic substance under subcritical conditions in an apparatus in which a wetted part is made of a metal that may cause stress corrosion cracking due to chloride ions; A plurality of ion-exchange treatment tanks arranged in parallel having a strongly acidic cation exchange resin that allows the liquid to be treated to flow before being supplied to the treatment facility,
A flow changing means or a series for alternately changing the flow type between the first ion exchange treatment tank through which the liquid to be treated is passed and the second ion exchange treatment tank through which the regenerant is passed. In the ion exchange treatment tank, there is a means for changing the flow type over time,
The processing equipment containing a cation exchange resin, wherein the regenerant is an aqueous solution of at least one organic acid alkali metal salt and organic acid.
JP2016167898A 2016-08-30 2016-08-30 Regeneration method of cation exchange resin, treatment method of liquid to be treated, and treatment equipment containing cation exchange resin Active JP6786308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016167898A JP6786308B2 (en) 2016-08-30 2016-08-30 Regeneration method of cation exchange resin, treatment method of liquid to be treated, and treatment equipment containing cation exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167898A JP6786308B2 (en) 2016-08-30 2016-08-30 Regeneration method of cation exchange resin, treatment method of liquid to be treated, and treatment equipment containing cation exchange resin

Publications (2)

Publication Number Publication Date
JP2018034095A true JP2018034095A (en) 2018-03-08
JP6786308B2 JP6786308B2 (en) 2020-11-18

Family

ID=61566644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167898A Active JP6786308B2 (en) 2016-08-30 2016-08-30 Regeneration method of cation exchange resin, treatment method of liquid to be treated, and treatment equipment containing cation exchange resin

Country Status (1)

Country Link
JP (1) JP6786308B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020016A (en) * 2018-08-02 2020-02-06 住友金属鉱山株式会社 Purification method of lithium
CN113003792A (en) * 2021-04-17 2021-06-22 江苏国创新材料研究中心有限公司 Treatment method of high-salt organic wastewater containing quinolinic acids
CN115608343A (en) * 2021-07-13 2023-01-17 台湾塑胶工业股份有限公司 Method for regenerating water-absorbent resin and regenerated water-absorbent resin

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116746A (en) * 1986-10-14 1988-05-21 ダイセル化学工業株式会社 Corroded metal removing regenerating method of carbonylation reaction catalyst solution
US5665783A (en) * 1996-02-08 1997-09-09 Ecotech Recyclable regenerant for weak acid ion exhange resins
JPH10277571A (en) * 1997-04-10 1998-10-20 Toshiba Corp Method and device for treating organic alkali waste water
JPH11285677A (en) * 1998-04-03 1999-10-19 Hitachi Ltd Treatment of organic waste and device therefor
JP2002102868A (en) * 2000-09-28 2002-04-09 Kurita Water Ind Ltd Treating method of waste cleaning liquid
JP2003230840A (en) * 2001-12-06 2003-08-19 Japan Organo Co Ltd Method for regenerating ion exchanger and regenerating agent for anion exchanger
JP2007536082A (en) * 2004-05-07 2007-12-13 ビーピー ケミカルズ リミテッド Method for removing corrosive metals from carbonylation catalyst solutions
CN101284826A (en) * 2007-04-11 2008-10-15 中国石油天然气股份有限公司 Process for decolorizing sulfolane
US20140076817A1 (en) * 2012-09-17 2014-03-20 Severn Trent Water Purification, Inc. Method and System for Treating Produced Water

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116746A (en) * 1986-10-14 1988-05-21 ダイセル化学工業株式会社 Corroded metal removing regenerating method of carbonylation reaction catalyst solution
US5665783A (en) * 1996-02-08 1997-09-09 Ecotech Recyclable regenerant for weak acid ion exhange resins
JPH10277571A (en) * 1997-04-10 1998-10-20 Toshiba Corp Method and device for treating organic alkali waste water
JPH11285677A (en) * 1998-04-03 1999-10-19 Hitachi Ltd Treatment of organic waste and device therefor
JP2002102868A (en) * 2000-09-28 2002-04-09 Kurita Water Ind Ltd Treating method of waste cleaning liquid
JP2003230840A (en) * 2001-12-06 2003-08-19 Japan Organo Co Ltd Method for regenerating ion exchanger and regenerating agent for anion exchanger
JP2007536082A (en) * 2004-05-07 2007-12-13 ビーピー ケミカルズ リミテッド Method for removing corrosive metals from carbonylation catalyst solutions
CN101284826A (en) * 2007-04-11 2008-10-15 中国石油天然气股份有限公司 Process for decolorizing sulfolane
US20140076817A1 (en) * 2012-09-17 2014-03-20 Severn Trent Water Purification, Inc. Method and System for Treating Produced Water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020016A (en) * 2018-08-02 2020-02-06 住友金属鉱山株式会社 Purification method of lithium
CN113003792A (en) * 2021-04-17 2021-06-22 江苏国创新材料研究中心有限公司 Treatment method of high-salt organic wastewater containing quinolinic acids
CN115608343A (en) * 2021-07-13 2023-01-17 台湾塑胶工业股份有限公司 Method for regenerating water-absorbent resin and regenerated water-absorbent resin
CN115608343B (en) * 2021-07-13 2024-03-12 台湾塑胶工业股份有限公司 Method for regenerating water-absorbent resin and regenerated water-absorbent resin

Also Published As

Publication number Publication date
JP6786308B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
Guo et al. Mechanisms of chemical cleaning of ion exchange membranes: A case study of plant-scale electrodialysis for oily wastewater treatment
Lito et al. Removal of anionic pollutants from waters and wastewaters and materials perspective for their selective sorption
US9403698B2 (en) Method and system for treating produced water
Lin et al. Enhanced reductive removal of bromate using acid-washed zero-valent iron in the presence of oxalic acid
JP2018034095A (en) Method for regenerating cation exchange resin, method for treating liquid to be treated, and treatment facility containing cation exchange resin
JP5966514B2 (en) Method and apparatus for treating thiourea-containing water
CN108996642A (en) A kind of processing method of chlorine-contained wastewater
JP5059325B2 (en) Method and apparatus for inhibiting corrosion of carbon steel
JP2011189242A (en) Water treatment system
JP2007260586A (en) Treatment method of waste water generated in coke oven
Lebron et al. Membrane distillation and ion exchange combined process for mining wastewater treatment, water reuse, and byproducts recovery
Li et al. Magnetic spent coffee biochar (Fe-BC) activated peroxymonosulfate system for humic acid removal from water and membrane fouling mitigation
JP2014198286A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
Trokhymenko et al. Development of low waste technology of water purification from copper ions
JP5720138B2 (en) Treatment method for acetic acid-containing wastewater
KR20100014915A (en) Method for the treatment of tetraalkylammonium ion-containing development waste liquor
TWI684998B (en) Chemical decontamination method
JP4619955B2 (en) Uranium waste treatment method
RU2442756C1 (en) Way to get desalted water and highly pure water for nuclear power plants in research centres
JP5915683B2 (en) Method and apparatus for treating vanadium-containing water
US10870591B2 (en) Water treatment system for removing hexavalent chromium
US20180015417A1 (en) Cleaning method for water treatment membrane
CN112759170A (en) Method for treating wastewater containing chromium-EDTA
JP6329916B2 (en) Method for treating acidic waste liquid containing metal ions and treatment apparatus for acidic waste liquid containing metal ions
JP2004181431A (en) Purification method of aqueous solution and purified aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201028

R150 Certificate of patent or registration of utility model

Ref document number: 6786308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250