JP2018033219A - Automatic power return system in one-line power reception extra-high power generating station - Google Patents

Automatic power return system in one-line power reception extra-high power generating station Download PDF

Info

Publication number
JP2018033219A
JP2018033219A JP2016163338A JP2016163338A JP2018033219A JP 2018033219 A JP2018033219 A JP 2018033219A JP 2016163338 A JP2016163338 A JP 2016163338A JP 2016163338 A JP2016163338 A JP 2016163338A JP 2018033219 A JP2018033219 A JP 2018033219A
Authority
JP
Japan
Prior art keywords
power
transmission line
line
breaker
automatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016163338A
Other languages
Japanese (ja)
Inventor
治親 廣瀬
Haruchika Hirose
治親 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMA TATEMONO SOGO KANRI KK
Original Assignee
KASHIMA TATEMONO SOGO KANRI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMA TATEMONO SOGO KANRI KK filed Critical KASHIMA TATEMONO SOGO KANRI KK
Priority to JP2016163338A priority Critical patent/JP2018033219A/en
Publication of JP2018033219A publication Critical patent/JP2018033219A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automatic power return system in one-line power reception extra-high power generating station, capable of avoiding causing inconvenience in application because a one-line extra-high power generating station has a higher possibility of interruption of service in a power transmission line for power source than a two-line power generating station; however, even after a power transmission line has interruption of service due to a power transmission line accident, time and trouble can be saved if the accident is removed by reclosing.SOLUTION: System interconnection of an electric power company transmission line and a power reception extra-high power transmission line (66 kV) is performed with one line, and an interconnection breaker of the system interconnection has been changed from a regular power reception breaker to a breaker on the secondary high-voltage side of the power generating station.SELECTED DRAWING: Figure 1

Description

本発明は、太陽光発電所の発電設備を電力会社の特別高圧電線路に連系させる場合の1回線受電特高発電所における自動復電システムに関するものである。   The present invention relates to an automatic power recovery system in a one-line power receiving extra high power plant in the case where a power generation facility of a solar power plant is linked to a special high piezoelectric line of an electric power company.

系統連系とは、発電設備などが商用電力系統へ並列(発電設備などを商用電力系統に接続すること)する時点から解列(発電設備などを商用電力系統から切り離すこと)する時点までの状態の事を言う。   Grid connection is the state from the time when the power generation equipment is parallel to the commercial power system (connecting the power generation equipment to the commercial power system) to the time of disconnection (detaching the power generation equipment from the commercial power system) Say that.

また、系統連系には、電気事業者の電力系統へ電力を供給する逆潮流の有る場合と無い場合がある。   In addition, the grid interconnection may or may not have a reverse power flow for supplying power to the electric utility's power grid.

図4は太陽光発電所の発電設備を電力会社の特別高圧電線路に連系させる場合の通常発電時の説明図で、PCS1〜PCS7は太陽光発電所のソーラーパネル、Aは電力会社変電所(154kV/66kV)、Bは電力会社送電線Aへの受電特高(66kV)送電線を示す。   FIG. 4 is an explanatory diagram at the time of normal power generation when the power generation facility of the solar power plant is connected to the special high piezoelectric line of the power company, PCS1 to PCS7 are solar panels of the solar power plant, and A is the power company substation. (154 kV / 66 kV), B indicates a power reception extra high (66 kV) transmission line to the electric power company transmission line A.

通常は、電源送電線は2回線の接続であるが、図示の例は1回線のみ(単線結線)の場合である。   Normally, the power transmission line is a connection of two lines, but the example shown is a case of only one line (single line connection).

電力会社側の送電線設備として、89ER1、89ER2、89ER3は接地用開閉器、2は開閉器、O2は発電所の66kV送電線側の受電遮断器、PTは計器用変圧器である。   As power transmission line facilities on the electric power company side, 89ER1, 89ER2, and 89ER3 are earthing switches, 2 is a switch, O2 is a power receiving circuit breaker on the 66kV transmission line side of the power plant, and PT is an instrument transformer.

太陽光発電所所内側の設備は前記電力会社側の送電線設備と主変圧器Cを介して接続するもので、52Sは変圧器2次遮断器、PTは計器用変圧器、52Fl・52F2は、主変圧器2次の遮断器として発電機ブロック毎の遮断器である。   The facilities inside the solar power plant are connected to the power company's transmission line facilities via the main transformer C, 52S is a transformer secondary circuit breaker, PT is an instrument transformer, and 52Fl and 52F2 are A breaker for each generator block as a secondary breaker of the main transformer.

また、89STは所内トランス用開閉器、Trは所内変圧器である。   89ST is a switch for the in-house transformer, and Tr is an in-house transformer.

66kV電源送電線に事故が起きると電源変電所の遮断器が開放される。   When an accident occurs in the 66 kV power transmission line, the circuit breaker at the power substation is opened.

太陽光発電所は一般に連系点のO2を開放し、連系を解く形態となっている。   In general, a solar power plant is configured to open the connection point O2 and solve the connection.

O2が開放されると発電所は全停となり、その場合の問題点は次のとおりである。
(1)発電停止となる。
(2)操作用蓄電池の放電が始まる。(4時間経過すると操作不能になる)
(3)復旧は操作員が現地に行き操作して復旧する。
(4)66kV電源送電線は10秒後に自動再閉路される。(再閉路成功率は90%以上)
When O2 is opened, the power plant is completely stopped, and the problems in that case are as follows.
(1) Power generation is stopped.
(2) The operation storage battery begins to discharge. (It becomes inoperable after 4 hours)
(3) For restoration, the operator will go to the site and operate.
(4) The 66 kV power transmission line is automatically reclosed after 10 seconds. (Recycle success rate is over 90%)

最近昼間帯においてゲリラ雷雨が頻発している現状で66kV送電線が停電した場合、ゲリラ雷雨は一過性のもので送電線は事故後再送電(10秒後)され受電することができ発電所は並列できる状況にもかかわらず、随時巡回方式の発電所制御方式のため技術員が常駐していないことで、技術員が現場へ到着し発電所を並列するまで3時間程度掛かってしまう。   If the 66kV transmission line is out of power in the current daytime when guerrilla thunderstorms are frequent, the guerrilla thunderstorm is transient and the transmission line can be re-transmitted (after 10 seconds) and receive power. In spite of the situation that can be paralleled, since the engineer is not resident at any time because of the power plant control method of the patrol system, it takes about 3 hours until the engineer arrives at the site and parallels the power plant.

その間発電所を並列するまでは太陽光発電による収入を得ることはできない。   In the meantime, it is not possible to obtain income from solar power generation until the power plants are paralleled.

このように、66kV送電線との連携遮断器を受電遮断器(O2)を選定してしまうと、66kV送電線停止に伴い受電遮断器(O2)は開放し再送電されても技術員が発電所到着まで3時間程度掛かり、その間充電器は停止しバッテリーは充電できない。   In this way, if the power receiving breaker (O2) is selected as the circuit breaker with the 66 kV transmission line, the engineer will be able to operate the power station even if the power receiving breaker (O2) is opened and retransmitted due to the 66 kV transmission line stoppage. It takes about 3 hours to arrive, during which time the charger stops and the battery cannot be charged.

また、バッテリーの過放電が進み技術員が発電所へ到着し発電所の復旧操作を実施しようとしてもバッテリーの過放電により機器の操作ができない状態となる。   In addition, even if the battery overdischarges and a technician arrives at the power plant and attempts to restore the power plant, the device cannot be operated due to battery overdischarge.

本発明の目的は前記従来例の不都合を解消し、1回線特高発電所においては2回線受電発電所より電源送電線停電時の可能性が高いが、送電線事故で送電線停止後、送電線の再閉路で事故が復旧していれば手間を掛けずにすむので運用に不都合を生じないようにすることができる1回線受電特高発電所における自動復電システムを提供することにある。   The object of the present invention is to eliminate the inconvenience of the conventional example described above, and in the 1-line extra high power station, there is a higher possibility of the power transmission line power outage than the 2-line power receiving power station. It is an object of the present invention to provide an automatic power recovery system in a one-line power receiving extra high power plant that can avoid inconvenience in operation because it is possible to save trouble if the accident is recovered by reclosing the electric wire.

前記目的を達成するため請求項1記載の本発明は、電力会社送電線と発電所からの受電特高送電線(66kV)との系統連系を1回線で行うものであり、系統連系の連系遮断器を通常の受電遮断器から発電所側の主変圧器2次の高圧側の遮断器へと変更したことを要旨とするものである。   In order to achieve the above object, the present invention according to claim 1 is to perform grid connection between a power company transmission line and a power receiving extra high transmission line (66 kV) from a power plant in one line. The gist is that the interconnected circuit breaker is changed from a normal power receiving circuit breaker to a high-voltage circuit breaker on the secondary side of the main transformer on the power plant side.

請求項1記載の本発明によれば、発電所の66kV送電線との連系遮断器を通常の受電遮断器(O2)から主変圧器2次の高圧側の遮断器(52Fl・52F2)へと変更したことにより、66kV送電線が再送電(事故後10秒後)してきた場合所内変圧器は充電されバッテリーの充電が可能となりバッテリーの放電を最小限に抑えることができる。   According to the first aspect of the present invention, the connection breaker with the 66 kV transmission line of the power plant is changed from the normal power receiving breaker (O2) to the high-voltage side breaker (52Fl / 52F2) of the main transformer secondary. As a result, when the 66 kV transmission line is retransmitted (10 seconds after the accident), the in-house transformer is charged and the battery can be charged, so that the battery discharge can be minimized.

また、発電所の66kV送電線との連系遮断器を変更することにより、所内事故時は受電遮断器並びに主変圧器2次遮断器がトリップし、送電線事故時は連系用遮断器(52F1・52F2)2台が同時遮断することで、所内事故なのか送電線事故なのか判断が容易になった。   Also, by changing the interconnection breaker with the 66kV transmission line of the power plant, the power receiving breaker and the main transformer secondary breaker trip when an in-house accident occurs, and the interconnection breaker ( 52F1 and 52F2) By shutting off two units at the same time, it became easier to determine whether it was an in-house accident or a power transmission line accident.

以上述べたように本発明の1回線受電特高発電所における自動復電システムは、1回線接続ゆえに設備コストを大幅に削減することができ、反対に1回線受電発電所ゆえに、2回線受電発電所より電源送電線停電時の可能性が高くなるが、送電線事故で送電線停止後、送電線の再閉路で事故が復旧していれば手間を掛けずにすむのでそれを利用して、運用に不都合を生じないようにすることができるものである。   As described above, the automatic power recovery system in the one-line power receiving special power plant according to the present invention can greatly reduce the equipment cost because of the one-line connection, and conversely, the two-line power generation because of the one-line power plant. The possibility of power outage in the power transmission line is higher than the power station, but after the transmission line is stopped due to a power transmission line accident, if the accident is recovered by reclosing the power transmission line, it is possible to save time and use it. It is possible to prevent inconvenience in operation.

本発明によれば、送電線事故で送電線停止後、送電線の再閉路で事故が復旧していれば、発電所へ技術員が到着前に遮断器(52Fl・52F2)を自動投入させることにより、即座に66kV系統と連系し通常の発電を継続できる。   According to the present invention, if the accident is recovered by reclosing the transmission line after the transmission line is stopped due to a transmission line accident, the engineer automatically enters the circuit breaker (52Fl / 52F2) before arrival at the power plant. Immediately connected to the 66 kV system, normal power generation can be continued.

また、自動復電装置用シーケンスを構成して追加するだけで安価に自動復電システムを完成することができる。   Also, an automatic power recovery system can be completed at low cost simply by configuring and adding an automatic power recovery device sequence.

以下、図面について本発明の実施の形態を詳細に説明する。図1は本発明の1回線受電特高発電所における自動復電システムの1実施形態を示す説明図で、PCS1〜PCS7は太陽光発電所のソーラーパネル、電力会社変電所(154kV/66kV)(図示せず、図4参照)に電力会社送電線と発電所からの受電特高送電線(66kV)との系統連系を1回線で行うものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing an embodiment of an automatic power recovery system in a one-line power receiving special power plant according to the present invention. PCS1 to PCS7 are solar panels of a solar power plant, a power company substation (154 kV / 66 kV) ( 4 (not shown, refer to FIG. 4), the grid connection between the power company transmission line and the power receiving extra high transmission line (66 kV) from the power plant is performed in one line.

89ER1、89ER2、89ER3は接地用開閉器、2は開閉器、O2は発電所の66kV送電線側の受電遮断器、PTは計器用変圧器である。   89ER1, 89ER2, and 89ER3 are earthing switches, 2 is a switch, O2 is a power receiving circuit breaker on the 66 kV transmission line side of the power plant, and PT is an instrument transformer.

以上は送電線側の設備であり、太陽光発電所所内側とは主変圧器Cを介して接続する。   The above is equipment on the power transmission line side, and is connected to the inside of the photovoltaic power plant through the main transformer C.

太陽光発電所所内における52Sは変圧器2次遮断器、PTは計器用変圧器、52Fl・52F2は、主変圧器2次の高圧側遮断器として発電機ブロック毎の遮断器である。   In the solar power plant, 52S is a transformer secondary circuit breaker, PT is an instrument transformer, and 52Fl and 52F2 are circuit breakers for each generator block as a secondary transformer high voltage side circuit breaker.

また、89STは所内トランス用開閉器、Trは所内変圧器である。   89ST is a switch for the in-house transformer, and Tr is an in-house transformer.

本発明は、発電所の66kV送電線との連系遮断器を通常の受電遮断器O2から主変圧器2次の高圧側遮断器52Fl・52F2へ変更するものとした。   In the present invention, the circuit breaker with the 66 kV transmission line of the power plant is changed from the normal power receiving circuit breaker O2 to the high voltage side circuit breakers 52F1 and 52F2 of the main transformer secondary.

本発明は、自動復電装置用シーケンスの追加をもって実現できる。   The present invention can be realized by adding an automatic power recovery device sequence.

該シーケンスは、66kV送電線事故時一旦、発電所は全停止となり主変圧器2次の高圧側遮断器52F1・52F2が自動遮断し66kV送電線再送電成功した場合、受電遮断器O2並びに主変圧器2次遮断器52Sが遮断していない事(所内事故ではない)を条件とする。   In this sequence, when the 66 kV transmission line accident occurs, the power station is completely stopped, and when the secondary transformer high-voltage circuit breakers 52F1 and 52F2 are automatically shut off and the 66kV transmission line is successfully retransmitted, the receiving breaker O2 and the main transformer The condition is that the secondary breaker 52S is not interrupted (not an in-house accident).

この条件を基に、受電後一定時間経過後、変圧器2次の高圧側遮断器52Fl・52F2を順次自動投入し、発電電圧と系統連系が可能であれば自動並列する。   Based on this condition, after the elapse of a certain time after power reception, the secondary secondary high-voltage circuit breakers 52Fl and 52F2 are automatically automatically turned on and automatically paralleled if the generated voltage and system interconnection are possible.

変圧器2次の高圧側遮断器52Fl・52F2は事故遮断並びに手動開放した場合は自動投入しない。   The transformer secondary high voltage side circuit breakers 52Fl and 52F2 are not automatically turned on when the accident is interrupted or manually opened.

このようにすることで、所内事故時は受電遮断器O2並びに主変圧器2次高圧側遮断器52Fl・52F2がトリップし、送電線事故時は連系用遮断器52Fl・52F2の2台が同時遮断する。   By doing so, the power receiving breaker O2 and the main transformer secondary high-voltage side circuit breakers 52Fl and 52F2 are tripped at the time of the on-site accident, and the two of the interconnection circuit breakers 52Fl and 52F2 are simultaneously operated at the time of the transmission line accident. Cut off.

その結果、所内事故なのか送電線事故なのか判断が容易になる。   As a result, it is easy to determine whether the accident is an in-house accident or a transmission line accident.

また、66kV送電線Bが再送電(事故後10秒後)してきた場合所内変圧器Trは充電されバッテリーの充電が可能となりバッテリーの放電を最小限に抑えることができる。   Further, when the 66 kV transmission line B is retransmitted (10 seconds after the accident), the in-house transformer Tr is charged and the battery can be charged, and the discharge of the battery can be minimized.

自動復電装置の起動条件を停電時受電遮断器O2・主変圧器2次遮断器52Sの2台の遮断器が投入条件で起動させることで、送電線事故時のみ自動復電装置を起動させることで自動復電装置の起動を確実にした。   The automatic power recovery device is activated only when a power line accident occurs by starting up the two circuit breakers, the power receiving breaker O2 and the main transformer secondary circuit breaker 52S, when the power failure occurs. This ensures the start of the automatic power recovery device.

図2に66kV送電線事故時のフローを示す。
1)66kV線路事故により停電
2)SGET 発電所全停止
3)(52F1・52F2)自動遮断(O2・52S)トリップ無し、投入中
4)10秒後66kV送電線再送電成功
5)SGET発電所(66kV・6.6kV)母線充電 所内電源確保
6)一定時間後(52Fl→5分後・52F2→10分後)自動投入
7)各PCSで電圧・位相確認後自動並列 PCS1〜7順次並列
8)通常発電状態となる
FIG. 2 shows a flow at the time of a 66 kV transmission line accident.
1) Power outage due to 66 kV line accident 2) SGET power station fully shut down 3) (52F1, 52F2) Automatic shut-off (O2 / 52S) No trip, in operation 4) Successful re-transmission of 66kV power line after 10 seconds 5) SGET power station ( 66kV · 6.6kV) Busbar charging Power supply in the station 6) After a certain period of time (52Fl → 5 minutes later · 52F2 → 10 minutes later) Automatic input 7) Automatic parallelization after confirming voltage and phase at each PCS PCS1 to 7 sequential parallel 8) Normal power generation state

本発明における自動復電装置のシーケンスチェックは下記のものとした。
(1)直接における試験
i)試験条件(O2開・52S開)については、27Rが動作状態となることから試験を割愛する。
ii)遠方における試験
直接における試験で満足できる(操作試験・インターロック試験等)ことから、遠方における試験は、系統連系用保護リレー(単独運転検出用)95RH動作による試験のみを実施する。
(2)52F1or52F2停止時の対策
i)試験項目(NO33orNO42)についてはDGRで当該しゃ断器がしゃ断した場合、しゃ断器状態をキープリレーで受けていることから自動復電装置からの投入指令は出力されない。
ii)事故様相
フィーダー盤〜集電盤間のケーブル事故発生→DGR動作→(52F1or52F2しゃ断)→送電線事故→発電所全停止→(52F1or52F2しゃ断)→10秒後受電→自動復電装置起動→10分後(52F1or52F2投入)→事故しゃ断のしゃ断器は開放のままとなる。
The sequence check of the automatic power recovery apparatus in the present invention was as follows.
(1) Direct test i) With respect to test conditions (O2 open / 52S open), the test is omitted because 27R is in an operating state.
ii) Remote test Because the direct test is satisfactory (operation test, interlock test, etc.), the remote test is conducted only by the grid interconnection protection relay (for isolated operation detection) 95RH operation.
(2) Countermeasures when 52F1 or 52F2 is stopped i) For the test item (NO33 or NO42), when the breaker is cut off by DGR, the circuit breaker state is received by the keep relay, so the input command from the automatic power recovery device is not output .
ii) Accident aspect Cable accident between feeder panel and current collector panel → DGR operation → (52F1 or 52F2 cut off) → Transmission line accident → Power plant full stop → (52F1 or 52F2 cut off) → Receiving power after 10 seconds → Automatic power recovery device start → 10 Minutes later (52F1 or 52F2 is charged) → The accident circuit breaker remains open.

図3に52F1・52F2の自動遮断回路(トリップ回路)を示す。51F1は過電流リレー、50F1は系統連系用保護リレー(単独運転検出)(発電機異常電圧保護)(送電線短絡保護)(送電線地絡保護)、67GF1は地絡方向リレー、27Rは全停検出リレーを示す。   FIG. 3 shows an automatic shut-off circuit (trip circuit) for 52F1 and 52F2. 51F1 is an overcurrent relay, 50F1 is a grid connection protection relay (single operation detection) (generator abnormal voltage protection) (transmission line short circuit protection) (transmission line ground fault protection), 67GF1 is a ground fault direction relay, and 27R is all Indicates a stop detection relay.

前記自動復電装置導入によるメリットは、昼間帯66kV送電線事故で送電線停止後、送電線の再閉路で事故が復旧していれば、発電所へ技術員が到着前に遮断器(52Fl・52F2)を自動投入させることにより、即座に66kV系統と連系し通常の発電を継続できることにある。   The merit of the introduction of the automatic power recovery device is that, after the transmission line is stopped due to a 66kV transmission line accident during the daytime, if the accident is recovered by reclosing the transmission line, a circuit breaker (52Fl / 52F2) will arrive before the engineer arrives at the power plant. ) Is automatically connected to the 66 kV system immediately and normal power generation can be continued.

本発明の1回線受電特高発電所における自動復電システムの1実施形態を示す回路説明図である。It is circuit explanatory drawing which shows one Embodiment of the automatic power recovery system in the 1 line power receiving extra high power station of this invention. 本発明の1回線受電特高発電所における自動復電システムの送電線事故時のフロー図である。It is a flowchart at the time of the power transmission line accident of the automatic power recovery system in the 1 line power receiving extra high power station of this invention. 遮断器のトリップ回路図である。It is a trip circuit diagram of a circuit breaker. 発電所内の通常発電時の状況を示す回路説明図である。It is circuit explanatory drawing which shows the condition at the time of the normal power generation in a power plant.

PCS1〜PCS7…ソーラーパネル
A…電力会社変電所(154kV/66kV)
B…受電特高(66kV)送電線
C…主変圧器
89ER1、89ER2、89ER3…接地用開閉器
2…開閉器
O2…発電所の66kV送電線側の受電遮断器
PT…計器用変圧器
52Fl・52F2…主変圧器2次の高圧側遮断器
52S…変圧器2次側遮断器
89ST…所内トランス用開閉器
Tr…所内変圧器
PCS1 to PCS7 ... Solar panel A ... Power company substation (154kV / 66kV)
B ... Received extra high (66kV) transmission line C ... Main transformers 89ER1, 89ER2, 89ER3 ... Earth switch 2 ... Switch O2 ... Receiver circuit breaker PT on the 66kV transmission line side of the power plant ... Instrument transformer 52Fl 52F2 ... Main transformer secondary high-voltage circuit breaker 52S ... Transformer secondary circuit breaker 89ST ... Internal transformer switch Tr ... Internal transformer

Claims (2)

電力会社送電線と発電所からの受電特高送電線との系統連系を1回線で行うものであり、系統連系の連系遮断器を通常の受電遮断器から発電所側の主変圧器2次の高圧側の遮断器へと変更したことを特徴とする1回線受電特高発電所における自動復電システム。   The system interconnects the power company transmission line and the power receiving extra high transmission line from the power station in one line, and the grid connection breaker from the normal power receiving breaker to the main transformer on the power station side An automatic power recovery system in a one-line power receiving extra high power plant, characterized by changing to a secondary high-voltage circuit breaker. 受電特高送電線事故時に一旦、発電所は全停止となり主変圧器2次遮断器が自動遮断し、受電特高送電線が再送電成功した場合、受電遮断器並びに主変圧器2次遮断器が遮断していないことを条件に、受電後一定時間経過後、連系遮断器とした主変圧器2次の高圧側の遮断器を順次自動投入し、発電電圧と系統連系が可能であれば自動並列する請求項1記載の1回線受電特高発電所における自動復電システム。   In the event of a power receiving extra high transmission line accident, once the power plant is completely shut down, the main transformer secondary circuit breaker automatically shuts down, and if the power receiving extra high transmission line succeeds in re-transmission, the power receiving breaker and the main transformer secondary circuit breaker As long as a certain period of time has elapsed after receiving power, the secondary transformer's secondary high-voltage circuit breaker can be automatically turned on in sequence and connected to the power generation voltage. An automatic power recovery system in a one-line power receiving extra high power plant according to claim 1, wherein the automatic power paralleling is performed.
JP2016163338A 2016-08-24 2016-08-24 Automatic power return system in one-line power reception extra-high power generating station Withdrawn JP2018033219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016163338A JP2018033219A (en) 2016-08-24 2016-08-24 Automatic power return system in one-line power reception extra-high power generating station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016163338A JP2018033219A (en) 2016-08-24 2016-08-24 Automatic power return system in one-line power reception extra-high power generating station

Publications (1)

Publication Number Publication Date
JP2018033219A true JP2018033219A (en) 2018-03-01

Family

ID=61303032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016163338A Withdrawn JP2018033219A (en) 2016-08-24 2016-08-24 Automatic power return system in one-line power reception extra-high power generating station

Country Status (1)

Country Link
JP (1) JP2018033219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6647462B1 (en) * 2019-04-25 2020-02-14 三菱電機株式会社 Control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333777A (en) * 2004-05-21 2005-12-02 Hokkaido Electric Power Co Inc:The Control device provided with systematically interconnected protection function of sog switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333777A (en) * 2004-05-21 2005-12-02 Hokkaido Electric Power Co Inc:The Control device provided with systematically interconnected protection function of sog switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6647462B1 (en) * 2019-04-25 2020-02-14 三菱電機株式会社 Control device
WO2020217427A1 (en) * 2019-04-25 2020-10-29 三菱電機株式会社 Control device
JP2020182369A (en) * 2019-04-25 2020-11-05 三菱電機株式会社 Control device

Similar Documents

Publication Publication Date Title
US9525287B2 (en) Inverter system and method for operation of a photovoltaic installation for feeding electrical power into a medium-voltage power supply grid
KR101336042B1 (en) Emergency power system with the solar system
CN108565974B (en) Self-powered remote failure protection method and system based on protection device
CN103022992A (en) Feeder ground positioning method based on dispersion zero sequence voltage detection
CN112909903B (en) High-voltage plant grounding protection and quick switching device protection starting combined optimization method
JP5971716B2 (en) Distribution board and distributed power supply system
CN104124672A (en) Power restoration method for voltage type fault section front end
CN103354352A (en) Distributed intelligence based power distribution network safety protection method
JP2020061850A (en) Power generation control system, power generation control method, and program
CN102624088A (en) Method for controlling fault self-recovery of power distribution switching station
CN103825363B (en) A kind of wind-light storage low pressure micro-capacitance sensor group protection coordination controller
JP2018033219A (en) Automatic power return system in one-line power reception extra-high power generating station
JP6434593B1 (en) Automatic power recovery system in a one-line power receiving special high voltage power plant
JP2007037354A (en) Independent operation preventing device
JP2013132114A (en) Automatic recovery device
Schwarzer et al. Transient over-voltage mitigation and its prevention in secondary distribution networks with high PV-to-load ratio
CN104124749B (en) The dual-ring network distribution line failure processing method that prepared auto restart coordinates with power distribution automation
Yinger Self-healing circuits at southern California Edison
JP6373017B2 (en) DC power supply system, power supply device, power supply control method in DC power supply system, and program
JP2012055033A (en) Device and method for recovering interlock of distributed power supply facility to power system
ES2887249T3 (en) Procedure for maintenance without voltage of a stationary transformer station and a mobile transformer station
US20200287387A1 (en) Protection system for limiting the impact of the disruptions of an external electrical network on the local network of a site connected to the external network
CN204013306U (en) A kind of generator excitation adjusting device and generator system
CN104065064A (en) Control method for a 110 kilovolt transformer substation micro-grid
Nagpal et al. A practical and cost effective cold load pickup management using remote control

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20180205