JP2018033209A - Vibration signal generation method and resonant frequency search method - Google Patents

Vibration signal generation method and resonant frequency search method Download PDF

Info

Publication number
JP2018033209A
JP2018033209A JP2016162562A JP2016162562A JP2018033209A JP 2018033209 A JP2018033209 A JP 2018033209A JP 2016162562 A JP2016162562 A JP 2016162562A JP 2016162562 A JP2016162562 A JP 2016162562A JP 2018033209 A JP2018033209 A JP 2018033209A
Authority
JP
Japan
Prior art keywords
vibration signal
frequency
command value
arithmetic processing
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016162562A
Other languages
Japanese (ja)
Other versions
JP6529468B2 (en
Inventor
仁三 矢部
Kimizo Yabe
仁三 矢部
寒河江 茂兵衛
Mohee Sakae
茂兵衛 寒河江
敏 小林
Satoshi Kobayashi
敏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Machinery Co Ltd
Original Assignee
Micron Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Machinery Co Ltd filed Critical Micron Machinery Co Ltd
Priority to JP2016162562A priority Critical patent/JP6529468B2/en
Publication of JP2018033209A publication Critical patent/JP2018033209A/en
Application granted granted Critical
Publication of JP6529468B2 publication Critical patent/JP6529468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of simplifying an adjustment of a sweep width of a frequency in frequency sweeping of a vibration signal, and a method that uses the method to search for a resonant frequency of a resonance system.SOLUTION: A vibration signal is generated by using an arithmetic processing unit 10 having a clock frequency f. A first command value Nand a second command value Nthat are different from each other are inputted to the arithmetic processing unit 10. Based on the first command value Nand the second command value N, while alternately switching a first vibration signal of a first frequency f/Nand a second vibration signal of a second frequency f/N, the arithmetic processing unit 10 is caused to generate the vibration signal. A ratio of an output period of the first vibration signal and an output period of the second vibration signal is variably controlled.SELECTED DRAWING: Figure 1

Description

本発明は、振動信号を生成する技術および共振系の共振周波数を探索する技術に関する。   The present invention relates to a technique for generating a vibration signal and a technique for searching for a resonance frequency of a resonance system.

複合音響アクチュエータの実装時における振動共振周波数のばらつきによる最大振動量の低減を抑制する技術が提案されている(例えば、特許文献1参照)。具体的には、振動共振周波数のばらつき範囲内で相互に異なる周波数を有する複数の正弦波が掃引されたうえで振動信号が出力される。   There has been proposed a technique for suppressing a reduction in the maximum vibration amount due to variations in vibration resonance frequency when the composite acoustic actuator is mounted (see, for example, Patent Document 1). Specifically, a plurality of sine waves having different frequencies within the range of variation of the vibration resonance frequency are swept and a vibration signal is output.

特開2002−119912号公報JP 2002-119912 A

しかし、掃引する際の周波数の刻み(掃引幅)は、コンピュータのクロック周波数に依存して制限されるため、それよりも小さい掃引幅で振動信号の周波数を変化させることはできなかった。例えば、クロック周波数f0の演算処理装置に対して指令値N(Nは整数)が入力され、周波数f0/Nの振動信号が出力されている場合、指令値Nが「1」だけ増減されることにより周波数変動量Δfはf0/(N±1)に制限される。このため、共振系の共振周波数が変動し、この変動幅が掃引幅よりも小さい場合、当該変動後の共振周波数に振動信号の周波数を合わせることが困難であった。 However, since the frequency increment (sweep width) during the sweep is limited depending on the clock frequency of the computer, the frequency of the vibration signal cannot be changed with a smaller sweep width. For example, when a command value N (N is an integer) is input to the arithmetic processing unit having the clock frequency f 0 and a vibration signal having the frequency f 0 / N is output, the command value N is increased or decreased by “1”. As a result, the frequency fluctuation amount Δf is limited to f 0 / (N ± 1). For this reason, when the resonance frequency of the resonance system fluctuates and this fluctuation width is smaller than the sweep width, it is difficult to match the frequency of the vibration signal to the resonance frequency after the fluctuation.

そこで、本発明は、振動信号の周波数掃引時における、周波数の掃引幅の調節の簡易化を図りうる方法および当該方法を用いて共振系の共振周波数を探索する方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide a method capable of simplifying the adjustment of the frequency sweep width during the frequency sweep of the vibration signal and a method for searching for the resonance frequency of the resonance system using the method. .

本発明の振動信号生成方法は、クロック周波数f0を有する演算処理装置を用いて振動信号を生成する方法であって、相互に異なる第1指令値N1および第2指令値N2を前記演算処理装置に入力する工程と、前記第1指令値N1および前記第2指令値N2に基づき、第1周波数f0/N1の第1振動信号および第2周波数f0/N2の第2振動信号のそれぞれを交互に切り替えながら前記演算処理装置に出力させる工程と、前記第1振動信号の出力期間と前記第2振動信号の出力期間との比を可変に制御する工程と、を含んでいることを特徴とする。 The vibration signal generation method according to the present invention is a method of generating a vibration signal using an arithmetic processing unit having a clock frequency f 0, and calculates the first command value N 1 and the second command value N 2 that are different from each other. A first vibration signal having a first frequency f 0 / N 1 and a second frequency f 0 / N 2 based on the step of inputting to the processing device and the first command value N 1 and the second command value N 2 A step of causing the arithmetic processing unit to output each of the two vibration signals while alternately switching, and a step of variably controlling a ratio between the output period of the first vibration signal and the output period of the second vibration signal. It is characterized by being.

本発明の振動信号生成方法によれば、第1指令値N1および第2指令値N2のそれぞれに応じて、クロック周波数f0の演算処理装置により、第1周波数f1=f0/N1の第1振動信号および第2周波数f2=f0/N2の第2振動信号のそれぞれが交互に切り替えられながら出力される(例えば、N1およびN2は正整数)。この際、第1振動信号の出力期間T1および第2振動信号の出力期間T2の比M1:M2(例えば、M1およびM2は正整数)が制御されることにより、周波数f=(M1×f1+M2×f2)/(M1+M2)の振動信号が生成かつ出力される。 According to the vibration signal generation method of the present invention, the first frequency f 1 = f 0 / N by the arithmetic processing unit having the clock frequency f 0 in accordance with each of the first command value N 1 and the second command value N 2. each of the first oscillation signal and the second frequency f 2 = second oscillation signal of f 0 / N 2 is output while being alternately switched (e.g., N 1 and N 2 is a positive integer). At this time, by controlling the ratio M 1 : M 2 (for example, M 1 and M 2 are positive integers) between the output period T 1 of the first vibration signal and the output period T 2 of the second vibration signal, the frequency f = (M 1 × f 1 + M 2 × f 2 ) / (M 1 + M 2 ) vibration signal is generated and output.

1およびM2のうち少なくとも一方の値が変更されることにより、r1=M1/(M1+M2)およびr2=M2/(M1+M2)が変更され、周波数fが第1周波数f1および第2周波数f2の間で掃引される。M1の前回値M1(k−1)および今回値M1(k)ならびにM2の前回値M2(k−1)および今回値M2(k)に基づき、関係式(10)にしたがって振動信号の周波数変化量Δfが定義される。kは演算処理装置の制御周期を表わす指数である(k=1,2,‥)。 By changing the value of at least one of M 1 and M 2 , r 1 = M 1 / (M 1 + M 2 ) and r 2 = M 2 / (M 1 + M 2 ) are changed, and the frequency f is changed. Swept between the first frequency f 1 and the second frequency f 2 . Based on the previous value M 1 of M 1 (k-1) and the previous value M 2 of the current value M 1 (k) and M 2 (k-1) and the current value M 2 (k), the equation (10) Therefore, the frequency change amount Δf of the vibration signal is defined. k is an index representing the control cycle of the arithmetic processing unit (k = 1, 2,...).

Δf=(M1(k)f1+M2(k)f2)/(M1(k)+M2(k))
−(M1(k−1)f1+M2(k−1)f2)/(M1(k−1)+M2(k−1)) ‥(10)
Δf = (M 1 (k) f 1 + M 2 (k) f 2 ) / (M 1 (k) + M 2 (k))
− (M 1 (k−1) f 1 + M 2 (k−1) f 2 ) / (M 1 (k−1) + M 2 (k−1)) (10)

例えば、M1が「ΔM1+」だけ増加された場合、M1が「ΔM1-」だけ減少された場合、M2が「ΔM2+」だけ増加された場合およびM2が「ΔM2-」だけ減少された場合のそれぞれにおける、振動信号の周波数変化量Δf1+、Δf1-、Δf2+およびΔf2-のそれぞれは、関係式(11)〜(14)のそれぞれにより表わされる。例えば、M1が「ΔM1+」だけ増加された場合、M1が「ΔM1-」だけ減少された場合、M2が「ΔM2+」だけ増加された場合およびM2が「ΔM2-」だけ減少された場合のそれぞれにおける、振動信号の周波数変化量Δf1+、Δf1-、Δf2+およびΔf2-のそれぞれは、関係式(11)〜(14)のそれぞれにより表わされる。 For example, if M 1 is increased by “ΔM 1+ ”, M 1 is decreased by “ΔM 1− ”, M 2 is increased by “ΔM 2+ ”, and M 2 is “ΔM 2 ”. - "Is reduced by each of the vibration signal frequency changes Δf 1+ , Δf 1− , Δf 2+ and Δf 2− , respectively, by the relational expressions (11) to (14). . For example, if M 1 is increased by “ΔM 1+ ”, M 1 is decreased by “ΔM 1− ”, M 2 is increased by “ΔM 2+ ”, and M 2 is “ΔM 2 ”. - "Is reduced by each of the vibration signal frequency changes Δf 1+ , Δf 1− , Δf 2+ and Δf 2− , respectively, by the relational expressions (11) to (14). .

Δf1+=((M1+ΔM1+)f1+M22)/(M1+ΔM1++M2
−(M11+M22)/(M1+M2) ‥(11)
Δf1−=((M1−ΔM1-)f1+M22)/(M1−ΔM1-+M2
−(M11+M22)/(M1+M2) ‥(12)
Δf2+=(M11+(M2+ΔM2+)f2)/(M1+M2+ΔM2+
−(M11+M22)/(M1+M2) ‥(13)
Δf2−=(M11+(M2−ΔM2-)f2)/(M1+M2−ΔM2-
−(M11+M22)/(M1+M2) ‥(14)
Δf 1+ = ((M 1 + ΔM 1+ ) f 1 + M 2 f 2 ) / (M 1 + ΔM 1+ + M 2 )
− (M 1 f 1 + M 2 f 2 ) / (M 1 + M 2 ) (11)
Δf 1− = ((M 1 −ΔM 1− ) f 1 + M 2 f 2 ) / (M 1 −ΔM 1− + M 2 )
-(M 1 f 1 + M 2 f 2 ) / (M 1 + M 2 ) (12)
Δf 2+ = (M 1 f 1 + (M 2 + ΔM 2+) f 2) / (M 1 + M 2 + ΔM 2+)
-(M 1 f 1 + M 2 f 2 ) / (M 1 + M 2 ) (13)
Δf 2− = (M 1 f 1 + (M 2 −ΔM 2− ) f 2 ) / (M 1 + M 2 −ΔM 2− )
-(M 1 f 1 + M 2 f 2 ) / (M 1 + M 2 ) (14)

1およびM2のうち一方のみが増減された場合のみならず、両方が増減された場合も同様の関係式により周波数変化量が定義される。よって、周波数変動量Δf=f0/(N±1)(例えばN=N1)に制限される場合と比較して、N1、N2、M1およびM2ならびにΔM1+、ΔM1-、ΔM2+およびΔM2-のそれぞれの調節を通じて掃引幅の広狭を簡易に調節することができる。また、クロック周波数が高い(そのために高価な)演算処理装置を用いることなく、あるいは、高周波数の演算処理装置を用いても実現されえない程度にまで掃引幅の狭小化が容易に図られる。 The frequency change amount is defined by the same relational expression not only when only one of M 1 and M 2 is increased or decreased, but also when both are increased or decreased. Therefore, N 1 , N 2 , M 1 and M 2 and ΔM 1+ , ΔM 1 are compared with the case where the frequency variation is limited to Δf = f 0 / (N ± 1) (for example, N = N 1 ). -, it is possible to adjust the wide and narrow sweep widths easily through respective regulation of .DELTA.M 2+ and .DELTA.M 2-. In addition, the sweep width can be easily narrowed to such an extent that it cannot be realized without using an arithmetic processing device having a high clock frequency (and therefore expensive) or using a high-frequency arithmetic processing device.

本発明の共振周波数探索方法は、前記振動信号生成方法により生成される振動信号を、その周波数を掃引しながら共振系に付与することにより、前記共振系の共振周波数を探索する方法であって、前記共振系の仕様に関する情報を取得する工程と、前記共振系の仕様に関する情報に基づき、前記共振系に付与される振動信号の周波数の掃引態様を制御する工程と、を含んでいることを特徴とする。   The resonance frequency search method of the present invention is a method for searching for the resonance frequency of the resonance system by applying the vibration signal generated by the vibration signal generation method to the resonance system while sweeping the frequency. Obtaining information relating to the specification of the resonance system, and controlling a frequency sweep mode of a vibration signal applied to the resonance system based on the information relating to the specification of the resonance system. And

本発明の共振周波数探索方法によれば、上記のように掃引幅の広狭が調節される振動信号の周波数が掃引されることにより実行される。当該周波数の掃引態様が共振系の仕様に関する情報に基づいて制御される。「掃引態様」には、掃引開始周波数、掃引開始周波数を基準として高周波数域および低周波数域の掃引の軽重(高周波数域を掃引後に低周波数域を掃引する、低周波数域のみを掃引するなど)、周波数の掃引域の下限値および上限値(第1指令値N1および第2指令値N2により定められる。)、周波数の掃引幅の変化態様(一定維持、掃引初期は広く掃引終期は狭くなど)、が含まれる。その結果、共振周波数の探索早期化が図られる。 According to the resonance frequency search method of the present invention, the resonance frequency search method is executed by sweeping the frequency of the vibration signal whose sweep width is adjusted as described above. The frequency sweep mode is controlled based on information related to the specifications of the resonance system. "Sweep mode" includes sweep start frequency, sweep weight of high frequency range and low frequency range based on sweep start frequency (sweep low frequency range after sweeping high frequency range, sweep only low frequency range, etc.) ), Lower limit value and upper limit value of frequency sweep region (determined by first command value N 1 and second command value N 2 ), frequency sweep width change mode (maintained constant, sweep initial is wide and sweep end is Narrow). As a result, the search for the resonance frequency can be accelerated.

振動信号生成器および共振系の構成説明図。FIG. 2 is a configuration explanatory diagram of a vibration signal generator and a resonance system. 振動信号生成方法および共振周波数探索方法の一実施例に関する説明図。Explanatory drawing regarding one Example of the vibration signal generation method and the resonance frequency search method. 第1振動信号の一例に関する説明図。Explanatory drawing regarding an example of a 1st vibration signal. 第2振動信号の一例に関する説明図。Explanatory drawing regarding an example of a 2nd vibration signal. 第1および第2振動信号から生成された振動信号の実施例1に関する説明図。Explanatory drawing regarding Example 1 of the vibration signal produced | generated from the 1st and 2nd vibration signal. 第1および第2振動信号から生成された振動信号の実施例2に関する説明図。Explanatory drawing regarding Example 2 of the vibration signal produced | generated from the 1st and 2nd vibration signal. 振動信号の周波数の掃引態様の実施例1に関する説明図。Explanatory drawing regarding Example 1 of the sweeping aspect of the frequency of a vibration signal. 振動信号の周波数の掃引態様の実施例2に関する説明図。Explanatory drawing regarding Example 2 of the sweeping aspect of the frequency of a vibration signal.

(振動信号生成器の構成)
図1に示されている振動信号生成器1は、クロック周波数f0を有する演算処理装置10と、演算処理装置10に対して指令値を入力する入力装置11と、演算処理装置10により生成された振動信号を共振系に対して直接的または間接的に出力する出力装置12と、を備えている。入力装置11は、入力インターフェースおよび出力インターフェースが一体的に構成されているタッチパネルなどによって構成されている。
(Configuration of vibration signal generator)
The vibration signal generator 1 shown in FIG. 1 is generated by an arithmetic processing device 10 having a clock frequency f 0 , an input device 11 that inputs a command value to the arithmetic processing device 10, and the arithmetic processing device 10. And an output device 12 that outputs the vibration signal directly or indirectly to the resonance system. The input device 11 is configured by a touch panel in which an input interface and an output interface are integrally configured.

共振系は、例えば超音波駆動方式の切削装置20であり、超音波振動子21(または圧電素子)と、超音波振動子21により駆動される切削工具22と、を備えている。なお、共振系としては、共振器を有するマイクロ波回路など、共振周波数を有するあらゆる系が採用されてもよい。   The resonance system is, for example, an ultrasonic drive type cutting device 20 and includes an ultrasonic vibrator 21 (or a piezoelectric element) and a cutting tool 22 driven by the ultrasonic vibrator 21. As the resonance system, any system having a resonance frequency such as a microwave circuit having a resonator may be employed.

(振動信号生成方法および共振周波数探索方法)
作業者により入力装置11を通じて、切削工具22を含む切削装置20の仕様に関する情報が、共振系の仕様に関する情報として演算処理装置10に対して入力される(図2/STEP02)。切削工具22が切削装置20に対して取り外し可能に構成され、使用される切削工具22が変更可能であるため、切削工具22のカテゴリのほか、外形および特徴的部分のサイズなどが切削工具22の仕様に関する情報に含まれていてもよい。共振系の仕様に関する情報は、例えば、入力装置11を構成する文字入力インターフェースを通じて入力されてもよい。そのほか、入力装置11を構成するまたは入力装置11に接続される撮像装置により撮像された切削装置20の外観を表わす画像が演算処理装置10またはこれとは別の画像解析装置により解析されることにより、切削工具22の仕様が認識されてもよい。
(Vibration signal generation method and resonance frequency search method)
Information regarding the specifications of the cutting device 20 including the cutting tool 22 is input to the arithmetic processing device 10 by the operator through the input device 11 as information regarding the specifications of the resonance system (FIG. 2 / STEP02). Since the cutting tool 22 is configured to be detachable from the cutting apparatus 20 and the cutting tool 22 to be used can be changed, in addition to the category of the cutting tool 22, the outer shape, the size of the characteristic part, etc. It may be included in the information about the specification. Information regarding the specifications of the resonance system may be input through a character input interface constituting the input device 11, for example. In addition, an image representing the appearance of the cutting device 20 captured by the imaging device that constitutes the input device 11 or is connected to the input device 11 is analyzed by the arithmetic processing device 10 or another image analysis device. The specification of the cutting tool 22 may be recognized.

作業者により入力装置11を通じて、相互に相違する正整数が第1指令値N1および第2指令値N2のそれぞれとして設定され、かつ、演算処理装置10に入力される(図2/STEP04)。なお、共振系の仕様に関する情報入力(図2/STEP02参照)に応じて、第1指令値N1および第2指令値N2のそれぞれが自動的に設定かつ演算処理装置10に対して入力されてもよい。 Different positive integers are set as the first command value N 1 and the second command value N 2 by the operator through the input device 11 and input to the arithmetic processing device 10 (FIG. 2 / STEP 04). . It should be noted that each of the first command value N 1 and the second command value N 2 is automatically set and input to the arithmetic processing unit 10 in accordance with information input regarding the specification of the resonance system (see STEP 2 in FIG. 2). May be.

共振系の仕様に関する情報に基づき、演算処理装置10が振動信号を生成し、出力装置12を通じて切削装置20に対して出力するとともに、当該振動信号の周波数fを制御する(図2/STEP06)。   Based on the information about the specifications of the resonance system, the arithmetic processing device 10 generates a vibration signal, outputs it to the cutting device 20 through the output device 12, and controls the frequency f of the vibration signal (FIG. 2 / STEP06).

具体的には、第1指令値N1および第2指令値N2のそれぞれに応じて、クロック周波数f0の演算処理装置により、第1周波数f1=f0/N1の第1振動信号および第2周波数f2=f0/N2の第2振動信号のそれぞれが交互に切り替えられながら出力される。例えば、演算処理装置から、図3Aに示されているようにf1=f0/N1=50000Hzの第1振動信号が出力される期間と、図3Bに示されているようにf2=f0/N2=49950Hzの第2振動信号が出力される期間と、が交互に切り替えられる。 Specifically, the first vibration signal having the first frequency f 1 = f 0 / N 1 is calculated by the arithmetic processing unit having the clock frequency f 0 in accordance with each of the first command value N 1 and the second command value N 2. The second vibration signal having the second frequency f 2 = f 0 / N 2 is output while being switched alternately. For example, a period during which the first vibration signal of f 1 = f 0 / N 1 = 50000 Hz is output from the arithmetic processing unit as shown in FIG. 3A, and f 2 = as shown in FIG. 3B. The period in which the second vibration signal of f 0 / N 2 = 49950 Hz is output is switched alternately.

この際、第1振動信号の出力期間T1および第2振動信号の出力期間T2の比M1:M2(M1およびM2は整数)が制御されることにより、周波数f=(M1×f1+M2×f2)/(M1+M2)の振動信号が出力される。M1およびM2のうち少なくとも一方の値が変更されることにより、r1=M1/(M1+M2)およびr2=M2/(M1+M2)が変更され、周波数fが第1周波数f1および第2周波数f2の間で掃引される。例えば、M1:M2=500:500に制御された場合、図3Aに示されている第1振動信号および図3Bに示されている第2振動信号のそれぞれが出力される期間の比率が、図3Cに示されているように1:1になるように制御されることにより、周波数f=49975Hzの振動信号が生成かつ出力される。また、M1:M2=900:100に制御された場合、図3Aに示されている第1振動信号および図3Bに示されている第2振動信号のそれぞれが出力される期間の比率が、図3Dに示されているように9:1になるように制御されることにより、周波数f=49995Hzの振動信号が生成かつ出力される。 At this time, by controlling the ratio M 1 : M 2 (M 1 and M 2 are integers) between the output period T 1 of the first vibration signal and the output period T 2 of the second vibration signal, the frequency f = (M The vibration signal of 1 × f 1 + M 2 × f 2 ) / (M 1 + M 2 ) is output. By changing the value of at least one of M 1 and M 2 , r 1 = M 1 / (M 1 + M 2 ) and r 2 = M 2 / (M 1 + M 2 ) are changed, and the frequency f is changed. Swept between the first frequency f 1 and the second frequency f 2 . For example, when M 1 : M 2 = 500: 500, the ratio of the period during which each of the first vibration signal shown in FIG. 3A and the second vibration signal shown in FIG. 3B is output is As shown in FIG. 3C, the vibration signal having the frequency f = 49975 Hz is generated and output by being controlled to be 1: 1. Further, when M 1 : M 2 = 900: 100 is controlled, the ratio of the period during which each of the first vibration signal shown in FIG. 3A and the second vibration signal shown in FIG. As shown in FIG. 3D, the vibration signal having the frequency f = 49995 Hz is generated and output by being controlled to be 9: 1.

掃引開始時刻t=t0における掃引開始周波数f(t0)、すなわちM1およびM2の初期値が設定される(図4および図5参照)。例えば、掃引開始時刻t=t0においてクロック周波数f0=42MHz、第1指令値N1=1000、第2指令値N2=100、M1=1000かつM2=1000である場合、第1周波数f1=42kHz、第2周波数f2=420kHzかつ掃引開始周波数f(t0)=231kHzに調節される。 The sweep start frequency f (t 0 ) at the sweep start time t = t 0 , that is, the initial values of M 1 and M 2 are set (see FIGS. 4 and 5). For example, when the clock frequency f 0 = 42 MHz, the first command value N 1 = 1000, the second command value N 2 = 100, M 1 = 1000 and M 2 = 1000 at the sweep start time t = t 0 , the first The frequency f 1 = 42 kHz, the second frequency f 2 = 420 kHz, and the sweep start frequency f (t 0 ) = 231 kHz are adjusted.

例えば、M2が前回値のまま維持される一方、M1が前回値よりもΔM1+=10だけ増加された場合、関係式(11)にしたがって、振動信号の周波数はその変化量Δf1+=−940.3Hzになり、振動信号の今回周波数fが230.06kHzに掃引される。このように、M2が前回値のまま維持される一方、M1が前回値よりも逐次増加されることにより、図4に示されているように振動信号の周波数fが徐々に低下する。これは、M1が前回値のまま維持される一方、M2が前回値よりも逐次減少される場合(関係式(14)参照)など、第2振動信号の出力期間に対する第1振動信号の出力期間の比率が逐次低下するように制御された場合も同様である。 For example, when M 2 is maintained at the previous value while M 1 is increased by ΔM 1+ = 10 from the previous value, the frequency of the vibration signal is changed by Δf 1 according to the relational expression (11). + = − 940.3 Hz, and the current frequency f of the vibration signal is swept to 230.06 kHz. In this way, while M 2 is maintained at the previous value, M 1 is sequentially increased from the previous value, so that the frequency f of the vibration signal gradually decreases as shown in FIG. This is because, for example, when M 1 is maintained at the previous value while M 2 is successively decreased from the previous value (see relational expression (14)), the first vibration signal is output with respect to the output period of the second vibration signal. The same applies when the output period ratio is controlled to decrease successively.

そのほか、第2振動信号の出力期間に対する第1振動信号の出力期間の比率の低下および増加が交互に切り替えられた場合、図5に示されているように振動信号の周波数fが低下および上昇を交互に切り替えながら変化する。図5に示されている例では、周波数の減少幅は、増加幅より大きくなっている。   In addition, when the decrease and increase of the ratio of the output period of the first vibration signal to the output period of the second vibration signal are alternately switched, the frequency f of the vibration signal decreases and increases as shown in FIG. It changes while switching alternately. In the example shown in FIG. 5, the frequency decrease width is larger than the increase width.

なお、振動信号の周波数fの掃引態様または増減態様は、図4および図5に示されているものに限定されず、さまざまに変更されてもよい。振動信号の周波数fが徐々に増加されてもよい。振動信号の周波数fの増加幅または減少幅が、掃引時間経過とともに徐々に狭くなるようにまたは広くなるように制御されてもよい。   Note that the sweep mode or increase / decrease mode of the frequency f of the vibration signal is not limited to those shown in FIGS. 4 and 5 and may be variously changed. The frequency f of the vibration signal may be gradually increased. The increase width or decrease width of the frequency f of the vibration signal may be controlled to gradually narrow or widen with the lapse of the sweep time.

振動信号の周波数fの掃引態様が制御されている過程で、当該周波数fが共振系の共振周波数に一致したか否かが判定される(図2/STEP08)。これは、例えば、超音波振動子21のアドミッタンスまたはインピーダンスが計測され、超音波振動子21の機械的振動に応じた特性変化が検知されたか否かにより判定される。   In the process in which the sweep mode of the frequency f of the vibration signal is controlled, it is determined whether or not the frequency f matches the resonance frequency of the resonance system (FIG. 2 / STEP08). This is determined, for example, by measuring the admittance or impedance of the ultrasonic vibrator 21 and detecting whether a characteristic change corresponding to the mechanical vibration of the ultrasonic vibrator 21 is detected.

当該判定結果が否定的である場合(図2/STEP08‥NO)、振動信号の周波数fの掃引が再び実行される(図2/STEP06)。その一方、当該判定結果が肯定的である場合(図2/STEP08‥YES)、振動信号の周波数fがそのまま、すなわち共振系の共振周波数に制御される(図2/STEP10)。例えば、図4および図5のそれぞれに示されているように、当該判定結果が肯定的になった時刻t=tf以後は振動信号の周波数fが一定値に維持されている。 When the determination result is negative (FIG. 2 / STEP08... NO), the sweep of the frequency f of the vibration signal is executed again (FIG. 2 / STEP06). On the other hand, if the determination result is affirmative (FIG. 2 / STEP08... YES), the frequency f of the vibration signal is controlled as it is, that is, the resonance frequency of the resonance system (FIG. 2 / STEP10). For example, as shown in FIGS. 4 and 5, the frequency f of the vibration signal is maintained at a constant value after time t = t f when the determination result becomes affirmative.

その後、超音波振動子21および切削工具22の温度上昇などの原因によって共振周波数がずれた場合、振動信号生成器1により生成される振動信号の周波数fの掃引が再開され、当該周波数fがずれた共振周波数に追従するように制御される。   Thereafter, when the resonance frequency shifts due to causes such as a rise in temperature of the ultrasonic vibrator 21 and the cutting tool 22, the sweep of the frequency f of the vibration signal generated by the vibration signal generator 1 is resumed, and the frequency f shifts. It is controlled to follow the resonance frequency.

(作用効果)
本発明の方法によれば、周波数変動量Δf=f0/(N±1)(例えばN=N1)に制限される場合と比較して、N1、N2、M1およびM2ならびにΔM1+、ΔM1-、ΔM2+およびΔM2-のそれぞれの調節を通じて掃引幅の広狭を簡易に調節することができる(図4、図5および関係式(11)〜(14)参照)。また、クロック周波数f0が高い(そのために高価な)演算処理装置を用いることなく、あるいは、高周波数の演算処理装置を用いても実現されえない程度にまで掃引幅の狭小化が容易に図られる。
(Function and effect)
According to the method of the present invention, N 1 , N 2 , M 1 and M 2, and the case where the frequency variation is limited to Δf = f 0 / (N ± 1) (for example, N = N 1 ) and By adjusting each of ΔM 1+ , ΔM 1− , ΔM 2+ and ΔM 2− , the sweep width can be easily adjusted (see FIGS. 4 and 5 and relational expressions (11) to (14)). . Further, it is possible to easily reduce the sweep width to such an extent that it cannot be realized without using an arithmetic processing device having a high clock frequency f 0 (and therefore expensive) or using a high-frequency arithmetic processing device. It is done.

また、周波数の掃引態様が共振系としての切削装置20の仕様に関する情報に基づいて制御される。切削工具22の形状が複雑であるため、複数の共振周波数が存在する場合、掃引幅が過大となって一の共振周波数の近傍に存在する他の共振周波数の探索をしそこなうような事態が回避される。その結果、共振周波数の探索早期化が図られる。   Further, the frequency sweep mode is controlled based on information related to the specifications of the cutting device 20 as a resonance system. Since the shape of the cutting tool 22 is complicated, when there are a plurality of resonance frequencies, a situation in which the sweep width is excessive and other resonance frequencies existing in the vicinity of one resonance frequency are not searched is avoided. The As a result, the search for the resonance frequency can be accelerated.

1‥振動信号生成器、10‥演算処理装置、11‥入力装置、12‥出力装置、20‥切削装置(共振系)、21‥超音波振動子、22‥切削工具。 DESCRIPTION OF SYMBOLS 1 ... Vibration signal generator, 10 ... Arithmetic processing device, 11 ... Input device, 12 ... Output device, 20 ... Cutting device (resonance system), 21 ... Ultrasonic vibrator, 22 ... Cutting tool.

Claims (2)

クロック周波数f0を有する演算処理装置を用いて振動信号を生成する方法であって、
相互に異なる第1指令値N1および第2指令値N2を前記演算処理装置に入力する工程と、
前記第1指令値N1および前記第2指令値N2に基づき、第1周波数f0/N1の第1振動信号および第2周波数f0/N2の第2振動信号のそれぞれを交互に切り替えながら前記演算処理装置に出力させる工程と、
前記第1振動信号の出力期間と前記第2振動信号の出力期間との比を可変に制御する工程と、を含んでいることを特徴とする振動信号生成方法。
A method for generating a vibration signal using an arithmetic processing unit having a clock frequency f 0 , comprising:
Inputting a first command value N 1 and a second command value N 2 different from each other to the arithmetic processing unit;
Based on the first command value N 1 and the second command value N 2 , each of the first vibration signal having the first frequency f 0 / N 1 and the second vibration signal having the second frequency f 0 / N 2 are alternately performed. Outputting to the arithmetic processing unit while switching;
And a step of variably controlling a ratio between an output period of the first vibration signal and an output period of the second vibration signal.
請求項1記載の振動信号生成方法により生成される振動信号を、その周波数を掃引しながら共振系に付与することにより、前記共振系の共振周波数を探索する方法であって、
前記共振系の仕様に関する情報を取得する工程と、
前記共振系の仕様に関する情報に基づき、前記共振系に付与される振動信号の周波数の掃引態様を制御する工程と、を含んでいることを特徴とする共振周波数探索方法。
A method for searching for a resonance frequency of the resonance system by applying the vibration signal generated by the vibration signal generation method according to claim 1 to the resonance system while sweeping the frequency thereof.
Obtaining information on the specifications of the resonant system;
And a step of controlling a frequency sweeping mode of a vibration signal applied to the resonance system based on information relating to the specification of the resonance system.
JP2016162562A 2016-08-23 2016-08-23 Vibration signal generation method and resonance frequency search method Active JP6529468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016162562A JP6529468B2 (en) 2016-08-23 2016-08-23 Vibration signal generation method and resonance frequency search method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016162562A JP6529468B2 (en) 2016-08-23 2016-08-23 Vibration signal generation method and resonance frequency search method

Publications (2)

Publication Number Publication Date
JP2018033209A true JP2018033209A (en) 2018-03-01
JP6529468B2 JP6529468B2 (en) 2019-06-12

Family

ID=61303003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016162562A Active JP6529468B2 (en) 2016-08-23 2016-08-23 Vibration signal generation method and resonance frequency search method

Country Status (1)

Country Link
JP (1) JP6529468B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110801144A (en) * 2018-08-06 2020-02-18 佛山市顺德区美的电热电器制造有限公司 Control method and system of cooking device and cooking device
CN113804989A (en) * 2021-11-17 2021-12-17 武汉磐电科技股份有限公司 Method, device, equipment and storage medium for calibrating variable ratio group tester

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339289A (en) * 1993-03-30 1994-12-06 Asmo Co Ltd Method and circuit for driving ultrasonic motor
JPH10155288A (en) * 1996-11-21 1998-06-09 Olympus Optical Co Ltd Drive equipment for ultrasonic motor
JP2011254610A (en) * 2010-06-02 2011-12-15 Funai Electric Co Ltd Driving device for ultrasonic motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339289A (en) * 1993-03-30 1994-12-06 Asmo Co Ltd Method and circuit for driving ultrasonic motor
JPH10155288A (en) * 1996-11-21 1998-06-09 Olympus Optical Co Ltd Drive equipment for ultrasonic motor
JP2011254610A (en) * 2010-06-02 2011-12-15 Funai Electric Co Ltd Driving device for ultrasonic motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110801144A (en) * 2018-08-06 2020-02-18 佛山市顺德区美的电热电器制造有限公司 Control method and system of cooking device and cooking device
CN110801144B (en) * 2018-08-06 2021-07-20 佛山市顺德区美的电热电器制造有限公司 Control method and system of cooking device and cooking device
CN113804989A (en) * 2021-11-17 2021-12-17 武汉磐电科技股份有限公司 Method, device, equipment and storage medium for calibrating variable ratio group tester

Also Published As

Publication number Publication date
JP6529468B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
US11835843B2 (en) Piezoelectric resonant-based mechanical frequency combs
JP5524535B2 (en) Actuator drive
US7068923B2 (en) Speed control apparatus of motor
JPWO2017126662A1 (en) Plasma control device
WO2012057272A1 (en) Ultrasonic probe device and method for controlling same
JP2005236801A (en) Crystal oscillator, oscillation method, and heater
JP2016528997A5 (en)
JP2007090139A (en) Ultrasonic wave generator and ultrasonic cosmetic device
JP4641134B2 (en) Power support device for ultrasonic vibration dental handpiece
CN103597327B (en) For calculating the method for the Oscillation Amplitude of ultrasonic horn
JP2016536124A (en) Control and monitoring of atomizer vibration aperture drive frequency
JP2018033209A (en) Vibration signal generation method and resonant frequency search method
KR20180034562A (en) Frequency control method of piezoelectric transformer and switch arrangement structure including piezoelectric transformer
JP2019500954A5 (en)
JP7145985B2 (en) Actuator control device and method
JP3751606B2 (en) Method for estimating rotor inertia
TW200830688A (en) Motor control device, and its control method
US11065644B2 (en) Method for exciting piezoelectric transducers and sound-producing arrangement
TW201423058A (en) Method and circuit arrangement for determining a working range of an ultrasonic vibrating unit
CN104685325B (en) Method and its Coherence resonance measuring system for operating resonance measurement system
KR102158040B1 (en) Multiple frequency ultrasonic generator and frequency control method
JP2011058860A (en) Angular-velocity detecting apparatus
JP2006523986A (en) Crystal oscillator
JP4891885B2 (en) Resonance point tracking drive
JPH0121452B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190514

R150 Certificate of patent or registration of utility model

Ref document number: 6529468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250