JP2018030042A - Electrolytic water generator - Google Patents

Electrolytic water generator Download PDF

Info

Publication number
JP2018030042A
JP2018030042A JP2015005011A JP2015005011A JP2018030042A JP 2018030042 A JP2018030042 A JP 2018030042A JP 2015005011 A JP2015005011 A JP 2015005011A JP 2015005011 A JP2015005011 A JP 2015005011A JP 2018030042 A JP2018030042 A JP 2018030042A
Authority
JP
Japan
Prior art keywords
anode
flow path
chamber
flow
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015005011A
Other languages
Japanese (ja)
Inventor
英男 太田
Hideo Ota
英男 太田
横田 昌広
Masahiro Yokota
昌広 横田
齋藤 誠
Makoto Saito
誠 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015005011A priority Critical patent/JP2018030042A/en
Priority to PCT/JP2016/051025 priority patent/WO2016114364A1/en
Publication of JP2018030042A publication Critical patent/JP2018030042A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic water generator excellent in electrolysis efficiency.SOLUTION: There is provided an electrolytic water generator provided with an electrolytic cell having an anode and a cathode, an anode chamber 15b which faces the anode and covers the anode and a cathode chamber which faces the cathode and covers the cathode. The electrolytic cell has a plurality of passages which are provided in the anode chamber and face the anode, respectively, and the plurality of passages have a first passage P1 for flowing water at a first flow rate in a state of being in contact with the anode and a second passage P2 for flowing water at a second flow rate higher than the first flow rate in a state of being in contact with the anode.SELECTED DRAWING: Figure 5

Description

本発明の実施形態は、電解水生成装置に関する。   Embodiments described herein relate generally to an electrolyzed water generating apparatus.

近年、水を電解して様々な機能を有する電解水、例えば、アルカリイオン水、オゾン水または次亜塩素酸水などを生成する電解水生成装置が提供されている。このような次亜塩素酸水を生成する電解水生成装置としては、1隔膜2室型電解槽や、2隔膜3室型電解槽を有する電解装置がある。1隔膜2室型の電解槽は、陽極を収納した陽極室と陰極を収納した陰極室とを特定イオンだけ通過させる隔膜で隔てて対向させた電解槽を備えている。1隔膜2室型電解槽は、電解質として、たとえば塩を混ぜた水を流水させ、陽極室で酸性水を、陰極室でアルカリ性水を生成するものである。酸性水としては、次亜塩素酸と塩酸を混合した水、アルカリ性水としては、水酸化ナトリウム水や溶存水素を含んだ水となる。   In recent years, there has been provided an electrolyzed water generating apparatus that generates electrolyzed water having various functions by electrolyzing water, for example, alkaline ionized water, ozone water, or hypochlorous acid water. As an electrolyzed water generating apparatus for generating such hypochlorous acid water, there are electrolyzers having a one-diaphragm two-chamber electrolytic cell and a two-diaphragm three-chamber electrolytic cell. The one-diaphragm two-chamber type electrolytic cell includes an electrolytic cell in which an anode chamber containing an anode and a cathode chamber containing a cathode are opposed to each other with a diaphragm passing only specific ions. The 1-diaphragm 2-chamber electrolytic cell is one in which, for example, water mixed with salt is allowed to flow as an electrolyte, so that acidic water is generated in the anode chamber and alkaline water is generated in the cathode chamber. The acidic water is water in which hypochlorous acid and hydrochloric acid are mixed, and the alkaline water is water containing sodium hydroxide water or dissolved hydrogen.

2隔膜3室型電解槽では、生成された酸性水およびアルカリ性水に塩分が混入するのを防ぐため、陽極室と陰極室との間に塩水などの電解液を満たした中間室を配置し、中間室と陽極室との間を陰イオン交換膜、中間室と陰極室との間を陽イオン交換膜で隔てている。そして、塩水から電解に必要な陰イオンあるいは陽イオンだけを陽極室あるいは陰極室に通過させる構造としている。   In the two-diaphragm three-chamber electrolytic cell, an intermediate chamber filled with an electrolytic solution such as salt water is disposed between the anode chamber and the cathode chamber in order to prevent salt from being mixed into the generated acidic water and alkaline water. The intermediate chamber and the anode chamber are separated by an anion exchange membrane, and the intermediate chamber and the cathode chamber are separated by a cation exchange membrane. And only the anion or cation required for electrolysis from salt water is passed through the anode chamber or the cathode chamber.

特許第3287649号公報Japanese Patent No. 3287649 特許第3500173号公報Japanese Patent No. 3500173 特許第3113645号公報Japanese Patent No. 3113645 特許第4090665号公報Japanese Patent No. 4090665

このような電解水生成装置において、陽極室では、陰イオン交換膜を透過した塩素イオンが陽極と反応し塩素ガスを生成するが、塩素イオン濃度が低いと競合反応である酸素生成反応が起きてしまう。そのため、陽極近傍での塩素イオン濃度を高める必要がある。一方、陽極室を流れる水の流水速度が速いと、電極近傍の塩素イオンが反応に寄与できずに流されてしまう。その結果、塩素濃度の低下により十分な次亜塩素酸濃度が得られず、電気分解効率が低いという問題があった。   In such an electrolyzed water generating apparatus, in the anode chamber, chlorine ions that permeate the anion exchange membrane react with the anode to generate chlorine gas. However, when the chlorine ion concentration is low, an oxygen generating reaction that is a competitive reaction occurs. End up. Therefore, it is necessary to increase the chlorine ion concentration in the vicinity of the anode. On the other hand, if the flowing speed of the water flowing through the anode chamber is high, chlorine ions near the electrode will flow without being able to contribute to the reaction. As a result, there was a problem that a sufficient hypochlorous acid concentration could not be obtained due to a decrease in chlorine concentration, and electrolysis efficiency was low.

この発明は以上の点を鑑みてなされたものであり、その課題は、電気分解効率に優れる電解水生成装置を提供することにある。   This invention is made | formed in view of the above point, The subject is providing the electrolyzed water generating apparatus which is excellent in electrolysis efficiency.

実施形態によれば、電解水生成装置は、陽極および陰極と、前記陽極に対向し前記陽極を覆う陽極室と、前記陰極に対向し前記陰極を覆う陰極室と、を有する電解槽を備え、前記電解槽は、前記陽極室内に設けられそれぞれ前記陽極に対向する複数の流路を備え、前記複数の流路は、水を前記陽極に接触した状態で第1流速で流す第1流路と、水を前記陽極に接触した状態で前記第1流速よりも早い第2流速で流す第2流路と、を有している。   According to the embodiment, the electrolyzed water generating apparatus includes an electrolytic cell having an anode and a cathode, an anode chamber facing the anode and covering the anode, and a cathode chamber facing the cathode and covering the cathode, The electrolytic cell includes a plurality of channels that are provided in the anode chamber and face the anode, and the plurality of channels are a first channel that allows water to flow at a first flow rate in contact with the anode. And a second flow path that allows water to flow at a second flow rate that is faster than the first flow rate in contact with the anode.

図1は、第1の実施形態に係る電解水生成装置を概略的に示すブロック図。FIG. 1 is a block diagram schematically showing an electrolyzed water generating apparatus according to the first embodiment. 図2は、第1の実施形態に係る電解水生成装置の電解槽を示す斜視図。FIG. 2 is a perspective view showing an electrolytic cell of the electrolyzed water generating apparatus according to the first embodiment. 図3は、前記電解槽の分解斜視図。FIG. 3 is an exploded perspective view of the electrolytic cell. 図4は、図2の線A−Aに沿った前記電解槽の断面図。FIG. 4 is a cross-sectional view of the electrolytic cell taken along line AA in FIG. 図5は、前記電解槽の陽極カバーを示す斜視図。FIG. 5 is a perspective view showing an anode cover of the electrolytic cell. 図6は、前記陽極カバーの一部を拡大して示す斜視図。FIG. 6 is an enlarged perspective view showing a part of the anode cover. 図7は、前記電解槽の陰極室内に設けられた流路および水の流れを概略的に示す前記陰極カバーの平面図。FIG. 7 is a plan view of the cathode cover schematically showing the flow path and water flow provided in the cathode chamber of the electrolytic cell. 図8は、陽極の流水量と有効塩素濃度の関係を示す図。FIG. 8 is a graph showing the relationship between the amount of flowing anode water and the effective chlorine concentration. 図9は、変形例に係る電解槽の陽極カバーを示す斜視図。FIG. 9 is a perspective view showing an anode cover of an electrolytic cell according to a modification.

以下に、図面を参照しながら、種々の実施形態について説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。   Various embodiments will be described below with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to a common structure through embodiment, and the overlapping description is abbreviate | omitted. In addition, each drawing is a schematic diagram for promoting the embodiment and its understanding, and its shape, dimensions, ratio, etc. are different from the actual device, but these are considered in consideration of the following description and known techniques. The design can be changed as appropriate.

(第1の実施形態)
図1は、第1の実施形態に係る電解槽を有する電解水生成装置全体の構成を概略的に示す図である。始めに、電解水生成装置全体の構成を説明する。図1に示すように、電解水生成装置は、いわゆる3室型の電解槽11を備えている。電解槽11は、偏平な矩形箱状に形成され、その内部は、陰イオン交換膜(第1隔膜)16および陽イオン交換膜(第2隔膜)18により、中間室15aと、中間室15aの両側に位置する陽極室15bおよび陰極室15cとに仕切られている。陽極室15b内に陽極14が設けられ、陰イオン交換膜16に対向している。陰極室15c内に陰極20が設けられ、陽イオン交換膜18に対向している。陽極14および陰極20は、ほぼ等しい大きさの矩形板状に形成され、中間室15aを挟んで、互いに対向している。
(First embodiment)
Drawing 1 is a figure showing roughly the composition of the whole electrolyzed water generating device which has the electrolysis tank concerning a 1st embodiment. First, the configuration of the entire electrolyzed water generating device will be described. As shown in FIG. 1, the electrolyzed water generating apparatus includes a so-called three-chamber electrolytic tank 11. The electrolytic cell 11 is formed in a flat rectangular box shape, and the inside thereof is composed of an intermediate chamber 15a and an intermediate chamber 15a by an anion exchange membrane (first diaphragm) 16 and a cation exchange membrane (second diaphragm) 18. It is partitioned into an anode chamber 15b and a cathode chamber 15c located on both sides. An anode 14 is provided in the anode chamber 15 b and faces the anion exchange membrane 16. A cathode 20 is provided in the cathode chamber 15 c and faces the cation exchange membrane 18. The anode 14 and the cathode 20 are formed in a rectangular plate shape having substantially the same size, and face each other with the intermediate chamber 15a interposed therebetween.

電解水生成装置は、電解槽11の中間室15aに電解液、例えば、飽和塩水を供給する電解液供給部19と、陽極室15bおよび陰極室15cに電解原水、例えば、水を供給する原水供給部21と、陽極14および陰極20に正電圧および負電圧をそれぞれ印加する電源23と、を備えている。   The electrolyzed water generator includes an electrolyte supply unit 19 that supplies an electrolytic solution, for example, saturated brine, to the intermediate chamber 15a of the electrolytic cell 11, and a raw water supply that supplies raw electrolytic water, for example, water to the anode chamber 15b and the cathode chamber 15c. And a power source 23 for applying a positive voltage and a negative voltage to the anode 14 and the cathode 20, respectively.

電解液供給部19は、飽和塩水を生成する塩水タンク25と、塩水タンク25から中間室15aの下部に飽和塩水を導く供給配管19aと、供給配管19a中に設けられた送液ポンプ29と、中間室15a内を流れた電解液を中間室15aの上部から塩水タンク25に送る排水配管19bと、を備えている。   The electrolyte supply unit 19 includes a salt water tank 25 that generates saturated salt water, a supply pipe 19a that guides the saturated salt water from the salt water tank 25 to the lower portion of the intermediate chamber 15a, a liquid feed pump 29 provided in the supply pipe 19a, And a drain pipe 19b for sending the electrolytic solution flowing in the intermediate chamber 15a from the upper portion of the intermediate chamber 15a to the salt water tank 25.

原水供給部21は、水を供給する図示しない給水源と、給水源から陽極室15bおよび陰極室15cの下部に水を導く給水配管21aと、陽極室15bを流れた水を陽極室15bの上部から排出する第1排水配管21bと、陰極室15cを流れた水を陰極室15cの上部から排出する第2排水配管21cと、第2排水配管21c中に設けられた気液分離器27と、を備えている。   The raw water supply unit 21 includes a water supply source (not shown) for supplying water, a water supply pipe 21a for guiding water from the water supply source to the lower portions of the anode chamber 15b and the cathode chamber 15c, and water flowing through the anode chamber 15b above the anode chamber 15b. A first drain pipe 21b that discharges from the cathode chamber 15c, a second drain pipe 21c that drains water flowing through the cathode chamber 15c from the upper part of the cathode chamber 15c, a gas-liquid separator 27 provided in the second drain pipe 21c, It has.

上記のように構成された電解水生成装置により、実際に塩水を電解して酸性水(次亜塩素酸および塩酸)とアルカリ性水(水酸化ナトリウム)を生成する動作について説明する。   A description will be given of an operation in which the salt water is actually electrolyzed to generate acidic water (hypochlorous acid and hydrochloric acid) and alkaline water (sodium hydroxide) by the electrolyzed water generating apparatus configured as described above.

図1に示すように、送液ポンプ29を作動させ、電解槽11の中間室15aに飽和塩水を供給するとともに、陽極室15bおよび陰極室15cに水を給水する。同時に、電源23から正電圧および負電圧を陽極14および陰極20にそれぞれ印加する。中間室15aへ流入した塩水中において電離しているナトリウムイオンは、陰極20に引き寄せられ、陽イオン交換膜18を通過して、陰極室15cへ流入する。そして、陰極室15cにおいて、陰極20で水が電気分解されて水素ガスと水酸化ナトリウム水溶液が生成される。このようにして生成された水酸化ナトリウム水溶液および水素ガスは、陰極室15cから第2排水配管21cに流出し、気液分離器27により、水酸化ナトリウム水溶液と水素ガスとに分離される。分離された水酸化ナトリウム水溶液(アルカリ性水)は、第2排水配管21cを通って排出される。   As shown in FIG. 1, the liquid feeding pump 29 is operated to supply saturated salt water to the intermediate chamber 15a of the electrolytic cell 11, and water is supplied to the anode chamber 15b and the cathode chamber 15c. At the same time, a positive voltage and a negative voltage are applied from the power source 23 to the anode 14 and the cathode 20, respectively. Sodium ions ionized in the brine flowing into the intermediate chamber 15a are attracted to the cathode 20, pass through the cation exchange membrane 18, and flow into the cathode chamber 15c. In the cathode chamber 15c, water is electrolyzed at the cathode 20 to generate hydrogen gas and a sodium hydroxide aqueous solution. The sodium hydroxide aqueous solution and hydrogen gas generated in this way flow out from the cathode chamber 15c to the second drain pipe 21c, and are separated into the sodium hydroxide aqueous solution and hydrogen gas by the gas-liquid separator 27. The separated sodium hydroxide aqueous solution (alkaline water) is discharged through the second drain pipe 21c.

また、中間室15a内の塩水中において電離している塩素イオンは、陽極14に引き寄せられ、陰イオン交換膜16を通過して、陽極室15bへ流入する。そして、陽極14にて塩素イオンが還元され塩素ガスが発生する。その後、塩素ガスは陽極室15b内で水と反応して次亜塩素酸と塩酸を生じる。このようにして生成された酸性水(次亜塩素酸水および塩酸)は、陽極室15bから第1排水配管21bを通って流出する。   Moreover, the chlorine ion ionized in the salt water in the intermediate chamber 15a is attracted to the anode 14, passes through the anion exchange membrane 16, and flows into the anode chamber 15b. Then, chlorine ions are reduced at the anode 14 to generate chlorine gas. Thereafter, the chlorine gas reacts with water in the anode chamber 15b to produce hypochlorous acid and hydrochloric acid. The acidic water (hypochlorous acid water and hydrochloric acid) thus generated flows out from the anode chamber 15b through the first drain pipe 21b.

次に、電解槽11の構成をより詳細に説明する。図2は、電解槽の斜視図、図3は電解槽の分解斜視図、図4は図2の線A−Aに沿った電解槽の断面図である。
図2ないし図4に示すように、電解槽11は、隔壁として機能する矩形枠状の中間フレーム22と、中間フレーム22とほぼ等しい外径寸法を有し中間フレームの一側面を覆う矩形板状の陽極カバー(第1カバー部材)24と、中間フレーム22とほぼ等しい外径寸法を有し中間フレームの他側面を覆う矩形板状の陰極カバー(第2カバー部材)26と、を有している。中間フレーム22は、その内周面により中間室15aを形成している。陽極カバー24は、その内面に形成された凹所により陽極室15bを形成し、陰極カバー26はその内面に形成された凹所により陰極室15cを形成している。
Next, the configuration of the electrolytic cell 11 will be described in more detail. 2 is a perspective view of the electrolytic cell, FIG. 3 is an exploded perspective view of the electrolytic cell, and FIG. 4 is a cross-sectional view of the electrolytic cell along line AA in FIG.
As shown in FIGS. 2 to 4, the electrolytic cell 11 has a rectangular frame-like intermediate frame 22 that functions as a partition, and a rectangular plate shape that has an outer diameter dimension substantially equal to the intermediate frame 22 and covers one side of the intermediate frame. An anode cover (first cover member) 24 and a rectangular plate-like cathode cover (second cover member) 26 having an outer diameter dimension substantially equal to that of the intermediate frame 22 and covering the other side surface of the intermediate frame. Yes. The intermediate frame 22 forms an intermediate chamber 15a with its inner peripheral surface. The anode cover 24 forms an anode chamber 15b by a recess formed in the inner surface thereof, and the cathode cover 26 forms a cathode chamber 15c by a recess formed in the inner surface thereof.

中間フレーム22の下端に、中間室15aに連通する第1流入口34が形成され、上端に中間室15aに連通する第1流出口36が設けられている。これら第1流入口34および第1流出口36に供給配管19aおよび排水配管19bがそれぞれ接続される。   A first inflow port 34 communicating with the intermediate chamber 15a is formed at the lower end of the intermediate frame 22, and a first outflow port 36 communicating with the intermediate chamber 15a is provided at the upper end. A supply pipe 19a and a drain pipe 19b are connected to the first inlet 34 and the first outlet 36, respectively.

中間フレーム22と陽極カバー24との間に、中間室15aと陽極室15bを隔てる第1隔膜として陰イオン交換膜16が配置されている。陽極14は、陽極室15b内に配置され、陰イオン交換膜16に近接対向している。中間フレーム22と陰極カバー26との間に第2隔膜として陽イオン交換膜18が配置され、この陽イオン交換膜18は中間室15aと陰極室15cを隔てている。陰極20は陰極室15cに配置され、陽イオン交換膜18に近接対向している。   An anion exchange membrane 16 is disposed between the intermediate frame 22 and the anode cover 24 as a first diaphragm that separates the intermediate chamber 15a and the anode chamber 15b. The anode 14 is disposed in the anode chamber 15 b and is in close proximity to the anion exchange membrane 16. A cation exchange membrane 18 is disposed as a second diaphragm between the intermediate frame 22 and the cathode cover 26, and the cation exchange membrane 18 separates the intermediate chamber 15a and the cathode chamber 15c. The cathode 20 is disposed in the cathode chamber 15 c and is in close proximity to the cation exchange membrane 18.

各構成部材間、すなわち、陽極カバー24の周縁部と陽極14の周縁部との間、陽極14および陰イオン交換膜16の周縁部と中間フレーム22との間、中間フレーム22と陰極20および陽イオン交換膜18の周縁部との間、および、陰極20の周縁部と陰極カバー26の周縁部との間に、水漏れを防止するための面状のシール材40がそれぞれ配置されている。   Between each component, that is, between the peripheral edge of the anode cover 24 and the peripheral edge of the anode 14, between the peripheral edge of the anode 14 and the anion exchange membrane 16 and the intermediate frame 22, and between the intermediate frame 22, the cathode 20 and the positive electrode. A planar sealing material 40 for preventing water leakage is disposed between the periphery of the ion exchange membrane 18 and between the periphery of the cathode 20 and the periphery of the cathode cover 26.

各構成部材の周縁部を貫通して複数の固定ボルト50が挿通され、例えば、陽極カバー24側から挿通され、その先端部が陰極カバー26から突出している。各固定ボルト50の先端部にナット52がねじ込まれている。締結部材としての固定ボルト50およびナット52により、各構成部材の周縁部同士が互いに締結され、中間室15a、電極室15b、15cの水密性を保持している。   A plurality of fixing bolts 50 are inserted through the peripheral edge of each constituent member, for example, inserted from the anode cover 24 side, and the leading end thereof protrudes from the cathode cover 26. A nut 52 is screwed into the tip of each fixing bolt 50. The fixing bolts 50 and nuts 52 as fastening members fasten the peripheral portions of the constituent members to each other, and maintain the water tightness of the intermediate chamber 15a and the electrode chambers 15b and 15c.

次に、各構成部材についてより詳細に説明する。
図2ないし図4に示すように、陰イオン交換膜16および陽イオン交換膜18は、それぞれ中間フレーム22とほぼ等しい外径を有し、膜厚が約100〜200μm程度の薄い矩形平板状に形成されている。陰イオン交換膜16および陽イオン交換膜18は、特定のイオンのみを通過させる特性を有している。陰イオン交換膜16および陽イオン交換膜18の周縁部には、それぞれ固定ボルト50を挿通する複数の貫通孔が形成されている。
Next, each component will be described in more detail.
As shown in FIGS. 2 to 4, the anion exchange membrane 16 and the cation exchange membrane 18 each have an outer diameter substantially equal to that of the intermediate frame 22 and are formed in a thin rectangular plate shape having a thickness of about 100 to 200 μm. Is formed. The anion exchange membrane 16 and the cation exchange membrane 18 have a characteristic of allowing only specific ions to pass therethrough. A plurality of through holes through which the fixing bolts 50 are inserted are formed in the peripheral portions of the anion exchange membrane 16 and the cation exchange membrane 18.

陰イオン交換膜16は、中間フレーム22の片面側に対向して配置され、その周縁部は、シール材40を介して、中間フレーム22に密着している。同様に、陽イオン交換膜18は、中間フレーム22の他面側に対向して配置され、その周縁部は、シール材40を介して、中間フレーム22に密着している。なお、第1隔膜および第2隔膜は、イオン交換膜に限らず、透水性を有する多孔質膜を用いてもよい。   The anion exchange membrane 16 is disposed to face one side of the intermediate frame 22, and the peripheral edge thereof is in close contact with the intermediate frame 22 via the sealing material 40. Similarly, the cation exchange membrane 18 is disposed to face the other surface side of the intermediate frame 22, and the peripheral edge thereof is in close contact with the intermediate frame 22 via the sealing material 40. The first diaphragm and the second diaphragm are not limited to ion exchange membranes, and may be porous membranes having water permeability.

陽極14および陰極20は、厚さ1mm程度の金属製の平板で形成され、中間フレーム22の外径とほぼ同一の外径を有する矩形状に形成されている。陽極14および陰極20の中央部(有効領域)には液体を通過させるための微細な貫通孔が形成され、電極の周縁部には固定ボルト50を挿通するための複数の貫通孔が形成されている。陽極14は、その一側縁から突出する接続端子14bを有している。同様に、陰極20は、その一側縁から突出する接続端子20bを有している。接続端子14b、20bは電源23に接続される。   The anode 14 and the cathode 20 are formed of a metal flat plate having a thickness of about 1 mm, and are formed in a rectangular shape having an outer diameter substantially the same as the outer diameter of the intermediate frame 22. A fine through-hole for allowing liquid to pass through is formed in the central part (effective area) of the anode 14 and the cathode 20, and a plurality of through-holes for inserting the fixing bolt 50 are formed in the peripheral part of the electrode. Yes. The anode 14 has a connection terminal 14b protruding from one side edge thereof. Similarly, the cathode 20 has a connection terminal 20b protruding from one side edge thereof. The connection terminals 14b and 20b are connected to the power source 23.

陽極14は、陰イオン交換膜16に対向して配置され、陰イオン交換膜16に密着している。陰極20は、陽イオン交換膜18に対向して配置され、陽イオン交換膜18に密着している。   The anode 14 is disposed to face the anion exchange membrane 16 and is in close contact with the anion exchange membrane 16. The cathode 20 is disposed to face the cation exchange membrane 18 and is in close contact with the cation exchange membrane 18.

図5は、陽極カバーの内面側を示す斜視図、図6は、陽極カバーの一部を拡大して示す斜視図である。図4ないし図6に示すように、陽極カバー24は、陽極14に対向する内面24aと、反対側の外面と、を有している。陽極カバー24の内面24aに矩形状の凹所60が形成され、この凹所60により陽極室15bを形成している。陽極室15bにはそれぞれ水を流す複数の流路が設けられている。すなわち、凹所60の底面に複数の直線状のリブ64が立設され、例えば、鉛直方向(第2方向Y)に延びている。これらのリブ64は、互いに平行に、かつ、所定の間隔を置いて、設けられている。隣合う2つのリブ64間に、それぞれ鉛直方向に延びる直線状の流通溝65が形成されている。これら複数の流通溝65は、陽極14の中央部分に対向し、それぞれ水が流れる第1流路P1を形成している。流通溝65の幅W1および深さD1は、例えば、W1:8mm、D1:2mmとしている。これにより、第1流路P1の流通方向と直交する方向の断面積は約16mm2である。 FIG. 5 is a perspective view showing the inner surface side of the anode cover, and FIG. 6 is an enlarged perspective view showing a part of the anode cover. As shown in FIGS. 4 to 6, the anode cover 24 has an inner surface 24 a that faces the anode 14 and an outer surface on the opposite side. A rectangular recess 60 is formed in the inner surface 24 a of the anode cover 24, and the anode chamber 15 b is formed by the recess 60. The anode chamber 15b is provided with a plurality of channels through which water flows. That is, a plurality of linear ribs 64 are erected on the bottom surface of the recess 60 and extend, for example, in the vertical direction (second direction Y). These ribs 64 are provided in parallel to each other and at a predetermined interval. Between the two adjacent ribs 64, linear flow grooves 65 extending in the vertical direction are formed. The plurality of flow grooves 65 are opposed to the central portion of the anode 14 and form first flow paths P1 through which water flows. The width W1 and the depth D1 of the flow groove 65 are, for example, W1: 8 mm and D1: 2 mm. Thereby, the cross-sectional area of the direction orthogonal to the flow direction of the 1st flow path P1 is about 16 mm < 2 >.

また、陽極室15bにおいて、流通溝65の左右端に隣接して拡大流通溝66bが設けられている。これら拡大流通溝66bは、陽極14の周縁部に対向し、それぞれ水が流れる第2流路P2を形成している。拡大流通溝66bの幅W2および深さD2は、例えば、W2:5mm、D2:8mmとしている。これにより、第2流路P2の流通方向と直交する方向の断面積は約40mm2であり、第1流路P1の断面積の2倍以上としている。 In the anode chamber 15b, enlarged flow grooves 66b are provided adjacent to the left and right ends of the flow grooves 65. These enlarged flow grooves 66b are opposed to the peripheral edge of the anode 14 and form second flow paths P2 through which water flows. The width W2 and the depth D2 of the enlarged flow groove 66b are, for example, W2: 5 mm and D2: 8 mm. Thereby, the cross-sectional area of the direction orthogonal to the flow direction of the 2nd flow path P2 is about 40 mm < 2 >, and is more than twice the cross-sectional area of the 1st flow path P1.

更に、陽極室15bにおいて、流通溝65と拡大流通溝66bの端部には上下一対の横溝66aが形成されている。横溝66aは、陽極室15bへの給水と排水を受ける部分であり、大きな容量を持たせることで水圧の緩衝部分となっている。これにより、横溝66aは、各流通溝65間での流水量の差、および、左右の拡大流通溝66b間での流水量の差が無くなるように機能している。   Further, in the anode chamber 15b, a pair of upper and lower lateral grooves 66a are formed at the ends of the flow grooves 65 and the enlarged flow grooves 66b. The lateral groove 66a is a portion that receives water supply and drainage to the anode chamber 15b, and serves as a buffer portion for water pressure by providing a large capacity. Thereby, the horizontal groove 66a functions so that the difference in the amount of flowing water between the respective circulation grooves 65 and the difference in the amount of flowing water between the right and left enlarged circulation grooves 66b are eliminated.

陽極カバー24の下部側面に第2流入口37が形成され、下側の横溝66aの一端に連通している。陽極カバー24の上部側面に第2流出口38が形成され、上側の横溝66aの一端に連通している。これら第2流入口37および第2流出口38に給水配管21aおよび第1排水配管21bがそれぞれ接続される。   A second inlet 37 is formed on the lower side surface of the anode cover 24 and communicates with one end of the lower lateral groove 66a. A second outlet 38 is formed on the upper side surface of the anode cover 24 and communicates with one end of the upper lateral groove 66a. A water supply pipe 21a and a first drain pipe 21b are connected to the second inlet 37 and the second outlet 38, respectively.

図3および図4に示すように、本実施形態では、陰極カバー26は、前述した陽極カバー24と同様に構成されている。陰極カバー26の側面下部に第3流入口39が形成され陰極室15cに連通している。陰極カバー26の側面上部に第3流出口41が形成され、陰極室15cに連通している。これら第3流入口39および第3流出口41に給水配管21aおよび第2排水配管21cがそれぞれ接続される。   As shown in FIGS. 3 and 4, in the present embodiment, the cathode cover 26 is configured in the same manner as the anode cover 24 described above. A third inlet 39 is formed at the lower side of the cathode cover 26 and communicates with the cathode chamber 15c. A third outlet 41 is formed on the upper side of the cathode cover 26 and communicates with the cathode chamber 15c. A water supply pipe 21a and a second drain pipe 21c are connected to the third inlet 39 and the third outlet 41, respectively.

以上のように構成された電解槽11において、電解動作時、給水配管21aから第2流入口37を通して陽極室15bに供給された水は、図7に矢印で示すように、横溝66a分に拡がり、第1流路P1と第2流路P2に分流する。このとき、上述したように第1流路P1の断面積が第2流路P2の断面積より相対的に小さいため、断面積比率に応じて第1流路P1で流水量が小さくなり、第2流路P2で流水量が大きくなるように分流する。すなわち、第1流路P1の流速は第2流路P2の流速より遅くなる。流入した水は、陽極17に接触しながら第1流路P1および第2流路P2を通って流れた後、上側の横溝66aで合流し、第2流出口38から第1排水配管21bに送られる。   In the electrolytic cell 11 configured as described above, during the electrolysis operation, water supplied from the water supply pipe 21a to the anode chamber 15b through the second inflow port 37 spreads to the lateral groove 66a as shown by an arrow in FIG. Then, the flow is divided into the first flow path P1 and the second flow path P2. At this time, as described above, since the cross-sectional area of the first flow path P1 is relatively smaller than the cross-sectional area of the second flow path P2, the amount of flowing water is reduced in the first flow path P1 according to the cross-sectional area ratio, The flow is diverted so that the amount of flowing water becomes large in the two flow paths P2. That is, the flow speed of the first flow path P1 is slower than the flow speed of the second flow path P2. The inflowing water flows through the first flow path P1 and the second flow path P2 while being in contact with the anode 17, and then merges in the upper lateral groove 66a and is sent from the second outlet 38 to the first drain pipe 21b. It is done.

このように、陽極14の大部分、特に、中央部分と対向する第1流路P1を通して比較的遅い第1流速(流水速度)で水を流すことにより、陰イオン交換膜を透過してきた塩素イオンが第1流路P1の流速に従って薄まり難くなり、すなわち、第1流路の濃度が第2流路を設けないときに比較して高まり、塩素ガスを効率的に生成することができる。一方、第2流路P2では逆に塩素イオン濃度が低くなり生成効率が低下するが、第1流路P1が陽極14に接する面積に比べて第2流路P2が陽極14に接する面積が小さいため、相対的に第1流路P1での生成効率向上効果が全体効率を支配することになる。また、第1流路P1と第2流路P2では濃度の違う次亜塩素酸水が得られるが、横溝66aにより混合され排出される。その結果、電気分解効率が向上し、充分な塩素濃度を有する次亜塩素酸水が得られる。また、第2流路P2は、流れる水の流速(流水速度)が早く、流量を大きくすることができる。そのため、主体となる第1流路P1の流速を小さくしつつ、陽極室15b内の水の全流量を充分な流量に保つことができ、あるいは、トータルの流量を増やすことができる。   Thus, most of the anode 14, in particular, chlorine ions that have permeated through the anion exchange membrane by flowing water at a relatively slow first flow rate (flow rate) through the first flow path P <b> 1 facing the central portion. However, the concentration of the first flow path is higher than when the second flow path is not provided, and chlorine gas can be generated efficiently. On the other hand, in the second flow path P2, on the contrary, the chlorine ion concentration is lowered and the generation efficiency is lowered, but the area where the second flow path P2 is in contact with the anode 14 is smaller than the area where the first flow path P1 is in contact with the anode 14. For this reason, the generation efficiency improvement effect in the first flow path P1 relatively dominates the overall efficiency. Further, hypochlorous acid water having different concentrations is obtained in the first flow path P1 and the second flow path P2, but is mixed and discharged by the lateral groove 66a. As a result, electrolysis efficiency is improved, and hypochlorous acid water having a sufficient chlorine concentration is obtained. Further, the second flow path P2 has a high flow rate of flowing water (flowing water speed), and can increase the flow rate. Therefore, the total flow rate of the water in the anode chamber 15b can be kept at a sufficient flow rate or the total flow rate can be increased while reducing the flow velocity of the main first flow path P1.

図8は、第1流路P1を流れる水の流速(流量)と生成された酸性水の有効塩素濃度との関係を示している。本実施形態では、陽極室15bに標準流量である6L/分の水を流した時に、第1流路P1を流れる水の流量と、断面積の大きい第2流路P2を流れる水の流量と、が異なる流路構造の陽極室を用いて、電解時の有効塩素濃度を測定した。   FIG. 8 shows the relationship between the flow rate (flow rate) of the water flowing through the first flow path P1 and the effective chlorine concentration of the generated acidic water. In the present embodiment, when 6 L / min, which is a standard flow rate, flows through the anode chamber 15b, the flow rate of water flowing through the first flow path P1 and the flow rate of water flowing through the second flow path P2 having a large cross-sectional area The effective chlorine concentration during electrolysis was measured using anode chambers with different flow path structures.

図8に示すように、第1流路P1を流れる水の流量が4L/min以上と大きい場合、有効塩素濃度は70%以下と低くなる。これは、陰イオン交換膜を透過した塩素イオンが陽極に移動したときに、第1流路に流れる水の流量が大きいと、塩素イオンがすぐに水で拡散してしまい、陽極近傍での塩素イオン濃度が低下するためである。陽極に定電流を流した時に、反応に必要な量の塩素イオンが不足すると、代わりに水酸化物イオンと反応して酸素ガスが発生する。次亜塩素酸の生成に寄与しない酸素ガスが大量に発生すると有効塩素濃度の生成効率が低下してしまう。   As shown in FIG. 8, when the flow rate of water flowing through the first flow path P1 is as large as 4 L / min or more, the effective chlorine concentration is as low as 70% or less. This is because when chlorine ions that have passed through the anion exchange membrane move to the anode, if the flow rate of water flowing through the first flow path is large, the chlorine ions immediately diffuse in the water, and chlorine in the vicinity of the anode This is because the ion concentration decreases. When a constant current is passed through the anode, if the amount of chlorine ions necessary for the reaction is insufficient, oxygen ions are generated by reacting with hydroxide ions instead. If a large amount of oxygen gas that does not contribute to the generation of hypochlorous acid is generated, the generation efficiency of the effective chlorine concentration is lowered.

一方、図8に示すように、第1流路P1を流れる水の流量が4L/min以下と少ない場合、有効塩素濃度は70〜80%と高くなる。これは、流量が少ないと、水による塩素イオンの拡散が小さいため、陽極近傍での塩素イオン濃度を高く維持できるためである。陽極に定電流を流した時、反応に必要な十分の量の塩素イオンがあれば、副反応である酸素ガス発生が抑えられ、有効塩素濃度の生成効率を高めることができる。   On the other hand, as shown in FIG. 8, when the flow rate of the water flowing through the first flow path P1 is as small as 4 L / min or less, the effective chlorine concentration is as high as 70 to 80%. This is because when the flow rate is small, the diffusion of chlorine ions by water is small, so that the chlorine ion concentration in the vicinity of the anode can be maintained high. If a sufficient amount of chlorine ions required for the reaction is present when a constant current is passed through the anode, generation of oxygen gas, which is a side reaction, can be suppressed, and the production efficiency of effective chlorine concentration can be increased.

第1流路P1および第2流路P2に対向する陽極14において、反応の主体となる第1流路P1に接する部分の面積は、断面積の大きい第2流路P2に接する部分の面積よりも2倍以上大きいことが望ましい。第1流路P1の陽極14に接する面積の割合が相対的に大きくなることで、高濃度の塩素イオンと接する陽極面積が大きくなり、有効塩素濃度を上げることができる。   In the anode 14 facing the first flow path P1 and the second flow path P2, the area of the portion in contact with the first flow path P1, which is the main body of the reaction, is larger than the area of the portion in contact with the second flow path P2 having a large cross-sectional area. Is preferably twice or more. Since the ratio of the area in contact with the anode 14 of the first flow path P1 is relatively large, the area of the anode in contact with the high concentration chlorine ions is increased, and the effective chlorine concentration can be increased.

陽極室15b内を流れる水のトータル流量を増やすためには、第2流路P2の断面積を増やす必要があり、第2流路P2を形成している溝を深くすることで対応できる。溝深さD2を深くすることで、第2流路P2の断面積を大きくしつつ、陽極14に接する面積を減らすことができる。これにより、相対的に、第1流路P1の陽極14に接する面積を増やすことができ、次亜塩素酸水の生成効率を上げることができる。第2流路P2を形成している溝の断面積は、第1流路P1を形成している溝の断面積の2倍以上であることが好ましく、3倍以上であるとより望ましい。実施形態では、浅い第1流路P1の断面積を8mm×2mm=16mm2とし、深い第2流路の断面積を5mm×8mm=40mm2としている。また、流路溝の幅と深さの関係は、実施形態のように、第2流路P2において、第1流路P1よりも幅を狭く深さを深くしている。この場合、第2流路P2が陽極14に接する面積を小さくし、第2流路P2の効率低下の影響を小さくすることができる。 In order to increase the total flow rate of the water flowing in the anode chamber 15b, it is necessary to increase the cross-sectional area of the second flow path P2, and this can be dealt with by deepening the groove forming the second flow path P2. By increasing the groove depth D2, the area in contact with the anode 14 can be reduced while increasing the cross-sectional area of the second flow path P2. Thereby, the area which contacts the anode 14 of the 1st flow path P1 can be increased relatively, and the production | generation efficiency of hypochlorous acid water can be raised. The cross-sectional area of the groove forming the second flow path P2 is preferably at least twice as large as the cross-sectional area of the groove forming the first flow path P1, and more preferably at least three times. In the embodiment, the cross-sectional area of the shallow first flow path P1 is 8 mm × 2 mm = 16 mm 2, and the cross-sectional area of the deep second flow path is 5 mm × 8 mm = 40 mm 2 . In addition, the relationship between the width and depth of the flow channel groove is narrower and deeper in the second flow channel P2 than in the first flow channel P1, as in the embodiment. In this case, it is possible to reduce the area where the second flow path P2 is in contact with the anode 14, and to reduce the influence of the efficiency reduction of the second flow path P2.

断面積の大きい第2流路P2は、比較的塩素イオン濃度の低い陽極14の周辺部に対向して設けられている。そのため、反応の主体となる第1流路P1を塩素イオン濃度の高い陽極14の中央部に対向するように配置することができ、次亜塩素酸生成効率を上げることができる。第1流路P1の形状は、水流の抵抗を減らすために、直線状の流路であることが望ましい。   The second flow path P2 having a large cross-sectional area is provided to face the periphery of the anode 14 having a relatively low chlorine ion concentration. Therefore, the first flow path P1, which is the main component of the reaction, can be disposed so as to face the central portion of the anode 14 having a high chlorine ion concentration, and the efficiency of hypochlorous acid production can be increased. The shape of the first flow path P1 is desirably a linear flow path in order to reduce the resistance of the water flow.

以上のことから、第1の実施形態によれば、陽極室を流れる水の流量を低減することなくイオン濃度を高くし、電気分解効率および電解水の生成効率が向上した電解水生成装置を提供することができる。   As described above, according to the first embodiment, there is provided an electrolyzed water generating device in which the ion concentration is increased without reducing the flow rate of water flowing through the anode chamber, and electrolysis efficiency and electrolyzed water generation efficiency are improved. can do.

次に、変形例に係る電解水生成装置について説明する。なお、以下に説明する変形例において、前述した第1の実施形態と同一の部分には、同一の参照符号を付してその詳細な説明を省略し、第1の実施形態と異なる部分を中心に詳しく説明する。   Next, an electrolyzed water generating apparatus according to a modification will be described. In the modification described below, the same parts as those of the first embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted, and the parts different from those of the first embodiment are mainly described. This will be explained in detail.

図9は、変形例に係る電解水生成装置の陽極カバーを示す斜視図である。この図に示すように、変形例によれば、陽極カバー24の陽極室15bに設けられた第1流路P1は、蛇腹状に延びる1本の流通溝65により形成されている。第1流路P1は、陽極14のほぼ全域に接するように、陽極室15bのほぼ全域に亘って延在している。また、第1流路P1の下端は、下側の横溝66aに連通している。第1流路P1の上端は、上側の横溝66aに連通している。   FIG. 9 is a perspective view showing an anode cover of an electrolyzed water generating apparatus according to a modification. As shown in this figure, according to the modification, the first flow path P1 provided in the anode chamber 15b of the anode cover 24 is formed by one flow groove 65 extending in a bellows shape. The first flow path P1 extends over substantially the entire area of the anode chamber 15b so as to be in contact with the substantially entire area of the anode 14. The lower end of the first flow path P1 communicates with the lower lateral groove 66a. The upper end of the first flow path P1 communicates with the upper lateral groove 66a.

上記のように構成された変形例においても、前述した第1の実施形態と同様の作用効果を得ることができる。すなわち、第1流路P1を長さの長い一本の流路とした場合でも、第1流路Pを流れる水の流速を低くし流量を少なくすることができる。   Also in the modified example configured as described above, it is possible to obtain the same operational effects as those of the first embodiment described above. That is, even when the first flow path P1 is a single long flow path, the flow rate of the water flowing through the first flow path P can be lowered and the flow rate can be reduced.

本発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
例えば、電解槽は3室型に限定されることなく、陽極室を有するものであれば、2室型の構成としてもよい。電解液は塩水以外のものでもよく、生成する電解水も次亜塩素酸水以外の電解水でもよい。
The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
For example, the electrolytic cell is not limited to a three-chamber type, and may have a two-chamber configuration as long as it has an anode chamber. The electrolytic solution may be other than salt water, and the generated electrolytic water may be electrolytic water other than hypochlorous acid water.

10…電解槽、14…陽極、15a…中間室、15b…陽極室、15c…陰極室、
14…陽極、16…陰イオン交換膜、18…陽イオン交換膜、20…陰極、
22…中間フレーム(隔壁)、24…陽極カバー(第1カバー部材)、
26…陽極カバー(第2カバー部材)、40…シール材、40a…貫通孔、
40b…環状部、40c…連結部、50…固定ボルト、52…ナット、
70…押圧リブ、70a…円柱部、70b…連結部
10 ... electrolytic cell, 14 ... anode, 15a ... intermediate chamber, 15b ... anode chamber, 15c ... cathode chamber,
14 ... anode, 16 ... anion exchange membrane, 18 ... cation exchange membrane, 20 ... cathode,
22 ... Intermediate frame (partition wall), 24 ... Anode cover (first cover member),
26 ... Anode cover (second cover member), 40 ... Sealing material, 40a ... Through hole,
40b ... annular part, 40c ... connecting part, 50 ... fixing bolt, 52 ... nut,
70 ... Pressing rib, 70a ... Cylindrical part, 70b ... Connecting part

Claims (10)

陽極および陰極と、前記陽極に対向し前記陽極を覆う陽極室と、前記陰極に対向し前記陰極を覆う陰極室と、を有する電解槽を備え、
前記電解槽は、前記陽極室内に設けられそれぞれ前記陽極に対向する複数の流路を備え、前記複数の流路は、水を前記陽極に接触した状態で第1流速で流す第1流路と、水を前記陽極に接触した状態で前記第1流速よりも早い第2流速で流す第2流路と、を有している電解水生成装置。
An electrolytic cell having an anode and a cathode; an anode chamber facing the anode and covering the anode; and a cathode chamber facing the cathode and covering the cathode;
The electrolytic cell includes a plurality of channels that are provided in the anode chamber and face the anode, and the plurality of channels are a first channel that allows water to flow at a first flow rate in contact with the anode. And a second flow path for flowing water at a second flow rate higher than the first flow rate in a state where the water is in contact with the anode.
前記陽極において、前記第1流路に接する領域の面積は、前記第2流路に接する領域の面積よりも2倍以上大きい請求項1に記載の電解水生成装置。   2. The electrolyzed water generating device according to claim 1, wherein an area of a region in contact with the first flow path in the anode is at least twice as large as an area of a region in contact with the second flow path. 前記第2流路の流通方向と直交する方向の断面積は、前記第1流路の流通方向と直交する方向の断面積よりも大きい請求項1又は2に記載の電解水生成装置。   3. The electrolyzed water generating device according to claim 1, wherein a cross-sectional area in a direction orthogonal to the flow direction of the second flow path is larger than a cross-sectional area in a direction orthogonal to the flow direction of the first flow path. 前記第2流路の流通方向と直交する方向の断面積は、前記第1流路の流通方向と直交する方向の断面積よりも2倍以上大きい請求項3に記載の電解水生成装置。   The electrolyzed water generating apparatus according to claim 3, wherein a cross-sectional area in a direction orthogonal to the flow direction of the second flow path is twice or more larger than a cross-sectional area in a direction orthogonal to the flow direction of the first flow path. 前記第1流路は、前記陽極の中央部に対向して設けられ、前記第2流路は、前記陽極の周縁部に対向している請求項1ないし4のいずれか1項に記載の電解水生成装置。   5. The electrolysis according to claim 1, wherein the first flow path is provided to face a central portion of the anode, and the second flow path is opposed to a peripheral edge portion of the anode. Water generator. 前記第1流路は、前記陽極の中央部に対向して設けられ、それぞれ直線状に延びる複数の第1流路を含んでいる請求項1ないし5のいずれか1項に記載の電解水生成装置。   6. The electrolyzed water generation according to claim 1, wherein the first flow path includes a plurality of first flow paths that are provided to face the central portion of the anode and extend linearly. apparatus. 前記複数の流路は、それぞれ前記陽極の中央部に対向して設けられ、それぞれ直線的に延びる複数の第1流路と、前記陽極の周縁部に対向して位置しているとともに、前記第1流路の両側に設けられた前記第2流路と、を有している請求項1ないし6のいずれか1項に記載の電解水生成装置。   The plurality of flow paths are provided to face the central portion of the anode, respectively, and are respectively positioned to face the plurality of first flow paths that extend linearly and the peripheral edge of the anode. The electrolyzed water generating apparatus according to claim 1, further comprising: the second flow path provided on both sides of the one flow path. 前記第1流路は、蛇腹状に連続して延在し、前記陽極の中央部に対向している請求項1ないし5のいずれか1項に記載の電解水生成装置。   6. The electrolyzed water generating device according to claim 1, wherein the first flow path continuously extends in a bellows shape and faces the central portion of the anode. 前記第2流路の幅は、前記第1流路の幅よりも小さく、前記第2流路の深さは、前記第1流路の深さよりも深い請求項1ないし8のいずれか1項に記載の電解水生成装置。   The width of the second flow path is smaller than the width of the first flow path, and the depth of the second flow path is deeper than the depth of the first flow path. The electrolyzed water generating apparatus described in 1. 中間室と、前記中間室の一方に第1隔膜により仕切られ陽極を有する陽極室と、前記中間室の他方に第2隔膜により仕切られ陰極を有する陰極室と、を有し、前記中間室に電解液を流し、前記陽極室と陰極室に水を流して酸性水とアルカリ性水を生成する電解水生成装置において、
前記陽極室に複数の流路を設け、第1流路を主体となる流路とし、第2流路を断面積の大きい流路とすることを特徴とする電解水生成装置。
An intermediate chamber, an anode chamber having an anode partitioned by a first diaphragm in one of the intermediate chambers, and a cathode chamber having a cathode partitioned by a second diaphragm in the other of the intermediate chambers. In an electrolyzed water generating apparatus for flowing an electrolytic solution and flowing water to the anode chamber and the cathode chamber to generate acidic water and alkaline water,
An electrolyzed water generating apparatus characterized in that a plurality of channels are provided in the anode chamber, the first channel is a main channel, and the second channel is a channel having a large cross-sectional area.
JP2015005011A 2015-01-14 2015-01-14 Electrolytic water generator Pending JP2018030042A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015005011A JP2018030042A (en) 2015-01-14 2015-01-14 Electrolytic water generator
PCT/JP2016/051025 WO2016114364A1 (en) 2015-01-14 2016-01-14 Electrolyzed water generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015005011A JP2018030042A (en) 2015-01-14 2015-01-14 Electrolytic water generator

Publications (1)

Publication Number Publication Date
JP2018030042A true JP2018030042A (en) 2018-03-01

Family

ID=56405904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015005011A Pending JP2018030042A (en) 2015-01-14 2015-01-14 Electrolytic water generator

Country Status (2)

Country Link
JP (1) JP2018030042A (en)
WO (1) WO2016114364A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169021B1 (en) 2021-12-28 2022-11-10 株式会社アクト generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101959081B1 (en) * 2017-08-03 2019-03-15 (주)영우워터라인 A Electrolyzer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136658A (en) * 1993-11-24 1995-05-30 Tatsuo Okazaki Continuous electrolytic water making device
JP3405590B2 (en) * 1994-05-19 2003-05-12 サンデン株式会社 Electrolytic ionic water generator
JPH08318277A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Electrolytic cell
JPH09253649A (en) * 1996-03-25 1997-09-30 Glory Kiki Kk Electrolytic ion water making apparatus
JP2003024940A (en) * 2001-07-17 2003-01-28 Sanyo Electric Co Ltd Water treatment apparatus
JP2007260493A (en) * 2006-03-27 2007-10-11 Kurita Water Ind Ltd Electrolyzing apparatus
JP2007283276A (en) * 2006-04-20 2007-11-01 Nippon Paint Co Ltd Electrolysis process and apparatus for it
JP4216892B1 (en) * 2007-04-13 2009-01-28 優章 荒井 Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169021B1 (en) 2021-12-28 2022-11-10 株式会社アクト generator
WO2023127265A1 (en) * 2021-12-28 2023-07-06 株式会社アクト Generation device
JP2023098139A (en) * 2021-12-28 2023-07-10 株式会社アクト Generation device

Also Published As

Publication number Publication date
WO2016114364A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP6100438B2 (en) Electrolyzer and electrode
TWI622666B (en) Electrolyzed water generator
KR20160124873A (en) Method for electrochemically producing electrolyzed water
JP2017056376A (en) Electrolysis tank and electrolyzed water generating apparatus comprising the same
KR20120019317A (en) Non_diaphragm apparatus for electrolysis having separator and electrolyzed-water system having the same
TW201506204A (en) Electrolytic electrode device and electrolytic water generator having the electrolytic electrode device
KR20180083717A (en) Sodium hydroxide manufacturing apparatus using reverse electrodialysis device and hybrid system using the same
JP3885027B2 (en) Electrolytic cell
JP7271612B2 (en) Electrolyzed water generator and electrolyzed water generation method
WO2016114364A1 (en) Electrolyzed water generating device
KR101749909B1 (en) The electrolyzer having structure for increasing dissolved hydrogen
JP6333628B2 (en) Hydrogen water generator
JP5140123B2 (en) Water electrolysis system
JP4620720B2 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP6132234B2 (en) Electrolyzed water generator
JP2015182008A (en) Electrolytic water generating device
JP6139589B2 (en) Electrolyzer
JP6215419B2 (en) Electrolyzed water generating device, electrode unit, and electrolyzed water generating method
WO2012160915A1 (en) Electrolysis tank and electrolyzed water producing device
JP2017089010A (en) Electrolytic device
JP6561403B2 (en) Hydrogen water supply device
KR20010099406A (en) The multi-cell electrolysis system whose one cell is composed of three compartment
JP6952246B2 (en) Gas generator and gas generation method
JP2018030044A (en) Electrolytic water generator and electrolytic water generation method
JPH10110287A (en) Gas diffusion electrode having gas lift pump part