JP2018028436A - System and method for predicting avalanche occurrence using flying object - Google Patents

System and method for predicting avalanche occurrence using flying object Download PDF

Info

Publication number
JP2018028436A
JP2018028436A JP2016159085A JP2016159085A JP2018028436A JP 2018028436 A JP2018028436 A JP 2018028436A JP 2016159085 A JP2016159085 A JP 2016159085A JP 2016159085 A JP2016159085 A JP 2016159085A JP 2018028436 A JP2018028436 A JP 2018028436A
Authority
JP
Japan
Prior art keywords
avalanche
flying object
snow
observation
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016159085A
Other languages
Japanese (ja)
Inventor
尚之 和田
Naoyuki Wada
尚之 和田
悠樹 大貫
Yuki Onuki
悠樹 大貫
田中 仁
Hitoshi Tanaka
仁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kogai Gijutsu Center Co Ltd
Original Assignee
Kogai Gijutsu Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kogai Gijutsu Center Co Ltd filed Critical Kogai Gijutsu Center Co Ltd
Priority to JP2016159085A priority Critical patent/JP2018028436A/en
Publication of JP2018028436A publication Critical patent/JP2018028436A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately predict an occurrence of an avalanche in a region where a person cannot approach regardless of season.SOLUTION: In a method for predicting an occurrence of an avalanche using a flying object, observation of eight pieces of data including show accumulation at a place represented by initial positioning information values is started using the flying object during ploughing or after ploughing (S22) and the data is transmitted to and recorded in a main PC (S22-2). Next, an image of a land surface state is taken with a camera (S23) and the image is transmitted to the main PC so as to enable: land surface data at an observation point to be visually quantified according to classifications shown in Figure 5; and the quantified data to be recorded (S24-2). Then, the flying object measures six meteorological elements including a temperature of the observation point on the basis of an instruction from the main PC. The measured meteorological elements are transmitted to the main PC so as to enable the same to be recorded in a table of meteorological data during snow fall or after snow fall in Figure 8 (S25-2). Last, eight observation values respectively representing: the acquired snow accumulation; the land surface data; the temperature; humidity; atmospheric pressure; a wind velocity; a wind direction; and insolation, are synthesized on the basis of the table of the meteorological data during or after the snow fall and the synthesized value is recorded in the main PC (S25-3).SELECTED DRAWING: Figure 2

Description

この発明は、人が近づくことができない地域において、季節を問わず、雪崩の発生を的確に予測する雪崩発生予測システムに関する。   The present invention relates to an avalanche occurrence prediction system that accurately predicts the occurrence of an avalanche regardless of the season in an area where people cannot approach.

従来、雪崩の発生予測としては、地表に観測装置を設置しGPSでその位置変動を検知して予測していた。
また、積雪量を測定するには、地表に柱を設置し、その柱の上からレーザー光線で雪の表面までの距離を測距した変化から求めてきた。
Conventionally, an avalanche has been predicted by installing an observation device on the surface of the earth and detecting its position change with GPS.
In addition, to measure the amount of snow, we determined the change by measuring the distance from the top of the pillar to the surface of the snow with a laser beam.

これらのシステムは、雪崩の発生が予測される場所に予め観測機器を設置しなければならないため、危険箇所を特定し、急傾斜地などに設置しなければならないため、労力と危険が伴うものであった。また、厳冬の積雪期においては、機械の故障等があっても修理することもできず、その場合には雪崩予測ができないという難点もある。更に言えば、積雪が動くことにより雪崩の危険を察知することは、そのまま雪崩へと繋がることが多いので、警報を出す前に雪崩が発生してしまい、予測とは言えない状況も発生している。   In these systems, observation equipment must be installed in a place where an avalanche is expected to occur in advance, so it is necessary to identify dangerous locations and install them on steep slopes. It was. In addition, in the snowy season of severe winter, even if there is a machine failure or the like, it cannot be repaired, and in that case, there is a problem that an avalanche cannot be predicted. Furthermore, sensing the danger of an avalanche by the movement of snow cover often leads to an avalanche as it is, so an avalanche occurs before issuing an alarm, and there are situations that can not be predicted. Yes.

また、雪崩発生予測手法として、統計的な手法を用いた予測手法も開発されているが(SNOWPACKなど)、安定したタイムリーなデータ取得ができないために、その精度が問題となっている。   In addition, a prediction method using a statistical method has been developed as an avalanche occurrence prediction method (such as SNOWPACK), but the accuracy is a problem because stable and timely data acquisition cannot be performed.

こうした欠点を補うためには、対象となる雪崩の観測の諸元を設定し、降雪前の地形状況の複数点データを観測し、降雪時に一定期間ごとに気象データと雪崩発生要因となる気象因子をタイムリーに取得することが必要である。   In order to compensate for these shortcomings, we set the specifications of the target avalanche observation, observe multiple points of topographical conditions before snowfall, and meteorological data and weather factors that cause avalanches at regular intervals during snowfall It is necessary to get in a timely manner.

特開平06−230101公報Japanese Patent Laid-Open No. 06-230101 特開2011−149894公報JP 2011-149894 A

花岡正明、金子正則、伊藤陽一著「雪崩要因の標高依存性と発生予測に関する研究」 2009年7月21日雪崩地すべり研究センターMasaaki Hanaoka, Masanori Kaneko, Yoichi Ito “Study on the altitude dependence and occurrence prediction of avalanche factors” July 21, 2009 Avalanche Landslide Research Center 和田尚之、日本建築学会計画系論文集 Vol.74(2009)No.642 P1787−1793「松本市における土地利用の自己組織化臨界状態解析」Naoyuki Wada, Architectural Institute of Japan Vol.74 (2009) No.642 P1787-1793 “Self-organized critical state analysis of land use in Matsumoto City”

従来の雪崩発生予測手法では、観測機器を雪崩発生予想地点に設置して、積雪の移動状態や積雪状況を物理的に観測することにより、雪崩の発生を予測していたため、急傾斜地には観測機器の設置事態が難しく、また雪崩発生時期における観測機器の故障にも対応できないという課題がある。
また統計手法を用いた雪崩発生予測手法においては、雪崩発生に関係する気象因子をタイムリーに取得する方法が確立されていないために、その予測精度が低いという課題もある。
In the conventional avalanche forecasting method, an observation device is installed at the expected avalanche occurrence point, and the avalanche occurrence is predicted by physically observing the snow movement and snow conditions. There is a problem that it is difficult to install the equipment, and it is impossible to cope with the failure of the observation equipment at the time of avalanche occurrence.
Moreover, in the avalanche occurrence prediction method using a statistical method, since the method of acquiring the weather factor related to avalanche occurrence timely has not been established, there also exists a subject that the prediction accuracy is low.

この発明は上記課題に着目してなされたもので、その目的とするところは、どのような傾斜地であっても、また、時期を問わず、雪崩の発生が予測される地点と調査対象地域の雪崩発生の蓋然性を予測し、かつ、観測地点における雪崩発生に関わる気象因子を一定の時間間隔でタイムリーに取得するシステム及び雪崩発生の予測方法を提供することにある。   The present invention has been made by paying attention to the above-mentioned problems. The purpose of the present invention is to determine the location of an avalanche and the area to be investigated regardless of the slope, regardless of the time. An object of the present invention is to provide a system for predicting the probability of occurrence of an avalanche and obtaining meteorological factors related to the occurrence of an avalanche at observation points in a timely manner and a method for predicting the occurrence of an avalanche.

本発明に係る雪崩発生予測システムは、雪崩の発生を予測したい地域において、降雪前にその地域の地形情報を取得する手段と、そして、その地域を観測区域に細分化し、その観測区域内の任意の観測地点の位置情報(緯度、経度、標高、地表状態)を記録する手段と、降雪時又は降雪後に、前記取得した位置情報と降雪後に取得した積雪量情報と地表状態を取得する手段と、積雪量と地表状態に、気温、湿度、気圧、風速、風向、日射の6個の気象要素を取得して数値化する(以下「合成化」という)手段と、その合成化された数値を観測地点における観測時の数値として記録する手段と、刻々と変化する降雪後の合成化された数値をグラフ化し可視化する手段と、合成化された数値の変化により雪崩を予測する雪崩予測手段とを具備することを特徴とする。   The avalanche occurrence prediction system according to the present invention includes a means for acquiring terrain information of an area before snowfall in an area where the occurrence of an avalanche is to be predicted, and subdividing the area into observation areas. Means for recording position information (latitude, longitude, altitude, surface condition) of the observation point, means for acquiring the acquired position information, snow amount information acquired after snowfall, and surface condition during or after snowfall; A means to acquire and quantify six meteorological elements (hereinafter referred to as “synthetic”), such as temperature, humidity, barometric pressure, wind speed, wind direction, and solar radiation, in the amount of snow and the ground surface, and observe the synthesized numerical values. Means for recording as numerical values at the time of observation at the site, means for graphing and visualizing the synthesized numerical values after snowfall that changes every moment, and avalanche predicting means for predicting avalanches by changing the synthesized numerical values Do And wherein the door.

また、本発明に関する雪崩発生予測システムの飛翔体は、気球と駆動部とを組み合わせた構成で定点滞留を行い、気球の浮力を利用して長時間の滞空を行うことを特徴とする。   In addition, the flying object of the avalanche occurrence prediction system according to the present invention is characterized in that a fixed point stays in a configuration in which a balloon and a driving unit are combined, and a long-time stay is performed using the buoyancy of the balloon.

更に、飛翔体を用いて雪崩の発生を予測する方法であって、 降雪前(積雪がない状態をいう)に雪崩発生予測調査対象地域の地形データを取得する降雪前地形データ取得ステップと、雪崩発生予測調査対象地域をメッシュに切り分けて観測地区を設定し、観測地点を指定するステップと前記観測地点の緯度、経度、標高を位置情報初期値として記録するステップと降雪時又は降雪後に滞空手段を備えた飛翔体により前記観測地点位置情報初期値に記録した地点の積雪量情報と観測地点の気象情報を取得するステップと前記積雪量情報及び気象情報を刻々と取得し、記録するステップと積雪量情報と気象情報を合成し数値化して、雪崩の発生臨界点を計算するステップと計算した結果を可視化するステップとを含むことを特徴とする。   Furthermore, there is a method for predicting the occurrence of avalanches using flying objects, including a pre-snow terrain data acquisition step for acquiring terrain data in a snow avalanche occurrence prediction survey area before a snowfall (which means that there is no snow). Set the observation area by dividing the occurrence prediction survey target area into meshes, specify the observation point, record the latitude, longitude, and altitude of the observation point as the initial position information and the means of staying during or after snowfall The step of acquiring snow amount information and the meteorological information of the observation point recorded at the observation point position information initial value by the flying object provided, the step of acquiring and recording the snow amount information and the meteorological information momentarily, and the snow amount The information and the weather information are synthesized and digitized to include a step of calculating a critical point of occurrence of an avalanche and a step of visualizing the calculated result.

本発明に係る雪崩発生予測システムは、前記雪崩発生予測手段による予測と、実際の結果とに基づき、地表状態の重み及び気象要素の数値係数を変更することにより、更に精度の高い雪崩発生予測システムとすることができる。   The avalanche occurrence prediction system according to the present invention is a more accurate avalanche occurrence prediction system by changing the weight of the ground state and the numerical coefficient of the weather element based on the prediction by the avalanche occurrence prediction means and the actual result. It can be.

は、降雪前のデータ取得に関わる構成図である。These are the block diagrams in connection with the data acquisition before snowfall. は、降雪後のデータ取得に関わる構成図である。These are the block diagrams in connection with the data acquisition after snowfall. は、降雪前のデータ取得及び処理に関するフローチャート図である。These are the flowchart figures regarding data acquisition and processing before snowfall. は、降雪後のデータ取得及び処理に関するフローチャート図である。These are the flowchart figures regarding the data acquisition and processing after snowfall. は、地表状態の設定値である。Is a set value of the ground surface state. は、観測地域から観測区域を設定するイメージ図である。These are the image figures which set an observation area from an observation area. は、降雪前のデータ入力表である。Is a data input table before snowfall. は、降雪時又は降雪後のデータ入力表である。Is a data input table during or after snowfall. は、合成化した値をグラフ化した図である。These are graphs of synthesized values. は、本発明で使用を予定している飛翔体の構成である。These are the structures of the flying object scheduled to be used in the present invention.

本発明に係る雪崩予測システムは、雪崩の発生を予測したい地域において、降雪前にその地域の地形情報を取得する手段と、そして、その地域をメッシュ(以下「観測地区」という)毎に細分化し、その観測地区内の任意の地点の位置情報(緯度、経度、標高、地表状態)を記録する手段と、降雪時又は降雪後に、前記取得した位置情報と降雪後に取得した積雪量情報と地表状態を取得する手段と、積雪量と地表状態に、気温、湿度、気圧、風速、風向、日射の6個の気象要素を取得して数値化する(以下「合成化」という)手段と、その合成化された数値を観測地点における観測時の数値として記録する手段と、刻々と変化する降雪後の合成化された数値をグラフ化し可視化する手段と、合成化された数値の変化により雪崩を予測する雪崩予測手段とを具備することを特徴とする。   The avalanche prediction system according to the present invention subdivides the area for each mesh (hereinafter referred to as “observation area”) in a region where it is desired to predict the occurrence of an avalanche, and means for acquiring the topographic information of the area before snowfall. , Means for recording position information (latitude, longitude, altitude, surface condition) at any point in the observation area, and the acquired position information, snow amount information acquired after snowfall, and surface condition during or after snowfall , A means for acquiring and quantifying six meteorological elements (hereinafter referred to as “compositing”), such as temperature, humidity, atmospheric pressure, wind speed, wind direction, and solar radiation, in the amount of snow and the surface condition, and the composition To record the numerical values as observation values at the observation point, to graph and visualize the synthesized values after the falling snow, and to predict an avalanche by the change of the synthesized values avalanche Characterized by comprising a measuring means.

本発明に係る雪崩発生予測システムは、前記雪崩発生予測手段による予測と、実際の結果とに基づき、地表状態の重み及び気象要素の数値係数を変更することにより、更に精度の高い雪崩発生予測システムとすることができる。   The avalanche occurrence prediction system according to the present invention is a more accurate avalanche occurrence prediction system by changing the weight of the ground state and the numerical coefficient of the weather element based on the prediction by the avalanche occurrence prediction means and the actual result. It can be.

以下添付図面を参照して、雪崩発生予測システムの実施例を説明する。図1は、降雪前に観測地域の上空に飛翔体を滞空させ、観測地点の地表状態を観測させ、メインPCに記録させる構成図であり、図2は、積雪時或いは積雪後に飛翔体を滞空させ、地表状態、気象データを取得し、メインPCに記録する構成図が示されている。   Embodiments of an avalanche occurrence prediction system will be described below with reference to the accompanying drawings. Fig. 1 is a configuration diagram in which a flying object is suspended above the observation area before snowfall, and the surface condition of the observation point is observed and recorded on the main PC. A configuration diagram is shown in which the ground surface state and weather data are acquired and recorded in the main PC.

添付図面3及び4に則して実施例を説明する。まず観測地域を特定(S11)し、観測地域を国土交通省国土地理院の数値地図に基づき調査対象地域を図6のように、メッシュに切り分け観測地区を設定し、観測地区ごとの中心点を設定(以下観測地点という)し(S12)、観測地点の緯度、経度、標高を位置情報として記録する(S13)。例えば観測地区の広さとしては、50m 四方が望ましい。 Embodiments will be described with reference to the accompanying drawings 3 and 4. First, the observation area is specified (S11), and the observation area is divided into meshes as shown in Fig. 6 based on the numerical map of the Geographical Survey Institute of the Ministry of Land, Infrastructure, Transport and Tourism, and the observation area is set. Set (hereinafter referred to as observation point) (S12), and record the latitude, longitude, and altitude of the observation point as position information (S13). For example, the area of observation area is preferably 50m square.

指定された観測地域の上空に飛翔体を滞空させ(S14)、飛翔体は、GPS位置情報を取得後、メインPCシステムへ送信し飛翔体位置情報初期値として登録する(S15-2)。   The flying object stays in the sky above the designated observation area (S14), and after obtaining the GPS position information, the flying object transmits it to the main PC system and registers it as the initial value of the flying object position information (S15-2).

次に、飛翔体は、対象地域の現況写真を取得し(S16)、メインPCシステムへ送信する(S16-2)。   Next, the flying object acquires a current state photograph of the target area (S16) and transmits it to the main PC system (S16-2).

メインPCにおいて、前記観測地点の標高と地表状態を、地表状態の設定値(図5)の分類に従い、目視により数値化し(S17-2)、図7の降雪前のデータ入力表に入力し、対象地点の初期値として保存する(S17-3)。
これにより、降雪前の処理は完了する。
In the main PC, the altitude and surface condition of the observation point are visually digitized according to the classification of the ground surface setting values (Fig. 5) (S17-2) and entered into the data entry table before snowfall in Fig. 7, Save as the initial value of the target point (S17-3).
Thereby, the process before snowfall is completed.

降雪時又は降雪後において、飛翔体を位置情報初期値の緯度、経度、標高に滞留させ、観測を開始する(S21)。
降雪時又は降雪後の飛翔体の位置を、降雪前の緯度、経度、標高にあわせることにより、取得データの精度を高めることができる。
During or after snowfall, the flying object is retained at the latitude, longitude, and altitude of the initial position information, and observation is started (S21).
By adjusting the position of the flying object during or after snowfall to the latitude, longitude, and altitude before snowfall, the accuracy of acquired data can be increased.

飛翔体は、観測地点の積雪量のデータをレーザー波により取得し(S22)、メインPCに送信し記録する(22-2)   The flying object acquires data on the amount of snow at the observation point using laser waves (S22), and sends it to the main PC for recording (22-2).

さらに、地表状態をカメラで撮影し(S23)、メインPCに送信し、観測地点の地表データを目視により、図5の分類に従い、数値化し、記録する(24-2)。   Further, the ground surface state is photographed by the camera (S23), transmitted to the main PC, and the ground surface data at the observation point is visually digitized and recorded according to the classification of FIG. 5 (24-2).

次に、メインPCからの指令により飛翔体を、観測地点の地表近くまで高度を下げ(このとき緯度経度は変更しない)(S25)、気温、湿度、気圧、風速、風向、日射の6個の気象要素を計測する。このときの高度は、地表に近ければ近いほどよい。
観測した気象要素は、メインPCに送信し、図8の降雪時又は降雪後データ表に記録する(S25-2)。
Next, according to the command from the main PC, the altitude is lowered to near the surface of the observation point (the latitude and longitude are not changed at this time) (S25), and the temperature, humidity, atmospheric pressure, wind speed, wind direction, and solar radiation Meteorological elements are measured. The altitude at this time is better as it is closer to the ground surface.
The observed meteorological elements are transmitted to the main PC and recorded in the data table during or after snowfall in FIG. 8 (S25-2).

その後、図8の降雪時又は降雪後データ表に基づき、取得した積雪量、地表データ、気温、湿度、気圧、風速、風向、日射の8個の観測数値を合成化し、メインPCに記録する(S25-3)。これにより、第一回目の情報取得が完了する。
その後、設定した観測回数分S21〜S25−3のデータ取得を繰り返す。1回の観測に要する時間は概ね60分以内が望ましい。
After that, based on the data table at the time of snowfall or after snowfall in FIG. 8, the eight observation numerical values of the obtained snow cover amount, ground surface data, temperature, humidity, atmospheric pressure, wind speed, wind direction and solar radiation are synthesized and recorded on the main PC ( S25-3). Thereby, the first information acquisition is completed.
Thereafter, data acquisition of S21 to S25-3 is repeated for the set number of observations. The time required for one observation is preferably within 60 minutes.

ここで合成化とは、飛翔体によって得られた位置情報、標高差、地表データ、6個の気象要素を、ひとつの変動の状態空間量として合成化することをいう。   Here, compositing means synthesizing position information, altitude difference, ground surface data, and six meteorological elements obtained by a flying object as one state space quantity of fluctuation.

合成化する方法は、以下の考え方及び計算式で行う。
状態空間量は、観測された各要素をひとつの変数として捉えることである。つまり、変数がp個の変数φ1,φ2,・・・,φpによって説明できると考え,さらにこれを合成変数としてm個の成分で要約する。変数に作用する係数をWki、合成変数化したものをQ mとすれば次のように表現できるのである。
(2-1)
これはp個の変数とn個の個体を考えたときm個の成分で要約する主成分分析に用いる最初の考え方である。次に各変数をより分かりやすい情報にするため、低い次元で要約しBiplotによる合成変数化を行う。これを行うことで、各観測点に掛かる変数を総合的にどの程度の密度の負荷として掛かっているのかを表すことができる。
ここで、各変数を平均0に中心化し観測可能なn×pのデータ行列をφとし、その階数がrのときは、
(2-2)
という特異値分解の表現として記述する方法が合成理論のBiplotの基本的な考え方である。
また、B は正規直交ベクトルを列ベクトルに持つ行列の、A’A = B’B =I, A’,B’:転置行列, I (単位行列)である。Biplotでは低い次元で要約するためにこのφを階数2で近似し、
(2-3)
この際右辺を以下のように置く。
(2-4)
A,Bは正規直交ベクトルを列ベクトルに持つ行列で、Dλは対角要素λの対角行列であり、表記A(2)の(2)は2次元上に布置させるための階数である。
またFは個体としての各観測点の第1と第2の主成分得点を、Gは主成分の係数を表している。
これはp個の変数とn個の個体を考えたときm個の成分で要約する主成分分析に用いる最初の考え方である。次に各変数をより分かりやすい情報にするため、低い次元で要約しBiplotによる合成変数化を行う。これを行うことで、各観測地区に掛かる変数を総合的にどの程度の密度の負荷として掛かっているのかを表すことができるのである。
The synthesis method is performed according to the following concept and calculation formula.
State space is to capture each observed element as one variable. That is, it is considered that the variable can be explained by p variables φ1, φ2,..., Φp, and this is summarized as a composite variable with m components. If the coefficient acting on the variable is Wki, and the synthesized variable is Qm, it can be expressed as follows.
(2-1)
This is the first concept used for principal component analysis that summarizes m components when considering p variables and n individuals. Next, in order to make each variable easier-to-understand information, it is summarized in a low dimension and converted into a composite variable by Biplot. By doing this, it is possible to express how much density the variables applied to each observation point are applied as a load.
Here, when each variable is centered on an average of 0 and an observable n × p data matrix is φ and its rank is r,
(2-2)
The method of describing it as an expression of the singular value decomposition is the basic idea of the Bipot of synthesis theory.
B is a matrix having an orthonormal vector as a column vector, A′A = B′B = I, A ′, B ′: transposed matrix, I (unit matrix). Biplot approximates this φ with rank 2 to summarize in a lower dimension,
(2-3)
At this time, the right side is placed as follows.
(2-4)
A and B are matrices having orthonormal vectors as column vectors, Dλ is a diagonal matrix of diagonal elements λ, and (2) in the notation A (2) is a rank for placing in two dimensions.
F represents the first and second principal component scores of each observation point as an individual, and G represents the principal component coefficient.
This is the first concept used for principal component analysis that summarizes m components when considering p variables and n individuals. Next, in order to make each variable easier-to-understand information, it is summarized in a low dimension and converted into a composite variable by Biplot. By doing this, it is possible to express how much density is applied to the variables applied to each observation area.

この考え方及び計算方法を、本発明に当てはめ、観測地点を、積雪量、地表データ、気温、湿度、気圧、風速、風向、日射の8個の観測数値を、図8に示した表の該当セルに挿入し、8個の個性を持った数値を合成化し、一つの数値としてまとめるのである。   This concept and calculation method are applied to the present invention, the observation point is the snow cell volume, ground surface data, temperature, humidity, atmospheric pressure, wind speed, wind direction, solar radiation, and the eight observed numerical values are the corresponding cells in the table shown in FIG. Is inserted into the numerical value, and eight individual values are synthesized and combined into one numerical value.

本発明においては、長時間繰り返しデータを取得し続けることにより、雪崩発生予測精度を向上させることになるので、飛翔体は、長時間滞空できる機能を備えていることが望ましい。   In the present invention, since the avalanche occurrence prediction accuracy is improved by continuously acquiring data for a long time, it is desirable that the flying object has a function of being able to stay for a long time.

空間に長時間滞空するためには、滞空時間に応じたエネルギーを確保できる構造が求められる。   In order to stay in the space for a long time, a structure that can secure energy according to the staying time is required.

そこで、本発明で用いる飛翔体は、図10に示したように、長立方体に組み合わせた支持本体に、空気より軽い気体を充填させた気球を取り付け、機体下部に、機体の重心を通る中心軸から等間隔に前後左右に配設された6基のロータユニットと、各ロータユニットを駆動制御する制御手段とを備えることにより、気球により浮力を生じさせ、ロータユニットにより移動させることができる構造とした。これにより、移動のためのエネルギーを省力化し、長時間の滞空可能な飛翔体とした。   Therefore, as shown in FIG. 10, the flying object used in the present invention is attached to a support body combined with a long cube with a balloon filled with a gas lighter than air, and a central axis passing through the center of gravity of the aircraft at the lower part of the aircraft. And six rotor units disposed at equal intervals from front to back and left and right, and a control means for driving and controlling each rotor unit, so that buoyancy can be generated by a balloon and moved by the rotor unit. did. As a result, energy for movement was saved, and a flying object capable of staying for a long time was obtained.

また、飛翔体が定点滞空機能を有していることにより、取得したデータの誤差調節が少なくなり、コンピュータのメモリ節約及び計算速度の向上を図ることができ、より速く正確な雪崩発生予測が可能となることから、飛翔体は、滞空位置の自動調整を行う定点回帰機能を備え、かつ、常に先端が一定方向を向くようにすることが望ましい。   In addition, since the flying object has a fixed-point aerial function, the error adjustment of the acquired data is reduced, the memory of the computer can be saved and the calculation speed can be improved, and the avalanche occurrence can be predicted more quickly and accurately. Therefore, it is desirable that the flying object has a fixed point regression function that automatically adjusts the position of the stagnant flight and that the tip always points in a certain direction.

以上のように、長時間定点に滞空した飛翔体により、繰り返し取得し、合成化された情報を、観測点ごとに、視覚的に把握するために、合成化した値を連続して記録し続けることにより、現象として、相関関係が徐々に失われ、相関関係がなくなる点を臨界点と捉え、この点を雪崩の発生時点と考えて(自己組織化臨界状態理論)、観測時点ごとの状態をグラフ化することにより可視化できるようにする。
図9は、合成化したデータを上記理論に基づき並べた結果、崩落地点を示している状態の図である。
As described above, in order to visually grasp the information obtained and repeatedly synthesized for each observation point by a flying object that has stayed at a fixed point for a long time, the synthesized values are continuously recorded. As a phenomenon, the point at which the correlation gradually disappears and the correlation disappears is regarded as a critical point, and this point is considered as the time of avalanche occurrence (self-organized critical state theory). Visualize by graphing.
FIG. 9 is a diagram showing a collapsed point as a result of arranging the synthesized data based on the above theory.

観測地点の合成化の値の変化をグラフ化することにより、観測地点の現在の状況が安定しているのか、崩落に向けて移動しているのかを目視により把握することができる。また、このシステムは、長時間観測することにより、その時々の観測地点の状態を正確に把握することができるので、対象地域における積雪状態を常に監視し、観測地点の状態が、臨界状態に近づいている場合には、雪崩発生が予想される、との警報を発することができる。   By graphing the change in the synthesis value of the observation point, it is possible to visually grasp whether the current state of the observation point is stable or moving toward collapse. In addition, this system can accurately grasp the state of the observation point from time to time by observing for a long time, so the snow condition in the target area is constantly monitored, and the state of the observation point approaches the critical state. If it is, an alarm that an avalanche is expected can be issued.

本発明に係る雪崩発生予測システムは、飛翔体を用いて地表状態及び気象要素を求めるため、人の近付けない場所においても発生予測が可能であり、また、降雪時、積雪時、融雪時など時期を問わず、継続して積雪量データや気象要素を取得することができ、正確な雪崩の発生を予測するので、土地利用を含め、適切な雪崩対策が可能となる。   Since the avalanche occurrence prediction system according to the present invention uses a flying object to determine the surface condition and weather elements, it can be predicted even in places where people are not accessible, and it can also be used during periods of snowfall, snowfall, snowmelt, etc. Regardless of the type of snow avalanche, it is possible to continuously acquire snow cover data and meteorological elements, and accurately predict the occurrence of avalanches, making it possible to take appropriate avalanche countermeasures including land use.

Claims (4)

飛翔体を用いて 降雪前(積雪がない状態をいう)に
雪崩発生予測調査対象地域の地形データを取得する降雪前地形データ取得手段と、
雪崩発生予測調査対象地域をメッシュに切り分けて観測地区を設定し、観測地点を指定する手段と
前記観測地点の緯度、経度、標高を位置情報初期値として記録する手段と
降雪時又は降雪後に滞空手段を備えた飛翔体により
前記観測地点位置情報初期値に記録した地点の積雪量情報と観測地点の気象情報を取得する手段と
前記積雪量情報及び気象情報を刻々と取得し、記録する手段と
積雪量情報と気象情報を合成し数値化して、雪崩の発生臨界点を計算する 手段と
計算した結果を可視化する手段と
を具備することを特徴とする飛翔体を用いた雪崩発生予測システム
Pre-snow terrain data acquisition means for acquiring the topographic data of the avalanche occurrence prediction survey area before the snowfall (which means that there is no snow) using a flying object;
An avalanche occurrence prediction survey area is divided into meshes, an observation area is set, an observation point is specified, a means for recording the latitude, longitude, and altitude of the observation point as an initial position information value, and a means of staying during or after snowfall Means for acquiring snow amount information of the point recorded at the initial value of the observation point position information and meteorological information of the observation point, and means for acquiring and recording the snow amount information and meteorological information moment by moment, and a snow cover An avalanche occurrence prediction system using a flying object, characterized by comprising means for calculating the critical point of an avalanche by combining quantity information and meteorological information, and means for visualizing the calculation result
定点滞留システムを備えた飛翔体を用いた、請求項1の飛翔体を用いた雪崩発生予測システム   An avalanche occurrence prediction system using a flying object according to claim 1, wherein the flying object is provided with a fixed point retention system. 定点滞留システム及び長時間滞空可能な飛翔体を用いた、請求項1の飛翔体を用いた雪崩発生予測システム   An avalanche occurrence prediction system using the flying object according to claim 1, which uses a fixed point staying system and a flying object capable of staying for a long time. 飛翔体を用いて雪崩の発生を予測する方法であって、
降雪前(積雪がない状態をいう)に雪崩発生予測調査対象地域の地形データを取得する降雪前地形データ取得ステップと、
雪崩発生予測調査対象地域をメッシュに切り分けて観測地区を設定し、観測地点を指定するステップと
前記観測地点の緯度、経度、標高を位置情報初期値として記録するステップと
降雪時又は降雪後に滞空手段を備えた飛翔体により前記観測地点位置情報初期値に記録した地点の積雪量情報と観測地点の気象情報を取得するステップと
前記積雪量情報及び気象情報を刻々と取得し、記録するステップと
積雪量情報と気象情報を合成し数値化して、雪崩の発生臨界点を計算するステップと
計算した結果を可視化するステップと
を含むことを特徴とする飛翔体を用いた雪崩発生予測方法
A method for predicting the occurrence of an avalanche using a flying object,
Pre-snow terrain data acquisition step for acquiring terrain data of the target area of the avalanche occurrence prediction survey before snowfall (which means that there is no snow),
Avalanche occurrence prediction survey area is divided into meshes, observation areas are set, the observation point is specified, the latitude, longitude and altitude of the observation point are recorded as initial position information, and the means of staying during or after snowfall A step of acquiring snow amount information of the point recorded in the initial value of the observation point position information and weather information of the observation point, and a step of acquiring and recording the snow amount information and the meteorological information momentarily, and a snow cover A method for predicting avalanche occurrence using a flying object, characterized in that it includes a step of calculating a critical point of avalanche generation and a step of visualizing the calculation result by synthesizing and digitizing quantity information and weather information
JP2016159085A 2016-08-15 2016-08-15 System and method for predicting avalanche occurrence using flying object Pending JP2018028436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016159085A JP2018028436A (en) 2016-08-15 2016-08-15 System and method for predicting avalanche occurrence using flying object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016159085A JP2018028436A (en) 2016-08-15 2016-08-15 System and method for predicting avalanche occurrence using flying object

Publications (1)

Publication Number Publication Date
JP2018028436A true JP2018028436A (en) 2018-02-22

Family

ID=61249039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016159085A Pending JP2018028436A (en) 2016-08-15 2016-08-15 System and method for predicting avalanche occurrence using flying object

Country Status (1)

Country Link
JP (1) JP2018028436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108687810A (en) * 2018-04-20 2018-10-23 中国气象局气象探测中心 Cut the device of balloon
JP2020109381A (en) * 2019-01-07 2020-07-16 国立研究開発法人防災科学技術研究所 Surface avalanche prediction system and surface avalanche prediction program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108687810A (en) * 2018-04-20 2018-10-23 中国气象局气象探测中心 Cut the device of balloon
CN108687810B (en) * 2018-04-20 2023-11-24 中国气象局气象探测中心 Device for cutting balloon
JP2020109381A (en) * 2019-01-07 2020-07-16 国立研究開発法人防災科学技術研究所 Surface avalanche prediction system and surface avalanche prediction program
JP7144850B2 (en) 2019-01-07 2022-09-30 国立研究開発法人防災科学技術研究所 Surface avalanche prediction device and surface avalanche prediction program

Similar Documents

Publication Publication Date Title
Crosta et al. Long-term evolution and early warning strategies for complex rockslides by real-time monitoring
US10648877B2 (en) Mechanical strain-based weather sensor
Spiga et al. Atmospheric science with InSight
Baker et al. Relationships between lightning activity and various thundercloud parameters: Satellite and modelling studies
Diefenbach et al. Rapid, low-cost photogrammetry to monitor volcanic eruptions: an example from Mount St. Helens, Washington, USA
JP6949332B2 (en) Lightning risk judgment device
Litta et al. The diagnosis of severe thunderstorms with high-resolution WRF model
CN111339826A (en) Landslide unmanned aerial vehicle linear sensor network frame detection system
Ramesh et al. Reduced-order modeling of stratospheric winds and its application in high-altitude balloon trajectory simulations
JP2018028436A (en) System and method for predicting avalanche occurrence using flying object
Coopman et al. Analysis of the thermodynamic phase transition of tracked convective clouds based on geostationary satellite observations
Shukla et al. Satellite-based nowcasting of extreme rainfall events over Western Himalayan region
Joseph et al. Weather observation and forecasting using radiosonde
Gibson et al. Variations in near‐surface debris temperature through the summer monsoon on Khumbu Glacier, Nepal Himalaya
Walter et al. Brief communication: An autonomous UAV for catchment-wide monitoring of a debris flow torrent
Zhang et al. An observing system simulation experiment (OSSE) to assess the impact of Doppler wind lidar (DWL) measurements on the numerical simulation of a tropical cyclone
Misra et al. Simulation of daily rainfall from concurrent meteorological parameters over core monsoon region of India: a novel approach
Lekhadiya et al. Assimilation of INSAT-3D Sounder retrieved thermodynamic profiles using WRF model for extreme rainfall event over north central part of INDIA
Sharma et al. Landslide Mapping, monitoring and modeling techniques: a new approach using DOFS
Tunick Modeling microphysical influences on optical turbulence in complex areas
Panda et al. Characteristics of tropical cyclones through remote sensing-based observational platforms
US11965792B2 (en) Mechanical strain-based weather sensor
Blahůt et al. Modern Methods of Rock Mass Characterisation and Rockfall Monitoring: A Review
Saito et al. Tools for identifying hazards
Varadharajan et al. Observational Capabilities to Capture Water Cycle Event Dynamics and Impacts in the Age of AI