JP2018028229A - Composite girder a bridge constructed using the same - Google Patents

Composite girder a bridge constructed using the same Download PDF

Info

Publication number
JP2018028229A
JP2018028229A JP2016161054A JP2016161054A JP2018028229A JP 2018028229 A JP2018028229 A JP 2018028229A JP 2016161054 A JP2016161054 A JP 2016161054A JP 2016161054 A JP2016161054 A JP 2016161054A JP 2018028229 A JP2018028229 A JP 2018028229A
Authority
JP
Japan
Prior art keywords
concrete bottom
concrete
composite girder
bottom slab
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016161054A
Other languages
Japanese (ja)
Other versions
JP6709914B2 (en
Inventor
智 松岡
Satoshi Matsuoka
智 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Landes Co Ltd
Original Assignee
Landes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landes Co Ltd filed Critical Landes Co Ltd
Priority to JP2016161054A priority Critical patent/JP6709914B2/en
Publication of JP2018028229A publication Critical patent/JP2018028229A/en
Application granted granted Critical
Publication of JP6709914B2 publication Critical patent/JP6709914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite girder capable of facilitating construction work to construct a bridge by reducing the girder height and weight of the bridge while requiring no rust prevention measures of steel material, and a bridge constructed by using the same.SOLUTION: A composite girder 1 is constituted of: a T-shaped steel material 2 which has a flange 22 on at least lower edge of a web 21; and a concrete bottom slab 3 which encloses the flange 22 of the T-shaped steel material 2 and allows the web 21 to protrude therefrom. The bridge 5 is constructed, on the composite girder 1 bridged between bridge abutments 53, 53 arranged parallel to each other perpendicular to an extension direction thereof, a cast-in-place concrete 52 is carried out over a buried formwork 56, which is bridged over the concrete bottom slabs 3, and the concrete bottom slab 3 to bury the web 21 of the T-shaped steel material 2 in the cast-in-place concrete 52.SELECTED DRAWING: Figure 16

Description

本発明は、型鋼材とコンクリートとが一体となった合成桁と、これを用いて構築される橋梁とに関する。   The present invention relates to a composite girder in which a steel mold and concrete are integrated, and a bridge constructed using the composite girder.

橋梁は、橋台間、橋脚間や橋台と橋脚との間に架け渡した桁に対してコンクリートで床版を構成し、構築する。桁は、通常、型鋼材(I型、H型等)を用いる。例えばH型鋼材の桁は、フランジを水平に、ウェブを垂直にした姿勢で橋台間、橋脚間や橋台と橋脚との間に適当間隔で並べて掛け渡す。桁の間の開口は、H型鋼材の下方のフランジ間に型枠を架け渡して塞ぐ。そして、床版は、前記型枠上に構造用鉄筋を組んだ後、隣り合うH型鋼材と型枠とに囲まれる空間に現場打コンクリートを打設して構成する。橋梁は、床版の上に道路や欄干等を設けて構築される。型鋼材は、大部分が現場打コンクリートに埋没するが、下方のフランジが外部に露出する。   The bridge is constructed by constructing a concrete floor slab for the girders spanned between abutments, between piers, and between abutments and piers. The girders are usually made of steel molds (I-type, H-type, etc.). For example, the girders of H-shaped steel materials are arranged and arranged at appropriate intervals between abutments, between abutments, or between abutments and abutments in a posture in which the flange is horizontal and the web is vertical. The opening between the girders is closed by bridging the formwork between the lower flanges of the H-shaped steel material. And a floor slab is constructed by placing in-situ concrete in a space surrounded by the adjacent H-shaped steel material and the formwork after assembling structural reinforcing bars on the formwork. The bridge is constructed by providing roads and railings on the floor slab. Most of the mold steel is buried in the cast-in-place concrete, but the lower flange is exposed to the outside.

特許文献1は、鋼ウェブの下端に鋼製の下フランジを有し、前記鋼ウェブの上端に鉄筋コンクリート製の上フランジを有する合成桁を開示する(特許文献1・[請求項1])。鉄筋コンクリート製の上フランジは、床版を構成する(特許文献1・[請求項2])、又は橋軸方向に沿った受けフランジ部を設けて床版を支持する(特許文献1・[請求項3])ほか、補強鋼材を予め埋設しておける(特許文献1・[請求項4])。また、特許文献1は、鋼ウェブの下端に鋼製の下フランジを溶着し、前記鋼ウェブの上端に鉄筋コンクリート製の上フランジを打設した桁を支間に掛け渡すと共に、橋軸直角方向に並設させた上フランジに橋軸直角方向の横締めPC鋼線を貫通させて、上フランジを橋軸直角方向に締結させて構築する橋梁を開示する(特許文献1・請求項5)。   Patent Document 1 discloses a composite girder having a steel lower flange at the lower end of a steel web and an upper flange made of reinforced concrete at the upper end of the steel web (Patent Document 1 [Claim 1]). The upper flange made of reinforced concrete constitutes a floor slab (Patent Document 1 [Claim 2]), or supports the floor slab by providing a receiving flange portion along the bridge axis direction (Patent Document 1 [Claim 2]. 3]) In addition, a reinforcing steel material can be embedded in advance (Patent Document 1, [Claim 4]). Further, Patent Document 1 welds a steel lower flange to the lower end of a steel web, spans a girder in which an upper flange made of reinforced concrete is placed on the upper end of the steel web, and is arranged in a direction perpendicular to the bridge axis. A bridge constructed by penetrating a laterally tightened PC steel wire in the direction perpendicular to the bridge axis through the installed upper flange and fastening the upper flange in the direction perpendicular to the bridge axis is disclosed (Patent Documents 1 and 5).

特許文献1が開示する合成桁は、鋼ウェブに上フランジを溶接する必要がなく、製造コストを削減できる。また、特許文献1が開示する合成桁は、鉄筋コンクリート製である上フランジを床版として構成できるので、橋梁構築の作業性を向上させ、工期短縮ができるほか、橋梁の構造高を小さくできる(特許文献1・[0022])。更に、特許文献1が開示する合成桁は、上フランジに別体の床版を敷設することもできるが、それでも橋梁の構造高を小さくしたり、後期を短縮して橋梁の建設コストを削減できたりする(特許文献1・[0023])。そして、特許文献1が開示する合成桁は、上フランジに現場打コンクリートを打設する際、補強鋼材を埋設させて圧縮荷重に対向できる桁を構成できる(特許文献1・[0025])。   The composite girder disclosed in Patent Document 1 does not need to weld the upper flange to the steel web, and can reduce the manufacturing cost. In addition, the composite girder disclosed in Patent Document 1 can be configured as a floor slab with an upper flange made of reinforced concrete, so that the workability of bridge construction can be improved, the work period can be shortened, and the structural height of the bridge can be reduced (patent) Literature 1 [0022]). Furthermore, the composite girder disclosed in Patent Document 1 can lay a separate floor slab on the upper flange, but it can still reduce the construction height of the bridge by reducing the structural height of the bridge or shortening the latter period. (Patent Literature 1, [0023]). And the composite girder which patent document 1 discloses can comprise the girder which can embed a reinforcing steel material and can oppose a compressive load when placing cast-in-place concrete in an upper flange (patent documents 1 and [0025]).

特開2007-126813号公報JP 2007-126813

特許文献1が開示する合成桁は、従来の型鋼材を桁としていた場合同様、鋼材が外部に露出する点に変わりがない。これは、外部に露出する鋼材に防錆対策が必要なことを意味する。また、鋼材に防錆対策(例えば防錆塗料を塗る)を施したとしても、経年劣化や流木等の衝突により塗装膜が剥がれ、錆を発生させる問題がある。鋼材とコンクリート製の上フランジとの組み合わせは、合成桁としての剛性を高くする点で評価できるが、従来同様に鋼材の防錆対策が必要な点は、改善の必要がある。   The synthetic girder disclosed in Patent Document 1 remains the same in that the steel material is exposed to the outside as in the case where the conventional steel mold material is used as the girder. This means that rust prevention measures are required for the steel material exposed to the outside. Moreover, even if a rust prevention measure (for example, applying a rust preventive paint) is applied to the steel material, there is a problem that the coating film is peeled off due to aging deterioration or collision with driftwood or the like and rust is generated. The combination of the steel material and the concrete upper flange can be evaluated in terms of increasing the rigidity as a composite girder, but the point that requires rust prevention measures for the steel material as in the conventional case needs to be improved.

また、特許文献1が開示する合成桁は、例えばコンクリート製の上フランジに包まれる鋼ウェブ上縁に孔あき鋼板ジベル(11c)を設け、鋼材とコンクリート製の上フランジとの一体性を高めている(特許文献1・[0028])。しかし、鋼材は上フランジから吊り下げられ、下端に鋼製の下フランジを有していることから、鋼材がコンクリート製の上フランジから抜け出す可能性が否めない。また、鋼材とコンクリート製の上フランジとを組み合わることによる合成桁としての剛性の向上が不十分である。   In addition, the composite girder disclosed in Patent Document 1 is provided with a perforated steel plate gibber (11c) on the upper edge of a steel web wrapped in, for example, a concrete upper flange to enhance the integrity between the steel material and the concrete upper flange. (Patent Document 1 [0028]). However, since the steel material is suspended from the upper flange and has a steel lower flange at the lower end, the possibility of the steel material coming out of the concrete upper flange cannot be denied. Moreover, the improvement of the rigidity as a composite girder by combining a steel material and a concrete upper flange is insufficient.

このほか、特許文献1が開示する合成桁は、コンクリート製の上フランジを打設して制作する(特許文献1・[0029])ことから、桁高の抑制に限界がある。そこで、鋼材とコンクリートとを組み合わせた合成桁において、両者の一体性を高めると共に、鋼材の防錆対策を不要にすることを目的としながら、桁高をできるだけを抑えて橋梁の重量を軽減したり、橋梁を構築する際の施工を容易にしたりすることも踏まえて、使用する鋼材やコンクリートとの組み合わせ方について、検討した。   In addition, the composite girder disclosed in Patent Document 1 is produced by placing an upper flange made of concrete (Patent Document 1 [0029]). Therefore, in a composite girder that combines steel and concrete, while reducing the weight of the bridge while minimizing the girder height, it aims to increase the integrity of the two and eliminate the need for rust prevention measures for the steel. Considering the ease of construction when building a bridge, we examined how to combine it with steel and concrete to be used.

検討の結果開発したものが、ウェブの少なくとも下縁にフランジを有する型鋼材と、前記型鋼材のフランジを包み、ウェブを突出させるコンクリート底版とから構成される合成桁である。型鋼材は、既存のT型鋼材、H型鋼材又はI型鋼材のほか、例えば1枚の鋼板をウェブとし、フランジとなる鋼板を前記ウェブの端縁に取り付けた構成でもよい。ウェブは、複数枚あってもよい。ウェブ又はフランジは、肉厚としたり、別途補強部材(鋼棒又は鋼板)を取り付けたりすると、型鋼材の剛性及び構造強度が増加する。コンクリート底版を足場とする場合、型鋼材は、T型鋼材で、コンクリート底版がフランジを包む構成がよい。また、合成桁の剛性を高めたい場合、型鋼材は、H型鋼材又はI型鋼材で、コンクリート底版が一方のフランジを包む構成がよい。   What has been developed as a result of the study is a composite girder composed of a steel mold having a flange at least at the lower edge of the web, and a concrete bottom plate that wraps the flange of the steel mold and projects the web. In addition to the existing T-type steel material, H-type steel material, or I-type steel material, the type steel material may have a configuration in which, for example, one steel plate is used as a web and a steel plate serving as a flange is attached to the edge of the web. There may be a plurality of webs. If the web or the flange is made thick or a separate reinforcing member (steel bar or steel plate) is attached, the rigidity and structural strength of the steel mold will increase. When a concrete bottom slab is used as a scaffold, the mold steel is preferably a T-type steel and the concrete bottom slab wraps the flange. Moreover, when it is desired to increase the rigidity of the composite girder, the shape steel material is preferably an H-type steel material or an I-type steel material, and the concrete bottom plate wraps one flange.

型鋼材は、コンクリート底版に包まれるフランジに縦貫通孔を設けることにより、前記縦貫通孔を介してフランジの上下に分かれたコンクリート底版を連結させ、コンクリート底版との一体性を向上させる。縦貫通孔は、合成桁の延在方向に等間隔又は不等間隔で複数設ける。複数設けられる縦貫通孔それぞれは、フランジの上下に分かれたコンクリート底版を連結させることができればよく、円形開口のほか、細長いスリットでもよい。   By providing a vertical through hole in a flange wrapped in a concrete bottom slab, the mold steel is connected to the concrete bottom slab divided above and below the flange via the vertical through hole, thereby improving the integrity with the concrete bottom slab. A plurality of vertical through holes are provided at equal intervals or at unequal intervals in the extending direction of the composite beam. Each of the plurality of vertical through-holes provided may be formed by connecting a concrete bottom slab separated at the top and bottom of the flange, and may be an elongated slit in addition to a circular opening.

また、型鋼材は、コンクリート底版に埋没しない又は一部が埋没する横貫通孔をウェブに設ける。横貫通孔は、合成桁間に打設する現場打コンクリートに埋設する主筋を型鋼材のウェブに掛合させる位置関係して、前記現場打コンクリートと型鋼材との一体性を向上させる。横貫通孔は、コンクリート底版に埋没させた一部を介してウェブの左右に分かれたコンクリート底版を連結させ、型鋼材とコンクリート底版との一体性を向上させる。横貫通孔は、合成桁の延在方向に等間隔又は不等間隔で複数設ける。複数設けられる横貫通孔それぞれは、ウェブの左右に分かれたコンクリート底版を連結させることができればよく、円形開口のほか、細長いスリットでもよい。   Moreover, a shape steel material provides a horizontal through-hole which is not buried in a concrete bottom slab, or a part is buried in a web. The horizontal through-hole improves the integrity of the cast-in-place concrete and the cast steel material in a positional relationship where the main bars embedded in the cast-in-place concrete cast between the composite girders are engaged with the web of the cast steel material. The horizontal through-hole connects the concrete bottom slab divided into the left and right sides of the web through a part buried in the concrete bottom slab, and improves the integrity of the steel mold and the concrete bottom slab. A plurality of lateral through holes are provided at equal intervals or at irregular intervals in the extending direction of the composite beam. Each of the plurality of lateral through-holes provided only needs to be able to connect a concrete bottom slab divided into the left and right sides of the web, and may be an elongated slit in addition to a circular opening.

合成桁におけるコンクリート底版に圧縮力を導入する場合、コンクリート底版は、型鋼材と平行に延びるPC鋼材(PC鋼線やPC鋼棒等)を緊張状態で内蔵させる。PC鋼材は、紐状の鋼線、撚り線や細い帯体が例示できる。PC鋼材は、延在方向両方から引っ張って緊張状態とし、コンクリート底版の端面から突出する両端を切断して両端を定着具で位置固定すれば、緊張状態でコンクリート底版に内蔵できる。こうしてPC鋼材を緊張状態で内蔵させたコンクリート底版は、緊張状態のPC鋼材が縮む過程で型鋼材の延在方向に圧縮される。コンクリート底版は、型鋼材のフランジを包むことから幅広となる。このため、コンクリート底版に内蔵させるPC鋼材は、前記コンクリート底版の幅方向に複数を等間隔又は不等間隔で並べるとよい。   When compressive force is introduced into the concrete bottom slab of a composite girder, the concrete bottom slab incorporates a PC steel material (PC steel wire, PC steel bar, etc.) that extends parallel to the mold steel material in tension. Examples of the PC steel material include string-like steel wires, stranded wires, and thin strips. PC steel can be built into a concrete bottom slab in a tensioned state by pulling it from both directions of extension and making it into a tensioned state, cutting both ends protruding from the end face of the concrete bottom slab and fixing both ends with fixing tools. In this way, the concrete bottom plate in which the PC steel material is housed in a tensioned state is compressed in the extending direction of the mold steel material in the process in which the tensioned PC steel material shrinks. The concrete bottom slab is wide because it wraps the flange of the mold steel. For this reason, a plurality of PC steel materials incorporated in the concrete bottom slab may be arranged at equal intervals or unequal intervals in the width direction of the concrete bottom slab.

合成桁間に打設される現場打コンクリートと合成桁との一体性を高めるために、コンクリート底版は、打設される現場打コンクリートに埋設される定着筋を設ける。定着筋は、コンクリート底版から突出していればよいが、型鋼材のウェブを貫通又は跨いで、前記ウェブの左右に両端がコンクリート底版に埋没するU型配筋が好ましい。定着筋が型鋼材のウェブを貫通する場合、上述した横貫通孔を利用する。   In order to enhance the unity between the cast-in-place concrete placed between the composite girders and the composite girders, the concrete bottom slab is provided with fixing bars embedded in the cast-in-place concrete cast. The fixing bars only need to protrude from the concrete bottom slab, but U-shaped bars in which both ends of the web are embedded in the concrete bottom slab while penetrating or straddling the web of the steel mold are preferable. When the fixing bar penetrates the web of the mold steel material, the above-described lateral through hole is used.

コンクリート底版は、型鋼材のフランジに対して上面が傾斜していると、前記フランジを水平にして合成桁を橋梁間に架け渡した場合、打設した現場打コンクリートの下面がコンクリート底版の上面の転写形状となって傾斜し、前記現場打コンクリートの下面とコンクリート底版の上面とが水平方向に掛合する。上面の傾斜方向は自由で、上面全体が一方向に傾斜される構成、角度の異なる複数の傾斜面がある構成や、全体的に規則的又は不規則な凹凸からなる構成でもよい。また、コンクリート底版は、包んだ型鋼材のフランジを貫通又は囲む補強筋を設けると、自身の構造強度を強化しながら型鋼材との一体性を向上させる。   If the top surface of the concrete bottom plate is inclined with respect to the flange of the steel plate, when the composite girder is bridged between the bridges with the flange leveled, the bottom surface of the cast-in-place cast concrete is the top surface of the concrete bottom plate. The transfer shape is inclined, and the lower surface of the cast-in-place concrete and the upper surface of the concrete bottom slab are horizontally engaged. The upper surface may be inclined in any direction, and the entire upper surface may be inclined in one direction, may be configured with a plurality of inclined surfaces having different angles, or may be configured with regular or irregular unevenness as a whole. In addition, when the concrete bottom slab is provided with a reinforcing bar that penetrates or surrounds the flange of the wrapped mold steel material, the concrete bottom slab improves the integrity of the mold steel material while enhancing its structural strength.

コンクリート底版は、上面から下がった型枠用段差面を左右両縁に設けると、対向する型枠用段差面に両縁を載せるように架け渡すだけで、埋設型枠が位置特定され、位置ずれも防止される。埋設型枠は、個々の幅を調整することにより、橋梁の全幅に応じて増減するコンクリート底版の隙間を容易に満たすことができる。コンクリート底版は、上面から下がった下受け段差面と、下面から上がった上掛け段差面とを左右両縁に割り振って設けると、上下に互い違いに張り出す下受け段差面と上掛け段差面とを上下に掛け合わせ、埋設型枠を用いることなく、現場打コンクリートを打設可能とし、また、隣り合う合成桁のコンクリート底版のみで橋梁の底版を構成可能にする。   For concrete bottom slabs, if the step surfaces for the formwork lowered from the upper surface are provided on both left and right edges, the embedded formwork can be located and positioned just by placing both edges on the opposite step surfaces for the formwork. Is also prevented. The embedded formwork can easily fill the gap of the concrete bottom slab that increases or decreases according to the total width of the bridge by adjusting the individual widths. A concrete bottom slab has a lower step surface and an upper step surface that protrude alternately in the vertical direction when the lower step surface and the upper step surface from the lower surface are allocated to the left and right edges. It is possible to place the cast-in-place concrete without using the embedded formwork, and to construct the bottom plate of the bridge only with the concrete bottom plate of the adjacent composite girder.

本発明の合成桁を用いて構築される橋梁は、次のようになる。すなわち、並べた合成桁に対して現場打コンクリートを打設して構築する橋梁において、合成桁は、ウェブの少なくとも下縁にフランジを有する型鋼材と、前記型鋼材の下側のフランジを包み、ウェブを突出させるコンクリート底版とから構成され、それぞれを型鋼材の延在方向に向け、前記延在方向に直交して並べて橋台間、橋脚間や橋台と橋脚との間に架け渡した複数の合成桁に対して、コンクリート底版間に架け渡す埋設型枠と前記コンクリート底版とにわたって現場打コンクリートを打設することにより、型鋼材のウェブを前記現場打コンクリートに埋没させて構築したことを特徴とする橋梁である。   The bridge constructed using the composite girder of the present invention is as follows. That is, in a bridge constructed by placing cast-in-place concrete on the arranged composite girders, the composite girders wrap the mold steel having a flange on at least the lower edge of the web, and the lower flange of the mold steel, It is composed of a concrete slab that protrudes from the web, each of which is oriented in the direction of extension of the steel plate, and arranged in a direction perpendicular to the direction of extension, spanning between abutments, between piers, and between abutments and piers. For the girders, by constructing the cast-in-place concrete over the buried formwork spanned between the concrete bottom slab and the concrete bottom slab, the web of the mold steel material was buried in the in-situ cast concrete and constructed. It is a bridge.

本発明の橋梁において、合成桁は、コンクリート底版に埋没しない又は一部が埋没する横貫通孔を型鋼材のウェブに設けてなり、前記横貫通孔に一部又は全部を通す主筋を現場打コンクリートに埋設する。打設された現場打コンクリートは、主筋により鉄筋コンクリートとなる。主筋は、型鋼材のウェブに溶接により固定できる。横貫通孔を通した主筋は、横貫通孔の内周縁に接してウェブを物理的に下支えし、更にウェブに溶接して固定することもできる。また、横貫通孔は、ウェブの左右に分かれた現場打コンクリートを連結させる。こうして、型鋼材と現場打コンクリートとは、一体性を向上させる。横貫通孔は、合成桁の延在方向に等間隔又は不等間隔で複数設ける。複数設けられる横貫通孔それぞれは、主筋を通すことができればよく、円形開口のほか、細長いスリットでもよい。   In the bridge of the present invention, the composite girder is provided with a horizontal through hole that is not buried in the concrete bottom slab or partly buried in the web of the mold steel material. Buried in The cast-in-place concrete that has been placed becomes reinforced concrete by the main reinforcement. The main reinforcement can be fixed to the web of the steel mold by welding. The main bar passing through the horizontal through hole can be in contact with the inner peripheral edge of the horizontal through hole to physically support the web, and can also be fixed by welding to the web. Moreover, a horizontal through-hole connects the cast-in-place concrete divided into the right and left of the web. Thus, the shape steel material and the on-site cast concrete improve the unity. A plurality of lateral through holes are provided at equal intervals or at irregular intervals in the extending direction of the composite beam. Each of the plurality of lateral through holes provided only needs to be able to pass the main muscle, and may be a long slit as well as a circular opening.

本発明の橋梁において、合成桁は、型鋼材のフランジに対してコンクリート底版の上面を傾斜させ、前記コンクリート底版の上面の転写形状となる現場打コンクリートの下面とコンクリート底版の上面とを水平方向に掛合させる。合成桁は、フランジを水平にして橋梁間に架け渡すことにより、打設した現場打コンクリートの下面がコンクリート底版の上面の転写形状となって傾斜し、前記現場打コンクリートの下面とコンクリート底版の上面とが水平方向に掛合させる。合成桁は、上面の傾斜方向が自由で、上面全体が一方向に傾斜される構成、角度の異なる複数の傾斜面がある構成、全体的に規則的又は不規則な凹凸からなる構成でもよい。   In the bridge according to the present invention, the composite girder inclines the upper surface of the concrete bottom slab with respect to the flange of the steel plate material, and the lower surface of the cast-in-place concrete and the upper surface of the concrete bottom slab, which have a transfer shape of the upper surface of the concrete bottom slab, are horizontally aligned. Engage. The composite girder is inclined with the bottom surface of the cast-in-place concrete cast as a transfer shape of the top surface of the concrete bottom slab by placing the flange horizontally between the bridges. And engage horizontally. The composite girder may have a configuration in which the upper surface is inclined freely and the entire upper surface is inclined in one direction, a configuration having a plurality of inclined surfaces having different angles, or a configuration composed of regular or irregular asperities.

本発明の橋梁において、合成桁は、コンクリート底版から突出させて設けた定着筋を、主筋と共に現場打打コンクリートに埋設する。主筋は、上述したように、型鋼材のウェブに溶接して固定できるほか、定着筋にも溶接又は結束により固定できるので、安定して配置できる。また、定着筋及び主筋を埋設した現場打コンクリートの強度を向上させることができる。更に、定着筋及び主筋を介して型鋼材、コンクリート底版、そして現場打コンクリートが一体化される。   In the bridge of the present invention, the composite girder embeds the fixing bars provided by protruding from the concrete bottom slab together with the main bars in the in-situ concrete. As described above, the main bar can be fixed by welding to the web of the shape steel material, and can also be fixed to the fixing bar by welding or bundling. Moreover, the intensity | strength of the in-situ concrete in which the fixing reinforcement and the main reinforcement were embedded can be improved. Furthermore, the steel plate material, the concrete bottom slab, and the cast-in-place concrete are integrated through the fixing bar and the main bar.

本発明の橋梁において、合成桁は、コンクリート底版の上面から下がった型枠用段差面を前記コンクリート底版の左右両縁に設けてなり、隣り合う合成桁の対向する型枠用段差面間に架け渡した埋設型枠と前記コンクリート底版とにわたって現場打コンクリートを打設した。これにより、埋設型枠が位置特定され、位置ずれも防止される。本発明の橋梁は、例えば主筋の配置等に際し、合成桁のコンクリート底版を足場とすることを想定しているから、作業者が埋設型枠を足蹴にしないように、埋設型枠の厚みより型枠用段差面を深くしておくとよい。   In the bridge of the present invention, the composite girder is provided with a stepped surface for formwork that is lowered from the upper surface of the concrete bottom slab on the left and right edges of the concrete bottom slab, and spans between the stepped surfaces for formwork facing each other of the adjacent composite girder. The cast-in-place concrete was cast across the buried formwork and the concrete bottom slab. As a result, the position of the embedded formwork is specified, and misalignment is also prevented. The bridge of the present invention assumes that a composite girder concrete bottom plate is used as a scaffold, for example, when placing main bars, etc., so that the worker does not use the embedded formwork as a foot kick so that It is better to make the step surface for the frame deeper.

本発明の橋梁において、合成桁は、コンクリート底版の上面から下がった下受け段差面と、前記コンクリート底版の下面から上がった上掛け段差面とを前記コンクリート底版の左右両縁に割り振って設けてなり、隣り合う合成桁の対向する下受け段差面と上掛け段差面とを掛け合わせて連結されたコンクリート底版にわたって現場打コンクリートを打設した。これにより、橋梁の全幅の変化に応じながら、埋設型枠を用いることなく現場打コンクリートを打設し、橋梁を構築できる。本発明の橋梁は、埋設型枠を用いても、用いなくても、現場打コンクリートがコンクリート底版の上に打設されることに変わりがなく、桁高に違いがない。   In the bridge according to the present invention, the composite girder is provided by allocating a receiving step surface lowered from the upper surface of the concrete bottom slab and an upper step surface rising from the lower surface of the concrete bottom slab to the left and right edges of the concrete bottom slab. The cast-in-place concrete was laid over the concrete bottom slabs connected by crossing the facing lower step surface and the upper step surface of the adjacent composite girders. As a result, it is possible to construct a bridge by placing cast-in-place concrete without using an embedded formwork, while responding to changes in the overall width of the bridge. The bridge of the present invention has no difference in girder height, regardless of whether the buried formwork is used or not, and the cast-in-place concrete is cast on the concrete bottom slab.

本発明の合成桁は、型鋼材とコンクリート底版とを組み合わせた構成であるから、型鋼材のみの桁に比べて剛性が高くなり、例えば橋台と橋脚との間や橋脚間を長くできる。特に、型鋼材がH型鋼材又はI型鋼材であると、型鋼材単体の剛性が高くなり、合成桁としての剛性も向上する。剛性の高い合成桁は、型鋼材の反り(キャンバー)をなくす又は小さくできるため、前記反りを与える加工の労力や手間が軽減される。これは、合成桁の製造コストを低減させる効果をもたらす。また、本発明の合成桁は、コンクリート底版に緊張状態のPC鋼材を内蔵させて前記コンクリート底版に圧縮力を導入できる。これは、型鋼材を強制的に反らせてコンクリート底版に圧縮力を導入する場合に比べて簡便で、圧縮力導入に掛かるコストを低減させる効果をもたらす。   Since the composite girder according to the present invention has a configuration in which a mold steel material and a concrete bottom slab are combined, the rigidity is higher than that of a girder made only of a mold steel material. For example, a gap between an abutment and a pier or between piers can be increased. In particular, when the mold steel material is an H-type steel material or an I-type steel material, the rigidity of the mold steel material alone is increased, and the rigidity as a composite girder is also improved. The synthetic girder with high rigidity can eliminate or reduce the warpage (camber) of the die steel material, and therefore, the labor and labor of processing to give the warp can be reduced. This has the effect of reducing the manufacturing cost of the composite girder. Further, the composite girder of the present invention can introduce a compressive force into the concrete bottom slab by incorporating a tensioned PC steel material in the concrete bottom slab. This is simpler than the case where the mold steel is forcibly warped and the compressive force is introduced into the concrete bottom slab, and brings about the effect of reducing the cost for introducing the compressive force.

本発明の合成桁は、型鋼材の下側のフランジをコンクリート底版が包み込み、現場打ちされる本体コンリートと前記コンクリート底版とにより型鋼材を外部から隔離し、型鋼材の防錆対策を不要にする。コンクリート底版は、補強筋を内蔵し、現場打コンクリートは、主筋を内蔵してそれぞれ構造強度を高める。これに加えて、コンクリート底版及び現場打コンクリートにわたって型鋼材が内蔵されるため、橋梁を支える合成桁の剛性及び構造強度も向上する。このように、本発明の合成桁は、剛性及び構造強度に優れた橋梁を提供する。   The composite girder of the present invention wraps the lower flange of the steel plate with a concrete bottom plate, isolates the steel plate material from the outside by the main body concrete and the concrete bottom plate to be cast in the field, and eliminates the need for rust prevention measures for the steel plate material. . The concrete bottom slab has a built-in reinforcing bar, and the cast-in-place concrete has a built-in main bar to increase the structural strength. In addition, since the steel plate material is built in between the concrete bottom slab and the cast-in-place concrete, the rigidity and structural strength of the composite girder supporting the bridge is also improved. Thus, the composite girder of the present invention provides a bridge having excellent rigidity and structural strength.

また、コンクリート底版は、橋台間、橋脚間や橋台と橋脚との間に架け渡した足場として機能する。これにより、例えば主筋の配置や現場打コンクリートの打設等の現場作業が容易になる。特に型鋼材がT型鋼材であると、ウェブの上端にフランジがないので、コンクリート底版を足場とする前記現場作業が容易である。更に、コンクリート底版は、上面を洗い出し加工したり、接着剤を塗布したりして、現場打コンクリートとの一体性を高めたり、前記現場打コンクリートとの界面への水等の侵入を防ぎ、橋梁の耐久性を向上させことができる。   In addition, the concrete bottom slab functions as a scaffold spanned between abutments, between piers, and between abutments and piers. This facilitates on-site work such as placement of main bars and placement of on-site cast concrete. In particular, when the type steel material is a T-type steel material, since there is no flange at the upper end of the web, the field work using the concrete bottom plate as a scaffold is easy. In addition, the concrete bottom slab is washed out and coated with an adhesive to improve the integrity with the on-site cast concrete, prevent water from entering the interface with the on-site cast concrete, The durability of can be improved.

型鋼材のフランジに設けた縦貫通孔は、型鋼材とコンクリート底版との一体性を向上させて、プリテンション方式又はポストテンション方式により、コンクリート底版に圧縮力を導入しやすくする。型鋼材のウェブに設けた横貫通孔は、主筋を貫通させることで、前記主筋の配置の自由度を高める。一部がコンクリート底版に埋没した横貫通孔は、型鋼材とコンクリート底版との一体性を向上させるほか、型鋼材と現場打コンクリートの一体性を向上させ、型鋼材を介してコンクリート底版と現場打コンクリートとの一体性を高める。   The vertical through hole provided in the flange of the mold steel material improves the integrity of the mold steel material and the concrete bottom slab, and facilitates the introduction of compressive force to the concrete bottom slab by the pre-tension method or the post-tension method. The horizontal through-hole provided in the web of the shape steel material increases the degree of freedom of the arrangement of the main bars by penetrating the main bars. The horizontal through-hole partially buried in the concrete bottom slab improves the integrity of the mold steel and the concrete bottom slab, and also improves the integrity of the mold steel and the on-site cast concrete. Increase the unity with concrete.

型鋼材のウェブに設けた横貫通孔は、型鋼材と打設される現場打コンクリートとの一体性を向上させて、合成桁を含めた橋梁の構造強度や剛性を高める効果がある。コンクリート底版に設けられた定着筋は、主筋を溶接等により接続して位置固定する働きのほか、前記主筋同様に補強筋として、打設される現場打コンクリートの構造強度を向上させる。また、コンクリート底版に設けられた定着筋は、前記コンクリート底版と一体化して、合成桁を含めた橋梁の構造強度や剛性を高める効果がある。   The lateral through-hole provided in the web of the mold steel material has an effect of improving the structural strength and rigidity of the bridge including the composite girder by improving the integrity of the mold steel material and the cast-in-place concrete to be cast. The fixing bar provided on the concrete bottom slab serves to fix the position by connecting the main bar by welding or the like, and improves the structural strength of the cast-in-place concrete to be placed as a reinforcing bar in the same manner as the main bar. In addition, the anchor bars provided on the concrete bottom slab are integrated with the concrete bottom slab, and have the effect of increasing the structural strength and rigidity of the bridge including the composite girder.

コンクリート底版の傾斜した上面は、打設した現場打コンクリートの下面と前記コンクリート底版の上面とを水平方向に掛合させる。これにより、合成桁と打設された現場打コンクリートとの剪断ずれが防止され、前記剪断ずれを防止するために現場打コンクリートを厚くする必要がなくなり、結果として橋梁の桁高を低くし、橋梁を軽量化して、下部構造も簡素化できる。コンクリート底版の補強筋は、自身の構造強度を強化しながら型鋼材との一体性を向上させ、合成桁の構造強度や剛性を高める効果がある。   The inclined upper surface of the concrete bottom slab is engaged horizontally with the lower surface of the cast-in-place cast concrete and the upper surface of the concrete bottom slab. This prevents shear displacement between the composite girders and the cast-in-place cast concrete and eliminates the need to increase the thickness of the cast-in-place concrete to prevent the shear displacement. The weight can be reduced and the lower structure can be simplified. The reinforcing bars of the concrete bottom slab have the effect of improving the structural strength and rigidity of the composite girder by improving the integrity of the steel plate while strengthening its structural strength.

コンクリート底版に設けた型枠用段差面は、埋設型枠の位置ずれを防止して、コンクリート底版を足場として作業する作業者が足蹴にして埋設型枠をずらす虞をなくし、隣り合う合成桁のコンクリート底版同士に隙間があかないようにする。これは、ずれた埋設型枠や前記埋設型枠がずれて形成される隙間に作業者が足を取られないように安全性を確保する。型枠用段差面は、埋設型枠の厚みより深いと、埋設型枠がコンクリート底版の上面から突出しなくなり、作業者が埋設型枠を足蹴にする可能性がなくなる。   The step surface for the formwork provided on the concrete bottom slab prevents the embedded formwork from being displaced, eliminates the risk of a worker working with the concrete bottom slab as a footstep and shifting the embedded formwork, Make sure there are no gaps between the concrete slabs. This ensures safety so that an operator can not step into the shifted embedded form or the gap formed by shifting the embedded form. If the level difference surface for the mold is deeper than the thickness of the embedded mold, the embedded mold does not protrude from the upper surface of the concrete bottom plate, and there is no possibility that the operator will kick the embedded mold.

コンクリート底版は、予め工場で作られるため、現場打コンクリートに比べて品質や構造強度を高めやすい。本発明の橋梁は、合成桁のコンクリート底版を底版として構成するため、現場打コンクリートによる橋梁の底版より構造強度を高くでき、ひび割れを少なくする効果が得られる。特に、下受け段差面及び上掛け段差面を設けたコンクリート底版は、隣り合う合成桁のコンクリート底版を連結して橋梁の底版を構成するので、前記効果をよりよく享受できる。また、コンクリート底版を連結して底版を構成する橋梁は、埋設型枠を用いることなく、現場打コンクリートが打設できる利点があり、施工コストを低減させる効果も得られる。   Since the concrete bottom slab is made in advance at the factory, it is easier to improve the quality and structural strength compared to the cast-in-place concrete. Since the bridge of the present invention is composed of a concrete girder slab of composite girder as a bottom slab, the structural strength can be made higher than the bottom slab of a bridge made of in-situ concrete and the effect of reducing cracks can be obtained. In particular, the concrete bottom plate provided with the lower step surface and the upper step surface can connect the concrete bottom plates of adjacent composite girders to form the bottom plate of the bridge, so that the above effect can be enjoyed better. Moreover, the bridge which connects a concrete bottom slab and comprises a bottom slab has the advantage that a cast-in-place concrete can be cast without using an embedded formwork, and the effect of reducing construction cost is also acquired.

本発明の合成桁を用いて構築される橋梁は、合成桁の型鋼材のウェブを埋没させて現場打コンクリートを打設するため、現場打コンクリートの打設による桁高の増加が抑えられる。また、型鋼材が現場打コンクリートに埋没することから、型鋼材が外部に露出しなくなり、従来必要だった型鋼材の防錆対策やメンテナンスが不要になる。更に、埋設型枠は、回収が不要なことから、回収するための足場や支保工等が不要になる。こうして、本発明の橋梁は、施工コストを低減できる効果を有する。   Since the bridge constructed using the composite girder of the present invention lays the cast-in-place concrete by embedding the web of the steel beam of the composite girder, an increase in the girder height due to the placement of the cast-in-place concrete is suppressed. Further, since the mold steel material is buried in the cast-in-place concrete, the mold steel material is not exposed to the outside, and the conventionally required rust prevention measures and maintenance of the mold steel material become unnecessary. Furthermore, since the embedded formwork does not need to be collected, a scaffolding or a supporting work for collecting it is not necessary. Thus, the bridge of the present invention has an effect of reducing the construction cost.

本発明を適用した合成桁の一例を表す斜視図である。It is a perspective view showing an example of a synthetic girder to which the present invention is applied. 本例の合成桁の右側面図である。It is a right view of the composite girder of this example. 本例の合成桁の平面図である。It is a top view of the composite girder of this example. 本例の合成桁の正面図である。It is a front view of the composite girder of this example. 本例の合成桁の正面付近のみを抜粋した部分右側面図である。It is the partial right view which extracted only the front vicinity of the composite girder of this example. 本例の合成桁を構成するT型鋼材の斜視図である。It is a perspective view of the T type steel material which comprises the synthetic girder of this example. 別例1の合成桁の正面図である。6 is a front view of a composite girder according to another example 1. FIG. 別例1の合成桁の正面付近のみを抜粋した部分右側面図である。It is the partial right view which extracted only the front vicinity of the composite girder of another example 1. 別例1の合成桁を構成するH型鋼材の斜視図である。6 is a perspective view of an H-shaped steel material that constitutes a composite girder of another example 1. FIG. 本例の合成桁を橋台間に架け渡して並べた状態を表す右側面図である。It is a right view showing the state where the composite girder of this example was bridged between abutments and arranged. 本例の合成桁を橋台間に架け渡して並べた状態を表す正面図である。It is a front view showing the state which spanned and arranged the synthetic girder of this example between the abutments. 別例2の合成桁を橋台間に架け渡して並べた状態を表す正面図である。It is a front view showing the state where the composite girder of another example 2 was bridged between abutments and arranged. 橋台間に架け渡して並べた本例の合成桁に主筋を配置した状態を表す右側面図である。It is a right view showing the state which has arrange | positioned the main reinforcement in the synthetic girder of this example arranged across the abutment. 橋台間に架け渡して並べた本例の合成桁に主筋を配置した状態を表す正面図である。It is a front view showing the state which has arrange | positioned the main streak to the composite girder of this example arranged across the abutment. 現場打コンクリートを打設し、舗装面を形成し終えて橋梁を構築した状態を表す右側面図である。It is a right view showing the state where the cast-in-place concrete was cast, the pavement surface was formed, and the bridge was constructed. 現場打コンクリートを打設し、舗装面を形成し終えて橋梁を構築した状態を表す正面図である。It is a front view showing the state where the cast-in-place concrete was cast, the pavement surface was formed, and the bridge was constructed.

以下、本発明を実施するための形態について図を参照しながら説明する。本発明の合成桁1は、図1〜図6に見られるように、ウェブ21の下縁から左右に張り出すフランジ22を有するT型鋼材2と、前記T型鋼材2のフランジ22を包み、ウェブ21を上面33の左右中央から突出させるコンクリート底版3とから構成される。コンクリート底版3は、T型鋼材2のフランジ22を包み込む関係から、当然にT型鋼材2より長く、幅も広い。これから、本例の合成桁1は、長さ及び幅がコンクリート底版3の長さ及び幅に従う。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 6, the composite girder 1 of the present invention wraps a T-shaped steel member 2 having a flange 22 projecting left and right from the lower edge of the web 21, and a flange 22 of the T-shaped steel member 2. It is composed of a concrete bottom slab 3 that protrudes the web 21 from the left and right center of the upper surface 33. The concrete bottom slab 3 is naturally longer and wider than the T-type steel material 2 because it surrounds the flange 22 of the T-type steel material 2. From this, the composite girder 1 of this example follows the length and width of the concrete bottom slab 3 in length and width.

本例のT型鋼材2は、ウェブ21の延在方向に均等間隔で横貫通孔211を、左右に張り出すフランジ22それぞれの延在方向に均等間隔で縦貫通孔221を設けている(図6参照)。横貫通孔211は、ウェブ21の高さの半分を超える直径の円形開口で、一部をコンクリート底版3に埋め込んでいる。また、縦貫通孔221は、コンクリート底版3から突出させる定着筋32を通す直径の円形開口である。こうして、コンクリート底版3が横貫通孔211及び縦貫通孔221を通して繋がることにより、T型鋼材2とコンクリート底版3との一体性が高められている。   The T-type steel material 2 of this example is provided with horizontal through holes 211 at equal intervals in the extending direction of the web 21 and vertical through holes 221 at equal intervals in the extending direction of the flanges 22 that project to the left and right (see FIG. 6). The lateral through hole 211 is a circular opening having a diameter exceeding half the height of the web 21 and is partially embedded in the concrete bottom slab 3. The vertical through hole 221 is a circular opening having a diameter through which the fixing bar 32 protruding from the concrete bottom slab 3 passes. Thus, the concrete bottom slab 3 is connected through the horizontal through hole 211 and the vertical through hole 221 so that the integrity of the T-shaped steel material 2 and the concrete bottom slab 3 is enhanced.

本例のコンクリート底版3は、左右両縁に設けられる型枠用段差面331,331を除いて、全体が扁平な台形断面である。埋設型枠56は、横並びの合成桁1,1それぞれの対向する型枠用段差面331に架け渡す(後掲図11参照)。コンクリート底版3は、縦方向及び横方向それぞれに均等間隔で並べた鋼棒からなる補強筋34を内蔵する。本例の補強筋34は、コンクリート底版3に圧縮力を与えるPC鋼材31の基準位置を提供したり、定着筋32の支持基礎を提供したりする。   The concrete bottom slab 3 of this example has a flat trapezoidal cross section as a whole except for the step surfaces 331 and 331 for formwork provided on both left and right edges. The embedded form 56 is bridged over the opposite formwork step surfaces 331 of the side-by-side composite girders 1 and 1 (see FIG. 11 described later). The concrete bottom slab 3 incorporates reinforcing bars 34 made of steel bars arranged at equal intervals in the vertical and horizontal directions. The reinforcing bar 34 of the present example provides a reference position of the PC steel material 31 that applies a compressive force to the concrete bottom slab 3 and provides a support base for the fixing bar 32.

PC鋼材31は、コンクリート底版3を形成する際、前記コンクリート底版3の正面及び背面から突出して前記正面側及び背面側に引っ張られることにより緊張状態となり、コンクリート底版3が形成された後、前記緊張状態を解除することで前記コンクリート底版3に圧縮力を与える。本例のPC鋼材31は、左右及び真ん中の3本を用意し、補強筋34のうち、横方向に延在する鋼棒に載せた位置で引っ張ることにより、前記3本を同じように緊張させ、コンクリート底版3に左右均等の圧縮力を与えている。   When forming the concrete bottom slab 3, the PC steel material 31 protrudes from the front and back sides of the concrete bottom slab 3 and is pulled to the front side and the back side. After the concrete bottom slab 3 is formed, By releasing the state, a compressive force is applied to the concrete bottom slab 3. PC steel material 31 of this example prepares three steel bars on the left and right and in the middle and pulls the three steel bars in the same way by pulling them at the position on the steel bar extending in the lateral direction among the reinforcing bars 34. The left and right compressive force is applied to the concrete bottom plate 3.

定着筋32は、T型鋼材2のウェブ21を跨いでコンクリート底版3から突出する鋼棒で、現場打コンクリート52に埋め込まれる主筋51を溶接して支持する。本例の定着筋32は、上端が結ばれた略U字状で、T型鋼材2のフランジ22に設けられた縦貫通孔221に貫通させた左右端を、コンクリート底版3が内蔵する補強筋34と溶接で接合している。本例の定着筋32は、縦貫通孔221に貫通させただけでT型鋼材2と接合していないが、コンクリート底版3を介して前記T型鋼材2との位置関係が固定されている。   The fixing bar 32 is a steel bar that protrudes from the concrete bottom slab 3 across the web 21 of the T-shaped steel material 2 and supports the main bar 51 embedded in the in-situ concrete 52 by welding. The fixing bar 32 of this example is substantially U-shaped with the upper ends tied, and the reinforcing bars built in the concrete bottom slab 3 have left and right ends penetrated through the vertical through holes 221 provided in the flange 22 of the T-shaped steel material 2. It is joined with 34 by welding. The fixing bar 32 of this example is not joined to the T-type steel material 2 just by passing through the vertical through hole 221, but the positional relationship with the T-type steel material 2 is fixed via the concrete bottom plate 3.

本例のコンクリート底版3は、底面や型枠用段差面331,331を、包み込むT型鋼材2のフランジ22(図2中フランジ22と平行な基準線Lで代表)と平行にしながら、上面33のみを正面から背面にかけて上り勾配で傾斜させている。これにより、現場打コンクリート52は、前記上面33の範囲で下面521が傾斜し、前記下面521とコンクリート底版3の上面とを水平方向に掛合する。   The concrete bottom slab 3 of this example has only the upper surface 33 while the bottom surface and the step surfaces 331, 331 for the formwork are parallel to the flange 22 of the T-shaped steel material 2 (represented by the reference line L parallel to the flange 22 in FIG. 2). The slope is inclined upward from the front to the back. Thereby, the lower surface 521 of the cast-in-place concrete 52 is inclined in the range of the upper surface 33, and the lower surface 521 and the upper surface of the concrete bottom slab 3 are engaged in the horizontal direction.

ここで、本例のコンクリート底版3は、前記上面33以外の平面、例えば型枠用段差面331がフランジ22と平行になっている。これから、現場打コンクリート52は、コンクリート底版3の上面33の範囲を除いて下面521がフランジ22と平行に形成されるので、傾斜した上面33に沿って滑り落ちる虞がない。また、合成桁1は、複数並べるため、コンクリート底版3の上面33の傾斜を互い違いに並べると、現場打コンクリート52の下面521の傾きも互い違いとなり、傾斜した上面33に沿って滑り落ちる虞がない。   Here, in the concrete bottom slab 3 of this example, a plane other than the upper surface 33, for example, a step surface 331 for formwork is parallel to the flange 22. Since the lower surface 521 of the cast-in-place concrete 52 is formed in parallel with the flange 22 except for the range of the upper surface 33 of the concrete bottom slab 3, there is no possibility of sliding down along the inclined upper surface 33. Further, since a plurality of composite girders 1 are arranged, if the inclination of the upper surface 33 of the concrete bottom slab 3 is arranged alternately, the inclination of the lower surface 521 of the in-situ concrete 52 is also changed, and there is no possibility of sliding down along the inclined upper surface 33.

T型鋼材2とコンクリート底版3とで構成した本例の合成桁1は、コンクリート底版3の上方に邪魔がないため、コンクリート底版3を足場として利用しやすい。しかし、上縁が鋼板の切断端として開放されたウェブ21は剛性がそれほど高くできない。このため、例えば前記上縁に鋼棒又は鋼板を溶接したり、ウェブ21に鋼棒又は鋼板を溶接したり、更にウェブ21そのものの厚みを増す対策が検討される。   Since the composite girder 1 of this example constituted by the T-shaped steel material 2 and the concrete bottom slab 3 is not obstructed above the concrete bottom slab 3, the concrete bottom slab 3 can be easily used as a scaffold. However, the web 21 whose upper edge is opened as a cut end of the steel plate cannot have a high rigidity. For this reason, for example, measures are taken to weld a steel bar or a steel plate to the upper edge, weld a steel bar or a steel plate to the web 21, and further increase the thickness of the web 21 itself.

例えば図7〜図9に見られるように、H型鋼材4とコンクリート底版3とで構成した別例1の合成桁1は、ウェブ51の剛性が向上する。別例1の合成桁1は、本例の合成桁1(図1〜図6参照)のウェブ21の上端に、フランジ22と平行な鋼板を溶接した構成に等しい。H型鋼材4は、T型鋼材2に比べて断面係数が高いため、別例1の合成桁1は、本例の合成慶太1に比べて剛性が高くなっている。   For example, as can be seen in FIGS. 7 to 9, the composite girder 1 of another example 1 constituted by the H-shaped steel material 4 and the concrete bottom slab 3 improves the rigidity of the web 51. The composite girder 1 of another example 1 is equivalent to the structure which welded the steel plate parallel to the flange 22 to the upper end of the web 21 of the composite girder 1 (refer FIGS. 1-6) of this example. Since the H-type steel material 4 has a higher section modulus than the T-type steel material 2, the composite girder 1 of Example 1 has higher rigidity than the synthetic keita 1 of this example.

別例1のH型鋼材4は、ウェブ41の延在方向に均等間隔で横貫通孔411を、左右に張り出す上下のフランジ42,42それぞれの延在方向に均等間隔で縦貫通孔421,421を設けている(図9参照)。横貫通孔411は、ウェブ21の高さの1/3程度の直径の円形開口で、一部をコンクリート底版3に埋め込んでいる。また、縦貫通孔421は、コンクリート底版3から突出させる定着筋32を通す直径の円形開口である。   The H-shaped steel material 4 of another example 1 has horizontal through-holes 411 at equal intervals in the extending direction of the web 41, and vertical through-holes 421 and 421 at equal intervals in the extending directions of the upper and lower flanges 42 and 42 projecting left and right. Provided (see FIG. 9). The lateral through-hole 411 is a circular opening having a diameter of about 1/3 of the height of the web 21 and is partially embedded in the concrete bottom slab 3. Further, the vertical through hole 421 is a circular opening having a diameter through which the fixing bar 32 protruding from the concrete bottom slab 3 passes.

コンクリート底版3は、略台形の断面形状、傾斜した上面33、左右縁に設けた型枠用段差面331,331、内蔵する補強筋34及びPC鋼材31は、本例の合成桁1同様である。定着筋32は、本例の合成桁1同様、上端が結ばれた略U字状である。しかし、上のフランジ42に設けた縦貫通孔421を貫通して上方に突出し、H型鋼材4の上のフランジ42を跨ぐ点が異なる(図7及び図8参照)。これにより、別例1の定着筋32は、H型鋼材4の上方で、現場打コンクリート52に埋め込まれる主筋51を溶接して支持できる。   The concrete bottom slab 3 has a substantially trapezoidal cross-sectional shape, an inclined upper surface 33, mold step surfaces 331 and 331 provided on the left and right edges, a built-in reinforcing bar 34, and a PC steel 31 as in the composite girder 1 of this example. The fixing streak 32 is substantially U-shaped with the upper ends tied, like the composite girder 1 of this example. However, the point which penetrates the vertical through-hole 421 provided in the upper flange 42, protrudes upwards, and straddles the upper flange 42 of the H-shaped steel material 4 differs (refer FIG.7 and FIG.8). Thereby, the fixing bar 32 of the different example 1 can be supported by welding the main bar 51 embedded in the in-situ concrete 52 above the H-shaped steel material 4.

橋梁5は、本例の合成桁1(図1〜図6参照)を用いて次の手順で構築される。まず、図10及び図11(図11中手前の橋台53及び舗装面57は図示略)に見られるように、横並びに並べた複数の合成桁1を橋台53,53間の支承531,531間に架け渡す。合成桁1は、従来同様、橋台53,53間の距離に合わせてコンクリート底版3の長さを設定する。また、合成桁1は、道幅を均等割した分割幅に合わせてそれぞれのコンクリート底版3の幅を設定する。コンクリート底版3の幅は、前記分割幅より小さくし、残余の隙間は埋設型枠56で塞ぐ(図11参照)。   The bridge 5 is constructed by the following procedure using the composite girder 1 (see FIGS. 1 to 6) of this example. First, as seen in FIGS. 10 and 11 (the abutment 53 and the pavement 57 in the front of FIG. 11 are not shown), a plurality of side-by-side composite girders 1 are bridged between the supports 531 and 531 between the abutments 53 and 53. hand over. The composite girder 1 sets the length of the concrete bottom slab 3 in accordance with the distance between the abutments 53 and 53, as in the prior art. Moreover, the composite girder 1 sets the width of each concrete bottom slab 3 according to the division width which equally divided the road width. The width of the concrete bottom slab 3 is made smaller than the division width, and the remaining gap is closed with an embedded form 56 (see FIG. 11).

埋設型枠56の幅は調整自在なので、隣り合う合成桁1のコンクリート底版3が形成する隙間が多少増減しても構わない。また、本発明の合成桁1は、コンクリート底版3を広幅にできるため、隣り合う合成桁1,1が形成する隙間は比較的小さい。これにより、前記隙間を塞ぐ埋設型枠56は、従来に比べて狭幅のコンクリート版で済み、型枠段差面331で安定して支持できるため、支保工が不要になる。これが、工期の短縮や施工コストの低減等の実用的な効果をもたらす。   Since the width of the embedded form 56 is adjustable, the gap formed by the concrete bottom slab 3 of the adjacent composite girder 1 may be slightly increased or decreased. Moreover, since the composite girder 1 of the present invention can widen the concrete bottom slab 3, the gap formed by the adjacent composite girders 1 and 1 is relatively small. As a result, the embedded form 56 that closes the gap may be a concrete plate having a narrower width than conventional ones, and can be stably supported by the form step surface 331, so that no support work is required. This brings about practical effects such as shortening the construction period and reducing the construction cost.

ここで、図12に見られ別例2の合成桁1のように、コンクリート底版3の左右縁に対となる下受け段差面332及び上掛け段差面333を設け、隣り合う合成桁1の下受け段差面332及び上掛け段差面333を掛け合わせて隙間をなくすこともできる。別例3の下受け段差面332は、コンクリート底版3の半分の厚みで、上面33に連続して左方向に張り出す断面方形の凸条の下面である。また、別例3の上掛け段差面333は、コンクリート底版3の半分の厚みで、底面に連続して右方向に張り出す断面方形の凸条の上面である。下受け段差面332及び上掛け段差面333は、シール材等を介装して上下に掛け合わせる。   Here, as shown in FIG. 12, like the composite girder 1 of another example 2, a pair of lower step surface 332 and upper step surface 333 are provided on the left and right edges of the concrete bottom slab 3, and the bottom of the adjacent composite girder 1 is provided. The receiving step surface 332 and the upper step surface 333 can be crossed to eliminate a gap. The undersurface stepped surface 332 of another example 3 is a bottom surface of a convex ridge having a square cross-section that is half the thickness of the concrete bottom slab 3 and projects to the left continuously from the top surface 33. Further, the upper stepped surface 333 of the third example is the upper surface of a convex strip having a square cross section that is half the thickness of the concrete bottom slab 3 and projects rightward continuously from the bottom surface. The lower stepped surface 332 and the upper stepped surface 333 are hung up and down with a sealant or the like interposed therebetween.

下受け段差面332及び上掛け段差面333を形成するそれぞれの凸条は、張り出し長さが同じである。このため、下受け段差面332及び上掛け段差面333は、全面を対向させてシール材を介装させることにより隙間を完全になくすことができる。下受け段差面332及び上掛け段差面333は、シール材を挟むように掛け合わすことができれば、隙間を塞ぐことができる。これから、合成桁1は、下受け段差面332及び上掛け段差面333が掛け合わせる範囲で左右間隔を調整できる。   The protrusions forming the lower receiving step surface 332 and the upper step surface 333 have the same overhang length. For this reason, the clearance gap surface 332 and the upper stepped surface 333 can completely eliminate the gap by placing the sealing material with the entire surface facing each other. The lower stepped surface 332 and the upper stepped surface 333 can close the gap if they can be hooked so as to sandwich the sealing material. From this, the composite girder 1 can adjust the left-right distance within the range in which the lower step surface 332 and the upper step surface 333 are overlapped.

本例の合成桁1は、上面33が一方向に傾斜している。このため、複数の合成桁1を並べる場合、傾斜方向が互い違いになるようにする。本例の場合、正面側(図11中紙面手前側)から見て左端、中央及び右端の合成桁1の上面33は背面側(図11中紙面奥側)から正面側に傾斜させ、前記合成桁1に挟まれる左端から2番目及び右端から2番目の合成桁1の上面33は正面側から背面側に傾斜させている。これにより、各合成桁1の上面33の転写形状となる現場打コンクリート52の下面521も互い違いに傾斜して、ずれなく合成桁1の上面33と掛合できる。   In the composite girder 1 of this example, the upper surface 33 is inclined in one direction. For this reason, when a plurality of composite digits 1 are arranged, the inclination directions are staggered. In the case of this example, the upper surface 33 of the composite girder 1 at the left end, the center and the right end when viewed from the front side (front side in FIG. 11) is inclined from the back side (back side of the paper surface in FIG. 11) to the front side, and the composite The upper surface 33 of the composite beam 1 that is second from the left end and second from the right end sandwiched between the beams 1 is inclined from the front side to the back side. Thereby, the lower surface 521 of the cast-in-place concrete 52 which becomes the transfer shape of the upper surface 33 of each composite beam 1 is also inclined alternately and can be engaged with the upper surface 33 of the composite beam 1 without deviation.

次に、図13及び図14(図14中手前の橋台53及び舗装面57は図示略)に見られるように、橋台53,53間に架け渡した合成桁1に対し、縦方向(合成桁1の延在方向)及び横方向(合成桁1の延在直交方向)に伸びる鋼棒を主筋51として配置する。本例の場合、横方向に延びる主筋51の鋼棒は、T型鋼材1のウェブ21に設けられた横貫通孔211に通し、前記横貫通孔211の内周縁に当てて溶接により固定する。また、縦方向又は横方向に延びる主筋51の鋼棒相互を溶接により接合したり、前記鋼棒を合成桁1の定着筋32に溶接して固定したりする。合成桁1のコンクリート底版3は、こうした主筋41を配置する作業の足場として利用できる。   Next, as seen in FIGS. 13 and 14 (the abutment 53 and the pavement 57 in the front in FIG. 14 are not shown), the vertical direction (composite girder) with respect to the composite girder 1 bridged between the abutments 53, 53 Steel bars extending in the lateral direction (1 extending direction) and the transverse direction (the extending orthogonal direction of the composite beam 1) are arranged as the main bars 51. In the case of this example, the steel bar of the main reinforcing bar 51 extending in the horizontal direction is passed through the horizontal through hole 211 provided in the web 21 of the T-type steel material 1 and is fixed to the inner peripheral edge of the horizontal through hole 211 by welding. Further, the steel bars of the main bars 51 extending in the vertical direction or the horizontal direction are joined together by welding, or the steel bars are welded and fixed to the fixing bars 32 of the composite girder 1. The concrete bottom slab 3 of the composite girder 1 can be used as a scaffold for the work of arranging the main bars 41.

従来の橋梁の構築では、主筋の配置に際して別途足場を組む必要があった。また、従来の橋梁の構築では、前記足場が邪魔となり、縦方向及び横方向に鋼棒を通すことが難しかったり、鋼棒相互を溶接して結合することが難しかったりした。本例は、型枠段差面331を除き、ほぼ同一平面を構成する上面33が広く足場を提供するため、主筋51を配置する作業が容易になる。これが、工期の短縮や施工コストの低減等の実用的な効果をもたらす。ここで、埋設型枠56は、足場となる上面33より下がった位置にあるため、主筋51を配置する作業の邪魔にならず、また位置ずれしない。   In the construction of the conventional bridge, it was necessary to assemble a separate scaffold when arranging the main bars. Moreover, in the construction of the conventional bridge, the scaffold becomes an obstacle, and it is difficult to pass the steel bars in the vertical direction and the horizontal direction, or it is difficult to weld the steel bars together. In this example, except for the mold step surface 331, the upper surface 33 constituting substantially the same plane provides a scaffold, so that the work of placing the main bar 51 becomes easy. This brings about practical effects such as shortening the construction period and reducing the construction cost. Here, since the embedded formwork 56 is located at a position lower than the upper surface 33 serving as a scaffold, it does not interfere with the operation of placing the main reinforcement 51 and does not shift its position.

こうして、主筋51の配置が終わると、埋設型枠56やコンクリート底版3を底として現場打コンクリート52を打設し、主筋51と共に、T型鋼材2のウェブ21や前記コンクリート底版3から突出する定着筋32を一体に前記現場打コンクリート42に埋没する。コンクリート底版3は、現場打コンクリート42との密着性を高めるため、上面33を洗い出しにより粗雑面としたり、コンクリート用の接着剤を塗布したりするとよい。こうした洗い出しや接着剤の塗布は、作業対象となるコンクリート底版3以外を足場として、容易に実施できる。   In this way, after the arrangement of the main reinforcement 51 is finished, the cast-in-place concrete 52 is placed with the buried form 56 and the concrete bottom slab 3 as the bottom, and the fixing that protrudes from the web 21 of the T-type steel material 2 and the concrete bottom slab 3 together with the main reinforcement 51. The bars 32 are integrally buried in the in-situ cast concrete 42. In order to improve the adhesion between the concrete bottom slab 3 and the cast-in-place concrete 42, it is preferable to wash the upper surface 33 into a rough surface or apply an adhesive for concrete. Such washing out and application of the adhesive can be easily performed by using a scaffold other than the concrete bottom slab 3 as a work target.

打設した現場打コンクリート42の養生を経れば、図15及び図16(図16中手前側の橋台53、舗装面57及び伸縮装置54は図示略)に見られるように、舗装面55を形成して橋梁5を完成させる。舗装面55は、橋梁5に連続する道路面57,57と面一で、前記道路面57との間に、従来公知の伸縮装置54を介在させる。本例の橋梁5は、説明の便宜上図示を省略しているが、舗装面55を車道とすれば、このほか歩道や車道地覆(図示略)が設けられる。   After curing the cast-in-place cast concrete 42, the pavement surface 55 is removed as shown in FIGS. 15 and 16 (the abutment 53, the pavement surface 57, and the expansion device 54 are not shown in FIG. 16). Form the bridge 5 to complete it. The pavement surface 55 is flush with the road surfaces 57 and 57 continuous with the bridge 5, and a conventionally known expansion / contraction device 54 is interposed between the road surface 57 and the pavement surface 55. Although the illustration of the bridge 5 of this example is omitted for convenience of explanation, if the paved surface 55 is a roadway, a sidewalk and a roadway cover (not shown) are provided.

本例の橋梁5は、合成桁1の高さより若干高い程度の桁高で、従来の合成桁により構築された橋梁に比べて低いことが分かる。また、合成桁1を構成するT型鋼材2に加え、コンクリート底版3から突出する定着筋32や施工時に配置される主筋51は、いずれも現場打コンクリート52に包まれ、外部に露出しない。これは、本発明の合成桁1を用いて構築される橋梁5に鋼材の防錆対策が原則不要であることを意味し、橋梁5の施工コストや管理コストを低減する効果をもたらしている。   It can be seen that the bridge 5 of this example is slightly higher than the height of the composite girder 1 and is lower than the bridge constructed by the conventional composite girder. Further, in addition to the T-shaped steel material 2 constituting the composite girder 1, the fixing bar 32 protruding from the concrete bottom slab 3 and the main bar 51 arranged at the time of construction are all wrapped in the cast-in-place concrete 52 and are not exposed to the outside. This means that the bridge 5 constructed using the composite girder 1 of the present invention does not require a rust prevention measure for steel in principle, and has the effect of reducing the construction cost and management cost of the bridge 5.

本例の橋梁5は、説明の便宜上、対となる橋台53,53間に合成桁1を架け渡す構成である。しかし、対となる橋台53,53間に橋脚があれば、合成桁1を橋台53と橋脚の間や橋脚間に架け渡すことにより、従来同様、長大な橋梁を構築することもできる。この場合、橋台間、橋脚間や橋台と橋脚との間それぞれに架け渡す合成桁1により得られる効果は、本例同様得られる。むしろ、架け渡す合成桁1の数が増大することにより、全体でのコスト低減が増大し、本発明の効果をより享受できる。   The bridge 5 of this example has a configuration in which the composite girder 1 is bridged between a pair of abutments 53 and 53 for convenience of explanation. However, if there is a pier between the pair of abutments 53, 53, a long bridge can be constructed as in the past by bridging the composite girder 1 between the abutment 53 and the pier. In this case, the effect obtained by the composite girder 1 bridged between the abutments, between the piers or between the abutment and the pier can be obtained as in this example. Rather, an increase in the number of composite digits 1 to be bridged increases the overall cost reduction, and the effect of the present invention can be further enjoyed.

1 合成桁
2 型鋼材
21 ウェブ
22 フランジ
3 コンクリート底版
31 PC鋼材
32 定着筋
33 上面
34 補強筋
4 型鋼材
41 ウェブ
42 フランジ
5 橋梁
51 主筋
52 現場打コンクリート
53 橋台
54 伸縮装置
55 舗装面
56 埋設型枠
57 道路面
L フランジと平行な基準線
1 Composite Girder 2 Type Steel
21 Web
22 Flange 3 Concrete bottom slab
31 PC steel
32 Anchorage
33 Top view
34 Reinforcing bars Type 4 steel
41 Web
42 Flange 5 Bridge
51 Main muscle
52 On-site concrete
53 Abutment
54 Telescopic device
55 Paved surface
56 Embedded formwork
57 Road surface L Reference line parallel to the flange

Claims (17)

ウェブの少なくとも下縁にフランジを有する型鋼材と、
前記型鋼材のフランジを包み、ウェブを突出させるコンクリート底版とから構成される合成桁。
A steel mold having a flange at least at the lower edge of the web;
A composite girder composed of a concrete bottom slab that wraps the flange of the steel mold and projects the web.
型鋼材は、T型鋼材であり、コンクリート底版がフランジを包む請求項1記載の合成桁。 The composite girder according to claim 1, wherein the mold steel material is a T-shaped steel material, and the concrete bottom slab wraps the flange. 型鋼材は、H型鋼材又はI型鋼材であり、コンクリート底版が一方のフランジを包む請求項1記載の合成桁。 The composite girder according to claim 1, wherein the mold steel material is an H-type steel material or an I-type steel material, and the concrete bottom plate wraps one flange. 型鋼材は、コンクリート底版に包まれるフランジに縦貫通孔を設けた請求項1〜3いずれか記載の合成桁。 The composite steel beam according to any one of claims 1 to 3, wherein the mold steel is provided with a vertical through hole in a flange wrapped in a concrete bottom slab. 型鋼材は、コンクリート底版に埋没しない又は一部が埋没する横貫通孔をウェブに設けた請求項1〜4いずれか記載の合成桁。 The composite girder according to any one of claims 1 to 4, wherein the mold steel material is provided with a horizontal through hole in the web which is not buried in a concrete bottom plate or partly buried therein. コンクリート底版は、型鋼材と平行に延びるPC鋼材を緊張状態で内蔵させている請求項1〜5いずれか記載の合成桁。 6. The composite girder according to any one of claims 1 to 5, wherein the concrete bottom slab includes a built-in PC steel material extending in parallel with the mold steel material in a tension state. コンクリート底版は、型鋼材のフランジに対して上面が傾斜している請求項1〜6いずれか記載の合成桁。 The composite girder according to any one of claims 1 to 6, wherein the concrete bottom slab has an upper surface inclined with respect to the flange of the die steel material. コンクリート底版は、打設される現場打コンクリートに埋設される定着筋を設けた請求項1〜7いずれか記載の合成桁。 The composite girder according to any one of claims 1 to 7, wherein the concrete bottom slab is provided with anchor bars embedded in the cast-in-place concrete. コンクリート底版は、包んだ型鋼材のフランジを貫通又は囲む補強筋を設けた請求項1〜8いずれか記載の合成桁。 The composite girder according to any one of claims 1 to 8, wherein the concrete bottom slab is provided with a reinforcing bar that penetrates or surrounds the flange of the wrapped type steel material. コンクリート底版は、上面から下がった型枠用段差面を左右両縁に設けた請求項1〜9いずれか記載の合成桁。 The composite girder according to any one of claims 1 to 9, wherein the concrete bottom slab is provided with step surfaces for formwork, which are lowered from the upper surface, on both left and right edges. コンクリート底版は、上面から下がった下受け段差面と、下面から上がった上掛け段差面とを左右両縁に割り振って設けた請求項1〜9いずれか記載の合成桁。 The composite girder according to any one of claims 1 to 9, wherein the concrete bottom slab is provided with a receiving step surface that is lowered from the upper surface and an upper step surface that is raised from the lower surface, allocated to both left and right edges. 並べた合成桁に対して現場打コンクリートを打設して構築する橋梁において、
合成桁は、ウェブの少なくとも下縁にフランジを有する型鋼材と、
前記型鋼材の下側のフランジを包み、ウェブを突出させるコンクリート底版とから構成され、
それぞれを型鋼材の延在方向に向け、前記延在方向に直交して並べて橋台間、橋脚間や橋台と橋脚との間に架け渡した複数の合成桁に対して、コンクリート底版間に架け渡す埋設型枠と前記コンクリート底版とにわたって現場打コンクリートを打設することにより、型鋼材のウェブを前記現場打コンクリートに埋没させて構築したことを特徴とする橋梁。
In bridges constructed by placing cast-in-place concrete on the composite girders arranged,
The composite girder includes a steel plate having a flange at least at the lower edge of the web, and
A concrete bottom plate that wraps around the lower flange of the steel mold and projects the web;
Each of them is oriented in the direction of extension of the steel sheet, and is bridged between the concrete bottom slabs for a plurality of composite girders that are arranged perpendicularly to the direction of extension and bridged between the abutments, between the piers, and between the abutments and the piers. A bridge characterized in that a cast steel material web is buried in the cast-in-place concrete by casting a cast-in-place concrete over an embedded formwork and the concrete bottom plate.
合成桁は、コンクリート底版に埋没しない又は一部が埋没する横貫通孔を型鋼材のウェブに設けてなり、前記横貫通孔に一部又は全部を通す主筋を現場打コンクリートに埋設した請求項12記載の橋梁。 13. The composite girder has a horizontal through hole that is not embedded in a concrete bottom slab or is partially embedded in a web of a mold steel material, and a main bar that passes a part or all of the horizontal through hole is embedded in a cast-in-place concrete. The listed bridge. 合成桁は、型鋼材のフランジに対してコンクリート底版の上面を傾斜させ、前記コンクリート底版の上面の転写形状となる現場打コンクリートの下面とコンクリート底版の上面とを水平方向に掛合させた請求項12又は13いずれか記載の橋梁。 The composite girder is formed by inclining the upper surface of the concrete bottom slab with respect to the flange of the steel plate, and horizontally engaging the lower surface of the cast-in-place concrete and the upper surface of the concrete bottom slab, which is a transfer shape of the upper surface of the concrete bottom slab. Or any one of 13 bridges. 合成桁は、コンクリート底版から突出させて設けた定着筋を、主筋と共に現場打コンクリートに埋設した請求項12〜14いずれか記載の橋梁。 The bridge according to any one of claims 12 to 14, wherein the composite girder is embedded in the cast-in-place concrete with fixing bars provided so as to protrude from the concrete bottom plate. 合成桁は、コンクリート底版の上面から下がった型枠用段差面を前記コンクリート底版の左右両縁に設けてなり、隣り合う合成桁の対向する型枠用段差面間に架け渡した埋設型枠と前記コンクリート底版とにわたって現場打コンクリートを打設した請求項12〜15いずれか記載の合成桁。 The composite girder is provided with stepped surfaces for the formwork descending from the upper surface of the concrete bottom slab on the left and right edges of the concrete bottom slab, The composite girder according to any one of claims 12 to 15, wherein a cast-in-place concrete is cast over the concrete bottom slab. 合成桁は、コンクリート底版の上面から下がった下受け段差面と、前記コンクリート底版の下面から上がった上掛け段差面とを前記コンクリート底版の左右両縁に割り振って設けてなり、隣り合う合成桁の対向する下受け段差面と上掛け段差面とを掛け合わせて連結されたコンクリート底版にわたって現場打コンクリートを打設した請求項12〜15いずれか記載の合成桁。 The composite girder is formed by allocating a receiving step surface lowered from the upper surface of the concrete bottom plate and an upper step surface raised from the lower surface of the concrete bottom plate to the left and right edges of the concrete bottom plate. The composite girder according to any one of claims 12 to 15, wherein the cast-in-place concrete is laid over a concrete bottom slab connected by crossing the opposed lower step surface and the upper step surface.
JP2016161054A 2016-08-19 2016-08-19 Composite girder and bridge constructed using it Active JP6709914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016161054A JP6709914B2 (en) 2016-08-19 2016-08-19 Composite girder and bridge constructed using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016161054A JP6709914B2 (en) 2016-08-19 2016-08-19 Composite girder and bridge constructed using it

Publications (2)

Publication Number Publication Date
JP2018028229A true JP2018028229A (en) 2018-02-22
JP6709914B2 JP6709914B2 (en) 2020-06-17

Family

ID=61247696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016161054A Active JP6709914B2 (en) 2016-08-19 2016-08-19 Composite girder and bridge constructed using it

Country Status (1)

Country Link
JP (1) JP6709914B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109577176A (en) * 2019-01-30 2019-04-05 深圳市市政设计研究院有限公司福建分公司 A kind of combined connecting concrete pier of steel tube and its construction method
KR102317116B1 (en) * 2021-01-29 2021-10-26 (주)지승씨앤아이 Prestressed Concrete Girder, Method for Manufacturing the Prestressed Concrete Girder, And Constructing Rahmen Structure
CN113863113A (en) * 2021-09-18 2021-12-31 西安市政设计研究院有限公司 Perforated stiffening rib-reinforced concrete combined steel beam and construction method thereof
CN114135054A (en) * 2021-11-23 2022-03-04 福建省城投科技有限公司 Full-covering type fireproof support column, pouring mold and pouring method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605933A (en) * 1983-06-22 1985-01-12 株式会社竹中工務店 Construction of building enclosure
JP2000038798A (en) * 1998-07-22 2000-02-08 Ishikawajima Constr Materials Co Ltd Semi-precast floor slab
JP2000319816A (en) * 1999-05-12 2000-11-21 Nippon Steel Corp Rigid connection structure of upper and lower composite members
JP2002234018A (en) * 2001-02-14 2002-08-20 Kawada Construction Co Ltd Manufacturing method for arch-shaped cement extrusion- molded plate, and constructing method for floor plate using the same
JP2003119724A (en) * 2001-10-12 2003-04-23 Kawada Construction Co Ltd Method for constructing floor slab of pre-beam composite girder
JP2006283463A (en) * 2005-04-04 2006-10-19 Jfe Engineering Kk Half-precast floor slab and its construction method
KR20070081812A (en) * 2006-02-14 2007-08-20 송용재 Hpc
JP2014037765A (en) * 2012-07-20 2014-02-27 Kajima Corp Steel concrete member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605933A (en) * 1983-06-22 1985-01-12 株式会社竹中工務店 Construction of building enclosure
JP2000038798A (en) * 1998-07-22 2000-02-08 Ishikawajima Constr Materials Co Ltd Semi-precast floor slab
JP2000319816A (en) * 1999-05-12 2000-11-21 Nippon Steel Corp Rigid connection structure of upper and lower composite members
JP2002234018A (en) * 2001-02-14 2002-08-20 Kawada Construction Co Ltd Manufacturing method for arch-shaped cement extrusion- molded plate, and constructing method for floor plate using the same
JP2003119724A (en) * 2001-10-12 2003-04-23 Kawada Construction Co Ltd Method for constructing floor slab of pre-beam composite girder
JP2006283463A (en) * 2005-04-04 2006-10-19 Jfe Engineering Kk Half-precast floor slab and its construction method
KR20070081812A (en) * 2006-02-14 2007-08-20 송용재 Hpc
JP2014037765A (en) * 2012-07-20 2014-02-27 Kajima Corp Steel concrete member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
複合構造橋梁, vol. 1版1刷, JPN6020002531, 10 September 1994 (1994-09-10), pages 101 - 102, ISSN: 0004201004 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109577176A (en) * 2019-01-30 2019-04-05 深圳市市政设计研究院有限公司福建分公司 A kind of combined connecting concrete pier of steel tube and its construction method
CN109577176B (en) * 2019-01-30 2024-04-23 深圳市市政设计研究院有限公司福建分公司 Composite connection type concrete filled steel tube pier and construction method thereof
KR102317116B1 (en) * 2021-01-29 2021-10-26 (주)지승씨앤아이 Prestressed Concrete Girder, Method for Manufacturing the Prestressed Concrete Girder, And Constructing Rahmen Structure
CN113863113A (en) * 2021-09-18 2021-12-31 西安市政设计研究院有限公司 Perforated stiffening rib-reinforced concrete combined steel beam and construction method thereof
CN114135054A (en) * 2021-11-23 2022-03-04 福建省城投科技有限公司 Full-covering type fireproof support column, pouring mold and pouring method
CN114135054B (en) * 2021-11-23 2023-11-03 福建左海科技有限公司 Full-package type fireproof support column, pouring mold and pouring method

Also Published As

Publication number Publication date
JP6709914B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP4844918B2 (en) Construction method of steel / concrete composite deck using precast concrete board
JP2018028229A (en) Composite girder a bridge constructed using the same
KR20130083410A (en) Slab-type box girder of a varying longitudinal section made by prestressed precast concrete and method constructing the bridge therewith
KR101107826B1 (en) Slab-type box girder made by precast concrete and method constructing the bridge therewith
KR100916973B1 (en) Construction method of prestressed concrete pavement and its structure
KR20070014315A (en) Prefabricated prestressed concrete beam bridge and its construction method
KR101954155B1 (en) Bridge with full-deck and protective wall, and construction method for the same
KR101653803B1 (en) Small river prefabricated bridge
KR101924092B1 (en) Temporary structure and constructing method for the same
CA2493141C (en) Improvement in load supporting structure
KR102080492B1 (en) Construction method for cantilever in steel composite girder bridge
KR20160115602A (en) Method of replacing bridge deck slab and prestressed concrete girder assembly used therein
KR100984249B1 (en) Bridge construction method using strength connector detail and composite curing pannel
JP6655746B2 (en) Bridge structure and floor slab replacement method
KR100847726B1 (en) A structure of prestressed concrete pavement and its construction method
KR101752285B1 (en) Hybrid beam with wide PSC lower flange and enlarged section upper flange and structure frame using the same
KR102325276B1 (en) Half Precast Concrete continuous slab and construction method of the same
JP4739072B2 (en) Girder structure and construction method when multiple simple girder bridges are used as one simple girder bridge
JP2000064222A (en) Elevated bridge
KR101241400B1 (en) Arch structure
JP6066981B2 (en) Connection structure in bridges using reinforced concrete slabs and connection method in existing bridges using reinforced concrete slabs
KR20050018589A (en) Method of construction for girder bridge
JP2006283317A (en) Prestressed concrete floor slab formed of precast concrete plates, and method of constructing the same
KR20040065510A (en) Connecting Structure and Connecting Method of Honeycomb Type Composite Beam Stiffened with Prestressed Concrete Panel
KR101156013B1 (en) Method of constructing bride deck using precast concrete deck and bridge superstructure thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200422

R150 Certificate of patent or registration of utility model

Ref document number: 6709914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250