JP2018028131A - Titanium plate having excellent impact resistance and method for producing the same - Google Patents

Titanium plate having excellent impact resistance and method for producing the same Download PDF

Info

Publication number
JP2018028131A
JP2018028131A JP2016160550A JP2016160550A JP2018028131A JP 2018028131 A JP2018028131 A JP 2018028131A JP 2016160550 A JP2016160550 A JP 2016160550A JP 2016160550 A JP2016160550 A JP 2016160550A JP 2018028131 A JP2018028131 A JP 2018028131A
Authority
JP
Japan
Prior art keywords
titanium
titanium plate
grain size
phase
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016160550A
Other languages
Japanese (ja)
Other versions
JP6645381B2 (en
Inventor
一浩 ▲高▼橋
一浩 ▲高▼橋
Kazuhiro Takahashi
元気 塚本
Genki Tsukamoto
元気 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016160550A priority Critical patent/JP6645381B2/en
Publication of JP2018028131A publication Critical patent/JP2018028131A/en
Application granted granted Critical
Publication of JP6645381B2 publication Critical patent/JP6645381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a titanium plate having excellent impact resistance to a flying body that collides with it at high speed, and a method of producing the same.SOLUTION: The present invention provides a titanium plate having excellent impact resistance, characterized in that: the total content of O, N, C is 0.140-0.190 mass%, Fe is 0.020-0.080 mass%, the balance consists of Ti and impurities, the crystal grain size of an α phase is 150 μm or more, the crystal grain size of the α phase is 10% or less of the plate thickness, and the Vickers hardness (HV) is 130-190.SELECTED DRAWING: None

Description

本発明は、耐衝撃性に優れたチタン板及びその製造方法に関する。   The present invention relates to a titanium plate excellent in impact resistance and a method for producing the same.

自動車のドア、可動式防護壁、楯、ヘルメットなど、重要箇所や人体を防護する用途に適用される素材には、機動性や運動性能を高めるために軽量化が求められている。例えば、チタン板は、比較的軽量で優れた耐衝撃性を有することから、このような用途の素材として好適に用いられている。外部からの衝撃に対して、そのエネルギーの吸収能、つまり耐衝撃性を高めることにより、使用されるチタン板の厚さを減じることができ、より軽量化を図ることが可能になっている。なお、本明細書における耐衝撃性とは、チタン板に対して高速の飛翔体が衝突した場合に、当該飛翔体を貫通させない特性をいう。高速の飛翔体の衝突とは、例えば、音速以上の速度で金属の塊等がチタン板に衝突する場合を例示できる。   Materials that are used for protecting important parts and human bodies, such as automobile doors, movable protective walls, helmets, and helmets, are required to be lighter in order to improve mobility and motion performance. For example, a titanium plate is suitably used as a material for such applications because it is relatively light and has excellent impact resistance. By increasing the energy absorption capacity, that is, the impact resistance against an external impact, the thickness of the titanium plate to be used can be reduced, and the weight can be further reduced. In addition, the impact resistance in this specification refers to a characteristic that prevents a flying object from penetrating when a high-speed flying object collides with a titanium plate. The high-speed flying object collision can be exemplified by, for example, a case where a lump of metal or the like collides with a titanium plate at a speed higher than the speed of sound.

耐衝撃性に優れたチタン板には、衝突した飛翔体を貫通させないほどの高い硬度が求められ、また、衝突時の飛翔体による衝撃エネルギーを吸収するために適度な変形能を有することが求められる。高い硬度と高い変形能とは互いに相反する特性であるため、従来、これらの特性の両立を図るための発明がなされている。   Titanium plates with excellent impact resistance are required to have a hardness that does not allow the impacting projectile to penetrate. Also, the titanium plate must have an appropriate deformability to absorb impact energy from the projectile during impact. It is done. Since high hardness and high deformability are mutually contradictory characteristics, an invention for achieving both of these characteristics has been conventionally made.

特許文献1には、O、N、Cの合計が0.04〜0.27質量%であり、Feが0.1質量%以下であり、残部がTi及び不可避な不純物よりなり、且つ加工により硬化させることにより断面部のビッカース硬さが所定の不等式を満たすようにした耐衝撃特性に優れたチタンが記載されている。
また、特許文献2には、ビッカース硬さが125〜220で、かつ板面上の六方晶(0002)面正極点図にて指数αが0.4〜1.0である耐衝撃特性に優れたチタン板が記載されている。ここで、指数αは、板面方向から測定した六方晶(0002)面の正極点図において、強度を15等分して作成した下から4番目の強度等高線にて、最終圧延方向軸(RD軸)との2ヶ所の交点間距離(A)とその直角方向軸(TD軸)との2ヶ所の交点間距離(B)の小さい方を大きい方で除した値(A/B或いはB/A)とされている。
更に、特許文献3には、質量%で、Si:0.2%以上0.5%未満、Fe:0.10%以上0.40%未満、O:0.01%以上0.10%未満を含み、残部がチタン及び不可避不純物からなり、α相の(0002)面方位の分布を圧延方向〜板垂直方向の断面で示した場合に、その分布の最大値が、板垂直方向から圧延方向に10°以上20°未満の範囲に傾斜している冷延性および冷間での取り扱い性に優れた耐熱チタン合金冷間圧延用素材が記載されている。
In Patent Document 1, the total of O, N, and C is 0.04 to 0.27 mass%, Fe is 0.1 mass% or less, the balance is made of Ti and inevitable impurities, and by processing Titanium excellent in impact resistance characteristics in which the Vickers hardness of the cross section satisfies a predetermined inequality by being cured is described.
Patent Document 2 discloses excellent impact resistance characteristics in which the Vickers hardness is 125 to 220 and the index α is 0.4 to 1.0 in the hexagonal (0002) plane positive diagram on the plate surface. Titanium plates are described. Here, the index α is the fourth strength contour line from the bottom created by dividing the strength into 15 equal parts in the hexagonal (0002) plane positive electrode diagram measured from the plate direction, and is the final rolling direction axis (RD). A value obtained by dividing the smaller one of the distance (A) between the two intersections with the axis) and the distance (B) between the two intersections with the perpendicular axis (TD axis) by the larger one (A / B or B / A).
Further, in Patent Document 3, in mass%, Si: 0.2% or more and less than 0.5%, Fe: 0.10% or more and less than 0.40%, O: 0.01% or more and less than 0.10% The balance is made of titanium and inevitable impurities, and the distribution of the (0002) plane orientation of the α phase is shown in a section from the rolling direction to the plate vertical direction, the maximum value of the distribution is from the plate vertical direction to the rolling direction Describes a heat-resistant titanium alloy material for cold rolling that is excellent in cold-rolling property and cold handling property that is inclined in a range of 10 ° or more and less than 20 °.

特許文献1に記載されたチタンは、ビッカース硬度が150Hv以上を示しており、高い硬度を有しているものの、耐衝撃性のもう一つのファクターである変形能については何ら検討されていない。
特許文献2に記載されたチタンは、ビッカース硬度が120Hv以上を示しており、高い硬度を有しているものの、特許文献1と同様に、耐衝撃性のもう一つのファクターである変形能については何ら検討されていない。
特許文献3に記載されたチタン合金は、主に冷延時にき裂が板幅方向に進展して板の破断を招きやすくなるという課題に対して、α相の(0002)面方位の分布を所定の方向に傾斜させることで課題解決を図ったものであり、高速の飛翔体に対する耐衝撃性とは異なる特性を目指したチタン合金である。従って、特許文献3においては、チタン合金の硬度を高くすることについては何ら検討されておらず、適度な変形能を持たせることについても検討されていない。また、特許文献3のチタン合金にはSiが含まれており、シリサイドが形成される場合がある。シリサイドのような介在物の存在は、高速の飛翔体による衝撃に対して変形能を低下させる要因になり、高速の飛翔体に対する耐衝撃性を阻害することになる。
Titanium described in Patent Document 1 has a Vickers hardness of 150 Hv or higher and has a high hardness, but no consideration has been given to deformability, which is another factor of impact resistance.
Although titanium described in Patent Document 2 has a Vickers hardness of 120 Hv or higher and has a high hardness, as in Patent Document 1, the deformability, which is another factor of impact resistance, Nothing has been considered.
The titanium alloy described in Patent Document 3 has a distribution of the (0002) plane orientation of the α phase, mainly for the problem that cracks tend to break in the plate width direction during cold rolling and easily break the plate. It is a titanium alloy that solves the problem by inclining in a predetermined direction and aims at characteristics different from impact resistance against high-speed flying objects. Therefore, in Patent Document 3, no consideration is given to increasing the hardness of the titanium alloy, and no consideration is given to imparting an appropriate deformability. Further, the titanium alloy of Patent Document 3 contains Si, and silicide may be formed. Presence of inclusions such as silicide becomes a factor that lowers the deformability against an impact caused by a high-speed flying object, and impairs the impact resistance against the high-speed flying object.

特開2001−262257号公報JP 2001-262257 A 特開2003−147462号公報JP 2003-147462 A 特開2013−177651号公報JP 2013-177651 A

本発明は上記事情に鑑みてなされたものであり、特に高速で衝突する飛翔体に対する耐衝撃性に優れたチタン板及びその製造方法を提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the titanium plate excellent in the impact resistance with respect to the flying body which collides especially at high speed, and its manufacturing method.

本発明者らは、チタン板面への高速の衝撃に対して、耐衝撃性に優れたチタン板およびその製造方法について鋭意研究を重ねた。その結果、高速の衝撃に対して、チタン板面の変形抵抗に相当するビッカース硬さや、高速の衝撃に追随しながら変形し且つ割れが生じないような結晶粒径及び化学成分を、それぞれ好適な範囲に制御することで、従来技術にない高い耐衝撃性が得られることを見出した。また、チタンα相の結晶方位分布(集合組織)を制御にすることで、更に優れた高い耐衝撃性が得られることを見出した。本発明の要旨は以下の通りである。   The inventors of the present invention have made extensive studies on a titanium plate excellent in impact resistance against a high-speed impact on the titanium plate surface and a manufacturing method thereof. As a result, the Vickers hardness corresponding to the deformation resistance of the titanium plate surface against high-speed impact, and the crystal grain size and chemical composition that are deformed while following high-speed impact and do not cause cracking are suitable. It has been found that high impact resistance not found in the prior art can be obtained by controlling the range. Further, it has been found that even higher impact resistance can be obtained by controlling the crystal orientation distribution (texture) of the titanium α phase. The gist of the present invention is as follows.

[1] O、N、Cの合計量が0.140〜0.260質量%であり、Feが0.020〜0.080質量%であり、残部がTi及び不純物よりなり、
α相の平均結晶粒径が150μm以上、かつ前記α相の平均結晶粒径が板厚の10%以下であり、
ビッカース硬さ(HV)が130〜190であることを特徴とする耐衝撃性に優れたチタン板。
[2] 電子線後方散乱回折法(EBSD法)にて測定した結晶方位分布にて板面方向(ND)から見た(0001)面からのピーク強度が5.00以下であることを特徴とする[1]に記載の耐衝撃性に優れたチタン板。
[3] 板厚が2.0〜6.0mmであることを特徴とする[1]または[2]に記載の耐衝撃性に優れたチタン板。
[4] O、N、Cの合計量が0.140〜0.260質量%であり、Feが0.020〜0.080質量%であり、残部がTi及び不純物よりなるチタンに対して熱間圧延を施し、
次いで、650℃〜850℃で24時間以上保持、700℃〜850℃で8時間以上保持、または740℃〜850℃で4時間以上保持、のいずれかの条件で熱処理を施すことを特徴とする[1]または[3]に記載のチタン板の製造方法。
[5] O、N、Cの合計量が0.140〜0.260質量%であり、Feが0.020〜0.080質量%であり、残部がTi及び不純物よりなるチタンに対して熱間圧延を施し、
次いで、β変態点を超える温度まで加熱してから0.5℃/秒以上の冷却速度で冷却した後、650℃〜850℃で24時間以上保持、700℃〜850℃で8時間以上保持、または740℃〜850℃で4時間以上保持、のいずれかの条件で熱処理を施すことを特徴とする[2]または[3]に記載のチタン板の製造方法。
[6] 前記熱間圧延と前記熱処理との間に、冷間圧延を行うことを特徴とする[4]または[5]に記載のチタン板の製造方法。
[1] The total amount of O, N, and C is 0.140 to 0.260% by mass, Fe is 0.020 to 0.080% by mass, and the balance is made of Ti and impurities.
The average crystal grain size of the α phase is 150 μm or more, and the average crystal grain size of the α phase is 10% or less of the plate thickness,
A titanium plate excellent in impact resistance characterized by having a Vickers hardness (HV) of 130 to 190.
[2] The peak intensity from the (0001) plane viewed from the plate surface direction (ND) in the crystal orientation distribution measured by the electron beam backscatter diffraction method (EBSD method) is 5.00 or less. The titanium plate excellent in impact resistance according to [1].
[3] The titanium plate having excellent impact resistance according to [1] or [2], wherein the plate thickness is 2.0 to 6.0 mm.
[4] The total amount of O, N, and C is 0.140 to 0.260 mass%, Fe is 0.020 to 0.080 mass%, and the balance is heat with respect to titanium composed of Ti and impurities. Rolling between,
Next, heat treatment is performed under the conditions of holding at 650 ° C. to 850 ° C. for 24 hours or more, holding at 700 ° C. to 850 ° C. for 8 hours or more, or holding at 740 ° C. to 850 ° C. for 4 hours or more. The method for producing a titanium plate according to [1] or [3].
[5] The total amount of O, N, and C is 0.140 to 0.260% by mass, Fe is 0.020 to 0.080% by mass, and the balance is heat with respect to titanium composed of Ti and impurities. Rolling between,
Next, after heating to a temperature exceeding the β transformation point and cooling at a cooling rate of 0.5 ° C./second or more, holding at 650 ° C. to 850 ° C. for 24 hours or more, holding at 700 ° C. to 850 ° C. for 8 hours or more, Alternatively, the method for producing a titanium plate according to [2] or [3], wherein the heat treatment is performed under any of the conditions of holding at 740 ° C. to 850 ° C. for 4 hours or more.
[6] The method for producing a titanium plate according to [4] or [5], wherein cold rolling is performed between the hot rolling and the heat treatment.

本発明によれば、耐衝撃性に優れたチタン板及びその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the titanium plate excellent in impact resistance and its manufacturing method can be provided.

チタン板のL断面のミクロ組織の例を示す写真であって、(a)は、α相の平均結晶粒径が20〜60μm程度の従来材の写真であり、(b)及び(c)はα相の平均結晶粒径が150μm以上の本発明材の写真である。It is the photograph which shows the example of the microstructure of the L cross section of a titanium plate, (a) is a photograph of the conventional material whose average crystal grain diameter of (alpha) phase is about 20-60 micrometers, (b) and (c) 3 is a photograph of the material of the present invention having an α-phase average crystal grain size of 150 μm or more. 電子線後方散乱回折法(EBSD法)により得られたチタン板のα相hcp(0001)面の極点図を示す図である。It is a figure which shows the pole figure of the alpha phase hcp (0001) surface of the titanium plate obtained by the electron beam backscattering diffraction method (EBSD method).

高速で衝突する飛翔体に対してチタン板の耐衝撃性を向上させるために本発明者らが鋭意検討したところ、チタン板面の変形抵抗に相当するビッカース硬さや、平均結晶粒径及び化学成分を、それぞれ好適な範囲に制御することで、耐衝撃性を向上できることを見出した。また、チタンα相の結晶方位分布(集合組織)を制御にすることで、耐衝撃性を更に向上できることを見出した。   In order to improve the impact resistance of the titanium plate against the flying object that collides at high speed, the present inventors diligently examined, the Vickers hardness corresponding to the deformation resistance of the titanium plate surface, the average crystal grain size and the chemical composition It has been found that impact resistance can be improved by controlling each of these in a suitable range. It was also found that impact resistance can be further improved by controlling the crystal orientation distribution (texture) of the titanium α phase.

チタン板のビッカース硬さが低すぎると、衝撃に対する変形抵抗が小さくなり、変形部位が局在化して飛翔体がチタン板を貫通してしまう。置換型元素であるAl,V,Fe,Moをチタンに添加することでビッカース硬さを高めることができるが、変形に寄与する双晶変形が著しく抑制されてしまうために、高速の飛翔体が衝突した際の変形に追随できず、塑性変形がほとんど起きずに、チタン板が破損したり、割れが生じたりする。一方、侵入型元素であるO,C,Nによりビッカース硬さを高めることができるが、上記の置換型元素同様に双晶変形が抑制されてしまう。   If the Vickers hardness of the titanium plate is too low, the deformation resistance against impact becomes small, the deformation site is localized, and the flying object penetrates the titanium plate. Vickers hardness can be increased by adding substitutional elements Al, V, Fe, and Mo to titanium. However, since twin deformation that contributes to deformation is remarkably suppressed, a high-speed flying object It cannot follow the deformation at the time of collision, hardly causes plastic deformation, and the titanium plate is damaged or cracked. On the other hand, Vickers hardness can be increased by interstitial elements O, C, and N, but twin deformation is suppressed similarly to the above substitutional elements.

一方、α相の平均結晶粒径を150μm以上とし、且つ平均結晶粒径を板厚の10%以下にすることで、侵入型元素であるO,C,Nの添加によってビッカース硬さをある範囲まで高めても、高速の衝撃に対して双晶変形を抑制することなく、且つ結晶粒径粗大化による変形の局在化(皺など)が耐衝撃性に影響を及ぼさない程度に留めることができることを見出した。   On the other hand, by setting the average crystal grain size of the α phase to 150 μm or more and the average crystal grain size to 10% or less of the plate thickness, the addition of interstitial elements O, C, and N results in a certain range of Vickers hardness. Even if it is increased to a high level, it does not suppress twin deformation against high-speed impacts, and the deformation localization due to coarsening of the crystal grain size (such as wrinkles) does not affect the impact resistance. I found out that I can do it.

さらに、熱間圧延、冷間圧延、焼鈍を経て製造されたチタン板のα相(hcp)は、hcp結晶構造からくる変形方向の制約から、必ず発達した集合組織が形成される。集合組織は、hcpのc軸の集積方向によって分類される。具体的には、工業用純チタン板に代表される、圧延幅方向にc軸が約35°傾いた方向に集積したSplit−TD−Texture、クロス圧延によって形成され、板面方向にc軸が集積したB−Texture,圧延されたβ相から変態したα相によって形成される圧延幅方向に集積したT−Texture、などがあげられる。特許文献2においては、チタン板面への衝撃に対して変形が局在化させないために、板面内で異方性がないB−Textureが好ましいとされていたが、高速の衝撃に対しては、集合組織が発達していないランダムな方が、変形が局在化し難くなり、特に高速の飛翔体に対する耐衝撃性では優位になることを見出した。これは、高速の衝撃は強力なせん断力が板厚の内部でも作用するとともにチタン板の温度上昇もあり、一定方向の集合組織を成していると特定の方向で変形双晶が起き難くなるため、変形が追随できなくなり、変形の局在化を招いてしまった結果だと考えられる。   Furthermore, the α phase (hcp) of the titanium plate manufactured through hot rolling, cold rolling, and annealing always forms a developed texture due to the deformation direction restriction resulting from the hcp crystal structure. Textures are classified according to the accumulation direction of the c-axis of hcp. Specifically, it is formed by split-TD-Texture, which is represented by an industrial pure titanium plate, in which the c-axis is inclined in a direction inclined by about 35 ° in the rolling width direction, and cross rolling, and the c-axis is in the plate surface direction. Examples include B-Texture accumulated, T-Texture accumulated in the rolling width direction formed by the α phase transformed from the rolled β phase, and the like. In Patent Document 2, B-Texture having no anisotropy in the plate surface is preferable in order to prevent deformation from being localized with respect to the impact on the titanium plate surface. Found that the random one with no developed texture is less likely to localize deformation, and is particularly advantageous in impact resistance against high-speed flying objects. This is because high-velocity impacts have a strong shearing force acting inside the plate thickness, and also the temperature of the titanium plate rises. If a texture is formed in a certain direction, deformation twins are less likely to occur in a specific direction. For this reason, it is considered that the deformation cannot be followed and the deformation is localized.

以下、本実施形態の耐衝撃性に優れたチタン板について説明する。
本実施形態の優れたチタン板は、O、N、Cの合計量が0.140〜0.260質量%であり、Feが0.020〜0.080質量%であり、残部がTi及び不純物よりなり、α相の平均結晶粒径が150μm以上、かつ前記α相の平均結晶粒径が板厚の10%以下であり、ビッカース硬さ(HV)が130〜190であることを特徴とする。
また、電子線後方散乱回折法(EBSD法)にて測定した結晶方位分布にて板面方向(ND)から見た(0001)面からのピーク強度が5.00以下であってもよい。
Hereinafter, the titanium plate excellent in impact resistance of this embodiment will be described.
In the excellent titanium plate of this embodiment, the total amount of O, N, and C is 0.140 to 0.260% by mass, Fe is 0.020 to 0.080% by mass, and the balance is Ti and impurities. The average crystal grain size of the α phase is 150 μm or more, the average crystal grain size of the α phase is 10% or less of the plate thickness, and the Vickers hardness (HV) is 130 to 190. .
Further, the peak intensity from the (0001) plane viewed from the plate surface direction (ND) in the crystal orientation distribution measured by the electron beam backscatter diffraction method (EBSD method) may be 5.00 or less.

[化学成分]
ビッカース硬さ(HV)を130〜190の範囲に調整する上で、チタン板に含まれるO(酸素),N(窒素),C(炭素)の合計量が0.140質量%未満では、平均結晶粒径を150μm以上に粗大化させた際に、十分な硬さが得られない。また、O,N,Cの合計量が0.260質量%を超えると、平均結晶粒径を粗大化したとしても、延性及び靭性が低下するために割れが生じ易くなる場合がある。従って、O,N,Cの合計量は0.140〜0.260質量%の範囲が好ましく、0.140〜0.0240%の範囲がより好ましく、0.140〜0.0190%の範囲が更に好ましい。
また、平均結晶粒径の粗大化を抑制しないためには、Feを0.020〜0.080質量%含有することが好ましい。更に、Fe、Cr、Niを合計で0.020〜0.080質量%含有してもよい。
上記元素以外の残部はTi及び不純物である。
[Chemical composition]
When adjusting the Vickers hardness (HV) to the range of 130 to 190, the total amount of O (oxygen), N (nitrogen), and C (carbon) contained in the titanium plate is less than 0.140% by mass. When the crystal grain size is coarsened to 150 μm or more, sufficient hardness cannot be obtained. On the other hand, if the total amount of O, N, and C exceeds 0.260% by mass, even if the average crystal grain size is coarsened, the ductility and toughness are reduced, and cracking is likely to occur. Therefore, the total amount of O, N, and C is preferably in the range of 0.140 to 0.260% by mass, more preferably in the range of 0.140 to 0.0240%, and in the range of 0.140 to 0.0190%. Further preferred.
Moreover, in order not to suppress the coarsening of the average crystal grain size, it is preferable to contain 0.020 to 0.080 mass% of Fe. Furthermore, you may contain 0.020-0.080 mass% of Fe, Cr, Ni in total.
The balance other than the above elements is Ti and impurities.

また、置換型元素であるAl、V、Fe、Moをチタン板に添加することでビッカース硬さを高めることができるが、変形に寄与する双晶変形が著しく抑制されてしまうために、高速の変形に追随できず、塑性変形をほとんどせずに、破損したり、割れが生じたりする。一方、Feは上述のように所定量を添加することで平均結晶粒径の粗大化が抑制されない。よって本実施形態のチタン板には、Fe以外の置換型元素(Al、V、Mo)は添加しない方がよい。   In addition, Vickers hardness can be increased by adding substitutional elements Al, V, Fe, and Mo to the titanium plate. However, since twin deformation contributing to deformation is remarkably suppressed, It cannot follow the deformation and breaks or cracks with little plastic deformation. On the other hand, the coarsening of the average crystal grain size is not suppressed by adding a predetermined amount of Fe as described above. Therefore, it is better not to add substitutional elements (Al, V, Mo) other than Fe to the titanium plate of this embodiment.

また、耐衝撃性を損なわない限り、耐食性を高めるためにPd、Ruなどの白金族金属元素の1種または2種以上を0.25質量%以下の範囲で含んでもよい。耐食性の効果を発揮させるためには、0.01質量%以上添加するとよい。白金族元素が0.25質量%以下であれば、耐衝撃性が低下することがない。   Further, unless the impact resistance is impaired, one or more platinum group metal elements such as Pd and Ru may be included in the range of 0.25% by mass or less in order to improve the corrosion resistance. In order to exert the effect of corrosion resistance, 0.01% by mass or more is preferably added. When the platinum group element is 0.25% by mass or less, the impact resistance is not lowered.

[ビッカース硬さと平均結晶粒径]
ビッカース硬さ(HV)は、130〜190であることが好ましい。ビッカース硬さ(HV)が130未満と低すぎると、衝撃に対する変形抵抗が小さくなり、高速の飛翔体が衝突した際の変形部位が局在化し、エネルギー吸収が十分になされずに飛翔体がチタン板を貫通してしまう。また、ビッカース硬さ(HV)が190を超えると、チタン板の延性が低下して、衝撃を受けた際に衝撃を受けた面の反対側の裏面に割れが生じやすくなり、その割れを起点にして衝突した飛翔体が貫通する場合がある。よって、ビッカース硬さ(HV)は130〜190の範囲が好ましい。
[Vickers hardness and average grain size]
The Vickers hardness (HV) is preferably 130 to 190. If the Vickers hardness (HV) is too low, less than 130, the deformation resistance against impact will be small, the deformation part will be localized when a high-speed flying object collides, and the flying object will be titanium without sufficient energy absorption. It penetrates the board. Also, if the Vickers hardness (HV) exceeds 190, the ductility of the titanium plate is reduced, and when receiving an impact, the back side opposite to the impacted surface is likely to crack, and the crack originates. The projectile that collided may penetrate. Therefore, the Vickers hardness (HV) is preferably in the range of 130 to 190.

また、上述のように、侵入型元素であるO(酸素),C(炭素),N(窒素)を添加することによりビッカース硬さを高めることができるが、その一方で、上記の置換型元素と同様に双晶変形を抑制してしまう。そこで、本実施形態のチタン板では、α相の平均結晶粒径を150μm以上とし、更には平均結晶粒径を板厚の10%以下にすることで、侵入型元素であるO,C,Nを添加してビッカース硬さ(HV)を130〜190に高め、かつ、高速の衝撃に対して双晶変形を抑制することを防止でき、更には、平均結晶粒径の粗大化による変形の局在化(皺など)を耐衝撃性に影響が及ぼさない程度に留めることができる。
平均結晶粒径が150μm未満では、ビッカース硬さ(HV)を130〜190まで高めると、双晶変形が著しく抑制されてしまう。また、平均結晶粒径が板厚の10%を超えると、衝撃に対して変形時に大きな皺が発生し、その皺を起点に変形が局在化してしまう場合がある。
As described above, the Vickers hardness can be increased by adding interstitial elements O (oxygen), C (carbon), and N (nitrogen). In the same way, twin deformation is suppressed. Therefore, in the titanium plate of this embodiment, the average crystal grain size of the α phase is set to 150 μm or more, and further, the average crystal grain size is set to 10% or less of the plate thickness, so that the interstitial elements O, C, N Can be added to increase the Vickers hardness (HV) to 130 to 190, and to prevent twin deformation against high-speed impact, and further, the deformation due to the coarsening of the average crystal grain size. It is possible to limit the presence (such as wrinkles) to the extent that impact resistance is not affected.
If the average grain size is less than 150 μm, twin deformation is significantly suppressed when the Vickers hardness (HV) is increased to 130-190. Further, if the average crystal grain size exceeds 10% of the plate thickness, a large wrinkle is generated at the time of deformation with respect to an impact, and the deformation may be localized starting from the wrinkle.

また、結晶組織中に結晶粒径900μmを超える結晶粒が存在すると、耐衝撃性が低下するおそれがあるので、結晶組織中に結晶粒径900μmを超える結晶粒が存在しないことが望ましい。   Further, if crystal grains having a crystal grain size exceeding 900 μm are present in the crystal structure, impact resistance may be lowered. Therefore, it is desirable that no crystal grains having a crystal grain size exceeding 900 μm exist in the crystal structure.

図1に、チタン板のL断面のミクロ組織の例を示す。図1(a)は、α相の平均結晶粒径が20〜60μm程度の従来材である。この従来材に対して、本実施形態のチタン板は、図1(b)または図1(c)に示すように、150μm以上の大きな平均結晶粒を有するものとなる。図1(b)に示すα相の平均結晶粒径は198μmであり、図1(c)に示すα相の平均粒径は321μmである。   In FIG. 1, the example of the microstructure of the L cross section of a titanium plate is shown. FIG. 1A shows a conventional material having an α-phase average crystal grain size of about 20 to 60 μm. In contrast to this conventional material, the titanium plate of the present embodiment has large average crystal grains of 150 μm or more, as shown in FIG. 1 (b) or 1 (c). The average crystal grain size of the α phase shown in FIG. 1 (b) is 198 μm, and the average grain size of the α phase shown in FIG. 1 (c) is 321 μm.

本実施形態のチタン板は、化学成分、ビッカース硬さ及びα相の平均結晶粒径を所定の範囲にすることで優れた耐衝撃性を発揮できるが、更に、以下に説明するように集合組織を制御することで、耐衝撃性をより高めることができる。   The titanium plate of the present embodiment can exhibit excellent impact resistance by making the chemical composition, Vickers hardness, and average crystal grain size of the α phase within a predetermined range, but further, as described below, the texture By controlling, impact resistance can be further increased.

[α相(hcp)の結晶方位分布]
高速の飛翔体の衝突による衝撃に対しては、集合組織が発達していないランダムな方が、変形が局在化し難くい。その指標として、電子線後方散乱回折法(EBSD法)にて測定した結晶方位分布にて板面方向(ND)から見た(0001)面からのピーク強度を用いる。本実施ではこのピーク強度を5.00以下にすることで、変形の局在化が抑制されて、耐衝撃性を高めることができる。ピーク強度は、より好ましくは、さらにランダムな値である3.00以下である。c軸が、工業用純チタン板に代表される圧延幅方向に約35°傾いた方向に集積したSplit−TD−Texture、クロス圧延によって形成される板面方向に集積したB−Texture,圧延されたβ相から変態したα相によって形成される圧延幅方向に集積したT−Textureなどでは、上記のピーク強度が7〜10以上と高いため、耐衝撃性をより高めることができなくなる。
[Crystal orientation distribution of α phase (hcp)]
For impacts caused by collisions of high-speed flying objects, deformation is less likely to be localized in the random direction where the texture is not developed. As the index, the peak intensity from the (0001) plane viewed from the plate surface direction (ND) in the crystal orientation distribution measured by the electron beam backscatter diffraction method (EBSD method) is used. In this embodiment, by setting the peak intensity to 5.00 or less, the localization of deformation is suppressed, and the impact resistance can be improved. The peak intensity is more preferably 3.00 or less which is a further random value. Split-TD-Texture accumulated in a direction inclined about 35 ° in the rolling width direction represented by industrial pure titanium plate, B-Texture accumulated in the plate surface direction formed by cross rolling, and c-axis are rolled. In T-Texture and the like accumulated in the rolling width direction formed by the α phase transformed from the β phase, the peak strength is as high as 7 to 10 or more, so that the impact resistance cannot be further improved.

図2に、チタン板の電子線後方散乱回折法(EBSD法)により得られた極点図とそのピーク強度を示す。図2に示す極点図は、電子線後方散乱回折法(EBSD法)にて測定した結晶方位分布にて、板面方向(ND)から見たα相hcp(0001)面の極点図である。図2の(a)及び図2(b)は、熱間圧延などの圧延後にβ変態点未満の温度で通常の焼鈍を施した従来例であり、(0001)面のピーク強度は5.00を超えて7.00以上になっている。一方、図2(c)〜図(e)は、(0001)面のピーク強度が5.00以下の本発明例であり、図2(a)や図2(b)と比較して極点図からも際立って集積度が高い特定の方向がみられず、α相の結晶方位がランダムなことがわかる。なお、図2(c)〜図2(e)に示したチタン板は、β変態点を超える温度から空冷以上の冷却速度で冷却し、600〜850℃で1時間以上保持したチタン板である。   FIG. 2 shows a pole figure obtained by an electron beam backscatter diffraction method (EBSD method) of a titanium plate and its peak intensity. The pole figure shown in FIG. 2 is a pole figure of the α phase hcp (0001) plane viewed from the plate direction (ND) in the crystal orientation distribution measured by the electron beam backscatter diffraction method (EBSD method). 2 (a) and 2 (b) are conventional examples in which normal annealing is performed at a temperature below the β transformation point after rolling such as hot rolling, and the peak intensity of the (0001) plane is 5.00. Over 7.00. On the other hand, FIG. 2 (c) to FIG. 2 (e) are examples of the present invention in which the peak intensity on the (0001) plane is 5.00 or less, which is a pole figure as compared with FIG. 2 (a) and FIG. 2 (b). From the figure, it can be seen that a specific direction with a high degree of integration is not observed, and the crystal orientation of the α phase is random. In addition, the titanium plate shown in FIGS. 2C to 2E is a titanium plate that is cooled at a cooling rate equal to or higher than air cooling from a temperature exceeding the β transformation point and held at 600 to 850 ° C. for 1 hour or longer. .

[板厚]
本実施形態のチタン板は、衝撃を板面で受けた際に、変形によって衝撃エネルギーを吸収することから、容易に変形できる板厚として2.0〜6.0mmが好適である。
[Thickness]
Since the titanium plate of this embodiment absorbs impact energy by deformation when an impact is received on the plate surface, a plate thickness that can be easily deformed is preferably 2.0 to 6.0 mm.

[製造方法]
次に、本実施形態のチタン板の製造方法について説明する。
上記の化学成分からなるチタンを熱間圧延し、必要に応じて冷間圧延し、その後、β変態点未満の温度で焼鈍することにより、ビッカース硬さ(HV)が130〜190であり、α相の平均結晶粒径が150μm以上であるチタン板を製造できる。
[Production method]
Next, the manufacturing method of the titanium plate of this embodiment is demonstrated.
Titanium composed of the above chemical components is hot-rolled, cold-rolled as necessary, and then annealed at a temperature lower than the β transformation point, whereby the Vickers hardness (HV) is 130 to 190, α A titanium plate having an average crystal grain size of 150 μm or more can be produced.

焼鈍は、α相の平均結晶粒径が150μm以上に粗大化するまで行う。焼鈍条件は、α相の平均結晶粒径が150μm以上に粗大化する条件であれば特に制限はないが、例えば、650℃〜850℃で24時間以上保持、700℃〜850℃で8時間以上保持、または740℃〜850℃で4時間以上保持、のいずれかの条件で行うとよい。
上記のいずれかの条件における焼鈍温度が低いと、α相の平均結晶粒径が150μm未満になるので好ましくない。また、焼鈍温度が850℃を超えると、α相の平均結晶粒径が過剰に粗大化して板厚の1/10超になるか、あるいは焼鈍中にβ相が析出して部分的に粒成長が抑制されてしまい、所定の結晶粒径まで粒成長しない場合があるので好ましくない。また、上記のいずれかの条件における焼鈍時間が不足すると、α相の平均結晶粒径が150μm未満になるので好ましくない。また、焼鈍時間が長すぎるとα相の平均結晶粒径が板厚の1/10超になる場合があるので、平均結晶粒径が板厚の1/10以下になる時間に調整するとよい。
The annealing is performed until the average crystal grain size of the α phase is coarsened to 150 μm or more. The annealing condition is not particularly limited as long as the average crystal grain size of the α phase is coarsened to 150 μm or more. For example, it is maintained at 650 ° C. to 850 ° C. for 24 hours or more, and 700 ° C. to 850 ° C. for 8 hours or more. It may be performed under any of the conditions of holding or holding at 740 ° C. to 850 ° C. for 4 hours or more.
If the annealing temperature under any of the above conditions is low, the average crystal grain size of the α phase becomes less than 150 μm, which is not preferable. When the annealing temperature exceeds 850 ° C., the average crystal grain size of the α phase becomes excessively coarse and exceeds 1/10 of the plate thickness, or the β phase precipitates during the annealing and partially grows grains. Is suppressed, and grain growth may not occur up to a predetermined crystal grain size. Moreover, if the annealing time under any of the above conditions is insufficient, the average crystal grain size of the α phase becomes less than 150 μm, which is not preferable. Further, if the annealing time is too long, the average crystal grain size of the α phase may be more than 1/10 of the plate thickness. Therefore, it is preferable to adjust the time so that the average crystal grain size is 1/10 or less of the plate thickness.

また、上記の化学成分からなるチタンを熱間圧延し、必要に応じて冷間圧延し、次いで、β変態点を超える温度に加熱(β域熱処理)してから所定の冷却速度で冷却し、その後、β変態点未満の温度で焼鈍することにより、ビッカース硬さ(HV)が130〜190であり、α相の平均結晶粒径が150μm以上であり、電子線後方散乱回折法(EBSD法)にて測定した結晶方位分布にて板面方向(ND)から見た(0001)面からのピーク強度が5.00以下であるチタン板を製造できる。   Further, the titanium composed of the above chemical components is hot-rolled, cold-rolled as necessary, and then heated to a temperature exceeding the β transformation point (β-region heat treatment) and then cooled at a predetermined cooling rate, Thereafter, by annealing at a temperature lower than the β transformation point, the Vickers hardness (HV) is 130 to 190, the average crystal grain size of the α phase is 150 μm or more, and the electron backscatter diffraction method (EBSD method). A titanium plate having a peak intensity from the (0001) plane viewed from the plate surface direction (ND) in the crystal orientation distribution measured at 5.00 can be produced.

ピーク強度を5.00以下にするために、β変態点を超える温度まで加熱(β域熱処理)することで、チタン板の金属組織を一旦β相単相に変態させて、圧延等の前工程で生じていたα相の集合組織を消失させる。その後、所定の冷却速度で冷却することで、組織中に再結晶核を導入させる。そして、焼鈍を行うことで導入した再結晶核を結晶粒成長させて、所定の結晶粒径まで成長させる。   In order to reduce the peak intensity to 5.00 or less, the metal structure of the titanium plate is once transformed into a β phase single phase by heating to a temperature exceeding the β transformation point (β region heat treatment), and a pre-process such as rolling. The texture of the α phase that was generated in the above is disappeared. Thereafter, recrystallization nuclei are introduced into the structure by cooling at a predetermined cooling rate. Then, the recrystallized nuclei introduced by annealing are grown as crystal grains to grow to a predetermined crystal grain size.

チタン板をβ変態点を超える温度まで加熱することで、それ以前の集合組織を有するα相を残存させることなく、(0001)面からのピーク強度を十分に低下させることができる。冷却速度が遅いと、導入される再結晶核が少なくなり、極度に大きな結晶粒が混在してしまう。β変態点を超える温度に加熱して冷却する際の冷却速度は、空冷では0.5℃/s以上が好ましく、水冷では約50〜100℃/sの範囲が好ましい。冷却速度が0.5℃/s未満になると、α相の結晶が異常成長し、結晶粒径900μmを超える結晶粒が形成されて、耐衝撃性が低下する場合があるので好ましくない。また、α相の平均結晶粒径が板厚の10%を超えるおそれもあるので好ましくない。加熱炉の内部で冷却するいわゆる炉冷は、冷却速度が0.5℃/s未満になる場合があるので、加熱炉から取り出して空冷または水冷することが好ましい。   By heating the titanium plate to a temperature exceeding the β transformation point, the peak intensity from the (0001) plane can be sufficiently reduced without leaving the α phase having the previous texture. If the cooling rate is slow, the number of recrystallized nuclei introduced is reduced, and extremely large crystal grains are mixed. The cooling rate when cooling by heating to a temperature exceeding the β transformation point is preferably 0.5 ° C./s or more for air cooling, and is preferably in the range of about 50 to 100 ° C./s for water cooling. When the cooling rate is less than 0.5 ° C./s, the α-phase crystal grows abnormally, and crystal grains exceeding the crystal grain size of 900 μm are formed, which is not preferable. Moreover, since the average crystal grain size of the α phase may exceed 10% of the plate thickness, it is not preferable. Since so-called furnace cooling that cools the inside of the heating furnace may have a cooling rate of less than 0.5 ° C./s, it is preferably taken out of the heating furnace and air-cooled or water-cooled.

冷却後の焼鈍は、α相の平均結晶粒径が150μm以上に粗大化するまで行う。焼鈍条件は、α相の平均結晶粒径が150μm以上に粗大化する条件であれば特に制限はないが、例えば、650℃〜850℃で24時間以上保持、700℃〜850℃で8時間以上保持、または740℃〜850℃で4時間以上保持、のいずれかの条件で行うとよい。上記のいずれかの条件における焼鈍温度が低いと、α相の平均結晶粒径が150μm未満になるか、(0001)面からのピーク強度が高くなってしまうので好ましくない。また、焼鈍温度が850℃を超えると、α相の平均結晶粒径が過剰に粗大化して板厚の1/10超になるか、あるいは焼鈍中にβ相が析出して部分的に粒成長が抑制されてしまい、所定の結晶粒径まで粒成長しない場合があるので好ましくない。また、上記のいずれかの条件における焼鈍時間が不足すると、α相の平均結晶粒径が150μm未満になるので好ましくない。焼鈍時間が長すぎるとα相の平均結晶粒径が板厚の1/10超になる場合があるので、平均結晶粒径が板厚の1/10以下になる時間に調整するとよい。   The annealing after cooling is performed until the average crystal grain size of the α phase is coarsened to 150 μm or more. The annealing condition is not particularly limited as long as the average crystal grain size of the α phase is coarsened to 150 μm or more. For example, it is maintained at 650 ° C. to 850 ° C. for 24 hours or more, and 700 ° C. to 850 ° C. for 8 hours or more. It may be performed under any of the conditions of holding or holding at 740 ° C. to 850 ° C. for 4 hours or more. If the annealing temperature under any of the above conditions is low, the average crystal grain size of the α phase is less than 150 μm, or the peak intensity from the (0001) plane becomes high, which is not preferable. When the annealing temperature exceeds 850 ° C., the average crystal grain size of the α phase becomes excessively coarse and exceeds 1/10 of the plate thickness, or the β phase precipitates during the annealing and partially grows grains. Is suppressed, and grain growth may not occur up to a predetermined crystal grain size. Moreover, if the annealing time under any of the above conditions is insufficient, the average crystal grain size of the α phase becomes less than 150 μm, which is not preferable. If the annealing time is too long, the average crystal grain size of the α phase may be more than 1/10 of the plate thickness. Therefore, the time may be adjusted so that the average crystal grain size is 1/10 or less of the plate thickness.

また、上記の熱処理は、チタン板の酸化を防止するために真空雰囲気または不活性ガス雰囲気(アルゴンやヘリウム)での熱処理が適している。   Further, the above heat treatment is suitable in a vacuum atmosphere or an inert gas atmosphere (argon or helium) in order to prevent oxidation of the titanium plate.

なお、チタンスラブをβ変態点超の温度に加熱し、β変態点超の温度で熱間圧延を行い、その後、冷却して従来の条件で焼鈍しただけでは、(0001)面からのピーク強度を小さくすることができない。β変態点超の温度で熱間圧延を行った場合には、bccからなるチタンのβ相が熱間圧延されることになる。熱間圧延されたβ相は圧下率が高くなるほど強い圧延集合組織を形成するが、このβ相の圧延集合組織からβ変態点未満の温度まで空冷以上の冷却速度で冷却されると、hcpからなるα相に変態する。その後、従来の焼鈍条件にて結晶粒を成長させたとしても、いわゆるT−Textureと呼ばれる集合組織が形成される。このT−Textureはhcpのc軸が圧延幅方向(TD)に配向しており、EBSDで測定し解析した板面方向(ND)の(0001)面のピーク強度が7.00以上となり、5.00を超えてしまう。つまり、α相の結晶方位をランダム化することができず、より優れた耐衝撃性が得られなくなる。   Note that the peak intensity from the (0001) plane can be obtained simply by heating the titanium slab to a temperature above the β transformation point, hot rolling at a temperature above the β transformation point, and then cooling and annealing under conventional conditions. Can not be reduced. When hot rolling is performed at a temperature exceeding the β transformation point, the β phase of titanium composed of bcc is hot rolled. The hot-rolled β phase forms a stronger rolling texture as the rolling reduction increases, but when cooled at a cooling rate equal to or higher than air cooling from the β-phase rolling texture to a temperature below the β transformation point, from hcp It transforms into the α phase. After that, even when crystal grains are grown under the conventional annealing conditions, a texture called so-called T-Texture is formed. In this T-Texture, the c axis of hcp is oriented in the rolling width direction (TD), and the peak intensity of the (0001) plane in the plate direction (ND) measured and analyzed by EBSD is 7.00 or more. It will exceed .00. That is, the α-phase crystal orientation cannot be randomized, and more excellent impact resistance cannot be obtained.

表1に示す化学組成のチタンを真空アーク溶解(VAR:Vacuum Arc Remelting)法によりチタン製インゴットを作製し、これらを熱間鍛造した。その後、以下に示す製造条件P1〜10でチタン板を作製した。熱間圧延後の板厚は6mmとした。表2及び表3に製造条件の詳細を示す。また、一部のチタン板については熱間圧延と焼鈍との間で冷間圧延を施して板厚2.0〜6.0mmに調整した。このようにして、A1〜A46及びB1〜B53のチタン板を製造した。   Titanium ingots having chemical compositions shown in Table 1 were produced by a vacuum arc melting (VAR) method and hot forged. Then, the titanium plate was produced on the manufacturing conditions P1-10 shown below. The plate thickness after hot rolling was 6 mm. Tables 2 and 3 show the details of the manufacturing conditions. Moreover, about some titanium plates, it cold-rolled between hot rolling and annealing, and adjusted to plate thickness 2.0-6.0 mm. In this way, titanium plates of A1 to A46 and B1 to B53 were manufactured.

[製造条件]
P1:熱間圧延(加熱温度:β変態点未満)⇒冷間圧延⇒焼鈍(焼鈍温度:β変態点未満)
P2:熱間圧延(加熱温度:β変態点未満)⇒焼鈍(焼鈍温度:β変態点未満)
P3:熱間圧延(加熱温度:β変態点超)⇒焼鈍(焼鈍温度:β変態点未満)
P4:熱間圧延(加熱温度:β変態点未満)⇒β域熱処理(β変態点超の温度に加熱後、水冷(冷却速度50℃/s以上))⇒焼鈍(焼鈍温度:β変態点未満)
P5:熱間圧延(加熱温度:β変態点未満)⇒β域熱処理(β変態点超の温度に加熱後、空冷(冷却速度0.5℃/s以上))⇒焼鈍(焼鈍温度:がβ変態点未満)
P6:熱間圧延(加熱温度:β変態点未満)⇒β域熱処理(β変態点超の温度に加熱後、炉冷(冷却速度0.5℃/s未満))⇒焼鈍(焼鈍温度:がβ変態点未満)
P7:熱間圧延(加熱温度:β変態点未満)⇒冷間圧延⇒β域熱処理(β変態点超の温度に加熱後、水冷(冷却速度50℃/s以上))⇒焼鈍(焼鈍温度:β変態点未満)
P8:熱間圧延(加熱温度:β変態点未満)⇒冷間圧延⇒β域熱処理2(β変態点超の温度に加熱後、空冷(冷却速度0.5℃/s以上))⇒焼鈍(焼鈍温度:β変態点未満)
P9:熱間圧延(加熱温度:β変態点超)⇒β域熱処理(β変態点超の温度に加熱後、水冷(冷却速度50℃/s以上))⇒焼鈍(焼鈍温度:β変態点未満)
P10:熱間圧延(加熱温度:β変態点超)⇒β域熱処理(β変態点超の温度に加熱後、空冷(冷却速度0.5℃/s以上))⇒焼鈍(焼鈍温度:β変態点未満)
[Production conditions]
P1: Hot rolling (heating temperature: less than β transformation point) ⇒ cold rolling ⇒ annealing (annealing temperature: less than β transformation point)
P2: Hot rolling (heating temperature: less than β transformation point) ⇒ Annealing (annealing temperature: less than β transformation point)
P3: Hot rolling (heating temperature: over β transformation point) ⇒ annealing (annealing temperature: less than β transformation point)
P4: Hot rolling (heating temperature: less than β transformation point) ⇒ β-region heat treatment (heating to a temperature above the β transformation point, then water cooling (cooling rate of 50 ° C / s or more)) ⇒ Annealing (annealing temperature: less than the β transformation point) )
P5: Hot rolling (heating temperature: less than β transformation point) ⇒ β-region heat treatment (heating to a temperature above the β transformation point, then air cooling (cooling rate 0.5 ° C / s or more)) ⇒ annealing (annealing temperature: is β Less than the transformation point)
P6: Hot rolling (heating temperature: less than β transformation point) ⇒ β-region heat treatment (heating to a temperature above the β transformation point, furnace cooling (cooling rate less than 0.5 ° C / s)) ⇒ annealing (annealing temperature: <β transformation point)
P7: Hot rolling (heating temperature: less than β transformation point) ⇒ cold rolling ⇒ β-region heat treatment (heating to a temperature above the β transformation point, then water cooling (cooling rate of 50 ° C / s or more)) ⇒ annealing (annealing temperature: <β transformation point)
P8: Hot rolling (heating temperature: less than β transformation point) ⇒ cold rolling ⇒ β zone heat treatment 2 (heated to a temperature above the β transformation point, then air cooling (cooling rate 0.5 ° C / s or more)) ⇒ annealing ( Annealing temperature: less than β transformation point)
P9: Hot rolling (heating temperature: more than β transformation point) ⇒ β-region heat treatment (heating to a temperature exceeding the β transformation point, then water cooling (cooling rate 50 ° C / s or more)) ⇒ annealing (annealing temperature: less than β transformation point) )
P10: Hot rolling (heating temperature: more than β transformation point) ⇒ β-region heat treatment (heating to a temperature exceeding the β transformation point, then air cooling (cooling rate 0.5 ° C / s or more)) ⇒ annealing (annealing temperature: β transformation) Less than points)

上記製造条件のうち、P1〜P3はβ域熱処理を含まない条件であり、チタン板A1〜A46の製造条件である。また、P4〜P10はβ域熱処理を含む条件であり、チタン板B1〜B53の製造条件である。
表1の化学組成記号M1〜M12では、β変態点が892〜932℃であることから、製造条件P4〜P10におけるβ域熱処理は、β変態点を超える980℃で30分保持した後、各々、水冷、空冷、炉冷で、室温まで冷却した。なお、熱間圧延と冷間圧延の他に、研磨や酸洗で、チタン板の厚さ(板厚)を調整した。
以下、チタン板A1〜A46及びB1〜B53の評価方法について述べる。
Among the manufacturing conditions, P1 to P3 are conditions that do not include the β-region heat treatment, and are manufacturing conditions for the titanium plates A1 to A46. P4 to P10 are conditions including β-region heat treatment, and are manufacturing conditions for the titanium plates B1 to B53.
In the chemical composition symbols M1 to M12 in Table 1, since the β transformation point is 892 to 932 ° C., the β region heat treatment in the production conditions P4 to P10 is held at 980 ° C. exceeding the β transformation point for 30 minutes, Then, it was cooled to room temperature by water cooling, air cooling, or furnace cooling. In addition to hot rolling and cold rolling, the thickness (plate thickness) of the titanium plate was adjusted by polishing or pickling.
Hereinafter, evaluation methods of the titanium plates A1 to A46 and B1 to B53 will be described.

(1)ビッカース硬さ(HV)
埋め込み研磨したチタン板の板面にて、荷重5kgで5点を測定した平均値を求めた。表2、3におけるビッカース硬さの硬さ記号はHVである。
(1) Vickers hardness (HV)
An average value obtained by measuring five points with a load of 5 kg on the surface of the embedded and polished titanium plate was obtained. The hardness symbol of Vickers hardness in Tables 2 and 3 is HV.

(2)α相の平均結晶粒径
熱間圧延方向をRD(L方向)とおき、チタン板のL断面にて、板厚の1/4、1/2、3/4の位置で、切断法で測定し、その平均値を求めた。
(2) α-phase average crystal grain diameter Hot rolling direction is RD (L direction), and cutting is performed at 1/4, 1/2, and 3/4 of the plate thickness in the L cross section of the titanium plate. The average value was determined.

(3)α相(hcp)の板面方向(ND)から見た(0001)面からのピーク強度の決定方法
熱間圧延方向をRD(L方向)とおき、チタン板のL断面にて、電子線後方散乱回折法(EBSD法)で結晶方位を測定した。その測定データから、EBSDデータ解析ソフトTSL OIM Analysis ver.7.2を用いた調和関数を使用した解析から、板面方向(ND)から見た(0001)面からのピーク強度を求めた。なお、結晶粒が100個以上含まれるEBSDの測定データを用いた。
(3) Determination method of peak intensity from (0001) plane viewed from plate surface direction (ND) of α phase (hcp) The hot rolling direction is set to RD (L direction), and the L cross section of the titanium plate is The crystal orientation was measured by an electron beam backscatter diffraction method (EBSD method). From the measured data, the peak intensity from the (0001) plane viewed from the plate direction (ND) was determined from analysis using a harmonic function using the EBSD data analysis software TSL OIM Analysis ver.7.2. Note that measurement data of EBSD containing 100 or more crystal grains was used.

(4)耐衝撃性
衝撃物として質量9.8gの球状の鉛を使用して、種々速度でチタン板の表面にぶつけて、チタン板を衝撃物が貫通しない限界の速度を求めた。化学成分が、質量%でO:0.135%、N:0.003%、C:0.003%、Fe:0.051%(表1の化学組成記号M2)のチタン板を熱間圧延および冷間圧延を実施した後、真空中で650℃4時間の焼鈍を施した平均結晶粒径27μmの試料No.A3(表2参照)を基準として、試料No.A3の限界速度V0に対する種々チタン板における限界速度VTの比、VT/V0、を二乗した、(VT/V0)を、“衝撃物が貫通しない限界エネルギーの比率”とした。ここでエネルギーの比率と称しているのは、衝撃物が同一質量の場合には速度の二乗にて、衝撃物のエネルギーを相対的に比較できるからである。
(4) Impact resistance Spherical lead having a mass of 9.8 g was used as an impact material, and was hit against the surface of the titanium plate at various speeds to determine the limit speed at which the impact material did not penetrate the titanium plate. Hot rolling a titanium plate with chemical components of O: 0.135%, N: 0.003%, C: 0.003%, Fe: 0.051% (chemical composition symbol M2 in Table 1) in mass% And after carrying out cold rolling, sample No. 2 having an average crystal grain size of 27 μm was annealed in vacuum at 650 ° C. for 4 hours. Based on A3 (see Table 2), sample no. The ratio of the critical speed VT of various titanium plates to the critical speed V0 of A3, that is, VT / V0, was squared, and (VT / V0) 2 was defined as the “ratio of the critical energy through which the impact object does not penetrate”. The energy ratio is referred to here because the energy of the impact object can be relatively compared by the square of the speed when the impact object has the same mass.

[効果の基準]
チタン板A1〜A43は、上述の限界エネルギーの比率が1.10以上を合格とした。限界エネルギーの比率が1.10以上とは、基準となるNo.A3に対して10%以上も耐衝撃特性が上位にあることを意味している。
また、チタン板B1〜B53についても、限界エネルギーの比率が1.10以上を合格とした。なお、チタン板B1〜B53については、α相の結晶方位をピーク強度5.00以下までランダム化しているので、チタン板B1〜B53のうち本発明の条件を満足するものは、限界エネルギーの比率が1.20以上になることが期待される。
結果を表2及び表3に示す。
[Effect criteria]
As for titanium plate A1-A43, the ratio of the above-mentioned limit energy set 1.10 or more as the pass. The limit energy ratio of 1.10 or more is the standard No. This means that the impact resistance is higher by 10% or more than A3.
In addition, regarding the titanium plates B1 to B53, the ratio of the limit energy was 1.10 or more as acceptable. In addition, about titanium plate B1-B53, since the crystal orientation of (alpha) phase is randomized to peak intensity 5.00 or less, what satisfy | fills the conditions of this invention among titanium plates B1-B53 is the ratio of a limit energy. Is expected to be 1.20 or more.
The results are shown in Tables 2 and 3.

表2及び表3に示すように、本発明の範囲にあるチタン板は、限界エネルギーの比率が比較例に比べて高く、耐衝撃性に優れていることがわかる。また、表3に示す本発明例のチタン板は、板面方向(ND)から見た(0001)面からのピーク強度が5.00以下なので、限界エネルギーの比率が1.20以上となり、耐衝撃性がより向上している。   As shown in Tables 2 and 3, it can be seen that the titanium plate in the range of the present invention has a higher ratio of limit energy than the comparative example and is excellent in impact resistance. In addition, the titanium plate of the present invention example shown in Table 3 has a peak intensity from the (0001) plane viewed from the plate surface direction (ND) of 5.00 or less, so that the ratio of critical energy is 1.20 or more, Impact is improved.

また、表2に示すように、チタン板A1、A2、A33、A34、A37、A38は、チタンの化学成分が発明範囲から外れたため、限界エネルギーの比率が低下した。
チタン板A3、A5〜A7、A13、A14、A16、A18、A19、A21、A23〜25、A31、A33、A35、A39、A41、A43、A45は、焼鈍条件が本発明の範囲から外れたため、平均結晶粒径が150μm未満になり、限界エネルギーの比率が低下した。
チタン板A12、A30は、平均結晶粒径に対して板厚が薄すぎたため、α相の平均結晶粒径が板厚の10%超となり、限界エネルギーの比率が低下した。
Moreover, as shown in Table 2, the titanium plates A1, A2, A33, A34, A37, and A38 had a ratio of the critical energy decreased because the chemical component of titanium was out of the scope of the invention.
Titanium plates A3, A5-A7, A13, A14, A16, A18, A19, A21, A23-25, A31, A33, A35, A39, A41, A43, A45, because the annealing conditions were out of the scope of the present invention, The average crystal grain size was less than 150 μm, and the ratio of critical energy was reduced.
Since the plate thickness of the titanium plates A12 and A30 was too thin with respect to the average crystal grain size, the average crystal grain size of the α phase exceeded 10% of the plate thickness, and the ratio of critical energy decreased.

また、表3に示すように、チタン板B1〜B3、B40、B43は、チタンの化学成分が発明範囲から外れたため、限界エネルギーの比率が低下した。
チタン板B7、B8、B28は、焼鈍条件が本発明の範囲から外れたため、平均結晶粒径が150μm未満になり、限界エネルギーの比率が低下した。
チタン板B14、B34は、平均結晶粒径に対して板厚が薄すぎたため、α相の平均結晶粒径が板厚の10%超となり、限界エネルギーの比率が低下した。
チタン板B17、37は、β域熱処理後の冷却条件が炉冷であったので、平均結晶粒径が大きくなり、この粗大化した結晶粒径に対して板厚が薄すぎたため、α相の平均結晶粒径が板厚の10%超となり、限界エネルギーの比率が低下した。
Moreover, as shown in Table 3, since the chemical components of titanium deviated from the scope of the invention for titanium plates B1 to B3, B40, and B43, the ratio of critical energy decreased.
Since the annealing conditions of the titanium plates B7, B8, and B28 were out of the range of the present invention, the average crystal grain size was less than 150 μm, and the ratio of the critical energy was lowered.
Since the plate thickness of the titanium plates B14 and B34 was too thin with respect to the average crystal grain size, the average crystal grain size of the α phase exceeded 10% of the plate thickness, and the ratio of critical energy decreased.
Titanium plates B17 and 37 had an average crystal grain size because the cooling condition after the β-region heat treatment was furnace cooling, and the plate thickness was too thin for this coarsened crystal grain size. The average crystal grain size exceeded 10% of the plate thickness, and the ratio of critical energy decreased.

Claims (6)

O、N、Cの合計量が0.140〜0.260質量%であり、Feが0.020〜0.080質量%であり、残部がTi及び不純物よりなり、
α相の平均結晶粒径が150μm以上、かつ前記α相の平均結晶粒径が板厚の10%以下であり、
ビッカース硬さ(HV)が130〜190であることを特徴とする耐衝撃性に優れたチタン板。
The total amount of O, N, and C is 0.140 to 0.260% by mass, Fe is 0.020 to 0.080% by mass, and the balance is made of Ti and impurities.
The average crystal grain size of the α phase is 150 μm or more, and the average crystal grain size of the α phase is 10% or less of the plate thickness,
A titanium plate excellent in impact resistance characterized by having a Vickers hardness (HV) of 130 to 190.
電子線後方散乱回折法(EBSD法)にて測定した結晶方位分布にて板面方向(ND)から見た(0001)面からのピーク強度が5.00以下であることを特徴とする請求項1に記載の耐衝撃性に優れたチタン板。   The peak intensity from the (0001) plane viewed from the plate direction (ND) in the crystal orientation distribution measured by the electron backscatter diffraction method (EBSD method) is 5.00 or less. 1. A titanium plate excellent in impact resistance as described in 1. 板厚が2.0〜6.0mmであることを特徴とする請求項1または請求項2に記載の耐衝撃性に優れたチタン板。   The titanium plate excellent in impact resistance according to claim 1 or 2, wherein the plate thickness is 2.0 to 6.0 mm. O、N、Cの合計量が0.140〜0.190質量%であり、Feが0.020〜0.080質量%であり、残部がTi及び不純物よりなるチタンに対して熱間圧延を施し、
次いで、650℃〜850℃で24時間以上保持、700℃〜850℃で8時間以上保持、または740℃〜850℃で4時間以上保持、のいずれかの条件で熱処理を施すことを特徴とする請求項1または請求項3に記載のチタン板の製造方法。
The total amount of O, N, and C is 0.140 to 0.190% by mass, Fe is 0.020 to 0.080% by mass, and the remainder is hot-rolled with titanium and Ti. Giving,
Next, heat treatment is performed under the conditions of holding at 650 ° C. to 850 ° C. for 24 hours or more, holding at 700 ° C. to 850 ° C. for 8 hours or more, or holding at 740 ° C. to 850 ° C. for 4 hours or more. The manufacturing method of the titanium plate of Claim 1 or Claim 3.
O、N、Cの合計量が0.140〜0.190質量%であり、Feが0.020〜0.080質量%であり、残部がTi及び不純物よりなるチタンに対して熱間圧延を施し、
次いで、β変態点を超える温度まで加熱してから0.5℃/秒以上の冷却速度で冷却した後、650℃〜850℃で24時間以上保持、700℃〜850℃で8時間以上保持、または740℃〜850℃で4時間以上保持、のいずれかの条件で熱処理を施すことを特徴とする請求項2または請求項3に記載のチタン板の製造方法。
The total amount of O, N, and C is 0.140 to 0.190% by mass, Fe is 0.020 to 0.080% by mass, and the remainder is hot-rolled with titanium and Ti. Giving,
Next, after heating to a temperature exceeding the β transformation point and cooling at a cooling rate of 0.5 ° C./second or more, holding at 650 ° C. to 850 ° C. for 24 hours or more, holding at 700 ° C. to 850 ° C. for 8 hours or more, The method for producing a titanium plate according to claim 2 or 3, wherein the heat treatment is performed under any of the conditions of holding at 740 ° C to 850 ° C for 4 hours or more.
前記熱間圧延と前記熱処理との間に、冷間圧延を行うことを特徴とする請求項4または請求項5に記載のチタン板の製造方法。   The method for producing a titanium plate according to claim 4 or 5, wherein cold rolling is performed between the hot rolling and the heat treatment.
JP2016160550A 2016-08-18 2016-08-18 Titanium plate excellent in impact resistance and method for producing the same Active JP6645381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016160550A JP6645381B2 (en) 2016-08-18 2016-08-18 Titanium plate excellent in impact resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016160550A JP6645381B2 (en) 2016-08-18 2016-08-18 Titanium plate excellent in impact resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2018028131A true JP2018028131A (en) 2018-02-22
JP6645381B2 JP6645381B2 (en) 2020-02-14

Family

ID=61247714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016160550A Active JP6645381B2 (en) 2016-08-18 2016-08-18 Titanium plate excellent in impact resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP6645381B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114178527A (en) * 2021-12-09 2022-03-15 西北工业大学 Powder metallurgy preparation method of variable texture titanium material
CN115216667A (en) * 2022-07-18 2022-10-21 西安秦钛智造科技有限公司 Titanium plate for metal diaphragm and processing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114178527A (en) * 2021-12-09 2022-03-15 西北工业大学 Powder metallurgy preparation method of variable texture titanium material
CN114178527B (en) * 2021-12-09 2023-07-21 西北工业大学 Powder metallurgy preparation method of textured titanium material
CN115216667A (en) * 2022-07-18 2022-10-21 西安秦钛智造科技有限公司 Titanium plate for metal diaphragm and processing method thereof

Also Published As

Publication number Publication date
JP6645381B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
EP2481823B1 (en) Nanocrystal titanium alloy and production method for same
EP1504131B1 (en) ALPHA-BETA Ti-Al-V-Mo-Fe ALLOY
KR101418775B1 (en) Beta type titanium alloy with low elastic modulus and high strength
US20070131314A1 (en) Titanium alloys and method for manufacturing titanium alloy materials
US20210348252A1 (en) &amp;#945;+&amp;#946; type titanium alloy wire and manufacturing method of &amp;#945;+&amp;#946; type titanium alloy wire
WO2016052397A1 (en) High-strength steel material for oil wells, and oil well pipe
JP6263040B2 (en) Titanium plate
Li et al. Aging response of laser melting deposited Ti–6Al–2Zr–1Mo–1V alloy
JP7448776B2 (en) Titanium alloy thin plate and method for producing titanium alloy thin plate
JPWO2006085609A1 (en) Novel Fe-Al alloy and method for producing the same
JP6187678B2 (en) Α + β type titanium alloy cold-rolled annealed sheet having high strength and high Young&#39;s modulus and method for producing the same
JPWO2012115242A1 (en) Α + β-type titanium alloy plate excellent in cold-rolling property and cold handling property and its manufacturing method
JP6645381B2 (en) Titanium plate excellent in impact resistance and method for producing the same
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP5668712B2 (en) A hard pure titanium plate excellent in impact resistance and a method for producing the same.
JPWO2020213179A1 (en) Steel plate and its manufacturing method, and molded body
Hodgson et al. Hot forming of medium Mn steels with TRIP effect
CN105814224A (en) High-strength steel for steel forgings, and steel forging
JP7404792B2 (en) Martensitic stainless steel parts and their manufacturing method
TWI701343B (en) Titanium alloy plate and golf club head
JP2004183079A (en) Titanium alloy and method for manufacturing titanium alloy material
US20110318220A1 (en) Titanium alloys and method for manufacturing titanium alloy materials
Wood et al. The all-beta titanium alloy (Ti-13V-11Cr-3Al)
JP6794585B1 (en) Manufacturing method of titanium material for hot rolling
TWI796118B (en) Titanium alloy plate and titanium alloy coil and manufacturing method of titanium alloy plate and titanium alloy coil

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R151 Written notification of patent or utility model registration

Ref document number: 6645381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151