JP2018028117A - Film deposition apparatus - Google Patents

Film deposition apparatus Download PDF

Info

Publication number
JP2018028117A
JP2018028117A JP2016159480A JP2016159480A JP2018028117A JP 2018028117 A JP2018028117 A JP 2018028117A JP 2016159480 A JP2016159480 A JP 2016159480A JP 2016159480 A JP2016159480 A JP 2016159480A JP 2018028117 A JP2018028117 A JP 2018028117A
Authority
JP
Japan
Prior art keywords
gas
film
base material
gas supply
supply nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016159480A
Other languages
Japanese (ja)
Inventor
正一郎 熊本
Shoichiro Kumamoto
正一郎 熊本
飯塚 和孝
Kazutaka Iizuka
和孝 飯塚
拓哉 板倉
Takuya Itakura
拓哉 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016159480A priority Critical patent/JP2018028117A/en
Publication of JP2018028117A publication Critical patent/JP2018028117A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film deposition apparatus capable of stably depositing a film and suppressing the occurrence of abnormal discharge.SOLUTION: A film deposition apparatus 1 comprises a film deposition chamber 40 grounded and allowing evacuation and a gas supply nozzle 50 for supplying a material gas including the constituent element of a thin film in a base material 60 arranged in the film deposition chamber 40. The gas supply nozzle 50 is branched into a gas flow passage 51 extended along the front surface 61 of a base material 60 from one end side of the front surface 61 to the other end side and for ejecting the material gas on the side of the front surface 61 and a gas flow passage 52 extended along the rear surface 62 of the base material 60 from one end side on the rear surface 62 to the other end side and for ejecting the material gas on the side of the rear surface 62; the gas supply nozzle 50 is penetrated and connected in a hole formed in the side wall part of the film deposition chamber 40; and an insulator 70 is provided in a space between the hole and the gas supply nozzle 50.SELECTED DRAWING: Figure 3

Description

本発明は、燃料電池のセパレータ用の基材に薄膜をプラズマ成膜する成膜装置に関する。   The present invention relates to a film forming apparatus for forming a thin film on a base material for a separator of a fuel cell.

水素と酸素との電気化学反応によって電力を作り出す発電システムとして燃料電池が注目されている。この燃料電池(例えば固体高分子形燃料電池)は、一般的に、複数の単セルを積層したスタック構造を有する。   A fuel cell is attracting attention as a power generation system that generates electric power through an electrochemical reaction between hydrogen and oxygen. This fuel cell (for example, a polymer electrolyte fuel cell) generally has a stack structure in which a plurality of single cells are stacked.

単セルは、膜電極接合体の両側を一対のセパレータで挟み込んで構成されている。このセパレータは、単セルで発生した電流を隣の単セルに流す役割も担っているため、セパレータを構成するセパレータ材には、高い導電性が要求されるだけでなく、その高い導電性が燃料電池のセル内部の高温酸性雰囲気中においても長期間維持される導電耐久性が要求される。   A single cell is configured by sandwiching both sides of a membrane electrode assembly with a pair of separators. Since this separator also plays a role of flowing current generated in a single cell to the adjacent single cell, the separator material constituting the separator is not only required to have high conductivity, but also its high conductivity is a fuel. Conductive durability that is maintained for a long time even in a high-temperature acidic atmosphere inside the battery cell is required.

このような事情に鑑み、下記特許文献1に記載のプラズマ成膜装置を用いて、燃料電池のセパレータ用の基材の表面に炭素含有薄膜を形成することにより、高い導電性と耐久性とを付与したセパレータを作製することが知られている。下記特許文献1に記載のプラズマ成膜装置では、処理容器(真空チャンバー)内にて高周波電力により原料ガスをプラズマ化し、そのプラズマにより基材に炭素含有薄膜を形成している。このプラズマ成膜装置において、原料ガスを供給するガスノズルは、カソード電極及び接地電極と対向しない真空チャンバーの側壁面部に設けられている。   In view of such circumstances, by using the plasma film forming apparatus described in Patent Document 1 below, by forming a carbon-containing thin film on the surface of a base material for a fuel cell separator, high conductivity and durability are achieved. It is known to produce an applied separator. In the plasma film forming apparatus described in Patent Document 1 below, a raw material gas is turned into plasma by high-frequency power in a processing vessel (vacuum chamber), and a carbon-containing thin film is formed on the substrate by the plasma. In this plasma film forming apparatus, the gas nozzle for supplying the source gas is provided on the side wall surface portion of the vacuum chamber that does not face the cathode electrode and the ground electrode.

特開2001−284262号公報JP 2001-284262 A

ところで、基材の表裏全面に均一な膜を成膜するためには、基材にガスを均一に供給する必要があり、そのためには基材に近い部分にガスノズルを設置することが望ましい。しかし、ガスノズルを基材の近くに設置してしまうと、ガスノズルが電極となり、基材とガスノズルの間でプラズマが発生してガスノズルに膜が付着してしまう。ガスノズルの噴出口に膜が堆積すると、異常放電が発生するおそれがある。   By the way, in order to form a uniform film on the entire front and back surfaces of the base material, it is necessary to uniformly supply the gas to the base material. For this purpose, it is desirable to install a gas nozzle near the base material. However, if the gas nozzle is installed near the substrate, the gas nozzle becomes an electrode, plasma is generated between the substrate and the gas nozzle, and a film adheres to the gas nozzle. If a film is deposited on the gas nozzle outlet, abnormal discharge may occur.

本発明はこのような課題に鑑みてなされたものであり、その目的は、基材に供給するガスの均一性を向上させながら、安定したプラズマ成膜を行うことができる成膜装置を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a film forming apparatus capable of performing stable plasma film formation while improving the uniformity of the gas supplied to the substrate. There is.

上記課題を解決するために本発明に係る成膜装置は、燃料電池のセパレータ用の基材に薄膜をプラズマ成膜する成膜装置であって、真空排気可能な接地された成膜室と、前記成膜室に接続され、前記成膜室内に配置された前記基材に前記薄膜の構成元素を含む原料ガスを供給するガス供給ノズルと、を備え、前記ガス供給ノズルは、前記基材の表面の一端側から他端側に向かって前記表面に沿うように延在し前記表面側に前記原料ガスを噴射する噴射ノズルと、前記基材の裏面の一端側から他端側に向かって前記裏面に沿うように延在し前記裏面側に前記原料ガスを噴射する噴射ノズルとに分岐され、前記成膜室の側壁部に形成された孔に前記ガス供給ノズルが貫通接続されると共に、前記孔と前記ガス供給ノズルとの間の隙間に絶縁部材が設けられている。   In order to solve the above-mentioned problems, a film forming apparatus according to the present invention is a film forming apparatus for forming a thin film on a substrate for a fuel cell separator, and a grounded film forming chamber capable of being evacuated, A gas supply nozzle connected to the film formation chamber and configured to supply a source gas containing a constituent element of the thin film to the substrate disposed in the film formation chamber, and the gas supply nozzle An injection nozzle that extends along the surface from one end side to the other end side of the surface and injects the raw material gas to the surface side, and from the one end side of the back surface of the base material to the other end side The gas supply nozzle is penetratingly connected to a hole formed in a side wall portion of the film forming chamber, and is branched to an injection nozzle that extends along the back surface and injects the source gas to the back surface side, and An insulating member is formed in the gap between the hole and the gas supply nozzle. It has been kicked.

本発明では、基材の表面の一端側から他端側に向かって表面に沿うように延在する噴射ノズルと、基材の裏面の一端側から他端側に向かって裏面に沿うように延在する噴射ノズルとを備えたガス供給ノズルにより、基材の表裏の広範囲に亘って均一に原料ガスを供給できるので、基材に成膜する膜の均一性を向上させることができる。また、ガス供給ノズルと成膜室の側壁部に形成された孔との間の隙間に設けた絶縁部材により、ガス供給ノズルが成膜室と絶縁されるので、ガスノズルと基材間での放電を抑制することができ、ガスノズルを基材に近づけた状態でも安定した成膜を行うことができる。   In the present invention, the spray nozzle extending along the surface from one end side to the other end side of the surface of the base material, and extending along the back surface from the one end side of the back surface of the base material toward the other end side. Since the source gas can be supplied uniformly over a wide range of the front and back surfaces of the base material by the gas supply nozzle including the existing injection nozzle, the uniformity of the film formed on the base material can be improved. Further, since the gas supply nozzle is insulated from the film formation chamber by the insulating member provided in the gap between the gas supply nozzle and the hole formed in the side wall portion of the film formation chamber, the discharge between the gas nozzle and the substrate is performed. Stable film formation can be performed even when the gas nozzle is close to the substrate.

本発明によれば、基材に供給するガスの均一性を向上させながら、安定したプラズマ成膜を行うことができる成膜装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the film-forming apparatus which can perform the stable plasma film-forming can be provided, improving the uniformity of the gas supplied to a base material.

本実施形態における成膜装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the film-forming apparatus in this embodiment. 図1の成膜室の側面を示す説明図である。It is explanatory drawing which shows the side surface of the film-forming chamber of FIG. 図1の成膜室の正面を示す説明図である。It is explanatory drawing which shows the front of the film-forming chamber of FIG. 図1のガス供給ノズルの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the gas supply nozzle of FIG.

以下添付図面を参照しながら本発明の実施形態について説明する。尚、以下の好ましい実施形態の説明は、例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。図1乃至図4において、X方向及びY方向は、水平面に平行な方向を示し、Z方向は鉛直方向に平行な方向を示す。   Embodiments of the present invention will be described below with reference to the accompanying drawings. It should be noted that the following description of the preferred embodiment is merely an example, and is not intended to limit the present invention, its application, or its use. 1 to 4, the X direction and the Y direction indicate directions parallel to the horizontal plane, and the Z direction indicates a direction parallel to the vertical direction.

図1は、本実施形態に係る成膜装置10の概略構成を示す説明図である。成膜装置10は、化学気相成長法の一種であるプラズマCVD法により薄膜の構成元素を含む化合物の一種類以上の原料ガスをプラズマ化し、成膜対象である基材60の表面全体に炭素含有薄膜を形成する。基材60に成膜される炭素含有薄膜の構造としては、アモルファス構造や、グラファイト構造であるものとしても良く、他の種類の構造で有るものとしても良い。なお、基材60としては、例えば、燃料電池のセパレータの基材として用いられる平板状の金属板とすることができる。   FIG. 1 is an explanatory diagram showing a schematic configuration of a film forming apparatus 10 according to the present embodiment. The film deposition apparatus 10 converts one or more source gases of a compound containing constituent elements of a thin film into plasma by plasma CVD, which is a kind of chemical vapor deposition method, and forms carbon on the entire surface of the substrate 60 to be deposited. A containing thin film is formed. The structure of the carbon-containing thin film formed on the substrate 60 may be an amorphous structure, a graphite structure, or another type of structure. In addition, as the base material 60, it can be set as the flat metal plate used as a base material of the separator of a fuel cell, for example.

成膜装置10は、成膜室40と、予備加熱室30と、搬送機構20とを備える。成膜室40は、プラズマ存在下で基材60の両面に炭素含有薄膜を成膜する。予備加熱室30は、成膜室40におけるプラズマ存在下での基材60への薄膜形成に先立って基材60の両面を均一に予備加熱する。搬送機構20は、予備加熱室30と成膜室40との間で基材60を搬送する装置である。   The film forming apparatus 10 includes a film forming chamber 40, a preheating chamber 30, and a transport mechanism 20. The film forming chamber 40 forms a carbon-containing thin film on both surfaces of the substrate 60 in the presence of plasma. The preheating chamber 30 preheats both surfaces of the base material 60 uniformly before forming a thin film on the base material 60 in the presence of plasma in the film forming chamber 40. The transport mechanism 20 is a device that transports the substrate 60 between the preheating chamber 30 and the film forming chamber 40.

搬送機構20は、中空円筒状のシリンダ筒21と、シリンダ筒21の内壁に沿って往復摺動可能に配置されたシリンダ軸22と、シリンダ軸22をシリンダ筒21に沿って往復摺動させるための摺動機構23とを備えている。摺動機構23は、シリンダ筒21の外壁に沿って往復摺動可能に嵌合する環状のスライダであり、その内部には、磁石24が設けられている。また、シリンダ軸22の端部付近には、磁石24と相互作用する磁石25が設けられており、これらの磁石24,25間に作用する磁力を利用して摺動機構23の往復運動に連動してシリンダ軸22を往復運動させることができる。シリンダ軸22の先端には、弁体26と、弁体26に接続する治具27とが設けられている。治具27は、基材60を保持するための部材である。   The transport mechanism 20 is configured to reciprocately slide the cylinder shaft 22 along the cylinder cylinder 21, the cylinder cylinder 22 disposed so as to be reciprocally slidable along the inner wall of the cylinder cylinder 21, and the cylinder cylinder 21. The sliding mechanism 23 is provided. The sliding mechanism 23 is an annular slider that is slidably fitted along the outer wall of the cylinder cylinder 21, and a magnet 24 is provided therein. A magnet 25 that interacts with the magnet 24 is provided near the end of the cylinder shaft 22, and is linked to the reciprocating motion of the sliding mechanism 23 using the magnetic force acting between the magnets 24 and 25. Thus, the cylinder shaft 22 can be reciprocated. A valve body 26 and a jig 27 connected to the valve body 26 are provided at the tip of the cylinder shaft 22. The jig 27 is a member for holding the base material 60.

予備加熱室30は、予備加熱空間を画定する筐体31と、基材60を予備加熱室30へ搬入するために筐体31に対して開閉可能な蓋32と、予備加熱空間に設置された基材60を予備加熱する赤外線ランプヒータ33と、予備加熱室30と成膜室40との間で基材60を搬送するために開閉可能なシャッター34とを備えている。なお、図1には図示していないが、予備加熱室30は、基材60を予備加熱する際に、予備加熱室30内を真空引きする真空ポンプと、基材60の温度を目標温度に一致させるために赤外線ランプヒータ33から照射される赤外線の強度を制御する制御ユニットとを備えている。   The preheating chamber 30 is installed in the preheating space, a housing 31 that defines the preheating space, a lid 32 that can be opened and closed with respect to the housing 31 in order to carry the base material 60 into the preheating chamber 30. An infrared lamp heater 33 that preheats the base material 60 and a shutter 34 that can be opened and closed to transport the base material 60 between the preheating chamber 30 and the film formation chamber 40 are provided. Although not shown in FIG. 1, the preheating chamber 30 includes a vacuum pump that evacuates the preheating chamber 30 when the substrate 60 is preheated, and sets the temperature of the substrate 60 to the target temperature. And a control unit for controlling the intensity of infrared rays emitted from the infrared lamp heater 33 in order to match.

成膜室40は、プラズマ発生空間を画定する筐体41(チャンバー)と、プラズマ生成に必要な電圧を発生する一対の対極42,43と、薄膜の構成元素を含む原料ガスを基材60の表面及び裏面に噴射するガス供給ノズル50とを備えている。なお、図1には図示していないが、成膜室40は、基材60への薄膜形成時に成膜室40内を真空引きする真空ポンプと、ガス供給ノズル50に原料ガスを供給する原料ガス供給源と、基材60を陰極とし、且つ、一対の対極42,43を陽極として、電圧を印加するプラズマ発生用電源と、プラズマ成膜に用いられることのなかった原子を含む排ガスを成膜室40から排気する排ガス処理部とを備えている。原料ガスとして、例えば、複素環式芳香族化合物のアミンの一種であるピリジンを用いることができる。原料ガスは、炭素原子に加えて、窒素原子やケイ素原子を含んでいてもよい。プラズマ中の原料ガスの炭素原子の陽イオンは、陰極である基材60の表面及び裏面に吸着及び堆積することにより、炭素含有薄膜が蒸着形成される。   The film formation chamber 40 includes a casing 41 (chamber) that defines a plasma generation space, a pair of counter electrodes 42 and 43 that generate a voltage necessary for plasma generation, and a raw material gas containing constituent elements of a thin film. And a gas supply nozzle 50 for spraying on the front surface and the back surface. Although not shown in FIG. 1, the film forming chamber 40 includes a vacuum pump that evacuates the film forming chamber 40 when a thin film is formed on the substrate 60, and a raw material that supplies a raw material gas to the gas supply nozzle 50. A gas supply source, a plasma generating power source for applying a voltage with a base material 60 as a cathode and a pair of counter electrodes 42 and 43 as an anode, and an exhaust gas containing atoms that have not been used for plasma film formation are formed. An exhaust gas treatment unit for exhausting air from the membrane chamber 40. As source gas, pyridine which is 1 type of the amine of a heterocyclic aromatic compound can be used, for example. The source gas may contain nitrogen atoms or silicon atoms in addition to carbon atoms. The cation of the carbon atom of the source gas in the plasma is adsorbed and deposited on the front and back surfaces of the substrate 60 that is the cathode, thereby forming a carbon-containing thin film.

なお、上述した成膜室40における原料ガスの供給量の制御、成膜室40内を真空引きする真空ポンプの制御、予備加熱室30における加熱制御、搬送機構20の制御等は図示しない制御ユニットにより制御される。   Note that the control unit (not shown) includes control of the supply amount of the source gas in the film forming chamber 40, control of a vacuum pump that evacuates the film forming chamber 40, heating control in the preheating chamber 30, control of the transfer mechanism 20, and the like. Controlled by

続いて、図2乃至図4を参照しながら、ガス供給ノズル50の構成について説明する。図2は成膜室40の側面を示す説明図、図3は成膜室40の正面を示す説明図、図4はガス供給ノズル50の概略構成を示す説明図である。なお、例えば図1の成膜室40と図2の成膜室40との縦横比(形状)が相違しているが、これは図面の便宜上であり、図2の成膜室40は、図1の成膜室40と同様のものである。その他の縦横比が相違している部分についても、それぞれの図面で同一の符号を付している部材は同様のものである。   Next, the configuration of the gas supply nozzle 50 will be described with reference to FIGS. 2 to 4. 2 is an explanatory view showing the side of the film forming chamber 40, FIG. 3 is an explanatory view showing the front of the film forming chamber 40, and FIG. 4 is an explanatory view showing a schematic configuration of the gas supply nozzle 50. Note that, for example, the aspect ratio (shape) of the film formation chamber 40 in FIG. 1 is different from that in the film formation chamber 40 in FIG. 2, but this is for the sake of convenience of the drawing, and the film formation chamber 40 in FIG. This is the same as the film forming chamber 40 of No. 1. The members denoted by the same reference numerals in the respective drawings are the same for other portions having different aspect ratios.

ガス供給ノズル50は、基材60の表面61の一端側から他端側に延在して表面61に向けて原料ガスを噴射するガス流路51(噴射ノズル)と、基材60の裏面62の一端側から他端側に延在して裏面62に向けて原料ガスを噴射するガス流路52(噴射ノズル)と、原料ガス供給源から供給される原料ガスを、二股に分岐する分岐流路54を介して、ガス流路51,52に導くガス流路53とを備えている。ガス流路51及びガス流路52には、それぞれ基材60側の面に複数の噴射孔(図示略)が形成され、この噴射孔から基材60に向けて原料ガスが噴射される。なお、ガス供給ノズル50としては例えば金属製の材料が用いられる。   The gas supply nozzle 50 extends from one end side to the other end side of the surface 61 of the substrate 60 and injects a raw material gas toward the surface 61, and a back surface 62 of the substrate 60. A gas flow path 52 (injection nozzle) that extends from one end side to the other end side and injects the source gas toward the back surface 62, and a branch flow that bifurcates the source gas supplied from the source gas supply source A gas flow path 53 that leads to the gas flow paths 51 and 52 via the path 54 is provided. In the gas channel 51 and the gas channel 52, a plurality of injection holes (not shown) are formed on the surface on the base material 60 side, and the raw material gas is injected from the injection holes toward the base material 60. For example, a metal material is used for the gas supply nozzle 50.

ガス流路51は、基材60の表面61に平行な平面内において、基材60の三辺を囲むように略コの字状に屈曲している。同様に、ガス流路52は、基材60の裏面62に平行な平面内において、基材60の三辺を囲むように略コの字状に屈曲している。   The gas flow path 51 is bent in a substantially U shape so as to surround the three sides of the substrate 60 in a plane parallel to the surface 61 of the substrate 60. Similarly, the gas flow path 52 is bent in a substantially U shape so as to surround three sides of the substrate 60 in a plane parallel to the back surface 62 of the substrate 60.

ガス流路53と成膜室40との接続部には、絶縁体70が設けられている。具体的には、成膜室40の一の側壁部に孔(ガス流路53の外径よりも大きな孔)が形成され、その孔を貫通するようにガス流路53が配設されており(図3参照)、側壁部に形成された孔の内周面とガス流路53の外周面との間の隙間に絶縁体70が設けられている。これによりガス供給ノズル50と接地された成膜室40(真空チャンバ)とが電気的に絶縁された状態となる。このように成膜室40と絶縁されたガス供給ノズル50は、接地電極と同電位ではなく、いわゆる浮遊電位と称される状態となり、接地電極(0V)と基材60の電極(−3kV)の中間の電位をとる。これにより、ガス供給ノズル50と基材60間の電位差を小さくすることができ、ガス供給ノズル50を基材60に近づけることが可能となる。また、ガス供給ノズル50のうち対極42,43と対向した部分にのみ電位差(基材60と対極42、43間との電位差よりも小さい電位差)がかかるが、基材60に比べると弱い放電であり、ガスを噴出する噴射孔とは反対側の面(背面)に放電、成膜されるので、噴射孔へ成膜されることを抑えることができる。これにより、噴射孔への膜の堆積が抑えられ、異常放電を抑制することができる。   An insulator 70 is provided at the connection between the gas flow path 53 and the film forming chamber 40. Specifically, a hole (a hole larger than the outer diameter of the gas flow channel 53) is formed in one side wall portion of the film forming chamber 40, and the gas flow channel 53 is disposed so as to penetrate the hole. (See FIG. 3), an insulator 70 is provided in the gap between the inner peripheral surface of the hole formed in the side wall portion and the outer peripheral surface of the gas flow path 53. As a result, the gas supply nozzle 50 and the grounded film formation chamber 40 (vacuum chamber) are electrically insulated. Thus, the gas supply nozzle 50 insulated from the film forming chamber 40 is not in the same potential as the ground electrode but in a so-called floating potential, and the ground electrode (0 V) and the electrode of the substrate 60 (−3 kV). An intermediate potential is taken. Thereby, the potential difference between the gas supply nozzle 50 and the substrate 60 can be reduced, and the gas supply nozzle 50 can be brought closer to the substrate 60. In addition, a potential difference (potential difference smaller than the potential difference between the base material 60 and the counter electrodes 42 and 43) is applied only to the portion of the gas supply nozzle 50 facing the counter electrodes 42 and 43. However, the discharge is weaker than that of the base material 60. In addition, since the discharge and the film are formed on the surface (back surface) opposite to the injection hole for ejecting the gas, the formation of the film on the injection hole can be suppressed. Thereby, deposition of a film on the injection hole is suppressed, and abnormal discharge can be suppressed.

なお、絶縁体70に用いられる材料は絶縁性を有するものであれば特に限定されないが、例えばアルミナを用いることができる。   Note that the material used for the insulator 70 is not particularly limited as long as it has an insulating property. For example, alumina can be used.

以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。   The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. In other words, those specific examples that have been appropriately modified by those skilled in the art are also included in the scope of the present invention as long as they have the characteristics of the present invention. Each element included in each of the specific examples described above and their arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be appropriately changed.

10:成膜装置
20:搬送機構
21:シリンダ筒
22:シリンダ軸
23:摺動機構
30:予備加熱室
33:赤外線ランプヒータ
34:シャッター
40:成膜室
42,43:対極
50:ガス供給ノズル
51,52:ガス流路(噴射ノズル)
60:基材
70:絶縁体(絶縁部材)
DESCRIPTION OF SYMBOLS 10: Film-forming apparatus 20: Conveying mechanism 21: Cylinder cylinder 22: Cylinder shaft 23: Sliding mechanism 30: Preheating chamber 33: Infrared lamp heater 34: Shutter 40: Film-forming chamber 42, 43: Counter electrode 50: Gas supply nozzle 51, 52: Gas flow path (injection nozzle)
60: Base material 70: Insulator (insulating member)

Claims (1)

燃料電池のセパレータ用の基材に薄膜をプラズマ成膜する成膜装置であって、
真空排気可能な接地された成膜室と、
前記成膜室に接続され、前記成膜室内に配置された前記基材に前記薄膜の構成元素を含む原料ガスを供給するガス供給ノズルと、を備え、
前記ガス供給ノズルは、前記基材の表面の一端側から他端側に向かって前記表面に沿うように延在し前記表面側に前記原料ガスを噴射する噴射ノズルと、前記基材の裏面の一端側から他端側に向かって前記裏面に沿うように延在し前記裏面側に前記原料ガスを噴射する噴射ノズルとに分岐され、
前記成膜室の側壁部に形成された孔に前記ガス供給ノズルが貫通接続されると共に、前記孔と前記ガス供給ノズルとの間の隙間に絶縁部材が設けられている成膜装置。
A film forming apparatus for forming a thin film on a base material for a fuel cell separator,
A grounded deposition chamber that can be evacuated;
A gas supply nozzle connected to the film formation chamber and configured to supply a source gas containing a constituent element of the thin film to the base material disposed in the film formation chamber;
The gas supply nozzle extends from one end side to the other end side of the surface of the base material so as to follow the surface, and an injection nozzle that injects the source gas to the surface side, and a back surface of the base material Branched from one end side to the other end side along the back surface and branched to an injection nozzle for injecting the raw material gas to the back surface side,
The film forming apparatus, wherein the gas supply nozzle is through-connected to a hole formed in a side wall portion of the film forming chamber, and an insulating member is provided in a gap between the hole and the gas supply nozzle.
JP2016159480A 2016-08-16 2016-08-16 Film deposition apparatus Pending JP2018028117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016159480A JP2018028117A (en) 2016-08-16 2016-08-16 Film deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016159480A JP2018028117A (en) 2016-08-16 2016-08-16 Film deposition apparatus

Publications (1)

Publication Number Publication Date
JP2018028117A true JP2018028117A (en) 2018-02-22

Family

ID=61249100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016159480A Pending JP2018028117A (en) 2016-08-16 2016-08-16 Film deposition apparatus

Country Status (1)

Country Link
JP (1) JP2018028117A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277478A (en) * 1985-09-30 1987-04-09 Agency Of Ind Science & Technol Method and apparatus for producing thin film by plasma chemical vapor deposition
JP2006120621A (en) * 2004-09-21 2006-05-11 Masaru Hori Fuel cell separator, electrode structure for fuel cell, manufacturing method thereof, and polymer electrolyte fuel cell comprising the same
JP2013147393A (en) * 2012-01-20 2013-08-01 Aisin Seiki Co Ltd Carbon nanotube producing apparatus and carbon nanotube producing method
JP2013237844A (en) * 2013-06-12 2013-11-28 Hitachi Chemical Co Ltd Thermosetting resin composition, prepreg using the same, and laminate
JP2014028733A (en) * 2012-07-04 2014-02-13 Toyota Motor Corp Method for producing carbon nanotubes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277478A (en) * 1985-09-30 1987-04-09 Agency Of Ind Science & Technol Method and apparatus for producing thin film by plasma chemical vapor deposition
JP2006120621A (en) * 2004-09-21 2006-05-11 Masaru Hori Fuel cell separator, electrode structure for fuel cell, manufacturing method thereof, and polymer electrolyte fuel cell comprising the same
JP2013147393A (en) * 2012-01-20 2013-08-01 Aisin Seiki Co Ltd Carbon nanotube producing apparatus and carbon nanotube producing method
JP2014028733A (en) * 2012-07-04 2014-02-13 Toyota Motor Corp Method for producing carbon nanotubes
JP2013237844A (en) * 2013-06-12 2013-11-28 Hitachi Chemical Co Ltd Thermosetting resin composition, prepreg using the same, and laminate

Similar Documents

Publication Publication Date Title
US6570172B2 (en) Magnetron negative ion sputter source
US20080296510A1 (en) Ion Implantation System and Ion Implantation System
TW201402851A (en) Method for sputtering for processes with a pre-stabilized plasma
CN104996000B (en) Plasma source
JP2011091361A (en) Electrostatic chuck
RU2643508C2 (en) Plasma source
US20130333618A1 (en) Hall effect plasma source
JP5607760B2 (en) CVD apparatus and CVD method
KR102192566B1 (en) Sputter deposition source, sputter deposition apparatus, and method of depositing a layer on a substrate
JP4993694B2 (en) Plasma CVD apparatus and thin film forming method
JP2018028117A (en) Film deposition apparatus
KR20140072492A (en) Plasma cvd apparatus
JP5853487B2 (en) Discharge electrode and discharge method
JP2018021218A (en) Film deposition apparatus
JP2023502636A (en) Method and apparatus for sputter depositing a target material onto a substrate
SG190912A1 (en) Plasma cvd apparatus, magnetic recording medium and method for manufacturing the same
JP2007277638A (en) Apparatus and method for treating surface of base material
CN104221477B (en) Plasma generating device, evaporation coating device and method of generating plasma
KR102470379B1 (en) plasma deposition equipment
JP5585294B2 (en) Plasma processing apparatus and thin film manufacturing method using the same
US20220380889A1 (en) Versatile Vacuum Deposition Sources and System thereof
JP2015106450A (en) Method of manufacturing separator for fuel cell
KR20040088650A (en) A apparatus for synthesis of thin films
JP2000064052A (en) Plasma cvd device
JP5995468B2 (en) Manufacturing method of membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191111