JP2018026516A - Multi charged particle beam lithography apparatus and adjustment method thereof - Google Patents

Multi charged particle beam lithography apparatus and adjustment method thereof Download PDF

Info

Publication number
JP2018026516A
JP2018026516A JP2016236860A JP2016236860A JP2018026516A JP 2018026516 A JP2018026516 A JP 2018026516A JP 2016236860 A JP2016236860 A JP 2016236860A JP 2016236860 A JP2016236860 A JP 2016236860A JP 2018026516 A JP2018026516 A JP 2018026516A
Authority
JP
Japan
Prior art keywords
feature amount
charged particle
particle beam
aperture image
approximate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016236860A
Other languages
Japanese (ja)
Other versions
JP6834429B2 (en
Inventor
翼 七尾
Tsubasa Nanao
翼 七尾
幸毅 清水
Yukitake Shimizu
幸毅 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to TW106122416A priority Critical patent/TWI651749B/en
Priority to KR1020170097549A priority patent/KR101988911B1/en
Priority to US15/665,839 priority patent/US10157723B2/en
Publication of JP2018026516A publication Critical patent/JP2018026516A/en
Application granted granted Critical
Publication of JP6834429B2 publication Critical patent/JP6834429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects
    • G03F1/74Repair or correction of mask defects by charged particle beam [CPB], e.g. focused ion beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/66Containers specially adapted for masks, mask blanks or pellicles; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • G03F1/86Inspecting by charged particle beam [CPB]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers

Abstract

PROBLEM TO BE SOLVED: To perform automatic adjustment of aberration of an optical system with high accuracy when irradiating a multi-beam.SOLUTION: A multi charged particle beam lithography apparatus includes an aperture member 8 for forming a multi-beam by passing a charged particle beam through multiple apertures 80, a blanking plate 10 where multiple blankers performing blanking deflection of corresponding beams, out of the multi-beam, are arranged, a limitation aperture member 14 for shielding each beam deflected to become beam OFF state by the multiple blankers, a stage 22 on which a substrate 24 irradiated with the multi-beam is placed, a detector 26 for detecting reflection charged particles from the substrate 24, a feature amount calculation unit 51 for calculating the feature amount of an aperture image based on the detection value of the detector 26, and an aberration correction unit 40 for correcting aberration of a charged particle beam based on the feature amount.SELECTED DRAWING: Figure 1

Description

本発明は、マルチ荷電粒子ビーム描画装置及びその調整方法に関する。   The present invention relates to a multi-charged particle beam drawing apparatus and an adjustment method thereof.

LSIの高集積化に伴い、半導体デバイスの回路線幅は年々微細化されてきている。半導体デバイスへ所望の回路パターンを形成するためには、縮小投影型露光装置を用いて、石英上に形成された高精度の原画パターン(マスク、或いは特にステッパやスキャナで用いられるものはレチクルともいう。)をウェーハ上に縮小転写する手法が採用されている。高精度の原画パターンは、電子ビーム描画装置によって描画され、所謂、電子ビームリソグラフィ技術が用いられている。   With the high integration of LSI, the circuit line width of a semiconductor device has been reduced year by year. In order to form a desired circuit pattern on a semiconductor device, a reduction projection type exposure apparatus is used to form a high-precision original pattern pattern formed on quartz (a mask, or a pattern used particularly in a stepper or scanner is also called a reticle). )) Is reduced and transferred onto the wafer. A high-precision original pattern is drawn by an electron beam drawing apparatus, and so-called electron beam lithography technology is used.

例えば、マルチビームを使った描画装置がある。マルチビームを用いることで、1本の電子ビームで描画する場合に比べて、一度(1回のショット)に多くのビームを照射できるので、スループットを大幅に向上させることができる。マルチビーム方式の描画装置では、例えば、電子銃から放出された電子ビームを複数の穴を持ったアパーチャ部材に通してマルチビームを形成し、ブランキングプレートで各ビームのブランキング制御を行い、遮蔽されなかったビームが光学系で縮小され、移動可能なステージ上に載置された基板に照射される。   For example, there is a drawing apparatus using a multi-beam. By using a multi-beam, it is possible to irradiate many beams at one time (one shot) as compared with the case of drawing with one electron beam, so that the throughput can be greatly improved. In a multi-beam type drawing apparatus, for example, an electron beam emitted from an electron gun is passed through an aperture member having a plurality of holes to form a multi-beam, and blanking control of each beam is performed by a blanking plate to block the beam. The beam that has not been reduced is reduced by an optical system and irradiated onto a substrate placed on a movable stage.

マルチビームを形成するアパーチャ部材には、縦m列×横n列(m,n≧2)の穴が所定の配列ピッチでマトリクス状に形成されている。そのため、基板に照射されるマルチビーム全体の形状(アパーチャ像)は、理想的には矩形になる。しかし、描画装置に設けられた光学系の球面収差の影響で、ビーム形状の外周の四辺が外側へ膨らんだような形状になったり、内側へ凹んだような形状になったりする。   In the aperture member forming the multi-beam, holes of vertical m rows × horizontal n rows (m, n ≧ 2) are formed in a matrix at a predetermined arrangement pitch. Therefore, the shape (aperture image) of the entire multi-beam irradiated on the substrate is ideally rectangular. However, due to the influence of the spherical aberration of the optical system provided in the drawing device, the four outer peripheral sides of the beam shape become a shape that bulges outward or a shape that is concave inward.

このような特異なビーム形状を評価して球面収差を自動調整することは困難であった。   It was difficult to automatically adjust the spherical aberration by evaluating such a unique beam shape.

特開2006−210503号公報JP 2006-210503 A 特開2015−167212号公報JP 2015-167212 A 特開2014−229481号公報JP 2014-229481 A 特開2008−153209号公報JP 2008-153209 A 特表2006−510184号公報JP-T-2006-510184 特開2012−104426号公報JP 2012-104426 A 特開2005−302359号公報JP 2005-302359 A

本発明は、マルチビームを照射する際の光学系の収差を精度良く自動調整できるマルチ荷電粒子ビーム描画装置及びその調整方法を提供することを課題とする。   It is an object of the present invention to provide a multi-charged particle beam drawing apparatus and an adjustment method thereof that can automatically and accurately adjust aberrations of an optical system when irradiating multi-beams.

本発明の一態様によるマルチ荷電粒子ビーム描画装置は、荷電粒子ビームを放出する放出部と、複数の開口部が形成され、前記複数の開口部を前記荷電粒子ビームが通過することによりマルチビームを形成するアパーチャ部材と、前記マルチビームのうち、それぞれ対応するビームのブランキング偏向を行う複数のブランカが配置されたブランキングプレートと、前記複数のブランカによってビームOFFの状態になるように偏向された各ビームを遮蔽する制限アパーチャ部材と、前記マルチビームが照射される基板を載置するステージと、前記基板からの反射荷電粒子を検出する検出器と、前記検出器の検出値に基づくアパーチャ像の特徴量を計算する特徴量計算部と、前記特徴量に基づいて荷電粒子ビームの収差を補正する収差補正部と、を備えるものである。   A multi-charged particle beam drawing apparatus according to an aspect of the present invention includes a discharge unit that emits a charged particle beam and a plurality of openings, and the charged particle beam passes through the plurality of openings to generate a multi-beam. The aperture member to be formed, a blanking plate on which a plurality of blankers for performing blanking deflection of the corresponding beams among the multi-beams, and the plurality of blankers were deflected so as to be in a beam OFF state. A limiting aperture member that shields each beam, a stage on which the substrate to which the multi-beam is irradiated, a detector that detects reflected charged particles from the substrate, and an aperture image based on the detection value of the detector A feature amount calculation unit that calculates a feature amount; an aberration correction unit that corrects an aberration of the charged particle beam based on the feature amount; It is those with a.

本発明の一態様によるマルチ荷電粒子ビーム描画装置において、前記特徴量計算部は、前記アパーチャ像に近似する近似図形を生成し、前記近似図形の内側及び外側の少なくともいずれか一方に位置する前記アパーチャ像の面積から前記特徴量を計算し、前記収差補正部は前記特徴量に基づいて荷電粒子ビームの球面収差を補正する。   In the multi-charged particle beam drawing apparatus according to one aspect of the present invention, the feature amount calculation unit generates an approximate figure that approximates the aperture image, and the aperture located at least one of the inside and the outside of the approximate figure The feature amount is calculated from the area of the image, and the aberration correction unit corrects the spherical aberration of the charged particle beam based on the feature amount.

本発明の一態様によるマルチ荷電粒子ビーム描画装置において、前記特徴量計算部は、前記アパーチャ像に近似する近似四角形を生成し、前記近似四角形の対角線のうち長い方の長さと、前記アパーチャ像の外周長さとの比率を、前記特徴量として計算し、前記収差補正部は前記特徴量に基づいて荷電粒子ビームの球面収差を補正する。   In the multi-charged particle beam drawing apparatus according to an aspect of the present invention, the feature amount calculation unit generates an approximate quadrangle that approximates the aperture image, the longer one of the diagonal lines of the approximate quadrangle, and the aperture image A ratio with the outer peripheral length is calculated as the feature amount, and the aberration correction unit corrects the spherical aberration of the charged particle beam based on the feature amount.

本発明の一態様によるマルチ荷電粒子ビーム描画装置において、前記特徴量計算部は、前記アパーチャ像内の照度の標準偏差を前記特徴量として計算し、前記収差補正部は前記特徴量に基づいて荷電粒子ビームの球面収差を補正する。   In the multi-charged particle beam drawing apparatus according to one aspect of the present invention, the feature amount calculation unit calculates a standard deviation of illuminance in the aperture image as the feature amount, and the aberration correction unit charges based on the feature amount. Correct spherical aberration of particle beam.

本発明の一態様によるマルチ荷電粒子ビーム描画装置において、前記特徴量計算部は、前記アパーチャ像に近似する近似四角形を生成し、前記近似四角形の四辺の長さのばらつきを第1特徴量として計算し、前記収差補正部は、前記第1特徴量に基づいてマルチビームの非点収差を補正する。   In the multi-charged particle beam drawing apparatus according to one aspect of the present invention, the feature amount calculation unit generates an approximate rectangle that approximates the aperture image, and calculates variations in lengths of four sides of the approximate rectangle as a first feature amount. The aberration correction unit corrects multi-beam astigmatism based on the first feature amount.

本発明の一態様によるマルチ荷電粒子ビーム描画装置において、前記特徴量計算部は、前記アパーチャ像に近似する近似四角形を生成し、前記近似四角形の4個の内角の直角度合を第2特徴量として計算し、前記収差補正部は、前記第2特徴量に基づいてマルチビームの非点収差を補正する。   In the multi-charged particle beam drawing apparatus according to an aspect of the present invention, the feature amount calculation unit generates an approximate quadrangle that approximates the aperture image, and uses the squareness of four interior angles of the approximate quadrangle as a second feature amount. The aberration correction unit calculates and corrects multi-beam astigmatism based on the second feature amount.

本発明の一態様によるマルチ荷電粒子ビーム描画装置において、前記特徴量計算部は、前記アパーチャ像に近似する近似四角形を生成し、前記近似四角形の四辺の長さのばらつきを第1特徴量として計算し、前記近似四角形の4個の内角の直角度合を第2特徴量として計算し、前記収差補正部は、前記第1特徴量及び前記第2特徴量に基づいてマルチビームの非点収差を補正する。   In the multi-charged particle beam drawing apparatus according to one aspect of the present invention, the feature amount calculation unit generates an approximate rectangle that approximates the aperture image, and calculates variations in lengths of four sides of the approximate rectangle as a first feature amount. Then, the squareness of the four inner angles of the approximate quadrangle is calculated as a second feature amount, and the aberration correction unit corrects multi-beam astigmatism based on the first feature amount and the second feature amount. To do.

本発明の一態様によるマルチ荷電粒子ビーム描画装置の調整方法は、荷電粒子ビームを放出する工程と、前記荷電粒子ビームがアパーチャ部材の複数の開口部を通過してマルチビームを形成する工程と、ステージ上に載置された基板に前記マルチビームを照射する工程と、前記基板からの反射荷電粒子を検出する工程と、検出した前記反射荷電粒子に基づくアパーチャ像の特徴量を計算する工程と、前記特徴量に基づいて荷電粒子ビームの収差を補正する工程と、を備えるものである。   An adjustment method of a multi-charged particle beam drawing apparatus according to an aspect of the present invention includes a step of emitting a charged particle beam, a step of forming the multi-beam by passing the charged particle beam through a plurality of openings of an aperture member, Irradiating the substrate placed on the stage with the multi-beam, detecting the reflected charged particles from the substrate, calculating the feature value of the aperture image based on the detected reflected charged particles, Correcting the aberration of the charged particle beam based on the feature amount.

本発明の一態様によるマルチ荷電粒子ビーム描画装置の調整方法は、前記特徴量に基づいて荷電粒子ビームの球面収差を補正する。   The adjustment method of the multi charged particle beam drawing apparatus according to one aspect of the present invention corrects the spherical aberration of the charged particle beam based on the feature amount.

本発明の一態様によるマルチ荷電粒子ビーム描画装置の調整方法は、前記アパーチャ像に近似する近似四角形を生成し、前記近似四角形の四辺の長さのばらつきを示す第1特徴量と、前記近似四角形の4個の内角の直角度合を示す第2特徴量との少なくともいずれか一方を計算し、前記第1特徴量及び/又は前記第2特徴量に基づいて、マルチビームの非点収差を補正する。   An adjustment method of a multi-charged particle beam drawing apparatus according to an aspect of the present invention generates an approximate quadrangle that approximates the aperture image, a first feature amount indicating variation in length of four sides of the approximate quadrangle, and the approximate quadrangle. And calculating the astigmatism of the multi-beam based on the first feature value and / or the second feature value, and calculating at least one of the second feature value indicating the squareness of the four interior angles. .

本発明によれば、マルチビームを照射する際の光学系の収差を精度良く自動調整できる。   According to the present invention, the aberration of the optical system when irradiating a multi-beam can be automatically adjusted with high accuracy.

本発明の実施形態によるマルチ荷電粒子ビーム描画装置の概略図である。1 is a schematic view of a multi-charged particle beam drawing apparatus according to an embodiment of the present invention. アパーチャ部材の概略図である。It is the schematic of an aperture member. (a)〜(c)はアパーチャ像の例を示す図である。(A)-(c) is a figure which shows the example of an aperture image. (a)〜(c)はアパーチャ像の特徴量の算出方法を示す図である。(A)-(c) is a figure which shows the calculation method of the feature-value of an aperture image. アパーチャ像を近似する四角形の計算方法を説明するフローチャートである。It is a flowchart explaining the calculation method of the rectangle which approximates an aperture image. 近似四角形の求め方を説明する図である。It is a figure explaining how to obtain an approximate rectangle. 近似四角形の求め方を説明する図である。It is a figure explaining how to obtain an approximate rectangle. 近似四角形の求め方を説明する図である。It is a figure explaining how to obtain an approximate rectangle. 近似四角形の求め方を説明する図である。It is a figure explaining how to obtain an approximate rectangle. (a)(b)は近似四角形の求め方を説明する図である。(A) (b) is a figure explaining how to obtain an approximate rectangle. (a)(b)は近似四角形の求め方を説明する図である。(A) (b) is a figure explaining how to obtain an approximate rectangle. アパーチャ像面積比率と収差補正レンズ電圧との関係の例を示すグラフである。It is a graph which shows the example of the relationship between an aperture image area ratio and an aberration correction lens voltage. (a)〜(c)は別の実施形態によるアパーチャ像の特徴量の算出方法を示す図である。(A)-(c) is a figure which shows the calculation method of the feature-value of an aperture image by another embodiment. 別の実施形態によるマルチ荷電粒子ビーム描画装置の概略図である。It is the schematic of the multi charged particle beam drawing apparatus by another embodiment. 非点補正コイル値の変更に伴うアパーチャ像の形状変化の例を示す図である。It is a figure which shows the example of the shape change of the aperture image accompanying the change of an astigmatism correction coil value. アパーチャ像の特徴量の算出方法を説明する図である。It is a figure explaining the calculation method of the feature-value of an aperture image. 第1特徴量の計算結果の例を示す図である。It is a figure which shows the example of the calculation result of a 1st feature-value. 第2特徴量の計算結果の例を示す図である。It is a figure which shows the example of the calculation result of a 2nd feature-value.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態に係るマルチ荷電粒子ビーム描画装置の概略図である。本実施形態では、荷電粒子ビームの一例として、電子ビームを用いた構成について説明する。但し、荷電粒子ビームは、電子ビームに限るものではなく、イオンビーム等の他の荷電粒子ビームでもよい。   FIG. 1 is a schematic diagram of a multi-charged particle beam drawing apparatus according to an embodiment of the present invention. In this embodiment, a configuration using an electron beam will be described as an example of a charged particle beam. However, the charged particle beam is not limited to the electron beam, and may be another charged particle beam such as an ion beam.

この描画装置は、描画対象の基板24に電子ビームを照射して所望のパターンを描画する描画部Wと、描画部Wの動作を制御する制御部Cとを備える。   The drawing apparatus includes a drawing unit W that draws a desired pattern by irradiating a substrate 24 to be drawn with an electron beam, and a control unit C that controls the operation of the drawing unit W.

描画部Wは、電子ビーム鏡筒2及び描画室20を有している。電子ビーム鏡筒2内には、電子銃4、照明レンズ6、アパーチャ部材8、ブランキングアパーチャアレイ10、縮小レンズ12、アライメントコイル13、制限アパーチャ部材14、対物レンズ16、偏向器18、及び収差補正レンズ40が配置されている。   The drawing unit W includes an electron beam column 2 and a drawing chamber 20. In the electron beam column 2, there are an electron gun 4, an illumination lens 6, an aperture member 8, a blanking aperture array 10, a reduction lens 12, an alignment coil 13, a limiting aperture member 14, an objective lens 16, a deflector 18, and aberrations. A correction lens 40 is disposed.

収差補正レンズ40は照明レンズ6とアパーチャ部材8との間に設けられ、例えばフォイルレンズが用いられる。   The aberration correction lens 40 is provided between the illumination lens 6 and the aperture member 8, and for example, a foil lens is used.

描画室20内には、XYステージ22及び検出器26が配置される。XYステージ22上には、描画対象の基板24が載置されている。描画対象の基板24は、例えば、ウェーハや、ウェーハにエキシマレーザを光源としたステッパやスキャナ等の縮小投影型露光装置や極端紫外線露光装置(EUV)を用いてパターンを転写する露光用のマスクが含まれる。   An XY stage 22 and a detector 26 are arranged in the drawing chamber 20. A substrate 24 to be drawn is placed on the XY stage 22. The drawing target substrate 24 is, for example, a wafer, an exposure mask for transferring a pattern using a reduction projection type exposure apparatus such as a stepper or a scanner using an excimer laser as a light source, or an extreme ultraviolet exposure apparatus (EUV). included.

電子銃4から放出された電子ビーム30は、照明レンズ6によりほぼ垂直にアパーチャ部材8全体を照明する。図2は、アパーチャ部材8の構成を示す概念図である。アパーチャ部材8には、縦(y方向)m列×横(x方向)n列(m,n≧2)の穴(開口部)80が所定の配列ピッチでマトリクス状に形成されている。例えば、512列×512列の穴80が形成される。各穴80は、共に同じ寸法形状の矩形で形成される。各穴80は、同じ径の円形であっても構わない。   The electron beam 30 emitted from the electron gun 4 illuminates the entire aperture member 8 almost vertically by the illumination lens 6. FIG. 2 is a conceptual diagram showing the configuration of the aperture member 8. In the aperture member 8, vertical (y direction) m rows × horizontal (x direction) n rows (m, n ≧ 2) holes (openings) 80 are formed in a matrix at a predetermined arrangement pitch. For example, 512 rows × 512 rows of holes 80 are formed. Each hole 80 is formed of a rectangle having the same size and shape. Each hole 80 may be a circle having the same diameter.

電子ビーム30は、アパーチャ部材8のすべての穴80が含まれる領域を照明する。これらの複数の穴80を電子ビーム30の一部がそれぞれ通過することで、図1に示すようなマルチビーム30a〜30eが形成されることになる。   The electron beam 30 illuminates the area containing all the holes 80 of the aperture member 8. As part of the electron beam 30 passes through the plurality of holes 80, multi-beams 30a to 30e as shown in FIG. 1 are formed.

穴80の配列の仕方は、図2に示すように、縦横が格子状に配置される場合に限るものではない。例えば、縦方向に隣接する穴同士が、千鳥状に互い違いに配置されてもよい。   The arrangement of the holes 80 is not limited to the case where the vertical and horizontal directions are arranged in a lattice pattern as shown in FIG. For example, the holes adjacent in the vertical direction may be alternately arranged in a staggered manner.

ブランキングアパーチャアレイ10には、アパーチャ部材8の各穴80の配置位置に合わせて貫通孔が形成され、各貫通孔には、対となる2つの電極からなるブランカが、それぞれ配置される。各貫通孔を通過する電子ビーム30a〜30eは、それぞれ独立に、ブランカが印加する電圧によって偏向される。この偏向によって、各ビームがブランキング制御される。このように、ブランキングアパーチャアレイ10により、アパーチャ部材8の複数の穴80を通過したマルチビームの各ビームに対してブランキング偏向が行われる。   In the blanking aperture array 10, through holes are formed in accordance with the arrangement positions of the respective holes 80 of the aperture member 8, and blankers composed of two pairs of electrodes are arranged in the respective through holes. The electron beams 30a to 30e passing through the through holes are independently deflected by a voltage applied by the blanker. Each beam is blanked by this deflection. In this way, blanking deflection is performed by the blanking aperture array 10 on each of the multi-beams that have passed through the plurality of holes 80 of the aperture member 8.

ブランキングアパーチャアレイ10を通過したマルチビーム30a〜30eは、縮小レンズ12によって、各々のビームサイズと配列ピッチが縮小され、制限アパーチャ部材14に形成された中心の穴に向かって進む。アライメントコイル13は、マルチビームが制限アパーチャ部材14の穴の中心を通過するように光軸を調整する。   The multi-beams 30 a to 30 e that have passed through the blanking aperture array 10 are reduced in size and arrangement pitch by the reduction lens 12 and proceed toward the central hole formed in the limiting aperture member 14. The alignment coil 13 adjusts the optical axis so that the multibeam passes through the center of the hole of the limiting aperture member 14.

ブランキングアパーチャアレイ10のブランカにより偏向された電子ビームは、その軌道が変位し制限アパーチャ部材14の穴から位置がはずれ、制限アパーチャ部材14によって遮蔽される。一方、ブランキングアパーチャアレイ10のブランカによって偏向されなかった電子ビームは、制限アパーチャ部材14の穴を通過する。   The trajectory of the electron beam deflected by the blanker of the blanking aperture array 10 is displaced, the position of the electron beam is displaced from the hole of the limiting aperture member 14, and the electron beam is blocked by the limiting aperture member 14. On the other hand, the electron beam that has not been deflected by the blanker of the blanking aperture array 10 passes through the hole of the limiting aperture member 14.

このように、制限アパーチャ部材14は、ブランキングアパーチャアレイ10の電極によってビームOFFの状態になるように偏向された各ビームを遮蔽する。そして、ビームONになってからビームOFFになるまでに制限アパーチャ部材14を通過したビームが、1回分のショットのビームとなる。   Thus, the limiting aperture member 14 shields each beam deflected so as to be in a beam OFF state by the electrode of the blanking aperture array 10. Then, the beam that has passed through the limiting aperture member 14 from when the beam is turned on to when the beam is turned off becomes a shot beam for one shot.

制限アパーチャ部材14を通過したマルチビーム30a〜30eは、対物レンズ16により焦点が合わされ、所望の縮小率のパターン像となる。制限アパーチャ部材14を通過した各ビーム(マルチビーム全体)は、偏向器18によって同方向にまとめて偏向され、基板24に照射される。検出器26は、基板24からの反射電子(二次電子)を検出する。   The multi-beams 30a to 30e that have passed through the limiting aperture member 14 are focused by the objective lens 16 and become a pattern image having a desired reduction ratio. The beams (entire multi-beams) that have passed through the limiting aperture member 14 are deflected together in the same direction by the deflector 18 and irradiated onto the substrate 24. The detector 26 detects reflected electrons (secondary electrons) from the substrate 24.

一度に照射されるマルチビームは、理想的にはアパーチャ部材8の複数の穴80の配列ピッチに上述した所望の縮小率を乗じたピッチで並ぶことになる。この描画装置は、ショットビームを連続して順に照射していくラスタースキャン方式で描画動作を行い、所望のパターンを描画する際、パターンに応じて必要なビームがブランキング制御によりビームONに制御される。XYステージ22が連続移動している時、ビームの照射位置がXYステージ22の移動に追従するように偏向器18によって制御される。   The multi-beams irradiated at a time are ideally arranged at a pitch obtained by multiplying the arrangement pitch of the plurality of holes 80 of the aperture member 8 by the desired reduction ratio described above. This drawing apparatus performs a drawing operation by a raster scan method in which shot beams are continuously irradiated in order, and when drawing a desired pattern, the necessary beam is controlled to be ON by blanking control according to the pattern. The When the XY stage 22 is continuously moving, the beam irradiation position is controlled by the deflector 18 so as to follow the movement of the XY stage 22.

制御部Cは、制御計算機50、記憶装置52、レンズ制御回路54、制御回路56、及び信号取得回路58を有している。制御計算機50は、記憶装置52から描画データを取得し、描画データに対し複数段のデータ変換処理を行って装置固有のショットデータを生成し、制御回路56に出力する。ショットデータには、各ショットの照射量及び照射位置座標等が定義される。   The control unit C includes a control computer 50, a storage device 52, a lens control circuit 54, a control circuit 56, and a signal acquisition circuit 58. The control computer 50 acquires drawing data from the storage device 52, performs a plurality of stages of data conversion processing on the drawing data, generates apparatus-specific shot data, and outputs the shot data to the control circuit 56. In the shot data, the irradiation amount and irradiation position coordinates of each shot are defined.

制御回路56は、描画部Wの各部を制御して描画処理を行う。例えば、制御回路56は、各ショットの照射量を電流密度で割って照射時間tを求め、対応するショットが行われる際、照射時間tだけビームONするように、ブランキングアパーチャアレイ10の対応するブランカに偏向電圧を印加する。   The control circuit 56 controls each part of the drawing unit W to perform drawing processing. For example, the control circuit 56 calculates the irradiation time t by dividing the irradiation amount of each shot by the current density, and when the corresponding shot is performed, the control circuit 56 corresponds to the blanking aperture array 10 so that the beam is turned on only for the irradiation time t. A deflection voltage is applied to the blanker.

また、制御回路56は、ショットデータが示す位置(座標)に各ビームが偏向されるように偏向量を演算し、偏向器18に偏向電圧を印加する。これにより、その回にショットされるマルチビームがまとめて偏向される。   Further, the control circuit 56 calculates the deflection amount so that each beam is deflected to the position (coordinates) indicated by the shot data, and applies the deflection voltage to the deflector 18. Thereby, the multi-beams shot at that time are deflected together.

アパーチャ部材8の複数の穴80を通過して形成されたマルチビームが基板24に照射される。上述したように、アパーチャ部材8には、縦(y方向)m列×横(x方向)n列(m,n≧2)の穴80が形成されている。そのため、基板24に照射されるマルチビーム全体の形状を示す画像(以下、単に「アパーチャ像」と記載することがある)は、理想的には図3(a)に示すマルチビームB1のように四角形(略四角形)となる。   The multi-beam formed through the plurality of holes 80 of the aperture member 8 is irradiated onto the substrate 24. As described above, the aperture member 8 has holes 80 in the vertical (y direction) m rows × horizontal (x direction) n rows (m, n ≧ 2). Therefore, an image showing the shape of the entire multi-beam irradiated on the substrate 24 (hereinafter sometimes simply referred to as “aperture image”) is ideally like a multi-beam B1 shown in FIG. It becomes a rectangle (substantially a rectangle).

しかし、マルチビーム描画装置では、レンズの球面収差の影響でアパーチャ像が歪み、図3(b)に示すビームB2のようにアパーチャ像の外周の四辺が外側へ膨らんだようなバレル型形状になったり、図3(c)に示すビームB3のように外周の四辺が内側へ凹んだようなピンクッション型形状になったりする場合がある。   However, in the multi-beam drawing apparatus, the aperture image is distorted due to the spherical aberration of the lens, and has a barrel shape in which the four sides of the outer periphery of the aperture image bulge outward as a beam B2 shown in FIG. Or a pincushion type shape in which the four sides of the outer periphery are recessed inward as in the beam B3 shown in FIG.

本実施形態では、アパーチャ像の特徴を表す特徴量を計算し、算出した特徴量に基づいて球面収差を調整する。制御計算機50は、信号取得回路58を介して取得した検出器26の検出値に基づいて、アパーチャ像を得る。特徴量計算部51が、アパーチャ像の特徴量を計算する。レンズ制御回路54は、算出された特徴量に基づいて収差補正レンズ40への印加電圧を制御し、球面収差を補正して、アパーチャ像が所望の形状(四角形)となるように調整する。   In the present embodiment, a feature amount representing the feature of the aperture image is calculated, and the spherical aberration is adjusted based on the calculated feature amount. The control computer 50 obtains an aperture image based on the detection value of the detector 26 acquired through the signal acquisition circuit 58. The feature amount calculator 51 calculates the feature amount of the aperture image. The lens control circuit 54 controls the voltage applied to the aberration correction lens 40 based on the calculated feature amount, corrects the spherical aberration, and adjusts the aperture image to have a desired shape (rectangle).

特徴量計算部51は、得られたアパーチャ像に近似する四角形を生成し、アパーチャ像のうち、近似四角形の内側に位置する面積、近似四角形の外側に位置する面積、近似四角形の内側かつアパーチャ像の外側となる領域の面積等を求め、これらの比率を特徴量として計算する。   The feature amount calculation unit 51 generates a quadrangle that approximates the obtained aperture image, and among the aperture images, the area located inside the approximate rectangle, the area located outside the approximate rectangle, the inside of the approximate rectangle, and the aperture image The area etc. of the area | region which becomes outside is calculated | required, and these ratios are calculated as a feature-value.

例えば、図4(a)に示すように、略四角形状ビームB1は、アパーチャ像の大半が近似四角形Rの内側に位置し、近似四角形Rの外側に位置する領域61の面積は小さい。また、近似四角形Rの内側かつアパーチャ像の外側となる領域はゼロ又はほとんど無い。   For example, as shown in FIG. 4A, in the substantially square beam B1, most of the aperture image is located inside the approximate rectangle R, and the area 61 located outside the approximate rectangle R is small. Further, there is no or almost no area inside the approximate rectangle R and outside the aperture image.

図4(b)に示すように、バレル型ビームB2は、図4(a)に示す略四角形状ビームB1と同様に、アパーチャ像の多くが近似四角形Rの内側に位置するが、近似四角形Rの外側に位置する領域62の面積は、図4(a)の領域61の面積よりも大きくなる。近似四角形Rの内側かつアパーチャ像の外側となる領域はゼロ又はほとんど無い。   As shown in FIG. 4 (b), the barrel beam B2 has many aperture images located inside the approximate rectangle R, like the substantially square beam B1 shown in FIG. The area of the region 62 located outside is larger than the area of the region 61 in FIG. There is no or almost no area inside the approximate rectangle R and outside the aperture image.

図4(c)に示すように、ピンクッション型ビームB3は、近似四角形Rの内側かつアパーチャ像の外側となる領域60の面積が、略四角形状ビームB1やバレル型ビームB2より大きい。また、近似四角形Rの外側に位置するアパーチャ像の面積は極めて小さい。   As shown in FIG. 4C, in the pin cushion type beam B3, the area of the region 60 which is inside the approximate square R and outside the aperture image is larger than the substantially square beam B1 or the barrel type beam B2. The area of the aperture image located outside the approximate rectangle R is extremely small.

上述したように、理想的なビーム形状である略四角形状ビームB1では、近似四角形Rの外側に位置する領域61の面積が小さく、近似四角形Rの内側かつアパーチャ像の外側となる領域はゼロ又はほとんど無い。そのため、レンズ制御回路54は、近似四角形Rの外側に位置する領域の面積が所定範囲内となり、かつ近似四角形Rの内側かつアパーチャ像の外側となる領域が所定値以下となるように、収差補正レンズ40への印加電圧を制御し、球面収差を補正する。   As described above, in the substantially quadrangular beam B1, which is an ideal beam shape, the area 61 located outside the approximate quadrangle R is small, and the area inside the approximate quadrangle R and outside the aperture image is zero or zero. almost none. Therefore, the lens control circuit 54 corrects the aberration so that the area of the region located outside the approximate rectangle R is within the predetermined range, and the region inside the approximate rectangle R and outside the aperture image is equal to or less than the predetermined value. The voltage applied to the lens 40 is controlled to correct spherical aberration.

次に、図5に示すフローチャートを用いて、アパーチャ像を近似する四角形Rの計算方法について説明する。近似四角形Rは、4つの頂点を計算することで決定される。   Next, a calculation method of the rectangle R that approximates the aperture image will be described using the flowchart shown in FIG. The approximate rectangle R is determined by calculating four vertices.

特徴量計算部51は、信号取得回路58を介して取得した検出器26の検出値に基づいてアパーチャ像が得られると、アパーチャ像の輪郭上におけるX座標、Y座標がそれぞれ最大となる点、及び最小となる点を抽出する。X座標が最大となる点をXmax、X座標が最小となる点をXmin、Y座標が最大となる点をYmax、Y座標が最小となる点をYminとする。Xmax、Xmin、Ymax、Yminがそれぞれ一意に定まる場合は(ステップS1_Yes)、抽出した各点同士の間隔を計算する(ステップS2)。   When the aperture image is obtained based on the detection value of the detector 26 acquired via the signal acquisition circuit 58, the feature amount calculation unit 51 has a point where the X coordinate and the Y coordinate on the contour of the aperture image are maximized, And the point which becomes the minimum is extracted. A point where the X coordinate is maximum is Xmax, a point where the X coordinate is minimum is Xmin, a point where the Y coordinate is maximum is Ymax, and a point where the Y coordinate is minimum is Ymin. When Xmax, Xmin, Ymax, and Ymin are uniquely determined (step S1_Yes), the interval between the extracted points is calculated (step S2).

算出された間隔が全て所定値以上である場合(ステップS3_Yes)、図6に示すようにXmax、Xmin、Ymax、Yminはそれぞれ、アパーチャ像B10を近似する四角形の頂点とすることができ、近似四角形が決定する(ステップS4)。   When all the calculated intervals are equal to or larger than the predetermined value (step S3_Yes), as shown in FIG. 6, Xmax, Xmin, Ymax, and Ymin can each be a vertex of a quadrangle that approximates the aperture image B10. Is determined (step S4).

算出された間隔に所定値(例えば、想定される四角形の一辺の十分の一の長さ)未満のものがある場合(ステップS3_No)、所定値未満の間隔となっている2点を同一点とみなす(ステップS5)。例えば、図7に示すXmaxとYmaxとの間隔は所定値未満であり、Xmax及びYmaxは、アパーチャ像B11を近似する四角形の同一の頂点に相当する。2点を同一点とみなすことで、近似四角形を決定するために必要な頂点数(=4)が足りなくなるため、ステップS20へ進む。ステップS20以降の処理は後述する。   When the calculated interval is less than a predetermined value (for example, the length of one tenth of one side of the assumed rectangle) (step S3_No), two points that are less than the predetermined value are regarded as the same point. Consider it (step S5). For example, the interval between Xmax and Ymax shown in FIG. 7 is less than a predetermined value, and Xmax and Ymax correspond to the same vertex of a rectangle that approximates the aperture image B11. Since the two points are regarded as the same point, the number of vertices (= 4) necessary to determine the approximate quadrangle is insufficient, and the process proceeds to step S20. The processing after step S20 will be described later.

アパーチャ像によっては、Xmax、Xmin、Ymax、Yminがそれぞれ一意に定まらない場合がある(ステップS1_No)。例えば、図8に示すアパーチャ像B12ではXminが一意に定まらない。   Depending on the aperture image, Xmax, Xmin, Ymax, and Ymin may not be uniquely determined (step S1_No). For example, Xmin is not uniquely determined in the aperture image B12 shown in FIG.

Xmax又はXminが一意に定まらない場合は(ステップS10_Yes)、複数の候補の中からY座標が最大となる点とY座標が最小となる点とを抽出する(ステップS11)。例えば、図8に示す例ではXminが一意に定まらないため、図9に示すように、Xminとなる候補の中から、Y座標が最大となる点Xmin_ymaxとY座標が最小となる点Xmin_yminとを抽出する   When Xmax or Xmin is not uniquely determined (step S10_Yes), a point with the maximum Y coordinate and a point with the minimum Y coordinate are extracted from a plurality of candidates (step S11). For example, in the example shown in FIG. 8, Xmin is not uniquely determined. Therefore, as shown in FIG. 9, a point Xmin_ymax where the Y coordinate is maximum and a point Xmin_ymin where the Y coordinate is minimum are selected from the candidates for Xmin. Extract

同様に、Ymax又はYminが一意に定まらない場合は(ステップS12_Yes)、複数の候補の中からX座標が最大となる点とX座標が最小となる点とを抽出する(ステップS13)。   Similarly, when Ymax or Ymin is not uniquely determined (step S12_Yes), a point with the maximum X coordinate and a point with the minimum X coordinate are extracted from a plurality of candidates (step S13).

次に、アパーチャ像の輪郭上の複数の抽出点から未選択の1点を選択する(ステップS14)。そして、選択した点から、他の抽出点までの距離を計算する(ステップS15)。算出した距離に所定値未満のものがある場合(ステップS16_Yes)、所定値未満の距離となっている2点の一方を消去する(ステップS17)。未選択の点がある場合は(ステップS18_Yes)、ステップS14に戻る。アパーチャ像の輪郭上の全ての抽出点について、同様の処理を行う。ステップS14〜S18の処理を経て残った抽出点が4個である場合(ステップS19_Yes)、アパーチャ像を近似する四角形の頂点とすることができ、近似四角形が決定する(ステップS4)。   Next, one unselected point is selected from a plurality of extracted points on the contour of the aperture image (step S14). Then, the distance from the selected point to another extracted point is calculated (step S15). If the calculated distance is less than the predetermined value (step S16_Yes), one of the two points having the distance less than the predetermined value is deleted (step S17). If there is an unselected point (step S18_Yes), the process returns to step S14. The same processing is performed for all extracted points on the contour of the aperture image. When the number of extraction points remaining after the processing of steps S14 to S18 is four (step S19_Yes), the aperture image can be used as the approximate vertex of the quadrangle, and the approximate quadrangle is determined (step S4).

例えば、図9に示す例では、YmaxからXmin_ymaxまでの距離が所定値未満となるため、いずれか一方を消去する。これにより、アパーチャ像B12の輪郭上に4個の点Xmax、Xmin_ymin、Ymax(又はXmin_ymax)、Yminが残り、これらを頂点とする近似四角形が決定する。   For example, in the example shown in FIG. 9, since the distance from Ymax to Xmin_ymax is less than a predetermined value, one of them is deleted. As a result, four points Xmax, Xmin_ymin, Ymax (or Xmin_ymax), and Ymin remain on the contour of the aperture image B12, and an approximate quadrangle having these as vertices is determined.

なお、ステップS17で、所定値未満の距離となっている2点の一方を消去するのでなく、これら2点の輪郭上の中間点を新たに抽出して、2点を消去してもよい。例えば、図9に示す例では、アパーチャ像B12の輪郭上におけるYmaxとXmin_ymaxとの中間点を新たに抽出して、YmaxとXmin_ymaxを消去してもよい。   In step S17, instead of deleting one of the two points having a distance less than the predetermined value, an intermediate point on the outline of these two points may be newly extracted to delete the two points. For example, in the example shown in FIG. 9, an intermediate point between Ymax and Xmin_ymax on the contour of the aperture image B12 may be newly extracted to delete Ymax and Xmin_ymax.

アパーチャ像によっては、ステップS17の点消去により、残った抽出点が3個以下になる(ステップS19_No)。例えば、図10(a)に示すアパーチャ像B13に対し、ステップS14〜S18の処理を行った場合、YminとXmin_yminとが1点にまとめられる。また、XmaxとYmaxとが1点にまとめられる。そのため、図10(b)に示すように、点P1、P2、P3の3個の頂点しか残らない。   Depending on the aperture image, the number of remaining extracted points is 3 or less due to the point erasure in step S17 (step S19_No). For example, when the processes in steps S14 to S18 are performed on the aperture image B13 illustrated in FIG. 10A, Ymin and Xmin_ymin are combined into one point. Xmax and Ymax are combined into one point. Therefore, only three vertices of points P1, P2, and P3 remain as shown in FIG.

このような場合は、まず、残った頂点の間を結ぶ直線を引く(ステップS20)。例えば、図11(a)に示すように、点P2と点P3とを通る直線L1、点P1と点P3とを通る直線L2、点P1と点P2とを通る直線L3を引く。   In such a case, first, a straight line connecting the remaining vertices is drawn (step S20). For example, as shown in FIG. 11A, a straight line L1 passing through the points P2 and P3, a straight line L2 passing through the points P1 and P3, and a straight line L3 passing through the points P1 and P2 are drawn.

続いて、アパーチャ像の輪郭上の点から、ステップS20で引いた直線までの最短距離を求める。直線が複数引かれている場合は、各直線までの最短距離の内、最短のものを求める。そして、この最短距離が最大となる点を頂点とみなす(ステップS21)。頂点数が4個になるまでステップS20及びS21の処理を繰り返す。頂点数が4個になった場合は(ステップS22_Yes)、アパーチャ像を近似する四角形の頂点とすることができ、近似四角形が決定する(ステップS4)。   Subsequently, the shortest distance from the point on the contour of the aperture image to the straight line drawn in step S20 is obtained. When a plurality of straight lines are drawn, the shortest distance among the shortest distances to each straight line is obtained. Then, the point where the shortest distance is maximum is regarded as a vertex (step S21). Steps S20 and S21 are repeated until the number of vertices reaches four. When the number of vertices becomes four (step S22_Yes), the aperture image can be made a quadrangular vertex that approximates the aperture image, and the approximate quadrilateral is determined (step S4).

例えば、図11(a)に示す直線L1、L2、L3までの最短距離が最大となるのは、図11(b)に示す点P4である。点P1、P2、P3、P4を頂点とする四角形が、アパーチャ像B13を近似する四角形となる。   For example, the shortest distance to the straight lines L1, L2, and L3 shown in FIG. 11A is the maximum at the point P4 shown in FIG. 11B. A quadrangle whose vertices are points P1, P2, P3, and P4 is a quadrangle that approximates the aperture image B13.

このようにしてアパーチャ像を近似する四角形を計算し、近似四角形の外側に位置するアパーチャ像の面積や、近似四角形の内側かつアパーチャ像の外側となる領域の面積を求めて、収差補正レンズ40への印加電圧を制御し、球面収差を補正する。   In this way, a quadrangle that approximates the aperture image is calculated, and the area of the aperture image located outside the approximate quadrangle and the area of the region inside the approximate quadrangle and outside the aperture image are obtained, and the aberration correction lens 40 is obtained. Is applied to control the spherical aberration.

例えば、アパーチャ像の全面積に対する、近似四角形の外側に位置するアパーチャ像の面積比率と、収差補正レンズ40への印加電圧との関係は、図12に示すような傾向がある。そのため、レンズ制御回路54は、面積比率が所望の値になるように、収差補正レンズ40への印加電圧を制御する。これにより、アパーチャ像が四角形(略四角形)となるように球面収差を自動調整することができる。なお、調整対象となる面積比率は、別途描画精度等を元に決めておく。また、印加電圧が高くなると面積比率は上昇するので、自動調整時に二分探索で調整することができる。   For example, the relationship between the ratio of the area of the aperture image located outside the approximate rectangle to the total area of the aperture image and the voltage applied to the aberration correction lens 40 tends to be as shown in FIG. Therefore, the lens control circuit 54 controls the voltage applied to the aberration correction lens 40 so that the area ratio becomes a desired value. Thereby, the spherical aberration can be automatically adjusted so that the aperture image becomes a square (substantially square). Note that the area ratio to be adjusted is determined separately based on drawing accuracy and the like. Further, since the area ratio increases as the applied voltage increases, it can be adjusted by binary search during automatic adjustment.

このように、本実施形態によれば、アパーチャ像(ビーム形状)の近似四角形を用いてアパーチャ像の特徴量を計算し、この特徴量に基づいて球面収差を調整するため、マルチビームを照射する際の光学系の球面収差を精度良く自動調整できる。   As described above, according to the present embodiment, the feature amount of the aperture image is calculated using the approximate quadrature of the aperture image (beam shape), and the multi-beam is irradiated to adjust the spherical aberration based on the feature amount. The spherical aberration of the optical system can be automatically adjusted with high accuracy.

上記実施形態では、アパーチャ像の近似四角形の外側に位置する面積等を特徴量としていたが、特徴量はこれに限定されない。例えば、近似四角形の対角線と、アパーチャ像の外周(輪郭)との長さの比率を特徴量としてもよい。   In the above embodiment, the feature amount is the area located outside the approximate quadrangle of the aperture image, but the feature amount is not limited to this. For example, the ratio of the length of the diagonal of the approximate rectangle to the outer periphery (contour) of the aperture image may be used as the feature amount.

図13(a)(b)(c)に、略四角形状ビームB1、バレル型ビームB2、ピンクッション型ビームB3の近似四角形Rの対角線DL1、DL2を示す。バレル型ビームB2やピンクッション型ビームB3は、略四角形状ビームB1と比較して、外周長さに対する例えば長い方の対角線長さの比率が小さくなる。レンズ制御回路54は、この比率が大きくなるように(所定値以上になるように)、収差補正レンズ40への印加電圧を制御して、球面収差を調整する。   FIGS. 13A, 13B, and 13C show diagonal lines DL1 and DL2 of an approximate square R of a substantially square beam B1, a barrel beam B2, and a pincushion beam B3. The barrel type beam B2 and the pincushion type beam B3 have a smaller ratio of, for example, the longer diagonal length to the outer peripheral length compared to the substantially square beam B1. The lens control circuit 54 adjusts the spherical aberration by controlling the voltage applied to the aberration correction lens 40 so that this ratio becomes large (so that it becomes a predetermined value or more).

また、アパーチャ像内の明るさ(照度)の分布の標準偏差を特徴量としてもよい。例えば、略四角形状ビームは、アパーチャ像内の明るさがほぼ一様であり、標準偏差は小さい。バレル型ビームは、中央部が暗く、外周部が明るくなり、標準偏差は大きい。また、ピンクッション型ビームは、中央部が明るく、外周側ほど暗くなり、標準偏差は大きい。レンズ制御回路54は、この標準偏差が小さくなるように(所定値以下になるように)、収差補正レンズ40への印加電圧を制御して、球面収差を調整する。   The standard deviation of the brightness (illuminance) distribution in the aperture image may be used as the feature amount. For example, the substantially square beam has a substantially uniform brightness in the aperture image and a small standard deviation. The barrel beam is dark at the center and bright at the outer periphery, and has a large standard deviation. The pincushion beam is bright at the center and darker toward the outer periphery, and has a large standard deviation. The lens control circuit 54 adjusts the spherical aberration by controlling the voltage applied to the aberration correction lens 40 so that the standard deviation becomes small (below a predetermined value).

本実施形態による球面収差調整方法は、アパーチャ像が正方形以外の形状となる場合にも適用することができる。例えば、アパーチャ像の形状が長方形の場合は、長辺と短辺の比に基づいてアパーチャ像を変形し、上記実施形態に従って球面収差を調整する。または、照度の標準偏差が小さくなるように、球面収差を調整する。   The spherical aberration adjustment method according to the present embodiment can also be applied when the aperture image has a shape other than a square. For example, when the shape of the aperture image is a rectangle, the aperture image is deformed based on the ratio of the long side to the short side, and the spherical aberration is adjusted according to the above embodiment. Alternatively, the spherical aberration is adjusted so that the standard deviation of illuminance becomes small.

アパーチャ像の形状が円形の場合は、アパーチャ像の直径と外周長さの比率が小さくなるよう調整する。または、照度の標準偏差が小さくなるように、球面収差を調整する。   When the shape of the aperture image is circular, adjustment is made so that the ratio of the diameter of the aperture image to the outer peripheral length becomes small. Alternatively, the spherical aberration is adjusted so that the standard deviation of illuminance becomes small.

上記実施形態では、収差補正レンズ40を用いて球面収差を補正する構成について説明したが、収差補正レンズとしてフォイルレンズの他、例えば格子レンズと補正レンズを組み合わせたものや、多重極電磁場を用いた収差補正器であってもよい。収差補正レンズは、静電レンズやコイルによって軸対称な電場・磁場を発生させることで、ビームの球面収差成分を小さくすることができる。   In the above-described embodiment, the configuration for correcting spherical aberration using the aberration correction lens 40 has been described. However, in addition to the foil lens, for example, a combination of a grating lens and a correction lens, or a multipole electromagnetic field is used as the aberration correction lens. An aberration corrector may be used. The aberration correction lens can reduce the spherical aberration component of the beam by generating an axially symmetric electric / magnetic field by an electrostatic lens or a coil.

図2に示すように、マルチビームを形成するアパーチャ部材8には、縦m列×横n列の穴80が所定の配列ピッチでマトリクス状に形成されている。アパーチャ像の近似四角形は、理想的には矩形、特にm=nの場合は正方形になる。しかし、非点収差の影響で、アパーチャ像が歪み、近似四角形の形状が正方形にならないことがある。なお、アパーチャ像を見やすくするために、調整時のみ焦点を適宜ずらすことがある。   As shown in FIG. 2, the aperture members 8 forming the multi-beams are formed with a matrix of holes 80 of vertical m rows × horizontal n rows at a predetermined arrangement pitch. The approximate quadrangle of the aperture image is ideally a rectangle, particularly a square when m = n. However, due to astigmatism, the aperture image may be distorted and the shape of the approximate rectangle may not be a square. In order to make the aperture image easy to see, the focus may be appropriately shifted only during adjustment.

そこで、図14に示すように、マルチビームの非点収差を補正(調整)する非点調整コイル42,44と、非点調整コイル42,44に励磁する励磁値(非点補正コイル値)を制御するコイル制御回路59を設け、非点調整を行ってもよい。非点調整コイル42,44は、それぞれ、水平面内で直交する第1軸方向及び第2軸方向(例えばx軸方向及びy軸方向)の非点調整を行う。   Therefore, as shown in FIG. 14, the astigmatism adjustment coils 42 and 44 for correcting (adjusting) the astigmatism of the multi-beams, and the excitation value (astigmatism correction coil value) for exciting the astigmatism adjustment coils 42 and 44 are obtained. A coil control circuit 59 to be controlled may be provided to perform astigmatism adjustment. The astigmatism adjustment coils 42 and 44 perform astigmatism adjustment in the first axis direction and the second axis direction (for example, the x axis direction and the y axis direction) orthogonal to each other in the horizontal plane.

図15に示すように、非点調整コイル42,44の非点補正コイル値をそれぞれ変えると、アパーチャ像の近似四角形の形状が変化する。   As shown in FIG. 15, when the astigmatism correction coil values of the astigmatism adjustment coils 42 and 44 are changed, the shape of the approximate quadrangle of the aperture image changes.

特徴量計算部51が、アパーチャ像の近似四角形の正方形度合を示す特徴量を計算する。コイル制御回路59は、算出された特徴量に基づいて非点調整コイル42,44に設定する非点補正コイル値を制御し、非点収差を補正して、アパーチャ像の近似四角形の形状が正方形となるように調整する。   The feature amount calculation unit 51 calculates a feature amount indicating the degree of square of the approximate rectangle of the aperture image. The coil control circuit 59 controls the astigmatism correction coil values set in the astigmatism adjustment coils 42 and 44 based on the calculated feature amount, corrects astigmatism, and the shape of the approximate quadrangle of the aperture image is square. Adjust so that

アパーチャ像の近似四角形の正方形度合を示す特徴量の計算方法について説明する。特徴量計算部51は、上記実施形態で説明した方法で、検出器26の検出値に基づくアパーチャ像の近似四角形を計算する。正方形は、四辺の長さが等しく、4個の内角が等しい(全て直角)図形である。そのため、特徴量計算部51は、近似四角形の四辺の長さのばらつきを示す第1特徴量と、近似四角形の4個の内角の角度のばらつきを示す第2特徴量との少なくともいずれか一方を計算する。   A method for calculating the feature amount indicating the square degree of the approximate quadrangle of the aperture image will be described. The feature amount calculation unit 51 calculates an approximate rectangle of the aperture image based on the detection value of the detector 26 by the method described in the above embodiment. A square is a figure having the same length on all four sides and the same four interior angles (all at right angles). Therefore, the feature amount calculation unit 51 calculates at least one of the first feature amount indicating variation in the lengths of the four sides of the approximate rectangle and the second feature amount indicating variations in the angles of the four interior angles of the approximate rectangle. calculate.

例えば、特徴量計算部51は、図16に示す近似四角形について、四辺の長さH1、H2、H3、H4の標準偏差(又は分散)を第1特徴量として計算する。第1特徴量が小さくなるように、非点補正コイル値の設定変更及び第1特徴量の算出を繰り返す。図17は、非点調整コイル42,44に設定する非点補正コイル値と、算出される第1特徴量との関係を示すグラフである。非点調整コイル42,44に設定する非点補正コイル値を、図17の破線で示される値にすることで、近似四角形の四辺の長さH1、H2、H3、H4がほぼ等しくなる。   For example, the feature quantity calculation unit 51 calculates the standard deviation (or variance) of the lengths H1, H2, H3, and H4 of the four sides of the approximate rectangle shown in FIG. 16 as the first feature quantity. The setting change of the astigmatism correction coil value and the calculation of the first feature value are repeated so that the first feature value becomes smaller. FIG. 17 is a graph showing the relationship between the astigmatism correction coil values set in the astigmatism adjustment coils 42 and 44 and the calculated first feature amount. By setting the astigmatism correction coil values set in the astigmatism adjustment coils 42 and 44 to the values indicated by the broken lines in FIG. 17, the lengths H1, H2, H3, and H4 of the four sides of the approximate quadrangle become substantially equal.

また、例えば、特徴量計算部51は、図16に示す近似四角形について、4個の内角θ、θ、θ、θの内積二乗和を第2特徴量として計算する。内積二乗和は、以下の式を用いて計算される。
(cosθ+(cosθ+(cosθ+(cosθ
Further, for example, the feature quantity calculation unit 51 calculates the sum of squares of the inner products of the four interior angles θ 1 , θ 2 , θ 3 , and θ 4 as the second feature quantity for the approximate rectangle shown in FIG. The inner product square sum is calculated using the following equation.
(Cos θ 1 ) 2 + (cos θ 2 ) 2 + (cos θ 3 ) 2 + (cos θ 4 ) 2

この第2特徴量は、4個の内角θ、θ、θ、θの直角度合を示し、近似四角形が正方形の場合、第2特徴量はゼロとなる。第2特徴量が小さくなるように、非点補正コイル値の設定変更及び第2特徴量の算出を繰り返す。図18は、非点調整コイル42,44に設定する非点補正コイル値と、算出される第2特徴量との関係を示すグラフである。非点調整コイル42,44に設定する非点補正コイル値を、図18の破線で示される値にすることで、4個の内角θ、θ、θ、θはほぼ90°になる。 This second feature value indicates the squareness of the four interior angles θ 1 , θ 2 , θ 3 , and θ 4. When the approximate rectangle is a square, the second feature value is zero. The setting change of the astigmatism correction coil value and the calculation of the second feature value are repeated so that the second feature value becomes smaller. FIG. 18 is a graph showing the relationship between the astigmatism correction coil value set in the astigmatism adjustment coils 42 and 44 and the calculated second feature amount. The astigmatism correction coil values set in the astigmatism correction coils 42 and 44, by the value indicated by the broken line in FIG. 18, four interior angles θ 1, θ 2, θ 3 , θ 4 is substantially 90 ° Become.

第1特徴量と第2特徴量の両方を用いて非点補正コイル値を制御し、非点調整を行ってもよい。この場合、第1軸を変化させて第2特徴量が小さくなるように調整し、第2軸を変化させて第1特徴量が小さくなるように調整できる。   Astigmatism adjustment may be performed by controlling the astigmatism correction coil value using both the first feature quantity and the second feature quantity. In this case, it can be adjusted so that the second feature amount is decreased by changing the first axis, and the first feature amount is decreased by changing the second axis.

理想的なアパーチャ像の近似四角形の形状が長方形となる場合は、上述の第1特徴量が、長辺と短辺との比率に基づく所定値となるように非点補正コイル値を制御する。近似四角形の形状が矩形以外の場合、例えば円形の場合は、アパーチャ像の直径と外周長さの比率に基づいて非点補正コイル値を調整すればよく、六角形の場合は円形とみなして調整すればよい。また、アパーチャ像の照度の標準偏差(分散)が小さくなるように、光学系の調整を行ってもよい。   When the shape of the approximate quadrangle of the ideal aperture image is a rectangle, the astigmatism correction coil value is controlled so that the above-described first feature value becomes a predetermined value based on the ratio of the long side to the short side. When the shape of the approximate rectangle is other than a rectangle, for example, when it is a circle, the astigmatism correction coil value may be adjusted based on the ratio between the diameter of the aperture image and the outer circumference length. do it. The optical system may be adjusted so that the standard deviation (dispersion) of the illuminance of the aperture image is small.

アパーチャ部材8やブランキングアパーチャアレイ10に代えて、開口が設けられた調整用のプレートを設置して非点調整を行ってもよい。この場合、調整用プレートに設けられた開口に応じた特徴量を選定する。   Instead of the aperture member 8 and the blanking aperture array 10, astigmatism adjustment may be performed by installing an adjustment plate provided with an opening. In this case, a feature amount corresponding to the opening provided in the adjustment plate is selected.

特徴量計算部51を含む制御計算機50の各機能は、ハードウェアで構成してもよいし、ソフトウェアで構成してもよい。ソフトウェアで構成する場合には、制御計算機50の少なくとも一部の機能を実現するプログラムをCD−ROM等の記録媒体に収納し、コンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でもよい。   Each function of the control computer 50 including the feature amount calculation unit 51 may be configured by hardware or software. When configured by software, a program for realizing at least a part of the functions of the control computer 50 may be stored in a recording medium such as a CD-ROM and read and executed by a computer. The recording medium is not limited to a removable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a hard disk device or a memory.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

2 電子ビーム鏡筒
4 電子銃
6 照明レンズ
8 アパーチャ部材
10 ブランキングアパーチャアレイ
12 縮小レンズ
13 アライメントコイル
14 制限アパーチャ部材
16 対物レンズ
18 偏向器
20 描画室
22 XYステージ
26 検出器
40 収差補正レンズ
42,44 非点調整コイル
50 制御計算機
51 特徴量計算部
54 レンズ制御回路
56 制御回路
58 信号取得回路
59 コイル制御回路
2 Electron beam column 4 Electron gun 6 Illumination lens 8 Aperture member 10 Blanking aperture array 12 Reduction lens 13 Alignment coil 14 Restriction aperture member 16 Objective lens 18 Deflector 20 Drawing chamber 22 XY stage 26 Detector 40 Aberration correction lens 42, 44 Astigmatism adjustment coil 50 Control computer 51 Feature quantity calculation unit 54 Lens control circuit 56 Control circuit 58 Signal acquisition circuit 59 Coil control circuit

Claims (10)

荷電粒子ビームを放出する放出部と、
複数の開口部が形成され、前記複数の開口部を前記荷電粒子ビームが通過することによりマルチビームを形成するアパーチャ部材と、
前記マルチビームのうち、それぞれ対応するビームのブランキング偏向を行う複数のブランカが配置されたブランキングプレートと、
前記複数のブランカによってビームOFFの状態になるように偏向された各ビームを遮蔽する制限アパーチャ部材と、
前記マルチビームが照射される基板を載置するステージと、
前記基板からの反射荷電粒子を検出する検出器と、
前記検出器の検出値に基づくアパーチャ像の特徴量を計算する特徴量計算部と、
前記特徴量に基づいて荷電粒子ビームの収差を補正する収差補正部と、
を備えるマルチ荷電粒子ビーム描画装置。
An emission part for emitting a charged particle beam;
A plurality of openings, and an aperture member that forms a multi-beam by passing the charged particle beam through the openings;
A blanking plate in which a plurality of blankers for performing blanking deflection of the corresponding beams among the multi-beams are disposed,
A limiting aperture member that blocks each beam deflected to be in a beam OFF state by the plurality of blankers;
A stage on which a substrate to be irradiated with the multi-beam is placed;
A detector for detecting reflected charged particles from the substrate;
A feature amount calculation unit for calculating a feature amount of an aperture image based on a detection value of the detector;
An aberration correction unit for correcting the aberration of the charged particle beam based on the feature amount;
A multi-charged particle beam drawing apparatus.
前記特徴量計算部は、前記アパーチャ像に近似する近似図形を生成し、
前記近似図形の内側及び外側の少なくともいずれか一方に位置する前記アパーチャ像の面積から前記特徴量を計算し、
前記収差補正部は前記特徴量に基づいて荷電粒子ビームの球面収差を補正することを特徴とする請求項1に記載のマルチ荷電粒子ビーム描画装置。
The feature amount calculation unit generates an approximate figure that approximates the aperture image,
Calculating the feature amount from the area of the aperture image located on at least one of the inside and the outside of the approximate figure,
The multi charged particle beam drawing apparatus according to claim 1, wherein the aberration correction unit corrects spherical aberration of the charged particle beam based on the feature amount.
前記特徴量計算部は、前記アパーチャ像に近似する近似四角形を生成し、前記近似四角形の対角線のうち長い方の長さと、前記アパーチャ像の外周長さとの比率を、前記特徴量として計算し、
前記収差補正部は前記特徴量に基づいて荷電粒子ビームの球面収差を補正することを特徴とする請求項1に記載のマルチ荷電粒子ビーム描画装置。
The feature amount calculation unit generates an approximate rectangle that approximates the aperture image, calculates a ratio between a longer length of diagonal lines of the approximate rectangle and an outer peripheral length of the aperture image as the feature amount,
The multi charged particle beam drawing apparatus according to claim 1, wherein the aberration correction unit corrects spherical aberration of the charged particle beam based on the feature amount.
前記特徴量計算部は、前記アパーチャ像内の照度の標準偏差を前記特徴量として計算し、
前記収差補正部は前記特徴量に基づいて荷電粒子ビームの球面収差を補正することを特徴とする請求項1に記載のマルチ荷電粒子ビーム描画装置。
The feature amount calculation unit calculates a standard deviation of illuminance in the aperture image as the feature amount,
The multi charged particle beam drawing apparatus according to claim 1, wherein the aberration correction unit corrects spherical aberration of the charged particle beam based on the feature amount.
前記特徴量計算部は、前記アパーチャ像に近似する近似四角形を生成し、前記近似四角形の四辺の長さのばらつきを第1特徴量として計算し、
前記収差補正部は、前記第1特徴量に基づいてマルチビームの非点収差を補正することを特徴とする請求項1に記載のマルチ荷電粒子ビーム描画装置。
The feature amount calculation unit generates an approximate rectangle that approximates the aperture image, calculates a variation in length of four sides of the approximate rectangle as a first feature amount,
2. The multi-charged particle beam drawing apparatus according to claim 1, wherein the aberration correction unit corrects astigmatism of the multi-beam based on the first feature amount.
前記特徴量計算部は、前記アパーチャ像に近似する近似四角形を生成し、前記近似四角形の4個の内角の直角度合を第2特徴量として計算し、
前記収差補正部は、前記第2特徴量に基づいてマルチビームの非点収差を補正することを特徴とする請求項1に記載のマルチ荷電粒子ビーム描画装置。
The feature amount calculation unit generates an approximate rectangle that approximates the aperture image, calculates a squareness of four interior angles of the approximate rectangle as a second feature amount,
2. The multi-charged particle beam drawing apparatus according to claim 1, wherein the aberration correction unit corrects multi-beam astigmatism based on the second feature amount.
前記特徴量計算部は、前記アパーチャ像に近似する近似四角形を生成し、前記近似四角形の四辺の長さのばらつきを第1特徴量として計算し、前記近似四角形の4個の内角の直角度合を第2特徴量として計算し、
前記収差補正部は、前記第1特徴量及び前記第2特徴量に基づいてマルチビームの非点収差を補正することを特徴とする請求項1に記載のマルチ荷電粒子ビーム描画装置。
The feature amount calculation unit generates an approximate quadrangle that approximates the aperture image, calculates a variation in length of four sides of the approximate quadrangle as a first feature amount, and determines the squareness of the four inner angles of the approximate quadrangle. Calculate as the second feature,
2. The multi-charged particle beam drawing apparatus according to claim 1, wherein the aberration correction unit corrects astigmatism of the multi-beam based on the first feature amount and the second feature amount.
荷電粒子ビームを放出する工程と、
前記荷電粒子ビームがアパーチャ部材の複数の開口部を通過してマルチビームを形成する工程と、
ステージ上に載置された基板に前記マルチビームを照射する工程と、
前記基板からの反射荷電粒子を検出する工程と、
検出した前記反射荷電粒子に基づくアパーチャ像の特徴量を計算する工程と、
前記特徴量に基づいて荷電粒子ビームの収差を補正する工程と、
を備えるマルチ荷電粒子ビーム描画装置の調整方法。
Emitting a charged particle beam;
The charged particle beam passes through a plurality of openings of the aperture member to form a multi-beam; and
Irradiating the substrate placed on the stage with the multi-beam;
Detecting reflected charged particles from the substrate;
Calculating a feature amount of an aperture image based on the detected reflected charged particles;
Correcting the aberration of the charged particle beam based on the feature amount;
A method for adjusting a multi-charged particle beam drawing apparatus comprising:
前記特徴量に基づいて荷電粒子ビームの球面収差を補正することを特徴とする請求項8に記載のマルチ荷電粒子ビーム描画装置の調整方法。   9. The method of adjusting a multi charged particle beam drawing apparatus according to claim 8, wherein spherical aberration of the charged particle beam is corrected based on the feature amount. 前記アパーチャ像に近似する近似四角形を生成し、前記近似四角形の四辺の長さのばらつきを示す第1特徴量と、前記近似四角形の4個の内角の直角度合を示す第2特徴量との少なくともいずれか一方を計算し、
前記第1特徴量及び/又は前記第2特徴量に基づいて、マルチビームの非点収差を補正することを特徴とする請求項8に記載のマルチ荷電粒子ビーム描画装置の調整方法。
An approximate quadrangle that approximates the aperture image is generated, and at least a first feature amount that indicates a variation in length of four sides of the approximate rectangle and a second feature amount that indicates the squareness of four internal angles of the approximate rectangle. Calculate either one,
The multi-charged particle beam drawing apparatus adjustment method according to claim 8, wherein multi-beam astigmatism is corrected based on the first feature amount and / or the second feature amount.
JP2016236860A 2016-08-03 2016-12-06 Multi-charged particle beam drawing device and its adjustment method Active JP6834429B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW106122416A TWI651749B (en) 2016-08-03 2017-07-04 Multi-charged particle beam drawing device and adjusting method thereof
KR1020170097549A KR101988911B1 (en) 2016-08-03 2017-08-01 Multi-charged particle beam writing apparatus and adjusting method thereof
US15/665,839 US10157723B2 (en) 2016-08-03 2017-08-01 Multi charged particle beam writing apparatus and method of adjusting the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016152947 2016-08-03
JP2016152947 2016-08-03

Publications (2)

Publication Number Publication Date
JP2018026516A true JP2018026516A (en) 2018-02-15
JP6834429B2 JP6834429B2 (en) 2021-02-24

Family

ID=61195641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016236860A Active JP6834429B2 (en) 2016-08-03 2016-12-06 Multi-charged particle beam drawing device and its adjustment method

Country Status (3)

Country Link
JP (1) JP6834429B2 (en)
KR (1) KR101988911B1 (en)
TW (1) TWI651749B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212766A (en) * 2018-06-05 2019-12-12 株式会社ニューフレアテクノロジー Charged particle beam drawing device and charged particle beam drawing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356211A (en) * 2003-05-27 2004-12-16 Tokyo Seimitsu Co Ltd Electronic beam measuring device, apparatus and method for regulating electron beam and electron beam exposure device
JP2006210503A (en) * 2005-01-26 2006-08-10 Canon Inc Method for adjusting aberration, process for fabricating device, and charged particle beam exposure apparatus
JP2013236053A (en) * 2012-04-13 2013-11-21 Canon Inc Charged particle optical system, drawing device, and process of manufacturing article
JP2015167212A (en) * 2014-03-04 2015-09-24 株式会社ニューフレアテクノロジー Multiple charged particle beam drawing device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4477434B2 (en) 2004-06-29 2010-06-09 キヤノン株式会社 Charged particle beam exposure apparatus and device manufacturing method
JP2006344614A (en) 2005-06-07 2006-12-21 Matsushita Electric Ind Co Ltd Exposure method and exposure apparatus
JP6147528B2 (en) * 2012-06-01 2017-06-14 株式会社ニューフレアテクノロジー Multi-charged particle beam writing method and multi-charged particle beam writing apparatus
KR102136671B1 (en) * 2013-09-06 2020-07-22 삼성전자주식회사 Method of detecting a defect of a substrate and apparatus for performing the same
JP6353229B2 (en) * 2014-01-22 2018-07-04 株式会社ニューフレアテクノロジー Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
JP6278835B2 (en) * 2014-05-26 2018-02-14 住友重機械イオンテクノロジー株式会社 Ion implanter
JP6275575B2 (en) * 2014-07-09 2018-02-07 住友重機械イオンテクノロジー株式会社 Ion implantation apparatus and control method of ion implantation apparatus
JP6456118B2 (en) * 2014-11-20 2019-01-23 株式会社ニューフレアテクノロジー Charged particle beam drawing apparatus and charged particle beam drawing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356211A (en) * 2003-05-27 2004-12-16 Tokyo Seimitsu Co Ltd Electronic beam measuring device, apparatus and method for regulating electron beam and electron beam exposure device
JP2006210503A (en) * 2005-01-26 2006-08-10 Canon Inc Method for adjusting aberration, process for fabricating device, and charged particle beam exposure apparatus
JP2013236053A (en) * 2012-04-13 2013-11-21 Canon Inc Charged particle optical system, drawing device, and process of manufacturing article
JP2015167212A (en) * 2014-03-04 2015-09-24 株式会社ニューフレアテクノロジー Multiple charged particle beam drawing device

Also Published As

Publication number Publication date
KR101988911B1 (en) 2019-06-13
JP6834429B2 (en) 2021-02-24
KR20180015585A (en) 2018-02-13
TWI651749B (en) 2019-02-21
TW201807736A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
US11037759B2 (en) Multi charged particle beam writing apparatus and multi charged particle beam writing method
CN108508707B (en) Multi-charged particle beam drawing device and adjusting method thereof
JP6013089B2 (en) Charged particle beam drawing method and charged particle beam drawing apparatus
US9852876B2 (en) Multi charged particle beam writing apparatus and multi charged particle beam writing method
TWI712067B (en) Data processing method, data processing device and multi-charged particle beam drawing device
JP2016207815A (en) Charged particle beam lithography apparatus and charged particle beam lithography method
US8487281B2 (en) Electron beam exposure apparatus and electron beam exposure method
TW202102946A (en) Multi charged particle beam writing apparatus and multi charged particle beam writing method
CN115113490A (en) Multi-charged particle beam writing apparatus and adjusting method thereof
US10504686B2 (en) Charged particle beam writing method and charged particle beam writing apparatus
JP6834429B2 (en) Multi-charged particle beam drawing device and its adjustment method
US10157723B2 (en) Multi charged particle beam writing apparatus and method of adjusting the same
JP2021015881A (en) Multi-beam lithography method and multi-beam lithography device
JP2007019061A (en) Electron beam exposure system, electronic beam defocus correction method, and measuring method of electron beam defocus
KR102468348B1 (en) Multi-beam writing method and multi-beam writing apparatus
JP7397238B1 (en) Electron beam lithography device and electron beam lithography method
JP7411521B2 (en) Charged particle beam adjustment method, charged particle beam drawing method, and charged particle beam irradiation device
TWI757832B (en) Multi-charged particle beam evaluation method and multi-charged particle beam drawing device
JP7192254B2 (en) Multi-charged particle beam drawing device and its adjustment method
JP2020205314A (en) Multi-charged particle beam drawing method and multi-charged particle beam drawing apparatus
JP2018156976A (en) Charged particle beam lithography method and charged particle beam lithography device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6834429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150