JP2006344614A - Exposure method and exposure apparatus - Google Patents

Exposure method and exposure apparatus Download PDF

Info

Publication number
JP2006344614A
JP2006344614A JP2005166287A JP2005166287A JP2006344614A JP 2006344614 A JP2006344614 A JP 2006344614A JP 2005166287 A JP2005166287 A JP 2005166287A JP 2005166287 A JP2005166287 A JP 2005166287A JP 2006344614 A JP2006344614 A JP 2006344614A
Authority
JP
Japan
Prior art keywords
exposure
substrate
correction
wafer
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005166287A
Other languages
Japanese (ja)
Inventor
Sumuto Shimizu
澄人 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005166287A priority Critical patent/JP2006344614A/en
Publication of JP2006344614A publication Critical patent/JP2006344614A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exposure method capable of obtaining sufficient resolution by solving the problem that focus or an astigmatism correction condition largely varies depending on a charged state and an exposure image is blurred or a proper line width or shape cannot be formed because a charged particle beam exposure method, in particular, an electron beam exposure method is remarkably influenced by a charged substrate. <P>SOLUTION: A method is disclosed wherein a substrate is exposed while a focusing quantity depending on a charging state or distribution on a substrate or an electric field state or distribution, or the quantity of astigmatism correction depending thereon is fixed during exposure, or the correction condition is fixed for the same exposure substrate. This method has two ways, i.e. one method in which the focusing condition on the wafer or the astigmatism correction quantity distribution is directly measured, and the other in which the charging distribution or the electric field distribution or the magnetic field distribution on the wafer is measured, and the focusing condition or the astigmatism correction condition is calculated in calibration as a correction quantity for the optimized condition on the basis of the measured value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体集積回路等のリソグラフィー工程に用いられる電子線あるいは荷電粒子線露光方法に関し、特に本露光時の被露光基板に依存した電子線あるいは荷電粒子線の露光時ビーム補正制御方法に関する。   The present invention relates to an electron beam or charged particle beam exposure method used in a lithography process such as a semiconductor integrated circuit, and more particularly to a beam correction control method during exposure of an electron beam or charged particle beam depending on a substrate to be exposed at the time of main exposure.

近年、半導体集積回路の高集積化が一層進み、既に90nmノードデバイスの量産が行われるに至り、いよいよ65nmデバイスの量産も視野に入りつつある時期に差し掛かってきた。デバイスの微細化はリソグラフィー技術の進展に寄与するところが大きいが、100nmノード前後からようやく量産投入され始めたArF(フッ化アルゴン)レーザーを光源とする露光装置は既にその波長の半分の解像度を要求され、65nmノードに至っては、既に露光波長の1/3の解像性を引き出さざるを得ず、これ以上の微細パターン形成にはより短波長光源を用いるか、あるいはレチクル位相制御などを応用した超解像技術の一層の進展に力を入れるか、あるいは全く異なる露光方法を選択するか、大きな岐路に差し掛かっている。次期露光方法候補はよく“NGL(Next Generation lithography)”と呼ばれているが、このNGLの候補にひとつに荷電粒子線の一つ、電子線を光源に用いる電子線露光法がある。   In recent years, high integration of semiconductor integrated circuits has further progressed, and mass production of 90 nm node devices has already been carried out, and it is finally time for mass production of 65 nm devices. Device miniaturization greatly contributes to the advancement of lithography technology, but exposure devices that use ArF (Argon Fluoride) lasers as light sources, which have finally begun mass production from around the 100 nm node, are already required to have a resolution half that wavelength. In the 65nm node, resolution of 1/3 of the exposure wavelength has already been brought out, and for further fine pattern formation, a shorter wavelength light source is used, or reticle phase control is applied. There is a big crossroads, either focusing on further progress in resolution technology or choosing a completely different exposure method. The next exposure method candidate is often referred to as “NGL (Next Generation lithography)”. One of the NGL candidates is an electron beam exposure method using one of charged particle beams and an electron beam as a light source.

電子線露光方法としては、直接描画法に分類される収束ビームをラスタースキャン、ベクタースキャンさせてパターン形成するものから可変整形、セルプロジェクション露光法などスループット向上を目指した第二世代技術に進展し、一方一層の高スループット化を目標にEPL(Electron Projection Lithography)やLEEPL(Low Energy Electron Projection Lithography)など幾つかの投影露光方法も開発が進められている。   As an electron beam exposure method, the convergent beam classified as a direct drawing method is raster scanned, vector scanned to form a pattern, variable shaping, cell projection exposure method and other second generation technologies aimed at improving throughput, On the other hand, several projection exposure methods such as EPL (Electron Projection Lithography) and LEEPL (Low Energy Electron Projection Lithography) have been developed with the goal of further increasing the throughput.

これらの電子線露光装置においては、露光前に予めキャリブレーションを行い、フォーカスや非点収差補正用のスティグメーターなど最適値となるよう調整されている。本手法は電子線装置の一般的方法である。   In these electron beam exposure apparatuses, calibration is performed in advance before exposure, and adjustment is performed so as to obtain optimum values such as a focus and a stigmator for correcting astigmatism. This method is a general method of an electron beam apparatus.

一方、EPLなどの投影露光法は最大でも数mm□エリアしか一度に投影転写できないために分割転写方式が用いられるが、それぞれの分割されたサブフィールド(一度に露光転写できるパターン領域)内のパターン分布が異なると、やはり非点収差等の補正を行い適正な露光像が得られるように制御しなければならない。本方法を高精度にできる方法が、例えば(特許文献1)に開示されている。本発明はサブフィールド内のパターン分布形状に基づく指標を露光情報データとして露光装置の制御部に与える、サブフィールドの光学補正値と上記指標の対応関係をテーブルとして記憶させ、各サブフィールド毎の上記データをテーブルに基づき光学補正するものである。
特開2001−267238号公報
On the other hand, since the projection exposure method such as EPL can project and transfer only a few mm □ area at a time, the divided transfer method is used, but the pattern in each divided subfield (pattern area that can be exposed and transferred at one time) is used. If the distribution is different, it is necessary to control astigmatism and the like so as to obtain an appropriate exposure image. A method that can make this method highly accurate is disclosed, for example, in (Patent Document 1). In the present invention, an index based on the pattern distribution shape in the subfield is given as exposure information data to the control unit of the exposure apparatus, the correspondence between the optical correction value of the subfield and the index is stored as a table, and the above for each subfield is stored. Data is optically corrected based on a table.
JP 2001-267238 A

しかしながら、半導体集積回路作製プロセスでは、被露光基板はその作製工程で既にグローバルな帯電をしているものや露光時に照射される電子線自体に起因する帯電など、プロセス基板上は複雑な帯電分布を有していることが多い。特に電子線は基板上の帯電の影響を大きく受けやすく、帯電状態によってはフォーカスや非点収差補正条件も変動してしまい、そのままでは露光像がぼやけたり、適切な線幅あるいは形状が形成できなかったりという問題が発生してしまう。   However, in the semiconductor integrated circuit manufacturing process, the substrate to be exposed has a complicated charge distribution on the process substrate, such as the one that has already been charged globally in the manufacturing process or the charging caused by the electron beam itself that is irradiated during exposure. Many have. In particular, the electron beam is easily affected by the charge on the substrate, and depending on the charged state, the focus and astigmatism correction conditions also fluctuate, and the exposed image may be blurred or an appropriate line width or shape cannot be formed as it is. Problem will occur.

また、umオーダーという比較的厚膜のレジストで微細なパターン形成を要するGSR用(磁気ヘッドモジュール形成)プロセスなどに対しては、特に高加速電圧の電子線露光が、その解像性を含めた制御性のよさから優れているが、基板にFeなどの磁性体含有基板を用いるために、基板内の電界分布が一様でなく、電子線露光時には非点収差補正条件が基板面内で変動するということも起こってしまう。そのため、該基板上で電子線露光をするとフォーカスや非点収差が変動して、やはり露光像がぼけたり適切な線幅あるいはパターン形状が形成できなかったりという問題が生じてしまう。   Also, for GSR (magnetic head module formation) processes that require fine pattern formation with a relatively thick film resist of the um order, electron beam exposure with high acceleration voltage includes resolution. Although excellent in controllability, since a magnetic material containing substrate such as Fe is used for the substrate, the electric field distribution in the substrate is not uniform, and astigmatism correction conditions fluctuate within the substrate surface during electron beam exposure It also happens to do. For this reason, when electron beam exposure is performed on the substrate, the focus and astigmatism fluctuate, resulting in a problem that the exposure image is blurred and an appropriate line width or pattern shape cannot be formed.

そこで前記に鑑み、本発明は、半導体集積回路作製プロセスにおける基板構造あるいは磁気ヘッド作製プロセスにおける磁性体基板であっても、電子線などの荷電粒子線露光において安定した解像度及びパターン形状、パターン線幅加工を実現できる方法の開示を目的とする。   Therefore, in view of the above, the present invention provides stable resolution, pattern shape, and pattern line width in charged particle beam exposure such as an electron beam, even for a substrate structure in a semiconductor integrated circuit manufacturing process or a magnetic substrate in a magnetic head manufacturing process. It aims at disclosure of a method which can realize processing.

荷電粒子線露光装置あるいは露光方法における本発明を、以後、電子線露光装置あるいは同方法で代表して説明する。
電子線露光を行う前に、露光装置が自動で、あるいはユーザーがマニュアルで少なくともビーム光軸調整、フォーカス合わせ、非点収差補正を行う。特に自動でこれらのキャリブレーションを行う場合には、例えば、ウエハ基板面上に二次電子放出能の高いパターンを配列させ、そこに整形した電子線を照射して、最も高い信号が得られるようにフォーカス補正レンズあるいは非点収差補正は空間像を用いて、フォーカス合わせあるいは非点収差補正を行うことができる。なお、光軸調整は照明系ならレチクル上、投影系ならウエハ上の反射電子検出器などを用いて調整することができる。
Hereinafter, the present invention in the charged particle beam exposure apparatus or exposure method will be described by using the electron beam exposure apparatus or the same method.
Before performing electron beam exposure, the exposure apparatus automatically performs the operation, or the user manually performs at least beam optical axis adjustment, focusing, and astigmatism correction. In particular, when these calibrations are performed automatically, for example, a pattern having a high secondary electron emission capability is arranged on the wafer substrate surface, and the shaped electron beam is irradiated thereon to obtain the highest signal. Further, the focus correction lens or astigmatism correction can perform focusing or astigmatism correction using an aerial image. The optical axis can be adjusted using a backscattered electron detector on the reticle for an illumination system or on a wafer for a projection system.

しかし、キャリブレーション後に所定の基板上のレジスト上に露光を行うと、時として十分な解像度が得られていなかったり目標寸法から大きく乖離していたり、時にはパターン形状が大きく崩れていたりすることが起こることがある。この傾向は下地が絶縁膜構造ほど顕著である。また近年はGSR(磁気ヘッド用プロセス)でも高解像が必要とされてきているが、やはりキャリブレーション後のままでは十分な解像度が得られないなどの問題がある。   However, when exposure is performed on a resist on a predetermined substrate after calibration, sometimes sufficient resolution is not obtained, it is greatly deviated from the target dimension, and sometimes the pattern shape is greatly collapsed. Sometimes. This tendency is more conspicuous as the insulating film structure is the base. In recent years, high resolution is also required in GSR (magnetic head process), but there is still a problem that sufficient resolution cannot be obtained even after calibration.

これらの問題は、基板帯電あるいは基板上電界分布の影響があるためと思われる。例えば帯電は基板上に大きな分布を持つグローバルな帯電分布と局所的な帯電分布を持つローカルなものがあるが、特にグローバルな帯電分布量の方が一般に高く、その状態のままで露光するとフォーカスずれあるいは非点収差ずれが大きく出てしまう。そこで鋭意検討の結果、事前にこれらの基板上の帯電状態・分布、あるいは電界状態・分布を計測して、帯電基板あるいは磁場変動基板上への露光に関しては、許容帯電量Vacを上回った場合には露光直前に適時、ビーム補正、つまり少なくともフォーカス合わせあるいは非点収差補正をし直す方法を発案した。許容帯電量は露光光源の加速電圧及び転写像の寸法制御に依存する。本発明の請求項1記載の露光方法は、基板ウエハ上に電子線あるいは荷電粒子線を用いてマスクパターンあるいはアパーチャ形状を投影露光するに際し、露光する下地構造基板(レイヤー)毎にウエハ上の帯電状態及びその分布をモニターし、許容帯電量をVac-ch[V]、露光光源の加速電圧をVacc[V]、転写パターン寸法制御をLac[nm]、比例係数をKとしたとき、Vac-ch < K・Lac・Vacc/10,000 とし、許容帯電量Vac-hを上回った場合には少なくともビーム補正を行うことを特徴とする。 These problems seem to be due to the influence of substrate charging or electric field distribution on the substrate. For example, there is a global charge distribution with a large distribution on the substrate and a local charge distribution with a local charge distribution, but the global charge distribution amount is generally higher, and defocusing when exposed in that state. Alternatively, the astigmatism shift is greatly generated. Therefore, as a result of diligent examination, the charged state / distribution or electric field state / distribution on these substrates is measured in advance, and the exposure on the charged substrate or the magnetic field variation substrate exceeds the allowable charge amount Vac. Devised a method to correct beam correction, that is, at least focusing or astigmatism correction at the right time, just before exposure. The allowable charge amount depends on the acceleration voltage of the exposure light source and the size control of the transferred image. In the exposure method according to the first aspect of the present invention, when a mask pattern or an aperture shape is projected and exposed onto a substrate wafer by using an electron beam or a charged particle beam, charging on the wafer is performed for each underlying structure substrate (layer) to be exposed. When the condition and its distribution are monitored, the allowable charge amount is Vac-ch [V], the exposure light source acceleration voltage is Vacc [V], the transfer pattern dimension control is Lac [nm], and the proportionality coefficient is K, Vac- ch <K · Lac · Vacc 2 / 10,000, and when the allowable charge amount Vac-h is exceeded, at least beam correction is performed.

また、露光直前に基板上のフォーカス合わせあるいは非点収差補正を行うには、それぞれを空間像としてモニターするのが有効で、空間像でモニターしたフォーカス及び非点収差補正値が初期キャリブレーション時の値からユーザーが任意に設定できる所定以上の格差を生じた場合にのみ、光学系にフィードバックをかけて、補正したフォーカス値あるいは非点収差補正値にて露光することが望ましい。本発明の請求項2記載の露光方法は、請求項1において、ビーム補正検出用パターンを予め形成した被露光基板を用いて、露光前あるいは露光中に適時空間像計測を行い、少なくともフォーカス合わせ状態、非点収差残留成分量を検出し、これらの制御規格値から許容値以上外れた場合にのみ、電子線あるいは荷電粒子線光学系へのフィードバックを行って、少なくともフォーカス合わせあるいは非点収差補正(STIGMA補正)調整を行いつつ露光することを特徴とする。   In addition, in order to perform focusing or astigmatism correction on the substrate immediately before exposure, it is effective to monitor each as an aerial image, and the focus and astigmatism correction values monitored in the aerial image are the values at the time of initial calibration. It is desirable that the exposure is performed with the corrected focus value or astigmatism correction value by feeding back the optical system only when a difference greater than a predetermined value that can be arbitrarily set by the user from the value occurs. According to a second aspect of the present invention, there is provided an exposure method according to the first aspect of the present invention, wherein an aerial image is measured in a timely manner before exposure or during exposure using an exposure substrate on which a beam correction detection pattern has been formed in advance. The astigmatism residual component amount is detected, and feedback to the electron beam or charged particle beam optical system is performed only when the control standard value deviates from an allowable value or more, and at least focusing or astigmatism correction ( (STIGMA correction) Exposure is performed while adjusting.

また、予め同一構造の基板構造に対する帯電分布あるいは電界分布はほぼ同一として扱い、同一基板構造毎に空間像計測できるパターン形成した計測用ウエハを用意し、露光前に適時計測するか、あるいは同一基板構造毎にウエハ面内の少なくともフォーカス補正量、非点収差補正量をテーブルとしてデータベース登録しておき、露光する基板構造毎に補正テーブルに基づいた補正制御をして露光することも有効である。本発明の請求項3記載の露光方法は、請求項1において、露光してパターン形成しようとするそれぞれの下地構造基板(レイヤー)上にビーム補正検出用パターンを面内分布計測ができるように配列形成し、このウエハを該レイヤーのビーム補正用とし、露光時に本ウエハを用いて、ビーム補正検出パターン上にビーム照射して得られる空間像から少なくともフォーカス合わせ位置、非点収差補正量を算出してそれらのウエハ面内補正マッピングデータをデータベースとして露光装置システムに持たせ、以後の露光では同一の基板構造上にパターン形成する時には、該当するデータベースに基づいて該レイヤーの露光を行うことを特徴とする。   Also, charge distribution or electric field distribution for substrate structures of the same structure is treated as almost the same, and a pattern-formed measurement wafer that can measure aerial images for each same substrate structure is prepared and measured timely before exposure, or the same substrate It is also effective to register at least the focus correction amount and astigmatism correction amount in the wafer surface as a table for each structure, and perform exposure by performing correction control based on the correction table for each substrate structure to be exposed. According to a third aspect of the present invention, there is provided an exposure method according to the first aspect, wherein the pattern for beam correction detection is arranged on each underlying structure substrate (layer) to be patterned by exposure so that in-plane distribution measurement can be performed. This wafer is used for beam correction of the layer, and at least the focusing position and astigmatism correction amount are calculated from the aerial image obtained by irradiating the beam on the beam correction detection pattern using this wafer during exposure. The wafer in-plane correction mapping data is provided in the exposure apparatus system as a database, and when the pattern is formed on the same substrate structure in the subsequent exposure, the layer is exposed based on the corresponding database. To do.

また、基板上の帯電分布を表面電位測定あるいはそれに代替する帯電量モニター可能な方法で事前に計測し、それぞれの帯電バイアス量からフォーカス補正値を計算し、その補正値テーブルをデータベースとして装置が持ち、露光時に該当する同一基板構造のデータベースに基づいた補正を行うことも有効である。本発明の請求項4記載の露光方法は、露光ウエハ面内のグローバルな帯電量分布を少なくとも表面電位測定あるいはそれに代わる帯電量モニター可能な方法にて事前に計測し、それぞれの帯電バイアス量Vchに対する補正フォーカス量Fcorrを露光装置のキャリブレーション時の適正フォーカスFに対し、Fcorr = F+k・Vch にて算出し(kは露光光源加速電圧及び露光光学系に依存する定数)、本算出式から得られる同一下地基板上ウエハ面内のフォーカス補正値に基づいて投影光学系を制御して露光することを特徴とする。 In addition, the charge distribution on the substrate is measured in advance by surface potential measurement or a charge amount monitoring method that can be used as an alternative, the focus correction value is calculated from each charge bias amount, and the device has the correction value table as a database. It is also effective to perform correction based on a database of the same substrate structure corresponding to the exposure. In the exposure method according to the fourth aspect of the present invention, the global charge amount distribution in the exposure wafer surface is measured in advance by at least a method capable of measuring the surface potential or monitoring the charge amount in place of the surface potential, and for each charge bias amount Vch. The correction focus amount Fcorr is calculated as Fcorr = F 0 + k · Vch with respect to the appropriate focus F 0 at the time of calibration of the exposure apparatus (k is a constant depending on the exposure light source acceleration voltage and the exposure optical system), and this calculation formula The exposure is performed by controlling the projection optical system based on the focus correction value in the wafer surface on the same base substrate obtained from the above.

また、基板上の帯電分布を表面電位測定あるいはそれに代替する帯電量モニター可能な方法で事前に計測し、それぞれの帯電バイアス量から非点収差補正値を算出し、その補正値テーブルをデータベースとして装置が持ち、露光時に該当する同一基板構造のデータベースに基づいた補正を行うことも有効である。本発明の請求項5記載の露光方法は、露光ウエハ面内のグローバルな帯電量分布を少なくとも表面電位測定あるいはそれに代わる帯電量モニター可能な方法にて事前に計測の上、それぞれの帯電バイアス量Vchに対する非点収差補正量STGcorrを露光装置のキャリブレーション時の適正補正量STGに対し、K=定数とし、STGcorr = STG+K・Vch にて補正値を算出し、本算出式から得られる同一下地構造基板上のウエハ面内の非点収差補正値に基づいて非点収差補正を制御しつつ露光することを特徴とする。 In addition, the charge distribution on the substrate is measured in advance by surface potential measurement or a charge amount monitoring method that can be used as an alternative. Astigmatism correction values are calculated from the respective charge bias amounts, and the correction value table is used as a database. It is also effective to perform correction based on a database of the same substrate structure corresponding to the exposure. In the exposure method according to the fifth aspect of the present invention, the global charge amount distribution in the exposed wafer surface is measured in advance by at least a method capable of measuring the surface potential or monitoring the charge amount instead. identical to respect to proper correction amount STG 0 during calibration astigmatism correction amount STGcorr exposure apparatus, and K = constant, and calculates a correction value by STGcorr = STG 0 + K · Vch , obtained from the calculation formula The exposure is performed while controlling the astigmatism correction based on the astigmatism correction value in the wafer surface on the underlying structure substrate.

また、空間像計測時に該基板上に形成されている空間像計測用パターンは、二次電子放出能が高い物質を用いて空間像検出S/Nを向上させておくことが有効である。本発明の請求項6記載の露光方法は、請求項2または請求項3において、空間像計測時に基板上に形成されている空間像計測用パターンは、二次電子あるいは反射電子放出能がバックグランドに比べて20%以上高い材料あるいは構造であることを特徴とする。   In addition, it is effective that the aerial image measurement pattern formed on the substrate during the aerial image measurement improves the aerial image detection S / N by using a substance having a high secondary electron emission ability. The exposure method according to claim 6 of the present invention is the exposure method according to claim 2 or claim 3, wherein the aerial image measurement pattern formed on the substrate at the time of aerial image measurement has a secondary electron or reflected electron emission ability in the background. It is characterized by a material or structure that is 20% or more higher than

また、空間像でフォーカス合わせ量あるいは非点補正量を計測する際にあまりレチクル開口率が高いとパターン開口率に依存して計測される非点収差補正値が変わってしまうことが起こってしまう。これは空間電荷効果に依存したもので、特に不均一なパターン配置の場合にはこの傾向が強く出てしまう。そこで、露光前のフォーカス合わせ量補正あるいは非点収差補正検出に関しては、極力少ない開口率のレチクルパターンを用いて検出する必要がある。本発明の請求項7記載の露光方法は、請求項2または請求項3において、空間像計測用レチクルパターンの開口率は少なくとも5%以下で計測用パターン部の局所的開口率は1%以下として、空間電荷効果の影響を抑制することを特徴とする。   Further, if the reticle aperture ratio is too high when measuring the focus adjustment amount or the astigmatism correction amount in the aerial image, the astigmatism correction value measured depending on the pattern aperture ratio may change. This depends on the space charge effect, and this tendency is particularly strong in the case of non-uniform pattern arrangement. In view of this, it is necessary to detect the focus amount correction or astigmatism correction before exposure using a reticle pattern having a minimum aperture ratio. According to a seventh aspect of the present invention, in the second or third aspect, the aperture ratio of the aerial image measurement reticle pattern is at least 5% or less and the local aperture ratio of the measurement pattern portion is 1% or less. , Which suppresses the influence of the space charge effect.

本発明によると、100nm以下のナノオーダーの微細なパターン形成の高精度加工が可能となりまた、磁気ヘッド作製プロセスに使われる磁性体上へのパターン形成などあらゆる基板構造上へ高精度に露光を行うことができる。   According to the present invention, high-precision processing of nano-order fine pattern formation of 100 nm or less is possible, and high-precision exposure is performed on all substrate structures such as pattern formation on a magnetic material used in a magnetic head manufacturing process. be able to.

(第1の実施形態)
まず、図4に示すように、被露光基板(132)上が帯電していないバイアス量分布(133)場合には、予め定期的に行う装置キャリブレーションにて投影光学系(131)のパラメータを最適化し、レチクルパターン(130)像が被露光基板(132)上に適切に投影されるようフォーカス位置、非点補正量を最適値に調整すれば、基板上毎あるいは基板内のフォーカスあるいは非点収差分布を補正する必要はなく、フォーカス補正量(134)もほぼ0(キャリブレーションと同じ場合が0)となり、ウエハ面内で均一な露光パターンを常に形成することが出来る。
(First embodiment)
First, as shown in FIG. 4, when the bias amount distribution (133) is not charged on the substrate to be exposed (132), the parameters of the projection optical system (131) are set by the apparatus calibration periodically performed in advance. By optimizing and adjusting the focus position and astigmatism correction amount to optimum values so that the reticle pattern (130) image is appropriately projected onto the exposed substrate (132), the focus or astigmatism within the substrate or within the substrate is adjusted. It is not necessary to correct the aberration distribution, and the focus correction amount (134) is almost 0 (0 in the case of the same as the calibration), and a uniform exposure pattern can always be formed on the wafer surface.

しかし、図4のフォーカス補正量(134)のようにフォーカス補正量が若干(+)になったり逆に(−)になったりすることがある。このようにキャリブレーション時のフォーカス合わせ条件と若干量異なる補正値を検出した場合には、検出システムの検出誤差などが誤差原因として考えられ、例えば図3で示すような空間像計測方法等でそのオフセット値を求め、補正してやればよい。この方法の詳細は後で説明する。   However, like the focus correction amount (134) in FIG. 4, the focus correction amount may become slightly (+) or conversely (-). When a correction value slightly different from the focusing condition at the time of calibration is detected in this way, a detection error of the detection system is considered as the cause of the error. For example, the aerial image measurement method as shown in FIG. An offset value may be obtained and corrected. Details of this method will be described later.

このような場合でもウエハ面内のフォーカス補正値が一定値を示すことは変わらず、露光時あるいは露光前に少なくとも非点補正を行う必要はない。このようにウエハ面内でフォーカス合わせ値が変わらない基板としては、未成膜のシリコン基板あるいは導電材料が成膜された基板などが該当する(ただし、導電性材料でも磁性体材料は別)。この実施形態ではフォーカス合わせ量についてのみ説明したが、非点収差補正に関しても同様の方法で制御することができる。   Even in such a case, the focus correction value in the wafer surface remains constant, and it is not necessary to perform at least astigmatism correction during or before exposure. As such a substrate whose focus adjustment value does not change in the wafer surface, an unformed silicon substrate, a substrate on which a conductive material is formed, or the like is applicable (however, a conductive material is different from a magnetic material). In this embodiment, only the focusing amount has been described, but astigmatism correction can also be controlled by the same method.

以下、本発明の第1の実施形態に係る荷電粒子線露光方法及び荷電粒子線露光装置について、図1,図2を参照しながら説明する。
装置は一定頻度でキャリブレーションを行い、フォーカス位置、非点収差補正量が得られるが、基板構造あるいは材質によってはそれらの条件のままではぼけた露光像が得られることになってしまう。そのような場合には、まず図1に示すようにウエハあるいは露光基板(101)上を、例えば、帯電量モニター(102)をウエハ上直径方向にスキャンさせてウエハ基板上の帯電量分布を計測する。ウエハ基板(101)が帯電しているとすると、その時のウエハ基板上の帯電分布(103)は真ん中ほど帯電量が多くなり、ウエハ中心が最も帯電量がマイナス側に高くなることになる。キャリブレーションにて最適化されたフォーカスは、帯電量=0の条件下であるので、本実施例の場合、ウエハ最外周部ではキャリブレーション条件のままウエハ上に適切な像を形成することが出来る。しかし、ウエハ中心部に行くほど帯電量が増加するため、中心部に露光しようとすると、ウエハ基板上の帯電が投影ビームに対しクーロン相互反発作用が働き、通常より上方にフォーカスを結んでしまう。そこでそれを補正するために、帯電量に依存してフォーカス制御電圧を調整する必要があり、帯電量が増えるほどフォーカス制御電圧を上げる必要がある(104)。そのときのフォーカス補正量は帯電量が多いほど多くなり、帯電量が増えるとウエハ方向へフォーカス補正を行うこととなる(105)。なお、帯電量、フォーカス制御電圧、フォーカス補正量ともウエハ面内で対称的な形状を有することが多く、それぞれのX/Yで表示するとほぼ同じプロファイルとなる(103,104,105)。
Hereinafter, a charged particle beam exposure method and a charged particle beam exposure apparatus according to a first embodiment of the present invention will be described with reference to FIGS.
The apparatus calibrates at a constant frequency to obtain a focus position and an astigmatism correction amount, but depending on the substrate structure or material, a blurred exposure image can be obtained under those conditions. In such a case, first, as shown in FIG. 1, the charge amount distribution on the wafer substrate is measured by scanning, for example, the charge amount monitor (102) in the diameter direction on the wafer or the exposure substrate (101). To do. Assuming that the wafer substrate (101) is charged, the charge distribution (103) on the wafer substrate at that time has a higher charge amount in the middle, and the charge amount at the wafer center is the highest on the negative side. Since the focus optimized by calibration is under the condition of charge amount = 0, in this embodiment, an appropriate image can be formed on the wafer with the calibration condition at the outermost peripheral portion of the wafer. . However, the amount of charge increases toward the center of the wafer. Therefore, when exposure is attempted at the center, the charge on the wafer substrate has a coulomb repulsive action on the projection beam, and the focus is set above the normal level. In order to correct this, it is necessary to adjust the focus control voltage depending on the charge amount, and it is necessary to increase the focus control voltage as the charge amount increases (104). The focus correction amount at that time increases as the charge amount increases, and when the charge amount increases, focus correction is performed in the wafer direction (105). In many cases, the charge amount, the focus control voltage, and the focus correction amount have symmetrical shapes within the wafer surface, and when they are displayed in respective X / Y, the profiles are almost the same (103, 104, 105).

本実施例では典型的な帯電の場合を示しており、例えば帯電を有する基板や磁性体基板の場合を図2にて説明すると、帯電基板(110)上でのバイアス分布(111)は周辺部で0ながらウエハ中心に行くほど(−)バイアスとなり典型的なグローバル帯電している状態であることが分かる。この状態で露光前のキャリブレーションにて得られたフォーカス補正量設定のままで露光しようとすると、帯電量が増加するほどフォーカス位置がずれることとなり、ウエハ基板上ではウエハ中心に行くほど(+)デフォーカスしてしまう(112)。光学系図で見ると、帯電基板上でフォーカス追随性が未補正の場合には、レチクルパターン(116a)を透過した電子線は投影光学系(116b)で縮小され投影光学系(116c)にてキャリブレーション時に最適化されたレンズ励磁電流でフォーカシングするため、露光ビームのフォーカスはウエハ基板上でぼけてしまう(117a)。このままの状態で露光するとウエハ周辺部のパターン寸法に対してウエハ中心ほど差分(ΔCD)が大きくなってしまい、ラフネスが増える等の不具合が出てしまう。そこで同じ帯電基板(113)上のフォーカス補正量(114)を空間像計測にてそれぞれのバイアス量あるいはウエハ位置毎のフォーカス補正量を計測して、求めた補正量に基づきフォーカスを補正しながら露光を行うと、フォーカスずれ量(115)を面内全てで0にすることが出来、ウエハ全面で適正な露光像を得ることができる。光学系図で見ると、基板上の帯電量に追随するようにフォーカス制御レンズ(116c)の励磁強度を制御するのでウエハ上には適正なフォーカスを結ぶことが出来る(117b)。   In this embodiment, a typical case of charging is shown. For example, a case of a charged substrate or a magnetic substrate will be described with reference to FIG. 2. A bias distribution (111) on the charged substrate (110) is a peripheral portion. Thus, it can be seen that as it goes to the center of the wafer with 0, it becomes a (−) bias and is in a typical globally charged state. In this state, if exposure is performed with the focus correction amount setting obtained by the calibration before exposure, the focus position shifts as the charge amount increases. Defocusing occurs (112). As seen from the optical system diagram, when the focus followability is not corrected on the charged substrate, the electron beam transmitted through the reticle pattern (116a) is reduced by the projection optical system (116b) and calibrated by the projection optical system (116c). Since the focusing is performed with the lens excitation current optimized at the time of the exposure, the focus of the exposure beam is blurred on the wafer substrate (117a). If exposure is performed in this state, the difference (ΔCD) increases toward the wafer center with respect to the pattern size at the periphery of the wafer, leading to problems such as increased roughness. Therefore, the focus correction amount (114) on the same charged substrate (113) is measured while measuring the bias amount or the focus correction amount for each wafer position by aerial image measurement, and exposure is performed while correcting the focus based on the obtained correction amount. As a result, the focus shift amount (115) can be reduced to 0 in the entire surface, and an appropriate exposure image can be obtained on the entire wafer surface. As seen from the optical system diagram, the excitation intensity of the focus control lens 116c is controlled so as to follow the charge amount on the substrate, so that an appropriate focus can be established on the wafer (117b).

因みに帯電基板(110及び113)の構造としては、基板表面及び裏面にSiOやlow−k膜などの絶縁膜が成膜されている基板が該当し、絶縁膜厚が厚くなればなるほどその帯電量は増加する傾向がある。この構造はデバイス製造プロセスに当てはめるとコンタクト形成あるいはVia、配線工程などが該当する。また帯電と同様の挙動をする基板構造に磁性体基板がある。磁性体構造としては基板表層あるいは成膜構造内にFeなどの磁性層を含むもので磁気ヘッド製造工程などが該当する。 Incidentally, the structure of the charged substrates (110 and 113) corresponds to a substrate in which an insulating film such as SiO 2 or a low-k film is formed on the front surface and back surface of the substrate. The amount tends to increase. When this structure is applied to the device manufacturing process, it corresponds to contact formation, Via, wiring process or the like. There is a magnetic substrate as a substrate structure that behaves similarly to charging. The magnetic body structure includes a magnetic layer such as Fe 2 O 3 in the substrate surface layer or film formation structure, and corresponds to a magnetic head manufacturing process.

このフォーカス補正量の計測は、露光の度に毎回行ってもよいが、その前に行う帯電量計測の結果である一定以上の帯電量を持つ場合にだけ計測を行うとより効率的である。
帯電量あるいは磁性体の電子線への影響は、電子線の加速電圧に反比例し加速電圧が高くなるほど帯電量あるいは磁性体の影響を受けなくなる。また電子線光学系がどれだけ影響されてもいいかは、どのくらいの寸法制御をするかに依存する。つまり、帯電量には露光電子の加速電圧に反比例し、制御寸法に正比例することになる。加速電圧と許容帯電量については、幾つかの加速電圧での実験結果から、100kVで1nm当り2V弱、50kV時で0.3V弱、15kV時で0.05V以下であると考えられることより、加速電圧に対しては
Vac-ch〜Vacc/10,000
の関係が成り立つと考えられる。制御寸法は比例関係にあることより、許容帯電量Vac-ch[V]は加速電圧Vacc[kV]と転写パターン寸法制御Lac[nm]として
Vac-ch < Lac・Vacc/10,000 ・・・式(0)
で表すことが出来る。
The focus correction amount may be measured every time exposure is performed, but it is more efficient to perform the measurement only when the charge amount is equal to or larger than a certain amount, which is a result of the charge amount measurement performed before that.
The influence of the charge amount or the magnetic substance on the electron beam is inversely proportional to the acceleration voltage of the electron beam, and the influence of the charge quantity or the magnetic substance is reduced as the acceleration voltage increases. In addition, how much the electron beam optical system can be affected depends on how much dimension control is performed. That is, the charge amount is inversely proportional to the acceleration voltage of the exposure electrons and directly proportional to the control dimension. About the acceleration voltage and the allowable charge amount, it is considered from the experimental results at several acceleration voltages that it is less than 2 V per nm at 100 kV, less than 0.3 V at 50 kV, and less than 0.05 V at 15 kV. For acceleration voltage, Vac-ch to Vacc 2 / 10,000
It is thought that this relationship holds. Since the control dimensions are in a proportional relationship, the allowable charge amount Vac-ch [V] is expressed as the acceleration voltage Vacc [kV] and the transfer pattern dimension control Lac [nm]. Vac-ch <Lac · Vacc 2 / 10,000 (0)
It can be expressed as

基板上の帯電量分布に対するフォーカスあるいは非点収差補正補正量の検出方法としてはビーム補正検出用パターンを予め形成した被露光基板を用いて、露光前あるいは露光中に適時空間像(二次電子or/and反射電子分布)計測を行う空間像計測が有効である。一般にガウシャンビームの空間像計測は容易であるが、次世代EB露光法で提案されているようなある一定面積の一括転写法に用いる矩形ビームで空間像計測するのは非常に難しい。しかし、図3のようにレチクル(121)上に照明される露光光源としての電子線(120)が透過したビーム(122)の繰り返しパターンと同一の繰り返しパターン形状からなるアライメントパターン(123)を空間像計測用ウエハ上パターンとしてウエハ上(125)に形成しておくと、レチクル(121)の空間像計測用レチクルパターン部を透過した繰り返しパターンのビーム(122)がウエハ上(125)のアライメントパターン(123)に同期した時のみ、最もSNの高い反射電子信号(126)を得ることが出来る。もしフォーカスがずれると、空間像プロファイルである反射電子信号(126)がブロードとなってしまうが、フォーカスが最もあっていれば最もシャープな波形が得られるので容易に調整できる。また非点収差がずれている場合も同波形がブロードとなり、また非対称な波形となるが、非点収差をスティグメーターで最小となるように最適化すると、最もシャープで対称な波形が得ることができる。この方法を応用した空間像計測方法であれば、ウエハ上の帯電分布あるいは電界分布あるいは磁界分布に依存したフォーカス及び非点収差最適値を求めることが出来る。得られた反射電子像は反射電子あるいは二次電子検出器(144)などでモニターし、リアルタイムで波形が最大SNを得られるように調整することでフォーカス補正値及び非点収差補正を行うことが可能である。   As a method for detecting the focus or astigmatism correction correction amount on the charge amount distribution on the substrate, an exposure substrate on which a beam correction detection pattern has been formed in advance is used. / and reflected electron distribution) measurement is effective. In general, the aerial image measurement of a Gaussian beam is easy, but it is very difficult to measure the aerial image with a rectangular beam used in a batch transfer method with a certain area as proposed in the next generation EB exposure method. However, as shown in FIG. 3, the alignment pattern (123) having the same repetitive pattern shape as the repetitive pattern of the beam (122) transmitted through the electron beam (120) as the exposure light source illuminated on the reticle (121) is formed in the space. When the pattern on the wafer for image measurement is formed on the wafer (125), the beam (122) of the repetitive pattern transmitted through the reticle pattern portion for measuring the aerial image of the reticle (121) is the alignment pattern on the wafer (125). Only when synchronized with (123), the reflected electron signal (126) with the highest SN can be obtained. If the focus shifts, the reflected electron signal (126), which is the aerial image profile, becomes broad, but if the focus is the best, the sharpest waveform can be obtained and can be easily adjusted. In addition, when the astigmatism is deviated, the waveform becomes broad and asymmetrical, but when the astigmatism is optimized to be minimized with a stigmator, the sharpest and most symmetric waveform can be obtained. it can. If the aerial image measurement method is applied to this method, the optimum focus and astigmatism values depending on the charge distribution, electric field distribution, or magnetic field distribution on the wafer can be obtained. The obtained backscattered electron image is monitored by backscattered electrons or a secondary electron detector (144), and the focus correction value and astigmatism correction can be performed by adjusting the waveform so that the maximum SN can be obtained in real time. Is possible.

この空間像計測方法を応用したフォーカス及び非点収差調整方法について(第二の実施形態)における図5にて説明する。
なお、電子線転写露光法における空間像計測方法については、2000年SPIE Micro lithographyでも報告されており、本発明ではこれらの空間像計測方法を採用すると有用である。本発明ではこのような空間像計測方法を応用して、実レイヤーパターン内のTEGパターン部に空間像計測用の数10μm□前後のグレーティングパターンを複数個配し、そのパターンで空間像計測しながら露光サブフィールドのフォーカス補正量あるいは非点収差補正量を計測することができる。
A focus and astigmatism adjustment method to which this aerial image measurement method is applied will be described with reference to FIG. 5 in the second embodiment.
The aerial image measurement method in the electron beam transfer exposure method was also reported in 2000 SPIE Microlithography, and it is useful to employ these aerial image measurement methods in the present invention. In the present invention, by applying such an aerial image measurement method, a plurality of grating patterns of about 10 μm □ for aerial image measurement are arranged in the TEG pattern portion in the actual layer pattern, and the aerial image is measured with the pattern. The focus correction amount or astigmatism correction amount of the exposure subfield can be measured.

(第2の実施形態)
第2の実施形態について、図5を用いて説明する。
被露光基板としてのウエハ(125)の上には図3で説明したところのアライメントパターン(123)と同様にアライメントパターン(145)を予め形成しておく(145)。基板上に形成されているアライメントパターン(145)の1/縮小倍率の同一構造パターンを形成したレチクル(141)上に露光光源としての照明電子線(140)を照射すると、レチクルパターンを透過した電子線(142)は投影光学系(143)で任意の大きさに縮小され、基板上へ投影される。ウエハ上にはレチクルパターンのパターン周期を縮小倍率補正したパターンがアライメントパターン(145)として形成されていて、このアライメントパターン上に該パターンビームが照射される。その結果、アライメントパターン(145)から放出される反射電子あるいは二次電子は検出器(144)で常に検出され、その空間像(146)をモニターすることが出来る。もし、フォーカスなり残存非点収差成分があると、モニターされた空間像(146)の分布形状はブロードな分布になってしまうが、フォーカスが合い残存非点収差成分も少なくなると、その分モニターされた二次電子分布形状はシャープになる。この原理に従って最もシャープな信号プロファイルが得られるよう、投影レンズ系を調整すればフォーカス制御なり非点収差補正制御を行うことが出来る。この作業をウエハ面上に形成したアライメントパターン(145)に対してそれぞれ行うと、ウエハ内の投影レンズ設定値分布を取得することが出来る。これで露光前の準備は完了し、実際の露光時には、上記で得られた投影レンズ設定値(147)で該当する露光投影光学系(148)を制御するとよい。こうすることで基板上全面に適切なパターン形成を行うことができる。なお、本調整は同一の基板について予め上記のような投影レンズの設定値分布を取得しておけば、その後同一ウエハの処理の際に、同レンズ設定値を引き出してレンズを制御しながら露光すればよい。ただ、基板ごとに該レンズ設定値がばらつくようであれば、露光基板ごとに上記調整を行う方が望ましい。
(Second Embodiment)
A second embodiment will be described with reference to FIG.
An alignment pattern (145) is formed in advance on the wafer (125) as the substrate to be exposed in the same manner as the alignment pattern (123) described with reference to FIG. 3 (145). When an illumination electron beam (140) as an exposure light source is irradiated onto a reticle (141) on which an identical structure pattern of 1 / reduction magnification of the alignment pattern (145) formed on the substrate is irradiated, electrons transmitted through the reticle pattern The line (142) is reduced to an arbitrary size by the projection optical system (143) and projected onto the substrate. On the wafer, a pattern obtained by correcting the pattern cycle of the reticle pattern and reducing the magnification is formed as an alignment pattern (145), and the pattern beam is irradiated onto the alignment pattern. As a result, reflected electrons or secondary electrons emitted from the alignment pattern (145) are always detected by the detector (144), and the aerial image (146) can be monitored. If there is a residual astigmatism component that is in focus, the distribution shape of the monitored aerial image (146) will be a broad distribution, but if the focus is focused and the residual astigmatism component is reduced, it will be monitored accordingly. The secondary electron distribution shape becomes sharp. By adjusting the projection lens system so that the sharpest signal profile can be obtained according to this principle, focus control or astigmatism correction control can be performed. When this operation is performed on each of the alignment patterns (145) formed on the wafer surface, the projection lens set value distribution in the wafer can be acquired. Thus, preparations before exposure are completed, and at the time of actual exposure, the corresponding exposure projection optical system (148) may be controlled by the projection lens setting value (147) obtained above. By doing so, an appropriate pattern can be formed on the entire surface of the substrate. Note that in this adjustment, if the projection lens setting value distribution as described above is acquired in advance for the same substrate, the exposure is performed while controlling the lens by extracting the same lens setting value when processing the same wafer. That's fine. However, if the lens setting value varies from substrate to substrate, it is preferable to perform the adjustment for each exposure substrate.

(第3の実施形態)
第2の実施形態では、ウエハ上の帯電分布あるいは電界分布とそれに依存したフォーカス合わせ位置あるいは非収差補正値の検出を空間像計測などで直接計測して投影レンズ補正値を得て、露光精度を維持ずる方法を開示した。一方、ウエハ上の帯電分布あるいは電界分布あるいは磁界分布を計測し、その値を元にフォーカス制御あるいは非点収差補正条件をキャリブレーションにて最適化された条件に対する補正量として算出する方法を第三の形態として図6を用いて説明する。
(Third embodiment)
In the second embodiment, the detection of the charge distribution or electric field distribution on the wafer and the focus position or non-aberration correction value depending on it is directly measured by aerial image measurement or the like to obtain the projection lens correction value, and the exposure accuracy is improved. A method of maintaining was disclosed. On the other hand, a third method is to measure the charge distribution, the electric field distribution, or the magnetic field distribution on the wafer and calculate the focus control or astigmatism correction conditions as correction amounts for the conditions optimized by calibration based on the measured values. This will be described with reference to FIG.

帯電ウエハあるいは磁性体基板の被露光基板(150)上の帯電量あるいは磁性強度分布を、帯電モニターあるいは磁性体強度モニター(151)等で計測する。帯電モニターあるいは磁性体強度モニターとしては、露光面積と同等かそれ以下の面積(EPLの場合≦250um、可変整形の直接描画装置の場合≦5um)の帯電量あるいは磁性体強度をモニターできるものであって、その検出分解能は式(0)における許容帯電量あるいは許容磁性体強度の1/5以下であることが望ましい。これらの検出はウエハ基板全面で行えればその方が望ましいが、一般的なグローバルな帯電あるいは磁性分布を持つものはウエハ基板中心から対称的な分布を持つので、直径方向のみあるいは直行する直径二方向を検出すれば十分である。なお、基板の下地構造がウエハ面内で大きく変わる部分がある場合など帯電量あるいは磁性体分布に影響を及ぼす懸念がある部分は予めその部分も計測しておくことが必要となる。   The charge amount or magnetic strength distribution of the charged wafer or magnetic substrate on the substrate to be exposed (150) is measured with a charge monitor or magnetic strength monitor (151). The charge monitor or magnetic strength monitor can monitor the charge amount or magnetic strength of an area equivalent to or smaller than the exposure area (≤250um for EPL, ≤5um for variable shaping direct drawing device). Therefore, the detection resolution is desirably 1/5 or less of the allowable charge amount or the allowable magnetic body strength in the equation (0). These detections are preferable if they can be performed on the entire surface of the wafer substrate, but those having a general global charge or magnetic distribution have a symmetric distribution from the center of the wafer substrate. It is sufficient to detect the direction. Note that it is necessary to measure in advance a portion that may affect the charge amount or the magnetic material distribution, such as when there is a portion where the underlying structure of the substrate greatly changes in the wafer surface.

例えばウエハ中心ほど帯電しているグローバルな帯電分布(152)の場合には、それぞれのウエハ上帯電量Vchから、露光ビームの加速電圧及び露光光学系に依存する定数をk、補正フォーカス量Fcorrを露光装置のキャリブレーション時の適正フォーカスFとして、下記(1)式にて算出することができる。 For example, in the case of a global charge distribution (152) that is charged toward the center of the wafer, k is a constant depending on the acceleration voltage of the exposure beam and the exposure optical system, and the correction focus amount Fcorr is calculated from the charge amount Vch on each wafer. The appropriate focus F 0 at the time of calibration of the exposure apparatus can be calculated by the following equation (1).

Fcorr = F+k・Vch ・・・(1)
それぞれの帯電量と式(1)にて得られたウエハ面上のそれぞれのレンズ設定値分布(153)を換算表として露光システムに記憶させ、ウエハ上への実際の露光の際に、その投影光学系(154)に該換算表に基づいた最適なレンズ設定値で露光すると、安定した露光像を形成することができる。さらに本方法では(第1あるいは第2の実施形態)のようにウエハ基板上にウエハ形成パターンとは異なるアライメントマークを形成しなくても済み、処理効率も早く、よりデバイス量産向きである。なお、本実施例では帯電量に基づくレンズ設定値算出方法について述べたが、磁気ヘッド作製工程などで用いられる磁性体基板上への露光制御についても全く同様の方法を用いることができる。
Fcorr = F 0 + k · Vch (1)
Each charge amount and each lens setting value distribution (153) on the wafer surface obtained by the equation (1) are stored in the exposure system as a conversion table, and the projection is performed during actual exposure on the wafer. When the optical system (154) is exposed with an optimum lens setting value based on the conversion table, a stable exposure image can be formed. Further, in this method, it is not necessary to form an alignment mark different from the wafer formation pattern on the wafer substrate as in the first or second embodiment, the processing efficiency is high, and the device is more suitable for mass production. Although the lens setting value calculation method based on the charge amount has been described in the present embodiment, the same method can be used for the exposure control on the magnetic substrate used in the magnetic head manufacturing process and the like.

また、本方法は必ずしも露光ウエハ毎に行う必要はなく、同一構造のウエハについては予め帯電量あるいは磁性分布に対するレンズ設定値を計測しておき、その設定値に基づき常に露光すれば、スループットも犠牲にならず高精度な露光像を得ることができる。   In addition, this method does not necessarily need to be performed for each exposure wafer. For wafers of the same structure, if a lens setting value for the charge amount or magnetic distribution is measured in advance and exposure is always performed based on the setting value, throughput is also sacrificed. Therefore, a highly accurate exposure image can be obtained.

本発明は、荷電粒子線を用いた微細パターン形成する方法等に有用である。   The present invention is useful for a method of forming a fine pattern using a charged particle beam.

第1の実施形態に係る帯電量分布計測における光学系補正の方法を示す模式図Schematic diagram showing a method of optical system correction in charge amount distribution measurement according to the first embodiment 第1の実施形態に係る露光時における光学系補正の方法を示す模式図Schematic diagram showing a method of optical system correction at the time of exposure according to the first embodiment 第1及び第2の実施形態に係る空間像計測の模式図Schematic diagram of aerial image measurement according to the first and second embodiments 基板上に帯電分布あるいは磁界分布がない基板上への露光制御を説明した模式図Schematic diagram explaining exposure control on a substrate with no charge distribution or magnetic field distribution on the substrate 第2の実施形態に係るフォーカス補正量あるいは非点収差補正値の事前計測とその結果に基づく露光光学系制御の方法を説明した模式図Schematic diagram explaining a method of controlling the exposure optical system based on the prior measurement of the focus correction amount or astigmatism correction value and the result according to the second embodiment 第3及び第4の実施形態に係る、基板上の帯電量あるいは磁界分布の事前計測とその結果に基づいて露光光学系レンズ設定値を算出して制御する方法を説明した模式図Schematic diagram illustrating a method for calculating and controlling an exposure optical system lens setting value based on the prior measurement of the charge amount or magnetic field distribution on the substrate and the result according to the third and fourth embodiments

符号の説明Explanation of symbols

101 ウエハあるいは露光基板
102 帯電量モニター
103 帯電量分布
104 フォーカスレンズ制御電圧
105 フォーカス位置補正量
110,113 帯電基板
111 バイアス量分布
112 フォーカスずれ量分布
114 フォーカス補正量分布
115 フォーカスずれ量
116a レチクルパターン
116b 縮小倍率制御の投影光学系
116c フォーカス制御の投影光学系
117a フォーカスあるいは非点収差補正時のデフォーカス状態
117b フォーカスあるいは非点収差補正時のベストフォーカス状態
120 電子線(露光光源)
121 レチクル
122 空間像計測用レチクルパターン部を透過した繰り返しパターンのビーム
123 空間像計測用ウエハ上パターン
125 ウエハ
126 反射電子信号
130 レチクルパターン
131 投影光学系
132 被露光基板
133 バイアス量分布
134 フォーカス補正量
140 照明電子(露光光源)
141 レチクル
142 電子線
143 投影光学系
144 反射あるいは二次電子検出器
145 空間像計測用のアライメントパターン
146 空間像
147 投影レンズ設定値
148 露光投影光学系
150 被露光基板
151 帯電量あるいは磁性強度モニター
152 帯電量あるいは磁性強度分布
153 投影レンズ設定値分布
154 露光投影光学系
DESCRIPTION OF SYMBOLS 101 Wafer or exposure board | substrate 102 Charge amount monitor 103 Charge amount distribution 104 Focus lens control voltage 105 Focus position correction amount 110,113 Charge substrate 111 Bias amount distribution 112 Focus shift amount distribution 114 Focus correction amount distribution 115 Focus shift amount 116a Reticle pattern 116b Reduction magnification control projection optical system 116c Focus control projection optical system 117a Defocus state during focus or astigmatism correction 117b Best focus state during focus or astigmatism correction 120 Electron beam (exposure light source)
121 reticle 122 beam of repetitive pattern transmitted through reticle pattern portion for aerial image measurement 123 aerial image measurement wafer pattern 125 wafer 126 reflected electron signal 130 reticle pattern 131 projection optical system 132 exposed substrate 133 bias amount distribution 134 focus correction amount 140 Illumination electronics (exposure light source)
141 reticle 142 electron beam 143 projection optical system 144 reflection or secondary electron detector 145 aerial image measurement alignment pattern 146 aerial image 147 projection lens setting value 148 exposure projection optical system 150 exposure substrate 151 charge amount or magnetic intensity monitor 152 Charge amount or magnetic intensity distribution 153 Projection lens setting value distribution 154 Exposure projection optical system

Claims (8)

基板ウエハ上に電子線あるいは荷電粒子線を用いてマスクパターンあるいはアパーチャ形状を投影露光するに際し、
露光する下地構造基板(レイヤー)毎にウエハ上の帯電状態及びその分布をモニターし、許容帯電量をVac-ch[V]、露光光源の加速電圧をVacc[V]、転写パターン寸法制御をLac[nm]、比例係数をKとしたとき、
Vac-ch < K・Lac・Vacc/10,000
とし、許容帯電量Vac-chを上回った場合には少なくともビーム補正を行う
露光方法。
When projecting and exposing a mask pattern or aperture shape using an electron beam or charged particle beam on a substrate wafer,
For each underlying structure substrate (layer) to be exposed, the charge state on the wafer and its distribution are monitored, the allowable charge amount is Vac-ch [V], the acceleration voltage of the exposure light source is Vacc [V], and the transfer pattern dimension control is Lac [nm], where K is the proportionality coefficient
Vac-ch <K ・ Lac ・ Vacc 2 / 10,000
An exposure method that performs at least beam correction when the allowable charge amount Vac-ch is exceeded.
ビーム補正検出用パターンを予め形成した被露光基板を用いて、露光前あるいは露光中に適時空間像計測を行い、少なくともフォーカス合わせ状態、非点収差残留成分量を検出し、これらの制御規格値から許容値以上外れた場合にのみ、電子線あるいは荷電粒子線光学系へのフィードバックを行って、少なくともフォーカス合わせあるいは非点収差補正(STIGMA補正)調整を行いつつ露光する
請求項1記載の露光方法。
Using an exposed substrate on which a beam correction detection pattern has been formed in advance, timely aerial image measurement is performed before or during exposure, and at least the focused state and the astigmatism residual component amount are detected. From these control standard values 2. The exposure method according to claim 1, wherein exposure is performed while performing at least focusing or astigmatism correction (STIGMA correction) adjustment by performing feedback to an electron beam or a charged particle beam optical system only when the value exceeds a tolerance.
露光してパターン形成しようとするそれぞれの下地構造基板(レイヤー)上にビーム補正検出用パターンを面内分布計測ができるように配列形成し、このウエハを該レイヤーのビーム補正用とし、露光時に本ウエハを用いて、ビーム補正検出パターン上にビーム照射して得られる空間像から少なくともフォーカス合わせ位置、非点収差補正量を算出してそれらのウエハ面内補正マッピングデータをデータベースとして露光装置システムに持たせ、以後の露光では同一の基板構造上にパターン形成する時には、該当するデータベースに基づいて該レイヤーの露光を行う
請求項1記載の露光方法。
A pattern for beam correction detection is arranged and formed on each underlying structure substrate (layer) to be exposed and patterned so that in-plane distribution measurement can be performed, and this wafer is used for beam correction of the layer. Using the wafer, calculate at least the focus position and astigmatism correction amount from the aerial image obtained by irradiating the beam on the beam correction detection pattern, and have the wafer in-plane correction mapping data as a database in the exposure apparatus system. 2. The exposure method according to claim 1, wherein when a pattern is formed on the same substrate structure in the subsequent exposure, the layer is exposed based on a corresponding database.
露光ウエハ面内のグローバルな帯電量分布を少なくとも表面電位測定あるいはそれに代わる帯電量モニター可能な方法にて事前に計測し、それぞれの帯電バイアス量Vchに対する補正フォーカス量Fcorrを露光装置のキャリブレーション時の適正フォーカスFに対し
Fcorr = F+k・Vch
にて算出し(kは露光光源加速電圧及び露光光学系に依存する定数)、本算出式から得られる同一下地基板上ウエハ面内のフォーカス補正値に基づいて投影光学系を制御して露光する
露光方法。
The global charge amount distribution in the exposure wafer surface is measured in advance by at least a method that can measure the surface potential or monitor the charge amount instead, and the corrected focus amount Fcorr for each charge bias amount Vch is obtained during calibration of the exposure apparatus. For proper focus F 0, F corr = F 0 + k · Vch
(K is a constant depending on the exposure light source acceleration voltage and the exposure optical system), and exposure is performed by controlling the projection optical system based on the focus correction value within the wafer surface on the same substrate obtained from this calculation formula. Exposure method.
露光ウエハ面内のグローバルな帯電量分布を少なくとも表面電位測定あるいはそれに代わる帯電量モニター可能な方法にて事前に計測の上、それぞれの帯電バイアス量Vchに対する非点収差補正量STGcorrを露光装置のキャリブレーション時の適正補正量STGに対し、K=定数とし
STGcorr = STG+K・Vch
にて補正値を算出し、本算出式から得られる同一下地構造基板上のウエハ面内のSTIGMA補正値に基づいて非点収差補正を制御しつつ露光する
露光方法。
Measure the astigmatism correction amount STGcorr for each charge bias amount Vch in advance by calibrating the global charge amount distribution in the exposure wafer surface in advance by at least measuring the surface potential or using an alternative charge amount monitoring method. For the appropriate correction amount STG 0 at the time of calibration, K = constant and STGcorr = STG 0 + K · Vch
An exposure method in which a correction value is calculated in step 1 and exposure is performed while controlling astigmatism correction based on the STIGMA correction value in the wafer surface on the same underlying structure substrate obtained from this calculation formula.
空間像計測時に基板上に形成されている空間像計測用パターンは、
二次電子あるいは反射電子放出能がバックグランドに比べて20%以上高い材料あるいは構造である
請求項2,請求項3の何れかに記載の露光方法。
The aerial image measurement pattern formed on the substrate during aerial image measurement is
4. The exposure method according to claim 2, wherein the exposure method is a material or structure having a secondary electron or reflected electron emission ability higher by 20% or more than the background.
空間像計測用レチクルパターンの開口率は少なくとも5%以下で計測用パターン部の局所的開口率は1%以下として、空間電荷効果の影響を抑制する
請求項2,請求項3の何れかに記載の露光方法。
The aperture ratio of the aerial image measurement reticle pattern is at least 5% or less and the local aperture ratio of the measurement pattern portion is 1% or less to suppress the influence of the space charge effect. Exposure method.
請求項1〜請求項7の何れかに記載の露光方法を実行する露光装置。   An exposure apparatus that executes the exposure method according to claim 1.
JP2005166287A 2005-06-07 2005-06-07 Exposure method and exposure apparatus Withdrawn JP2006344614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166287A JP2006344614A (en) 2005-06-07 2005-06-07 Exposure method and exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166287A JP2006344614A (en) 2005-06-07 2005-06-07 Exposure method and exposure apparatus

Publications (1)

Publication Number Publication Date
JP2006344614A true JP2006344614A (en) 2006-12-21

Family

ID=37641384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166287A Withdrawn JP2006344614A (en) 2005-06-07 2005-06-07 Exposure method and exposure apparatus

Country Status (1)

Country Link
JP (1) JP2006344614A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153456A (en) * 2008-12-24 2010-07-08 Nuflare Technology Inc Charged particle beam lithography apparatus and method
JP2015017844A (en) * 2013-07-09 2015-01-29 キヤノン株式会社 Calibrating method, measuring apparatus, light-exposure apparatus, and manufacturing method for goods
KR20180015585A (en) * 2016-08-03 2018-02-13 가부시키가이샤 뉴플레어 테크놀로지 Multi-charged particle beam writing apparatus and adjusting method thereof
KR20200060530A (en) * 2017-10-27 2020-05-29 어플라이드 머티어리얼스, 인코포레이티드 Empirical detection of lens aberration for diffraction-limited optical systems

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153456A (en) * 2008-12-24 2010-07-08 Nuflare Technology Inc Charged particle beam lithography apparatus and method
JP2015017844A (en) * 2013-07-09 2015-01-29 キヤノン株式会社 Calibrating method, measuring apparatus, light-exposure apparatus, and manufacturing method for goods
US10401744B2 (en) 2013-07-09 2019-09-03 Canon Kabushiki Kaisha Calibration method, measurement apparatus, exposure apparatus, and method of manufacturing article
KR20180015585A (en) * 2016-08-03 2018-02-13 가부시키가이샤 뉴플레어 테크놀로지 Multi-charged particle beam writing apparatus and adjusting method thereof
KR101988911B1 (en) 2016-08-03 2019-06-13 가부시키가이샤 뉴플레어 테크놀로지 Multi-charged particle beam writing apparatus and adjusting method thereof
KR20200060530A (en) * 2017-10-27 2020-05-29 어플라이드 머티어리얼스, 인코포레이티드 Empirical detection of lens aberration for diffraction-limited optical systems
KR102400527B1 (en) 2017-10-27 2022-05-19 어플라이드 머티어리얼스, 인코포레이티드 Empirical Detection of Lens Aberrations for Diffraction-Limited Optical Systems

Similar Documents

Publication Publication Date Title
US7692166B2 (en) Charged particle beam exposure apparatus
JP4870437B2 (en) Method for calculating deflection aberration correction voltage and charged particle beam writing method
KR102563726B1 (en) Inspection tools and inspection methods
JPH10214779A (en) Electron beam exposure method and fabrication of device using that method
KR20230022271A (en) Voltage Contrast Measuring Mark
JP3251875B2 (en) Charged particle beam exposure system
KR20150142606A (en) Lithography apparatus, and method of manufacturing article
JP2006344614A (en) Exposure method and exposure apparatus
US20140199618A1 (en) Methods of measuring overlay errors in area-imaging e-beam lithography
JP2009081459A (en) Method and device for electron beam exposure, semiconductor element manufacturing method, mask, and mask manufacturing method
US9257262B2 (en) Lithography apparatus, lithography method, and method of manufacturing article
US11728129B2 (en) Inspection tool and method of determining a distortion of an inspection tool
US20130148091A1 (en) Lithography apparatus and method, and method of manufacturing article
US20060240330A1 (en) Exposure method, mask, semiconductor device manufacturing method, and semiconductor device
US6296976B1 (en) Compensation of within-subfield linewidth variation in e-beam projection lithography
JP2016115850A (en) Lithographic apparatus, method, and manufacturing method of article
US20050116180A1 (en) Charged-particle beam lithographic system
JP4095218B2 (en) Charged beam exposure method and exposure apparatus
Kumar et al. Optimizing CD-SEM metrology for anamorphic high-NA EUV photomasks
JP2010135248A (en) Evaluation substrate of charged particle beam
US6369397B1 (en) SPM base focal plane positioning
JP2007087639A (en) Electron beam device and pattern evaluation method
JP2004241611A (en) Method for controlling projecting optical system in charged particle ray exposure device
JP2007251024A (en) Charged beam exposure apparatus, charged beam exposure method, and method of manufacturing semiconductor device
JP2005197337A (en) Exposure method and exposure device of charged-particle beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A761 Written withdrawal of application

Effective date: 20090317

Free format text: JAPANESE INTERMEDIATE CODE: A761