JP2018025055A - Cast-in-place pace construction method - Google Patents

Cast-in-place pace construction method Download PDF

Info

Publication number
JP2018025055A
JP2018025055A JP2016158213A JP2016158213A JP2018025055A JP 2018025055 A JP2018025055 A JP 2018025055A JP 2016158213 A JP2016158213 A JP 2016158213A JP 2016158213 A JP2016158213 A JP 2016158213A JP 2018025055 A JP2018025055 A JP 2018025055A
Authority
JP
Japan
Prior art keywords
pile
stabilizer
adsorbent
heavy metal
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016158213A
Other languages
Japanese (ja)
Other versions
JP6884527B2 (en
Inventor
中村 光男
Mitsuo Nakamura
光男 中村
武 勝見
Takeshi Katsumi
武 勝見
久保 博
Hiroshi Kubo
博 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Haseko Corp
Tachibana Material Co Ltd
Original Assignee
Kyoto University
Haseko Corp
Hasegawa Komuten Co Ltd
Tachibana Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Haseko Corp, Hasegawa Komuten Co Ltd, Tachibana Material Co Ltd filed Critical Kyoto University
Priority to JP2016158213A priority Critical patent/JP6884527B2/en
Publication of JP2018025055A publication Critical patent/JP2018025055A/en
Application granted granted Critical
Publication of JP6884527B2 publication Critical patent/JP6884527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cast-in-place pile construction method which can largely reduce or prevent the diffusion of soil contamination without soil improvement.SOLUTION: A cast-in-place pile construction method for excavating a pile hole by filling the pile hole with a stabilizing solution has: a stabilizing solution preparation process for preparing an addition stabilizing solution by adding an adsorbent for adsorbing a heavy metal contamination substance to the stabilizing solution; and a pile hole excavation process for excavating a pile hole by filling the pile hole with the addition stabilizing solution. The heavy metal contamination substance is arsenic, fluorine or zinc. The stabilizing solution is a polymer system stabilizing solution or a bentonite system stabilizing solution. The adsorbent is a magnesium oxide or an aluminum hydroxide. By adding the magnesium oxide or the aluminum hydroxide to the polymer system stabilizing solution and the bentonite system stabilizing solution with respect to arsenic, fluorine and zinc, an elution amount of arsenic, fluorine and zing mixed into the excavated pile hole can be reduced to a value smaller than a reference value.SELECTED DRAWING: Figure 12

Description

本発明は、土壌汚染の拡散を防止するための現場打ち杭工法に関する。   The present invention relates to an in-situ pile method for preventing the spread of soil contamination.

我が国の大都市のほとんどが比較的軟弱な沖積層上に発達しているため、都市部の中高層集合住宅の建設では杭が必要となる。杭は軟弱な沖積層を貫通して下部支持層に到達し、上部の建物を支える役割を持つが、この沖積層に地盤汚染が存在する場合に、杭工事による地盤汚染の拡散が問題になる。つまり、杭の施工によって、沖積層の汚染土壌や汚染地下水が下部支持層である下部帯水層に侵入し汚染を広げてしまうことがないよう、何らかの対策が必要である。   Since most of the big cities in Japan are developed on relatively soft alluvium, piles are necessary for the construction of middle- and high-rise apartments in urban areas. Pile penetrates the soft alluvium and reaches the lower support layer to support the upper building. When soil contamination exists in this alluvium, diffusion of soil contamination due to pile construction becomes a problem. . In other words, it is necessary to take some measures to prevent contamination of alluvial soil and contaminated groundwater from entering the lower aquifer, which is the lower support layer, and spreading the contamination by pile construction.

大阪平野をはじめとして我が国の都市部の沖積層には、自然由来の重金属等を含む土壌が存在することが知られている。自然由来の重金属等を含む土壌はこれまで土壌汚染対策法の対象外であったが、2009年の法改正で人為由来の汚染土壌と同様に法の対象として取り扱うことが定められた。したがって、今後、自然由来の重金属等を含む土壌が存在する地盤において、重金属等を拡散させることなく杭を設ける杭工法の確立は、集合住宅の杭工事における急務の課題である。   It is known that soil containing heavy metals derived from nature exists in alluvial deposits in urban areas of Japan including the Osaka Plain. So far, soil containing natural heavy metals has not been subject to the Soil Contamination Countermeasures Law, but it was stipulated in the 2009 revision of the law that it should be treated as a law subject as well as anthropogenic contaminated soil. Therefore, in the future, establishment of a pile construction method that provides piles without diffusing heavy metals etc. in the ground where soil containing natural heavy metals etc. exists will be an urgent issue in pile construction of apartment buildings.

そこで、土壌汚染の拡散を防止して杭施工を行う手段として、特許文献1〜3が提案されている。   Therefore, Patent Documents 1 to 3 have been proposed as means for carrying out pile construction by preventing diffusion of soil contamination.

特許文献1の「杭施工方法」は、杭施工領域中心部への汚染物質の浸入を防止するための置換材料を用いて、杭施工領域内部の上部透水層地盤を置換する上部透水層地盤置換工程と、杭施工領域を貫通して所定深さに至るまで杭を打設する杭打設工程とを含むものである。   The “pile construction method” of Patent Document 1 uses an upper permeable layer ground replacement to replace the upper permeable layer ground inside the pile construction region, using a replacement material for preventing the entry of contaminants into the center of the pile construction region. A process and a pile driving process of driving a pile through the pile construction area to a predetermined depth.

特許文献2の「杭施工方法」では、掘削工程により、地盤表層にある汚染層から、汚染層と不透水層の境界面より深い不透水層の位置まで縦穴を掘削する。次に、注入工程により縦穴に、不透水層の位置から汚染層の位置まで充填材を注入する。次に、挿入工程により充填材が硬化する前に、ケーシングチューブを不透水層の位置まで挿入し、ケーシングチューブの外周面と、縦穴の内周壁との間に充填材を充填させる。次に、杭施工工程により、充填材が硬化した後ケーシングチューブを通じて、不透水層の下層にある透水層を貫通して下部支持層まで杭を施工する。   In the “pile construction method” of Patent Document 2, a vertical hole is excavated from the contaminated layer on the ground surface to the position of the impermeable layer deeper than the boundary surface between the contaminated layer and the impermeable layer by an excavation process. Next, a filler is injected into the vertical hole from the position of the impermeable layer to the position of the contaminated layer by an injection process. Next, before the filler is cured by the insertion step, the casing tube is inserted to the position of the impermeable layer, and the filler is filled between the outer peripheral surface of the casing tube and the inner peripheral wall of the vertical hole. Next, in the pile construction process, after the filler is cured, the pile is constructed through the casing tube to the lower support layer through the water permeable layer below the impermeable layer.

特許文献3の「鉛直孔掘削方法及び鉛直孔掘削装置」では、不透水層の上部に位置する上部透水層と、不透水層の下部に位置する下部透水層とを有する地盤を掘削して鉛直孔が形成される。この鉛直孔掘削方法は、鉛直孔を不透水層の途中部分まで掘削する第1の掘削工程と、第1の掘削工程で掘削した土をベントナイト泥水で置換する置換工程と、ベントナイト泥水中で上部透水層と不透水層の境目部分を含む領域に層形成材料を吹き付けてシーリング層を形成する層形成工程と、鉛直孔を不透水層の途中部分から下部透水層まで掘削する第2の掘削工程とを備えている。   In "Vertical hole excavation method and vertical hole excavation apparatus" of Patent Document 3, a ground having an upper permeable layer located above the impermeable layer and a lower permeable layer located below the impermeable layer is excavated vertically. A hole is formed. This vertical hole excavation method includes a first excavation step for excavating a vertical hole to an intermediate portion of an impermeable layer, a replacement step for replacing soil excavated in the first excavation step with bentonite mud water, and an upper portion in bentonite mud water. A layer forming step of forming a sealing layer by spraying a layer forming material on a region including a boundary portion between the water-permeable layer and the water-impermeable layer, and a second excavation step of excavating a vertical hole from a middle portion of the water-impermeable layer to a lower water-permeable layer And.

特許第3367042号公報Japanese Patent No. 3367042 特開2012−241471号公報JP 2012-241471 A 特開2014−156752号公報JP 2014-156752 A

上述した土壌汚染の拡散を防止して杭施工を行う従来の手段は、上部透水層地盤置換工程(特許文献1)、充填材注入とケーシングチューブの挿入(特許文献2)、シーリング層を形成する層形成工程(特許文献3)など、従来の現場打ち杭工法と異なる地盤改良を必要とする。
そのため、従来の手段は、地盤改良のために長期間を要し、かつ工程が複雑であり多大な費用(コスト)がかかる。
The conventional means for carrying out the pile construction while preventing the diffusion of soil contamination described above forms the upper permeable layer ground replacement step (Patent Document 1), filling material injection and casing tube insertion (Patent Document 2), and a sealing layer. It requires ground improvement that is different from the conventional on-site pile method such as the layer formation process (Patent Document 3).
Therefore, the conventional means requires a long period of time for ground improvement, is complicated in process, and requires a large amount of cost (cost).

本発明は、上述した問題点を解決するために創案されたものである。すなわち本発明の目的は、地盤改良なしで土壌汚染の拡散を大幅に低減又は防止することができる現場打ち杭工法を提供することにある。   The present invention has been developed to solve the above-described problems. That is, an object of the present invention is to provide an in-situ pile method that can significantly reduce or prevent the spread of soil contamination without ground improvement.

本発明によれば、安定液を杭孔に満たして掘削する現場打ち杭工法において、
重金属汚染物質を吸着する吸着剤を前記安定液に添加して添加安定液を調製する安定液調製工程と、
前記添加安定液を前記杭孔に満たして前記杭孔を掘削する杭孔掘削工程と、を有する、現場打ち杭工法が提供される。
According to the present invention, in the in-situ pile method for excavating the stable liquid in the pile hole,
A stabilizing solution preparation step of preparing an added stabilizing solution by adding an adsorbent that adsorbs heavy metal contaminants to the stabilizing solution;
A pile-hole excavation process is provided, which includes filling a pile hole with the added stabilizing liquid and excavating the pile hole.

本発明の発明者は、多くの実験と研究を繰り返した結果、以下の新規の知見を得た。
(1)安定液を杭孔に満たして掘削する現場打ち杭工法で使用されている安定液は、鉛に対する吸着機能が高い。
(2)安定液に吸着剤を添加することにより、重金属汚染物質に対する吸着機能を持たせることができる。
(3)自然由来程度の重金属汚染物質を含む地盤であれば、安定液に適量の吸着剤を添加することで、安定液本来の性能を保持しながら、重金属汚染物質の溶出濃度を基準値未満に抑え、重金属汚染物質の拡散を防止できる。
As a result of repeating many experiments and studies, the inventors of the present invention have obtained the following new findings.
(1) The stable liquid used in the in-situ pile driving method in which the stable liquid is filled in the pile hole and excavated has a high adsorption function for lead.
(2) By adding an adsorbent to the stabilizing liquid, it is possible to provide an adsorption function for heavy metal contaminants.
(3) If the soil contains naturally-occurring heavy metal contaminants, the elution concentration of heavy metal contaminants is below the standard value by adding an appropriate amount of adsorbent to the stabilizer while maintaining the original performance of the stabilizer. And the diffusion of heavy metal contaminants can be prevented.

本発明はかかる新規の知見に基づくものである。すなわち、本発明によれば、安定液調製工程において重金属汚染物質を吸着する吸着剤を安定液に添加して添加安定液を調製する。次いで、杭孔掘削工程において、調製した添加安定液を杭孔に満たして杭孔を掘削する。
上述した本発明の現場打ち杭工法は、安定液を杭孔に満たして掘削する従来の現場打ち杭工法と施工手順が同じであり、地盤改良は不要である。
また、従来の施工手順に追加される工程は、上述した安定液調製工程などのみであり、短時間で実施できる。
したがって、本発明の現場打ち杭工法は、地盤改良なしで土壌汚染の拡散を大幅に低減又は防止することができる。
The present invention is based on such novel findings. That is, according to the present invention, an adsorbent that adsorbs heavy metal contaminants is added to the stabilizer in the stabilizer preparation step to prepare an added stabilizer. Next, in the pile hole excavation process, the piled hole is excavated by filling the prepared stabilizing liquid in the pile hole.
The above-mentioned in-situ pile method of the present invention has the same construction procedure as the conventional in-situ pile method in which a stabilizing liquid is filled in a pile hole and excavated, and ground improvement is unnecessary.
Moreover, the process added to the conventional construction procedure is only the stabilization liquid preparation process mentioned above etc., and can be implemented in a short time.
Therefore, the on-site pile method of the present invention can significantly reduce or prevent the spread of soil contamination without ground improvement.

汚染を存置し集合住宅を建設する場合の概念図である。It is a conceptual diagram in the case of constructing a housing complex where pollution is kept. 本発明による現場打ち杭工法を示すフロー図である。It is a flowchart which shows the spot driving pile method by this invention. アースドリル工法による杭工事施工要領図である。It is a pile construction construction outline figure by an earth drill method. 安定液の機能と必要な性質を示す図である。It is a figure which shows the function and required property of a stabilizer. 実験フロー図である。It is an experiment flowchart. 安定液Aの吸着試験結果を示す図である。It is a figure which shows the adsorption test result of the stable liquid A. 安定液Bの吸着試験結果を示す図である。It is a figure which shows the adsorption test result of the stable liquid B. 安定液Cの吸着試験結果を示す図である。It is a figure which shows the adsorption test result of the stable liquid C. 安定液A、B、Cに含まれるベントナイトに対するヒ素の吸着等温線を示す図である。It is a figure which shows the adsorption isotherm of arsenic with respect to the bentonite contained in the stabilizers A, B, and C. 安定液A、B、CのpHとPb濃度の関係図である。FIG. 6 is a relationship diagram between the pH of the stabilizers A, B, and C and the Pb concentration. 安定液A、B、CのAs吸着等温線を示す図である。It is a figure which shows the As adsorption isotherm of the stable liquids A, B, and C. 各重金属等に対する吸着試験結果を示す図である。It is a figure which shows the adsorption test result with respect to each heavy metal. アースドリル工法による掘削手順を示す図である。It is a figure which shows the excavation procedure by an earth drill construction method. 重金属等を含む土壌と安定液の構成を示す図である。It is a figure which shows the structure of the soil containing a heavy metal etc., and a stabilizer. 安定液の品質管理試験(ファンネル粘性、ろ過水量、pH)の結果を示す図である。It is a figure which shows the result of the quality control test (funnel viscosity, filtered water amount, pH) of a stable liquid. 吸着剤であるMgOおよびAl(OH)の添加量と安定液Aの各重金属濃度との関係を示す図である。It is a figure which shows the relationship between the addition amount of MgO and Al (OH) 3 which are adsorption agents, and each heavy metal concentration of the stabilizer A. 吸着剤であるMgOおよびAl(OH)の添加量と安定液Bの各重金属濃度との関係を示す図である。It is a figure which shows the relationship between the addition amount of MgO and Al (OH) 3 which are adsorption agents, and each heavy metal concentration of the stabilizer B. ヒ素の吸着等温線を示す図である。It is a figure which shows the adsorption isotherm of arsenic. フッ素の吸着等温線を示す図である。It is a figure which shows the adsorption isotherm of a fluorine. 配合設計のフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart of a mixing | blending design.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、汚染を存置し集合住宅を建設する場合の概念図である。
この図に示すように自然由来の重金属等を含む汚染土壌1と地下水が存在する地盤(下部支持層3)に杭を計画する場合、杭は汚染土壌1とその下の難透水層2を貫通して下部支持層3に達する。このような杭の施工によって重金属等が難透水層下部の下部帯水層3(下部支持層3)に拡散するおそれがある。
FIG. 1 is a conceptual diagram in the case of constructing an apartment house where pollution remains.
As shown in this figure, when a pile is planned on the ground (bottom support layer 3) where there is contaminated soil 1 containing natural heavy metals and groundwater, the pile penetrates the contaminated soil 1 and the poorly permeable layer 2 below it. Then, the lower support layer 3 is reached. Construction of such a pile may cause heavy metals or the like to diffuse into the lower aquifer 3 (lower support layer 3) below the poorly permeable layer.

図2は、本発明による現場打ち杭工法を示すフロー図である。
この図において、本発明の現場打ち杭工法は、安定液を杭孔に満たして掘削する現場打ち杭工法であり、安定液調製工程S1と杭孔掘削工程S2を有する。
安定液を杭孔に満たして掘削する現場打ち杭工法は、例えば、アースドリル工法、リバース工法、BH工法である。
FIG. 2 is a flow diagram showing the on-site pile method according to the present invention.
In this figure, the in-situ pile method of the present invention is a in-situ pile method for excavating with a stable liquid filled in a pile hole, and has a stable liquid preparation step S1 and a pile hole excavation step S2.
The in-situ pile method for excavating with a stable liquid filled in a pile hole is, for example, an earth drill method, a reverse method, or a BH method.

安定液調製工程S1において、重金属汚染物質を吸着する吸着剤を安定液に添加して添加安定液を調製する。
杭孔掘削工程S2において、調製した添加安定液を杭孔に満たして杭孔を掘削する。
In the stabilizing solution preparation step S1, an adsorbent that adsorbs heavy metal contaminants is added to the stabilizing solution to prepare an added stabilizing solution.
In the pile hole excavation step S <b> 2, the prepared stabilization liquid is filled in the pile hole and the pile hole is excavated.

本発明において、対象とする重金属汚染物質は、ヒ素(As)、フッ素(F)、又は鉛(Pb)であるが、その他の汚染物質を含んでもよい。
安定液は、好ましくは、ポリマー系安定液又はベントナイト系安定液であるが、その他の安定液であってもよい。
吸着剤は、好ましくは、酸化マグネシウム又は水酸化アルミニウムであるが、その他の吸着剤を含んでもよい。
In the present invention, the target heavy metal contaminant is arsenic (As), fluorine (F), or lead (Pb), but may contain other contaminants.
The stabilizer is preferably a polymer stabilizer or a bentonite stabilizer, but may be other stabilizers.
The adsorbent is preferably magnesium oxide or aluminum hydroxide, but may contain other adsorbents.

後述する実施例により、ヒ素、フッ素、及び鉛に対して、ポリマー系安定液又はベントナイト系安定液に、酸化マグネシウム又は水酸化アルミニウムを添加することにより、掘削孔内に混入したヒ素、フッ素および鉛の溶出量を基準値未満に低減し得ることが確認された。「基準値」は、好ましくは「地下水環境基準値」である。   Arsenic, fluorine, and lead mixed in the drilling hole by adding magnesium oxide or aluminum hydroxide to the polymer-based stabilizer or bentonite-based stabilizer with respect to arsenic, fluorine, and lead according to examples described later. It was confirmed that the elution amount of can be reduced below the reference value. The “reference value” is preferably a “groundwater environmental reference value”.

図2において、安定液調製工程S1は、サンプリング工程S11、溶出試験工程S12、関係検出工程S13、及び添加率決定工程S14を有する。   In FIG. 2, the stabilizing solution preparation step S1 has a sampling step S11, a dissolution test step S12, a relationship detection step S13, and an addition rate determination step S14.

サンプリング工程S11において、重金属汚染物質を含む地盤から汚染土壌1を採取する。
溶出試験工程S12において、汚染土壌1と、吸着剤添加率が異なる複数の添加安定液とを混合して、液中の重金属汚染物質の溶出量を検出する。
関係検出工程S13において、吸着剤添加率と溶出量の関係を求める。
添加率決定工程S14において、吸着剤添加率と溶出量の関係から添加安定液の吸着剤添加率を決定する。
後述するように、この安定液調製工程S1により、吸着剤添加率と、添加安定液の転用回数nを求めることができる。
In the sampling step S11, the contaminated soil 1 is collected from the ground containing heavy metal contaminants.
In the elution test step S12, the contaminated soil 1 and a plurality of added stabilizing liquids having different adsorbent addition rates are mixed to detect the elution amount of heavy metal contaminants in the liquid.
In the relationship detection step S13, the relationship between the adsorbent addition rate and the elution amount is obtained.
In the addition rate determination step S14, the adsorbent addition rate of the addition stabilizer is determined from the relationship between the adsorbent addition rate and the elution amount.
As will be described later, the adsorbent addition rate and the number n of diversions of the added stabilizing liquid can be determined by this stabilizing liquid preparation step S1.

杭孔掘削工程S2は、中間確認工程S21を有する。中間確認工程S21において、重金属汚染物質を含む地盤(汚染土壌1)を掘削したのち、非汚染地盤の手前(難透水層2)で一旦掘削を中断し、添加安定液の液相濃度が基準値未満であることを確認する。
この中間確認工程S21により、基準値以上の濃度の重金属等が下部帯水層3に拡散するのを、未然に防止することができる。
The pile hole excavation step S2 includes an intermediate confirmation step S21. In the intermediate confirmation step S21, after excavating the ground (contaminated soil 1) containing heavy metal contaminants, excavation is interrupted once before the non-contaminated ground (hardly permeable layer 2), and the liquid phase concentration of the added stable liquid is the reference value Confirm that it is less than
By this intermediate confirmation step S21, it is possible to prevent the heavy metal having a concentration higher than the reference value from diffusing into the lower aquifer 3 in advance.

図2において、杭孔掘削工程S2は、さらに品質管理工程S22を有する。品質管理工程S22において、使用中の添加安定液が含有する重金属汚染物質の溶出量を検査する。
この品質管理工程S22により、分析の結果、重金属等の溶出量が基準値を超える場合には掘削を停止して、安定液の入替えや吸着剤の追加等の処置を実施し、添加安定液の液相濃度を基準値未満に維持することができる。
In FIG. 2, the pile hole excavation step S2 further includes a quality control step S22. In the quality control step S22, the elution amount of heavy metal contaminants contained in the added stabilizing liquid in use is inspected.
In this quality control step S22, if the amount of elution of heavy metals exceeds the reference value as a result of the analysis, the excavation is stopped and measures such as replacement of the stabilizing solution or addition of the adsorbent are performed. The liquid phase concentration can be maintained below the reference value.

杭孔掘削工程S2において、添加安定液の孔内水位を地下水位以上に保ちながら掘削を行う。
孔内水位を地下水位以上に保つことにより、重金属汚染物質を含む土層(汚染土壌1)の掘削過程において外部からの重金属汚染物質の侵入を防止することができる。
In the pile hole excavation step S2, excavation is performed while maintaining the in-hole water level of the added stabilizing liquid at or above the groundwater level.
By keeping the water level in the borehole above the groundwater level, it is possible to prevent the intrusion of heavy metal contaminants from the outside during the excavation process of the soil layer (contaminated soil 1) containing heavy metal contaminants.

現場打ち杭工法は、アースドリル工法であり、表層ケーシングの建込み予定深度まで掘削して表層ケーシングを立て込み、添加安定液を注入し、添加安定液の液面を一定に保ちながらドリリングバケットで掘削し地上への排土作業を繰り返すことが好ましい。   The in-situ pile method is an earth drill method, which is drilled to the planned depth of the surface casing and placed in the surface casing, infused with the added stabilizing liquid, while maintaining the liquid level of the added stabilizing liquid with a drilling bucket. It is preferable to repeat excavation and earth removal work on the ground.

図2において、本発明の現場打ち杭工法は、さらに、コンクリート打設工程S3と安定液回収工程S4を有する。
コンクリート打設工程S3において、杭孔にコンクリートを打設する。
安定液回収工程S4において、コンクリートで置換された添加安定液を回収槽に回収する。
この工程により回収した添加安定液を、配合設計で設定した転用回数nで廃棄処分することで、吸着剤の追加によるゲル化を回避することができる。
In FIG. 2, the in-situ pile method of the present invention further includes a concrete placing step S3 and a stable liquid recovery step S4.
In the concrete placing step S3, concrete is placed in the pile hole.
In the stable liquid recovery step S4, the added stable liquid replaced with concrete is recovered in the recovery tank.
By discarding the added stabilizing solution recovered in this step with the number of diversions n set in the formulation design, gelation due to the addition of an adsorbent can be avoided.

安定液が、ポリマー系安定液である場合、吸着剤は、0.5〜5%の酸化マグネシウム、又は0.5〜5%の水酸化アルミニウムである、ことが好ましい。
この範囲であれば、安定液の品質を確保しつつ、削孔内に混入したヒ素、フッ素および鉛の溶出量を基準値未満に低減し得ることが後述する実施例により確認された。
When the stabilizer is a polymer stabilizer, the adsorbent is preferably 0.5 to 5% magnesium oxide or 0.5 to 5% aluminum hydroxide.
It was confirmed by the examples described later that the amount of arsenic, fluorine and lead mixed in the drilling hole could be reduced below the reference value while ensuring the quality of the stable liquid within this range.

安定液が、ベントナイト系安定液である場合、吸着剤は、0.5〜2%の酸化マグネシウム、又は0.5〜5%の水酸化アルミニウムであることが好ましい。
この範囲であれば、安定液の品質を確保しつつ、削孔内に混入したヒ素、フッ素および鉛の溶出量を基準値未満に低減し得ることが後述する実施例により確認された。
When the stabilizer is a bentonite stabilizer, the adsorbent is preferably 0.5 to 2% magnesium oxide or 0.5 to 5% aluminum hydroxide.
It was confirmed by the examples described later that the amount of arsenic, fluorine and lead mixed in the drilling hole could be reduced below the reference value while ensuring the quality of the stable liquid within this range.

上述したように、本発明によれば、安定液調製工程S1において重金属汚染物質を吸着する吸着剤を安定液に添加して添加安定液を調製する。次いで、杭孔掘削工程S2において、調製した添加安定液を杭孔に満たして杭孔を掘削する。これにより、重金属汚染物質を添加安定液に吸着させることで、地盤改良なしで土壌汚染の拡散を大幅に低減又は防止することができる。   As described above, according to the present invention, an adsorbent that adsorbs heavy metal contaminants is added to the stabilizer in the stabilizer preparation step S1 to prepare an added stabilizer. Next, in the pile hole excavation step S2, the prepared addition stabilizing liquid is filled in the pile hole and the pile hole is excavated. Thereby, the diffusion of soil contamination can be significantly reduced or prevented without adsorbing the ground by adsorbing heavy metal contaminants to the added stabilizing liquid.

以下、本発明の実施例を説明する。なお、以下の説明において、「重金属汚染物質」を単に、「重金属等」又は「汚染物質」と呼ぶ。また、「安定液」と「添加安定液」を区別が必要な場合を除き、単に「安定液」と呼ぶ。また、「吸着剤添加率」を単に「添加率」と呼ぶ。   Examples of the present invention will be described below. In the following description, “heavy metal contaminant” is simply referred to as “heavy metal etc.” or “pollutant”. In addition, “stabilizing liquid” and “added stabilizing liquid” are simply referred to as “stabilizing liquid” unless it is necessary to distinguish them. The “adsorbent addition rate” is simply referred to as “addition rate”.

(安定液の重金属等吸着機能の検証)
1.安定液の重金属等吸着について
図3は、アースドリル工法による杭工事施工要領図である。
アースドリル工法は、安定液を杭孔に満たして掘削する現場打ち杭工法の一つであり、ドリリングバケットを回転させて地盤を掘削し、バケット内部に格納した土砂を地上に排出する工法である。孔壁は、表層部では表層ケーシングを用い、それ以深は安定液で保護する。掘削完了後、所定の形状に製作された鉄筋かごを建込み、トレミー管でコンクリートを打設し杭を築造する。安定液には対象とする地盤の性状に合わせてベントナイト系またはポリマー系が用いられる。
(Verification of adsorption function of stable liquid such as heavy metals)
1. Fig. 3 is a diagram of pile construction work by the earth drill method.
The earth drill method is one of the on-site pile methods that excavate by filling the pile hole with a stable liquid. The ground drill method rotates the drilling bucket to excavate the ground, and discharges the earth and sand stored in the bucket to the ground. . For the hole wall, a surface casing is used at the surface layer, and the depth is protected by a stabilizing liquid. After excavation is completed, a steel bar made in a predetermined shape is built, and concrete is cast with a tremy pipe to build a pile. For the stabilizer, bentonite or polymer is used according to the properties of the target ground.

図4は、安定液の機能と必要な性質を示す図である。
アースドリル工法で地盤を掘削する際、孔壁の崩壊を防ぐために常に地下水位プラス1〜2m以上の水頭差を維持する。そのため重金属等を含む土層の掘削過程では外部からの重金属等の侵入は考えにくいが、安定液には掘削土(汚染土壌1)に含まれる有害物質が混入する。この安定液を用いて掘削を継続し粘土層(難透水層2)を貫通したとき、粘土層下部の帯水層(下部帯水層3)へ重金属等を漏出するおそれがある。
FIG. 4 is a diagram showing the function and necessary properties of the stabilizer.
When excavating the ground with the earth drill method, the water head difference of 1 to 2 m or more is always maintained to prevent the hole wall from collapsing. Therefore, in the excavation process of the soil layer containing heavy metal or the like, it is difficult to consider the intrusion of heavy metal or the like from the outside, but harmful substances contained in the excavated soil (contaminated soil 1) are mixed in the stable liquid. When excavation is continued using this stabilizing liquid and the clay layer (the poorly permeable layer 2) is penetrated, heavy metals and the like may leak into the aquifer under the clay layer (the lower aquifer 3).

2.実験方法
図5は、実験フロー図である。この図に示すように、ヒ素(As)、フッ素(F)、鉛(Pb)に対する安定液の吸着機能を検証するため、バッチ吸着試験およびAPI規格(アメリカ石油協会)の加圧ろ過試験器を用いてろ過試験を行った。ろ過試験は、泥膜によるろ過効果を模擬している。また、重金属等の混入による安定液の性状変化を確認するため、同時に安定液の品質管理試験を行った。実験手順を以下に示す。
2. Experimental Method FIG. 5 is an experimental flowchart. As shown in this figure, in order to verify the adsorption function of the stabilizer for arsenic (As), fluorine (F), and lead (Pb), a batch adsorption test and an API standard (American Petroleum Institute) pressure filtration tester were used. A filtration test was performed. The filtration test simulates the filtration effect of the mud membrane. In addition, in order to confirm the change in the properties of the stable solution due to the mixing of heavy metals, a quality control test of the stable solution was conducted at the same time. The experimental procedure is shown below.

(1)安定液は一般に使用されているポリマー系安定液(以下、「安定液A」)、ベントナイト系安定液(以下、「安定液B」)および大阪市内の施工中現場でサンプリングした現場採取安定液(以下、「安定液C」)の3種類を使用した。安定液A、Bは作液後24時間の養生を行った。安定液A、B、Cの配合を表1に示す。単位は重量%である。   (1) Stabilizers are commonly used polymer stabilizers (hereinafter “Stabilizer A”), bentonite stabilizers (hereinafter “Stabilizer B”), and sites sampled during construction in Osaka city. Three types of collection stabilizers (hereinafter referred to as “stable fluid C”) were used. Stabilizers A and B were cured for 24 hours after liquid preparation. Table 1 shows the composition of the stabilizers A, B, and C. The unit is% by weight.

(2)対象とする重金属等(As、F、Pb)は原子吸光分析用の1000mg/L標準液(As、F、Pb(NO、すべて和光純薬工業製)を1、5、20mg/Lの3水準の濃度になるように添加し、1分間の振とうを行った。各物質の相互作用を確認するために、2種混合溶液(As+F、As+Pb、F+Pb)および3種混合溶液(As+F+Pb)も作製した。 (2) The target heavy metals and the like (As, F, Pb) are 1000 mg / L standard solution for atomic absorption analysis (As 2 O 3 , F , Pb (NO 3 ) 2 , all manufactured by Wako Pure Chemical Industries, Ltd.). It added so that it might become a 3 level density | concentration of 1, 5, and 20 mg / L, and it shaked for 1 minute. In order to confirm the interaction of each substance, two kinds of mixed solutions (As + F, As + Pb, F + Pb) and three kinds of mixed solutions (As + F + Pb) were also prepared.

(3)安定液の振とうの2日後に、遠心分離(3000rpm、20min)および0.45μmメンブレンフィルターでろ過し、得られたろ液aのAs、F、Pb濃度を測定した。検液の作製方法と濃度測定法を図5に示す。   (3) Two days after the shaking of the stable solution, centrifugation (3000 rpm, 20 min) and filtration with a 0.45 μm membrane filter were performed, and the As, F, and Pb concentrations of the obtained filtrate a were measured. The preparation method of the test solution and the concentration measurement method are shown in FIG.

(4)安定液の振とう後、直ちに加圧ろ過試験器を用いてろ過試験(ろ過圧0.5MPa、ろ紙の保留粒子径1μm)を行い、得られたろ液bのAs、F、Pb濃度を測定した。   (4) Immediately after shaking the stable liquid, perform a filtration test (filtration pressure 0.5 MPa, retained particle diameter of filter paper 1 μm) using a pressure filtration tester, and the concentration of As, F, and Pb in the obtained filtrate b Was measured.

(5)安定液の品質管理試験は粘性、造壁性およびpHの確認を行った。粘性はAPI規格のファンネル粘度計を用いて、500mlの安定液が流出完了するのに要する時間(s)を計測した。造壁性は加圧ろ過試験器でろ過試験(ろ過圧0.3MPa、30分間、ろ紙の保留粒子径1μm)を行い、得られたろ過水量(ml)を測定した。   (5) In the quality control test of the stable liquid, viscosity, wall-forming property and pH were confirmed. Viscosity was measured by using an API standard funnel viscometer to measure the time (s) required for 500 ml of the stable liquid to completely flow out. For the wall-forming property, a filtration test (filtration pressure 0.3 MPa, 30 minutes, retention particle diameter of filter paper 1 μm) was performed with a pressure filtration tester, and the amount of filtrate water (ml) obtained was measured.

3.実験結果と考察
表2、表3、表4に実験結果を、図6、図7、図8には重金属等ごとの吸着試験結果を示す。
A、B、Cの各安定液ともにPb濃度の大幅な低減が確認された。線形軸ではろ液濃度を表示できないため、Pb濃度のグラフのみ対数軸を用いた。
ヒ素の濃度については概ね10〜50%程度まで低減した。
フッ素についてはほとんど濃度の低減は見られなかった。また、安定液の性状(ファンネル粘性、pH、ろ過水量)については重金属等の混入による有意な変化は見られなかった。
3. Experimental results and discussion Tables 2, 3 and 4 show the experimental results, and FIGS. 6, 7 and 8 show the adsorption test results for each heavy metal and the like.
A significant reduction in the Pb concentration was confirmed in each of the A, B, and C stabilizers. Since the filtrate concentration cannot be displayed on the linear axis, the logarithmic axis was used only for the graph of Pb concentration.
The concentration of arsenic was reduced to about 10 to 50%.
Regarding fluorine, almost no reduction in concentration was observed. In addition, no significant change was observed in the properties of the stabilizer (funnel viscosity, pH, filtered water amount) due to the mixing of heavy metals and the like.

(1)ヒ素
図9に安定液A、B、Cに含まれるベントナイトに対するヒ素(CASE A1〜3、B1〜3、C1〜3)の吸着等温線を示す。吸着量は初期濃度とろ液aとの差をベントナイト量で除して求めた。吸着特性をHenry型として近似直線を描くと、直線の傾き(分配係数)は安定液A、B、Cで比較的近い値を示すことから、ベントナイトによるヒ素吸着があったと考えられる。
(1) Arsenic FIG. 9 shows adsorption isotherms of arsenic (CASE A1-3, B1-3, C1-3) for bentonite contained in the stabilizers A, B, and C. The amount of adsorption was determined by dividing the difference between the initial concentration and the filtrate a by the amount of bentonite. When an approximate straight line is drawn with the adsorption characteristic as the Henry type, since the slopes (distribution coefficients) of the straight lines show relatively close values for the stabilizers A, B, and C, it is considered that arsenic was adsorbed by bentonite.

ベントナイトによるヒ素吸着については次のように考えられる。安定液のpHはおおよそ9〜12の値をとるが、このときヒ素は亜ヒ酸イオン(HAsO )やヒ酸イオン(HAsO 2−、AsO 3−)などの陰イオンの形態で安定液中に存在する。したがって、ベントナイトの主成分である層状ケイ酸塩鉱物とのイオン交換や、その結晶端面におけるイオン吸着反応は起きにくい。しかし、実験に用いたベントナイトには随伴鉱物として磁鉄鉱が含まれており、これが亜ヒ酸イオンを吸着した可能性が考えられる。 The arsenic adsorption by bentonite is considered as follows. The pH of the stabilizing solution takes a value of approximately 9 to 12. At this time, arsenic is an anion such as arsenite ion (H 2 AsO 3 ) or arsenate ion (HAsO 4 2− , AsO 4 3− ). Present in the stable liquid in the form. Therefore, ion exchange with the layered silicate mineral, which is the main component of bentonite, and ion adsorption reaction at the crystal end face hardly occur. However, the bentonite used in the experiment contains magnetite as an accompanying mineral, which may have adsorbed arsenite ions.

ろ液aのAs濃度は、ろ液bのAs濃度よりも、安定液Aで平均約20%、安定液B、Cで平均10%程度低くなった。この理由は次のように考えられる。前述したような亜ヒ酸イオンと鉄の酸化物、水酸化物との反応は陽イオン交換反応のように瞬時には完了しない。振とう直後に行った加圧ろ過試験器によるろ過によって亜ヒ酸イオンとベントナイトは分離されるが、ろ液aの遠心分離とろ過は約2日後に実施したため、その間に亜ヒ酸イオンとベントナイトとの吸着反応が進み、溶出濃度が低下したと考えられる。また環告46号方式によるろ過で用いたメンブレンフィルター(孔径0.45mm)と、API規格による加圧ろ過試験で用いた定性ろ紙(保留粒子径1μm)の違いも影響したと考えられる。   The As concentration of the filtrate a was lower by about 20% on the average in the stable liquid A and about 10% on the average in the stable liquids B and C than the As concentration in the filtrate b. The reason is considered as follows. The reaction between arsenite ions and iron oxides and hydroxides as described above is not completed instantaneously like the cation exchange reaction. Arsenite ions and bentonite are separated by filtration using a pressure filtration tester immediately after shaking, but the centrifugation and filtration of filtrate a were carried out after about 2 days. It is considered that the elution concentration decreased due to the progress of the adsorption reaction. Moreover, it is thought that the difference between the membrane filter (pore diameter 0.45 mm) used in filtration according to the notice 46 method and the qualitative filter paper (retained particle diameter 1 μm) used in the pressure filtration test according to the API standard is also considered to be affected.

(2)フッ素
安定液A、B、CともにF濃度の低減はわずかであった。これは、フッ素がアルカリ域において層状ケイ酸塩鉱物や水酸化鉄とは余り共沈しないことが原因であると考えられる。ろ液bのF濃度は、ろ液aのF濃度よりも約20%程度高くなったが、この理由はヒ素と同様、フィルターの種類の違いが原因と考えられる。
(2) Fluorine For all of the stabilizers A, B, and C, the F concentration was slightly reduced. This is considered to be caused by the fact that fluorine does not coprecipitate very much with the layered silicate mineral or iron hydroxide in the alkaline region. The F concentration of the filtrate b was about 20% higher than the F concentration of the filtrate a. The reason for this is considered to be due to the difference in the type of the filter as in the case of arsenic.

(3)鉛
ろ液aのPb濃度は、安定液Aで<0.01〜0.78mg/L、安定液Bで<0.01〜0.18mg/L、安定液Cで<0.01〜0.10mg/Lとなった。安定液Cにおいては、ろ液bのPb濃度は全て地下水環境基準値(0.01mg/L)以下と、顕著な濃度の低下が見られた。安定液のpHがおおよそ8〜12とアルカリ性を示していることから、鉛はPb(OH) の陰イオンの形態で安定液中に存在するため、ベントナイトの主成分である層状ケイ酸塩鉱物とのイオン交換や、その結晶端面におけるイオン吸着反応は起きない。よって、鉛は難溶性の水酸化物の沈殿物を生成したと考えられる。図10に安定液A、B、CのpHとPb濃度の関係を示すが、いずれのケースでも、pHと鉛濃度とは負の相関が見られたた。
(3) Lead The Pb concentration of filtrate a is <0.01 to 0.78 mg / L for stabilizer A, <0.01 to 0.18 mg / L for stabilizer B, and <0.01 for stabilizer C. It was -0.10 mg / L. In the stable liquid C, the Pb concentration of the filtrate b was all below the groundwater environmental standard value (0.01 mg / L), and a significant decrease in the concentration was observed. Since the pH of the stabilizer is about 8 to 12 and alkaline, lead is present in the stabilizer in the form of an anion of Pb (OH) 3 , so that the layered silicate which is the main component of bentonite There is no ion exchange with minerals or ion adsorption reactions at the crystal edges. Therefore, it is thought that lead produced | generated the deposit of the hardly soluble hydroxide. FIG. 10 shows the relationship between the pH of the stabilizers A, B, and C and the Pb concentration. In each case, a negative correlation was observed between the pH and the lead concentration.

安定液B、CではCASE B15を除いて、ろ液bのPb濃度は、ろ液aのPb濃度よりも低かった。鉛のイオン交換反応や、水酸化物の生成反応の反応時間はms〜minのオーダーであり、ろ過試験前にこれらの反応は終わり、その後、溶出試験までに新たな吸着反応はおこり得ない。さらに、前述したフィルター径の違いにもかかわらず、ろ液aのPb濃度>ろ液bのPb濃度となったのは、泥膜によるろ過機能が発揮されたと考えられる。   In the stable solutions B and C, the Pb concentration of the filtrate b was lower than the Pb concentration of the filtrate a except for CASE B15. The reaction time of the ion exchange reaction of lead and the formation reaction of hydroxide is on the order of ms to min, and these reactions are completed before the filtration test, and thereafter no new adsorption reaction can occur before the elution test. Furthermore, it is considered that the filtration function by the mud membrane was exhibited that the Pb concentration of the filtrate a> the Pb concentration of the filtrate b despite the difference in the filter diameters described above.

(4)重金属等の共存による影響について
他の重金属等との共存による相互作用は、安定液A、B、Cともに、フッ素、鉛が存在した場合にヒ素の吸着量が抑えられる傾向が見られた(図11)。一方で、Pb、Fについては共存する重金属等による吸着量への影響は見られなかった。
(4) Effect of coexistence with heavy metals, etc. The interaction with coexistence with other heavy metals, etc., tends to suppress the amount of arsenic adsorbed in the presence of fluorine and lead in both stabilizers A, B, and C. (FIG. 11). On the other hand, with respect to Pb and F, no influence on the amount of adsorption by coexisting heavy metals was observed.

(吸着剤の適用性の検討)
1.吸着剤の性能評価
実施例1では、アースドリル工法で一般に使用されている安定液が、ヒ素および鉛に対して吸着機能をもつことを明らかにした。特に鉛に対しては(水酸化物の沈殿も吸着に含めると)高い吸着機能を有しており、初期濃度が1mg/L程度であれば土壌溶出量基準値の数倍近くまで濃度低減が可能であることが明らかとなった。さらに、泥膜のろ過機能により一定の濃度低下も期待できることがわかった。
(Examination of applicability of adsorbent)
1. Evaluation of Adsorbent Performance In Example 1, it was clarified that the stabilizing liquid generally used in the earth drill method has an adsorption function for arsenic and lead. In particular, lead has a high adsorption function (including precipitation of hydroxide), and if the initial concentration is about 1 mg / L, the concentration can be reduced to several times the soil elution standard value. It became clear that it was possible. Furthermore, it was found that a certain concentration reduction can be expected by the filtration function of the mud membrane.

実施例2では、安定液に添加し、ヒ素、フッ素および鉛の濃度を低減するための吸着剤を検討した。吸着剤は重金属の不溶化処理に実績のある硫酸第一鉄(FeSO)、酸化マグネシウム(MgO)、炭酸カルシウム(CaCO)、ゼオライト、水酸化アルミニウム(Al(OH))の5種類を選択し吸着性能の評価を行なった。また、これらの吸着剤の添加が安定液本来の機能(造壁性、粘性、pH)に与える影響についても検証した。 In Example 2, an adsorbent for reducing the concentration of arsenic, fluorine, and lead added to the stabilizer was studied. Select from five types of adsorbents: ferrous sulfate (FeSO 4 ), magnesium oxide (MgO), calcium carbonate (CaCO 3 ), zeolite, and aluminum hydroxide (Al (OH) 3 ) that have a proven track record in insolubilizing heavy metals. The adsorption performance was evaluated. In addition, the effect of the addition of these adsorbents on the original function (wall-forming property, viscosity, pH) of the stable liquid was also verified.

2.実験方法
重金属等3種(As、F、Pb)に対する吸着剤の吸着機能を検証するため、バッチ吸着試験を行った。また、吸着剤の添加による安定液本来の機能の低下の有無を確認するため、安定液の品質管理試験も実施した。実験手順を以下に示す。
2. Experimental Method In order to verify the adsorption function of the adsorbent with respect to three kinds (As, F, Pb) such as heavy metals, a batch adsorption test was conducted. In addition, a quality control test of the stabilizer was also conducted to confirm whether the original function of the stabilizer was degraded due to the addition of the adsorbent. The experimental procedure is shown below.

(1)安定液はベントナイト系安定液を使用した。安定液の作液時(吸着剤の添加前)の配合を表5に示す。
(1) A bentonite stabilizer was used as the stabilizer. Table 5 shows the composition at the time of preparation of the stabilizing liquid (before addition of the adsorbent).

(2)安定液を24時間養生したのち、吸着剤を重量比で1%添加した。吸着剤は、硫酸第一鉄(粉末、主成分FeSO・7HO)、酸化マグネシウム(微粉末、主成分MgO)、炭酸カルシウム(微粉末、主成分CaCO)、ゼオライト(粒状、主成分SiO)、非晶質水酸化アルミニウム(粉末、主成分Al(OH))とした。 (2) After curing the stabilizing solution for 24 hours, 1% by weight of the adsorbent was added. Adsorbents are ferrous sulfate (powder, main component FeSO 4 · 7H 2 O), magnesium oxide (fine powder, main component MgO), calcium carbonate (fine powder, main component CaCO 3 ), zeolite (granular, main component) SiO 2 ) and amorphous aluminum hydroxide (powder, main component Al (OH) 3 ).

(3)対象とする重金属等はAs、F、Pbとし、原子吸光分析用の1000mg/L標準液をそれぞれ5mg/Lの濃度になるよう安定液に混合し、1分間の振とうを行った。重金属と安定液の混合液を以下の試料とした。
(4)試料は安定液の品質管理試験を行ない、表6に示す「安定液の品質管理基準値」を満足しない場合には、分散剤等で性状の修正を行った。
(3) The target heavy metals were As, F, and Pb, and 1000 mg / L standard solution for atomic absorption analysis was mixed with the stabilizing solution to a concentration of 5 mg / L, and shaken for 1 minute. . A mixture of heavy metal and a stabilizing solution was used as the following sample.
(4) The sample was subjected to a quality control test of the stabilizer, and when the “quality control standard value of the stabilizer” shown in Table 6 was not satisfied, the properties were corrected with a dispersant or the like.

(5)試料を環告46号方式に準拠して遠心分離とろ過をし、ろ液のAs、F、Pb濃度を測定した。濃度測定法は、AsおよびPbはICP質量分析法、Fは流れ分析法とした。   (5) The sample was centrifuged and filtered according to the Circular 46 method, and the As, F, and Pb concentrations of the filtrate were measured. As the concentration measurement method, As and Pb were ICP mass spectrometry, and F was a flow analysis method.

3.実験結果と考察
各重金属等に対する吸着試験結果を図12に示す。
3. Experimental Results and Discussion FIG. 12 shows the adsorption test results for each heavy metal.

硫酸第一鉄は安定液に添加し撹拌したところ著しくゲル化した。これは安定液中のベントナイトが鉄イオン(Fe2+)の混入により凝集状態になったためと考えられる。分散剤等による修正の効果もなかったため、安定液の混和材として適用不可と判断した。 When ferrous sulfate was added to the stabilizer and stirred, it gelled markedly. This is presumably because bentonite in the stable liquid became agglomerated by mixing iron ions (Fe 2+ ). Since there was no effect of correction with a dispersant or the like, it was judged that it could not be applied as an admixture for a stabilizer.

ゼオライトは陽イオン交換能が高く、鉛の吸着を期待したが、安定液のみのケースと比較して吸着効果は見られなかった。
炭酸カルシウムについては鉛、ヒ素、フッ素の吸着を期待したが、ゼオライト同様に安定液のみのケースと比較して吸着効果は見られなかった。
Zeolite had a high cation exchange capacity and expected to adsorb lead, but no adsorption effect was seen compared to the case of only the stabilizer.
Although calcium carbonate was expected to adsorb lead, arsenic, and fluorine, the adsorption effect was not seen as compared to the case of using only a stable solution as in the case of zeolite.

酸化マグネシウムは、ヒ素、フッ素および鉛すべてをよく吸着し、フッ素と鉛の濃度が地下水環境基準値を満足した。重金属の混入後にファンネル粘性が、再振とうすることによって流動性を取り戻した。なお、酸化マグネシウムを添加した安定液は他のケースに比べてpHが2程度上昇した。   Magnesium oxide adsorbs all of arsenic, fluorine and lead well, and the concentration of fluorine and lead satisfied the groundwater environmental standard value. The funnel viscosity regained fluidity by shaking again after the heavy metal was mixed. In addition, the pH of the stabilizing solution to which magnesium oxide was added increased by about 2 compared to the other cases.

水酸化アルミニウムについても、フッ素と鉛の濃度が地下水環境基準値を満足した。安定液の性状については、粘性とろ過水量がわずかに増加したものの、pHともに初期値に比べて変化がなく良好であった。   As for aluminum hydroxide, the concentration of fluorine and lead satisfied the groundwater environmental standards. As for the properties of the stable liquid, although the viscosity and the amount of filtered water increased slightly, the pH was good with no change compared to the initial value.

以上のことから、酸化マグネシウムまたは水酸化アルミニウムを適切な濃度で安定液に添加することにより、安定液本来の機能を損なうことなく、掘削孔内に混入したヒ素、フッ素および鉛の溶出量を基準値未満に低減し得ることが示された。   Based on the above, by adding magnesium oxide or aluminum hydroxide to the stabilizer at an appropriate concentration, the amount of arsenic, fluorine, and lead mixed in the drilling hole can be used as a standard without impairing the original function of the stabilizer. It has been shown that it can be reduced below the value.

(安定液の配合設計手法の検討)
1.自然由来の重金属等を含む地盤への適用の検討
実施例2では、安定液に吸着剤(酸化マグネシウム、水酸化アルミニウム)を添加することで初期濃度5mg/Lの鉛およびフッ素の溶出量を地下水環境基準値未満に、ヒ素については地下水環境基準値の数倍程度に濃度低減できることが示された。そこで実施例3では、自然由来の重金属等を含む土壌、すなわち溶出量基準の10倍程度を対象として、安定液に添加する吸着剤の効果的な配合について検討した。
(Examination of composition design method of stabilizer)
1. Examination of application to ground containing natural heavy metals, etc. In Example 2, by adding adsorbents (magnesium oxide, aluminum hydroxide) to the stable liquid, the elution amount of lead and fluorine with an initial concentration of 5 mg / L was reduced to groundwater. It was shown that the concentration of arsenic can be reduced to several times the groundwater environmental standard value below the environmental standard value. Therefore, in Example 3, effective blending of the adsorbent added to the stabilizing liquid was examined for soil containing naturally-derived heavy metals and the like, that is, about 10 times the elution amount standard.

2.安定液に溶出する重金属の濃度
アースドリル工法は安定液の孔内水位を地下水位プラス1〜2m以上に保ちながら掘削を行うため、外部の重金属等を含む土壌や地下水が孔内に入ることは考えにくい。したがって、安定液には、掘削土壌から溶出した重金属等のみ混入すると考えられる。そこで、掘削土壌から安定液への重金属の混入について検討する。
2. Concentration of heavy metals eluting in the stable liquid Earth drilling method excavates while maintaining the water level in the hole of the stable liquid at the groundwater level plus 1 to 2 m or higher, so soil and groundwater containing external heavy metals etc. will not enter the hole. Very Hard to think. Therefore, it is considered that only the heavy metals eluted from the excavated soil are mixed in the stabilizing liquid. Therefore, we examine the mixing of heavy metals from excavated soil into the stable liquid.

図13にアースドリル工法による掘削手順を示す。まず、表層ケーシングの建込み予定深度(3m程度)まで掘削し(図13(a))、表層ケーシングを立て込んだ後、安定液を注入する(図13(b))。その後は、安定液の液面を一定に保ちながらドリリングバケットで掘削し地上へ排土、という作業を繰り返す(図13(c))。したがって、表層ケーシング以深の土壌は、掘削および地上への排土工程において安定液と接触し、その体積比は杭長にもよるが、概ね1:1と考えられる。   FIG. 13 shows a drilling procedure by the earth drill method. First, the surface casing is excavated to the expected depth (about 3 m) (FIG. 13 (a)), and after the surface casing is stowed, a stabilizing liquid is injected (FIG. 13 (b)). Thereafter, the operation of excavating with a drilling bucket and discharging to the ground while keeping the liquid level of the stable liquid constant is repeated (FIG. 13C). Therefore, the soil deeper than the surface casing comes into contact with the stabilizing liquid in the excavation and earth removal processes, and the volume ratio is considered to be approximately 1: 1 although it depends on the pile length.

図14は、重金属等を含む土壌(a)と安定液(b)の構成を示す図である。土粒子の乾燥質量mと間隙水の質量mおよび安定液中の水の質量mwslは以下のように示すことができる。 FIG. 14 is a diagram illustrating a configuration of soil (a) containing a heavy metal or the like and a stabilizing solution (b). The dry mass m s of soil particles, the mass m w of interstitial water, and the mass m wsl of water in the stabilizing liquid can be shown as follows.

=ρ・V・・・(1)
=ρ・V=ρ・eV・・・(2)
wsl=ρsl・V(1−α)=ρsl・V(1+e)(1−α)・・・(3)
ここでNを、間隙水と安定液中の水分の質量和(m+mwsl)と、土粒子の質量mとの比と定義すると、
N=(m+mwsl)/m={ρ・e+ρsl・(1+e)(1−α)}/ρ・・・(4)
となる。
m s = ρ s · V s (1)
m w = ρ w · V w = ρ w · eV s (2)
m wsl = ρ sl · V (1−α) = ρ sl · V s (1 + e) (1−α) (3)
Here, N is defined as the ratio between the mass sum of the pore water and the water in the stabilizing liquid (m w + m wsl ) and the mass m s of the soil particles.
N = (m w + m wsl ) / m s = {ρ w · e + ρ sl · (1 + e) (1−α)} / ρ s (4)
It becomes.

ここで、V:土の体積、V:固相の体積、V:液相の体積、m:間隙水の質量、m:土粒子の乾燥質量、mwsl:安定液に含まれる水の質量、m:ベントナイト等の乾燥質量、msl:安定液の質量、α:ベントナイト等の配合率=m/msl、ρ:土粒子の密度、ρsl:安定液の密度、e:間隙比=V/Vである。 Here, V: volume of soil, V s : volume of solid phase, V w : volume of liquid phase, m w : mass of pore water, m s : dry mass of soil particles, m wsl : contained in stable liquid Mass of water, m b : dry mass of bentonite, etc., m sl : mass of stabilizer, α: blending ratio of bentonite etc. = m b / m sl , ρ s : density of soil particles, ρ sl : density of stabilizer , E: gap ratio = V w / V s .

重金属等を含む土壌の溶出量値(環境庁告示第46号方式に準拠し液固比10で測定)をc(mg/L)とし、安全側の仮定として、土壌からの重金属の溶出量が一定であるとすれば、安定液の液相濃度cは次式を満足する。なお地下水汚染はないものとする。
10・c=N・c・・・(5)
c=10c・ρ/{ρ・e+ρsl・(1+e)(1−α)}・・・(4.6)
The elution amount of soil containing heavy metals (measured at a liquid-solid ratio of 10 in accordance with the Environmental Agency Notification No. 46 method) is c 0 (mg / L). Is constant, the liquid phase concentration c of the stable liquid satisfies the following equation. It is assumed that there is no groundwater contamination.
10 · c 0 = N · c (5)
c = 10c 0 · ρ s / {ρ w · e + ρ sl · (1 + e) (1-α)} (4.6)

たとえば、c=0.10mg/L、e=1.0、ρ=2.65t/mの重金属等を含む土層をρsl=1.05t/mの安定液を用いて掘削した場合、掘削完了時の安定液の液相濃度は、最大でc=0.89mg/Lとなる。これは元の土壌の溶出量値cの概ね10倍程度である。 For example, excavating a soil layer containing heavy metals with c 0 = 0.10 mg / L, e = 1.0, ρ s = 2.65 t / m 3 , using a stable liquid with ρ sl = 1.05 t / m 3 In this case, the liquid phase concentration of the stable liquid at the completion of excavation is c = 0.89 mg / L at the maximum. This is approximately 10 times the elution amount value c 0 of the original soil.

3.実験方法
表7にバッチ吸着試験の実験条件を示す。対象とする重金属は、ヒ素、フッ素、鉛の3種類に、3種混合溶液を含めた4種類とした。各重金属の濃度は、それぞれ土壌溶出量基準値の100倍とした。これは、自然由来の重金属等を含む土壌の溶出量値が概ね土壌溶出量基準値の10倍以内であり、この土壌を含む地盤をアースドリル工法で掘削すると安定液の液相濃度が、最大で土壌溶出量基準値の100倍程度になると想定している。
3. Experimental Method Table 7 shows the experimental conditions for the batch adsorption test. The target heavy metals were four kinds including three kinds of mixed solutions in three kinds of arsenic, fluorine and lead. The concentration of each heavy metal was 100 times the soil elution standard value. This is because the elution value of soil containing naturally-derived heavy metals etc. is generally within 10 times the standard value of soil elution, and when the ground containing this soil is excavated by the earth drill method, the liquid phase concentration of the stable liquid is maximum. Is assumed to be about 100 times the soil elution standard value.

吸着剤は実施例2の実験結果から、酸化マグネシウムと水酸化アルミニウムの2種類とした。添加量は対象とする重金属等がヒ素単独、または鉛単独の場合は0.5、1.0、2.0%の3水準とし、フッ素を含むケースについては1.0、2.0、5.0%の3水準とした。
安定液の種類は、表1に示したポリマー系安定液(安定液A)およびベントナイト系安定液(安定液B)の2種類とした。なお、実施例3の実験では安定液A、Bともに粘土分を加えていない。また、吸着剤や重金属等の混入による安定液の機能の低下の有無を確認するため、表6に示した「安定液の品質管理試験」も実施した。なお、濃度測定法は、AsおよびPbはICP質量分析法、Fは流れ分析法とした。
From the experimental results of Example 2, the adsorbent was selected from two types of magnesium oxide and aluminum hydroxide. The amount of addition is 3 levels of 0.5, 1.0, 2.0% when the target heavy metal is arsenic alone or lead alone, and 1.0, 2.0, 5 for cases containing fluorine. Three levels of 0.0% were set.
There were two types of stabilizers, the polymer stabilizer (stable solution A) and the bentonite stabilizer (stable solution B) shown in Table 1. In the experiment of Example 3, neither the stabilizers A nor B added clay. In addition, in order to confirm whether or not the function of the stabilizing solution was deteriorated due to the admixture of adsorbents, heavy metals, etc., a “stabilizing solution quality control test” shown in Table 6 was also carried out. As the concentration measurement method, As and Pb were ICP mass spectrometry, and F was a flow analysis method.

4.実験結果とその考察
(1)安定液の品質管理試験
表7に示すCASE A−1〜24およびCASE B−1〜24に対する安定液の品質管理試験(ファンネル粘性、ろ過水量、pH)の結果を図15に示す。
この図において、(a)はファンネル粘性、(b)はろ過水量、(c)はpHである。また横軸はCASE番号であり、図中の破線は管理基準値の一例、○印は安定液A(ポリマー系安定液)、△印は安定液B(ベントナイト系安定液)である。
以下に品質管理項目ごとの実験結果と考察を述べる。
4). Experimental Results and Discussion (1) Quality Control Test of Stabilizing Liquid The results of the quality control tests (funnel viscosity, filtered water volume, pH) of the stabilizing liquid for CASE A-1 to 24 and CASE B-1 to 24 shown in Table 7. As shown in FIG.
In this figure, (a) is the funnel viscosity, (b) is the amount of filtered water, and (c) is the pH. The horizontal axis is the CASE number, the broken line in the figure is an example of the control reference value, the circle mark is the stabilizer A (polymer stabilizer), and the triangle is the stabilizer B (bentonite stabilizer).
The experimental results and considerations for each quality control item are described below.

(a)粘性(ファンネル粘性)
安定液AにMgOおよびAl(OH)を添加することによるファンネル粘性の変化は安定しており、全ケースで30秒前後を推移した。一方で、安定液BはCASE B−11(添加量2%)でファンネル粘性が48秒と管理規準値を超過したためCASE B−6、B−12(添加量5%)の試験は取りやめた。また、CASE B−24(添加量5%)のファンネル粘性も45秒と管理基準値を超過した。なお、CASE B−11およびCASE B−24の安定液は試験後6時間静置したところ一旦ゲル化したが、振動を与えることによって流動性は戻った。
(A) Viscosity (funnel viscosity)
The change in the funnel viscosity due to the addition of MgO and Al (OH) 3 to the stabilizing liquid A was stable, and changed around 30 seconds in all cases. On the other hand, the stabilizer B was CASE B-11 (addition amount 2%) and the funnel viscosity exceeded the control standard value of 48 seconds, so the tests of CASE B-6 and B-12 (addition amount 5%) were cancelled. The funnel viscosity of CASE B-24 (added amount 5%) also exceeded the control standard value for 45 seconds. CASE B-11 and CASE B-24 stabilizing solutions were once gelled when allowed to stand for 6 hours after the test, but fluidity was restored by applying vibration.

安定液Bで、吸着剤の添加量の増加に伴って粘性とろ過水量が増大したのは、吸着剤に含まれる金属イオン(Mg2+やAl3+)の混入により安定液が凝集状態になったためと考えられる。ファンネル粘性が管理基準値を超過したことから安定液B、すなわちベントナイト系安定液へのMgOの添加量は2%未満、Al(OH)の添加量は5%未満とすべきであろう。一方で、ポリマー系安定液はベントナイト系安定液に比べて金属イオンに対する耐凝集性を有しており、吸着剤の添加量の増加に伴い粘性とろ過水量が増加するものの、管理基準値を超過することはなかった。 In Stabilizer B, the viscosity and the amount of filtered water increased as the amount of adsorbent added increased because the stabilizer became agglomerated due to the mixing of metal ions (Mg 2+ and Al 3+ ) contained in the adsorbent. it is conceivable that. Since the funnel viscosity has exceeded the control standard value, the amount of MgO added to the stabilizer B, that is, the bentonite stabilizer, should be less than 2% and the amount of Al (OH) 3 added should be less than 5%. On the other hand, polymer-based stabilizers are more resistant to metal ions than bentonite-based stabilizers, and the viscosity and filtered water volume increase as the amount of adsorbent added increases but exceeds the control standard value. I never did.

(b)造壁性
造壁性はろ過水量を測定することで把握できる。MgO、Al(OH)ともに添加量が増えると、ろ過水量が増加する傾向が見られた。このことから、MgO、Al(OH)ともに添加量が少ないほど造壁性が良いと言える。しかしながら、MgOを0.5〜5%添加した場合、ろ過水量は6〜10mlに分布し、Al(OH)を0.5〜5%添加した場合には、ろ過水量は7〜11mlに分布した。いずれも良好な値であり、本実験条件においては吸着剤の添加による造壁性への影響は小さいと言える。
ただし安定液AにAl(OH)を5%添加したCASE A−18で急激なろ過水量の増加が見られたことから、安定液A、すなわちポリマー系安定液に対するAl(OH)の添加量は5%程度を上限とすべきと考えられる。
(B) Wall-forming property Wall-forming property can be grasped by measuring the amount of filtered water. When MgO and Al (OH) 3 were added in an increased amount, the amount of filtered water tended to increase. From this, it can be said that the smaller the added amount of both MgO and Al (OH) 3, the better the wall-forming property. However, when 0.5 to 5% of MgO is added, the amount of filtered water is distributed in 6 to 10 ml, and when 0.5 to 5% of Al (OH) 3 is added, the amount of filtered water is distributed in 7 to 11 ml. did. Both are good values, and it can be said that the influence on the wall-forming property by the addition of the adsorbent is small under the present experimental conditions.
However, since CASE A-18, in which 5% of Al (OH) 3 was added to Stabilizer A, showed a sharp increase in the amount of filtered water, the addition of Al (OH) 3 to Stabilizer A, that is, the polymer stabilizer The amount should be limited to about 5%.

(c)pH
安定液A、Bとも、MgOの添加によるpHの変化は小さく、pH10〜11の間に分布した。一方で、Al(OH)の添加によるpHの変化は比較的大きく、特に、安定液AにAl(OH)を5%添加した場合、すなわちCASE A−18、CASE A−24でpH8と管理基準値の下限近くになった。
(C) pH
In both of the stabilizers A and B, the change in pH due to the addition of MgO was small and distributed between pH 10-11. On the other hand, the change in pH due to the addition of Al (OH) 3 is relatively large. In particular, when 5% of Al (OH) 3 is added to the stabilizer A, that is, the pH is 8 in CASE A-18 and CASE A-24. Near the lower limit of the management standard value.

(2)吸着剤の添加量と平衡濃度
図16に吸着剤であるMgOおよびAl(OH)の添加量と安定液Aの各重金属濃度との関係を示す。この図において、(a)はMgO添加量とAs濃度(上)及びF濃度(下)との関係図であり、(b)は、Al(OH)添加量とAs濃度(上)、F濃度(中)、及びPb濃度(下)との関係図である。
(2) Adsorbent Addition Amount and Equilibrium Concentration FIG. 16 shows the relationship between the adsorbent addition amounts of MgO and Al (OH) 3 and the concentration of each heavy metal in the stabilizer A. In this figure, (a) is a relationship diagram of MgO addition amount, As concentration (upper) and F concentration (lower), and (b) is Al (OH) 3 addition amount and As concentration (upper), F It is a relationship figure with density | concentration (medium) and Pb density | concentration (lower).

ヒ素についてはフッ素、鉛との混合による影響は少なく、MgO、Al(OH)の添加量はそれぞれ0.5%、5%以上にすることでヒ素濃度を地下水環境基準値未満に抑えることができる。 Arsenic is less affected by mixing with fluorine and lead, and the addition amount of MgO and Al (OH) 3 is 0.5% and 5% or more, respectively, to keep the arsenic concentration below the groundwater environmental standard value. it can.

フッ素についてはMgOを添加した場合にヒ素、鉛との共存による影響が見られ、MgO、Al(OH)の添加量はそれぞれ5%以上にすることでフッ素濃度を地下水環境基準値未満に抑えることができる。
鉛については、MgOを添加した場合、全ケースで地下水環境基準値未満になった。Al(OH)を添加した場合、ヒ素、フッ素との共存による影響は少なく、添加量を2%以上にすることで鉛濃度を地下水環境基準値未満に抑えることができる。
As for fluorine, when MgO is added, there is an influence due to coexistence with arsenic and lead. By adding MgO and Al (OH) 3 to 5% or more, the fluorine concentration is kept below the groundwater environmental standard value. be able to.
About lead, when MgO was added, it became less than the groundwater environmental standard value in all cases. When Al (OH) 3 is added, there is little influence due to coexistence with arsenic and fluorine, and the lead concentration can be suppressed below the groundwater environmental standard value by setting the addition amount to 2% or more.

図17に吸着剤であるMgOおよびAl(OH)の添加量と安定液Bの各重金属濃度との関係を示す。この図において、(a)はMgO添加量とAs濃度(上)及びF濃度(下)との関係図であり、(b)は、Al(OH)添加量とAs濃度(上)、F濃度(中)、及びPb濃度(下)との関係図である。 FIG. 17 shows the relationship between the added amount of MgO and Al (OH) 3 as adsorbents and the concentration of each heavy metal in the stabilizer B. In this figure, (a) is a relationship diagram of MgO addition amount, As concentration (upper) and F concentration (lower), and (b) is Al (OH) 3 addition amount and As concentration (upper), F It is a relationship figure with density | concentration (medium) and Pb density | concentration (lower).

ヒ素についてはフッ素、鉛との混合による影響は少なく、MgO、Al(OH)の添加量はそれぞれ2%、5%以上にすることで、ヒ素濃度を地下水環境基準値未満に抑えることができる。 Arsenic is less affected by mixing with fluorine and lead, and by adding MgO and Al (OH) 3 to 2% and 5% or more respectively, the arsenic concentration can be kept below the groundwater environmental standard value. .

フッ素についてはMgOを添加した場合にヒ素、鉛との共存による影響が見られ、添加量を2.5%以上にすることで地下水環境基準値未満に抑えることができる。フッ素にAl(OH)を添加した場合、ヒ素、鉛との共存による影響は見られず、添加量5%以下でフッ素濃度は地下水環境基準値を満足しなかった。 Fluorine is affected by coexistence with arsenic and lead when MgO is added, and can be suppressed to less than the groundwater environmental standard value by setting the addition amount to 2.5% or more. When Al (OH) 3 was added to fluorine, the influence of coexistence with arsenic and lead was not observed, and the fluorine concentration did not satisfy the groundwater environmental standard value when the addition amount was 5% or less.

鉛にMgOを添加した場合、全ケースで地下水環境基準値未満になった。鉛にAl(OH)を添加した場合、ヒ素、フッ素との共存による影響が見られ、添加量を2%以上にすることで地下水環境基準値を満足した。 When MgO was added to lead, it was less than the groundwater environmental standard value in all cases. When Al (OH) 3 was added to lead, the influence of coexistence with arsenic and fluorine was observed, and the groundwater environmental standard value was satisfied by setting the addition amount to 2% or more.

(3) 安定液と吸着剤の最適な組合せ
図18、図19にそれぞれヒ素、フッ素の吸着等温線を示す。ヒ素、フッ素ともにAl(OH)よりもMgOの吸着機能が高い。中でも安定液AにMgOを添加したケースが最も吸着機能が高い。なお、鉛に対しても、Al(OH)よりもMgOを添加したほうが吸着量は大きいことがわかった。
(3) Optimal combination of stabilizing solution and adsorbent FIGS. 18 and 19 show adsorption isotherms for arsenic and fluorine, respectively. Both arsenic and fluorine have a higher MgO adsorption function than Al (OH) 3 . Among them, the case where MgO is added to the stabilizer A has the highest adsorption function. In addition, it was found that the amount of adsorption with respect to lead was larger when MgO was added than with Al (OH) 3 .

(4)考察
(a)水酸化アルミニウムによる重金属の吸着について
Al(OH)は活性な表面水酸基を有しており陽イオンであるPb2+や陰イオンであるFやHAsO 、も吸着し表面錯体を形成する。ここで、Al(OH)を添加した場合の安定液のpHは8.1〜9.6を示しており、これはCASE B−14を除きAl(OH)の電位ゼロ点である9.5〜10.0より小さい。このため、Al(OH)は正電荷を有し、FやHAsO を吸着したと考えられる。CASE A−19〜21およびCASE B−19〜21におけるPb濃度と、実施例の実験結果(表2のA−7およびB−7)と比較して、Al(OH)による鉛の濃度低減効果が見られないことからも、鉛が難溶性の水酸化物を生成したことが示唆される。
(4) Discussion (a) About adsorption of heavy metal by aluminum hydroxide Al (OH) 3 has an active surface hydroxyl group, and Pb 2+ which is a cation, F and H 2 AsO 3 which are anions, Also adsorb and form a surface complex. Here, the pH of the stabilizer when Al (OH) 3 is added is 8.1 to 9.6, which is the zero potential point of Al (OH) 3 except for CASE B-14. .5 to less than 10.0. For this reason, Al (OH) 3 has a positive charge and is considered to have adsorbed F and H 2 AsO 3 . Compared with Pb concentration in CASE A-19 to 21 and CASE B-19 to 21 and experimental results of Examples (A-7 and B-7 in Table 2), lead concentration reduction by Al (OH) 3 The fact that the effect is not seen also suggests that lead has produced a slightly soluble hydroxide.

ポリマー系安定液を夏場に使用する場合、バクテリアによる変質対策としてpH9以上にする必要があることから、Al(OH)を添加する際には添加量を制限するか、アルカリ剤の使用を検討する必要がある。しかし前述したとおり、Al(OH)の電位ゼロ点は9.5であり、pH9以上にすることによってヒ素およびフッ素の吸着効果が低下する可能性があるため、実施工への適用の際には注意を要する。 When using a polymer-based stabilizer in the summer, it is necessary to adjust the pH to 9 or more as a measure against bacterial alteration. Therefore, when adding Al (OH) 3 , limit the amount of addition or consider using an alkaline agent. There is a need to. However, as described above, the potential zero point of Al (OH) 3 is 9.5, and the adsorption effect of arsenic and fluorine may be lowered by setting the pH to 9 or more. Need attention.

(b)酸化マグネシウムによる重金属の吸着について
MgOを添加した場合の安定液のpHは10.5〜11を示しており、この値はMgOの電位ゼロ点である12.4よりも低い。このためMgOも正電荷を有しておりFやHAsO を吸着し表面錯体を形成すると考えられる。またMgOが水と反応してMg(OH)に変化する際にフッ素が取り込まれるとも考えられる。鉛についてはMgOによる不溶化の機構が明らかになっていないが、pH上昇による水酸化鉛の生成などが考えられる。
(B) About adsorption of heavy metal by magnesium oxide The pH of the stabilizer when MgO is added is 10.5 to 11, and this value is lower than 12.4 which is the potential zero point of MgO. Therefore MgO also has a positive charge F - and H 2 AsO 3 - believed to form an adsorbed surface complexes. It is also considered that fluorine is taken in when MgO reacts with water and changes to Mg (OH) 2 . For lead, the mechanism of insolubilization by MgO has not been clarified, but the formation of lead hydroxide due to an increase in pH is considered.

CASE A−1〜12では、実験時(MgOの添加直後)から濃度分析時(2日後)までに、pHが1程度上昇した。この理由は次のように考える。式(7)に示すように、MgOは水溶液中で溶解し水酸化物イオンを供給するためpHが上昇するが、その後式(8)に示すように過飽和状態になったマグネシウムイオンと水酸化物イオンが水酸化マグネシウムイオンとして沈殿する。   In CASE A-1 to 12, the pH increased by about 1 from the time of experiment (immediately after addition of MgO) to the time of concentration analysis (after 2 days). The reason is considered as follows. As shown in formula (7), MgO dissolves in an aqueous solution and supplies hydroxide ions, so that the pH rises. However, as shown in formula (8), magnesium ions and hydroxides that are supersaturated are then obtained. The ions precipitate as magnesium hydroxide ions.

MgO+HO⇔Mg2++2OH・・・(7)
Mg2++2OH⇔Mg(OH)・・・(8)
MgO + H 2 O⇔Mg 2+ + 2OH (7)
Mg 2+ + 2OH ⇔Mg (OH) 2 (8)

しかしながら、ベントナイトの主成分であるスメクタイトの存在下では式(7)、(8)の反応は酸化マグネシウムの濃度に依存し、酸化マグネシウムがスメクタイトの10%以下では式(7)、(8)の反応は起こらないことが指摘されている。また、スメクタイトは、イオン交換等によるpH緩衝能をもつことが知られており、これらのことから、ベントナイトを多く含む安定液CASE B−1〜12では CASE A−1〜12に比べてpHの上昇が抑えられたと考えられる。   However, in the presence of smectite, which is the main component of bentonite, the reactions of formulas (7) and (8) depend on the concentration of magnesium oxide, and when magnesium oxide is 10% or less of smectite, formulas (7) and (8) It has been pointed out that no reaction takes place. In addition, it is known that smectite has a pH buffering capacity by ion exchange or the like. From these facts, the stable solution CASE B-1-12 containing a large amount of bentonite has a pH higher than that of CASE A-1-12. The rise is thought to have been suppressed.

式(7)、(8)の反応は遅く、水酸化マグネシウムの生成割合は3日で75%、28日で92%と報告されている。また、式(7)、(8)の反応は約8時間と報告されている。これらのことは、安定液作液後の養生時間が、吸着効果に大きく影響する可能性があることを示しており、実施工への適用の際には注意を要する。   The reactions of formulas (7) and (8) are slow, and the production rate of magnesium hydroxide is reported to be 75% in 3 days and 92% in 28 days. Moreover, the reaction of Formula (7), (8) is reported as about 8 hours. These facts indicate that the curing time after stable liquid preparation may greatly affect the adsorption effect, and caution must be exercised when applying it to the construction work.

5.自然由来ヒ素含有土による検証実験
吸着剤を添加した安定液による重金属等吸着機能を、現場で採取した土壌を用いて検証した。使用した試料は表8に示す性状の自然由来のヒ素含有土である。安定液はポリマー系安定液とし、吸着剤はMgOとAl(OH)、添加量は実施例3の実験結果の図16より0.5%と2.0%の2水準とした。安定液と試料土を体積比1:1で1分間の振とうの2日後に、遠心分離(3000rpm、20min)および0.45μmメンブレンフィルターでろ過を行い、得られたろ液のAs濃度を測定した。
5. Verification experiment using naturally-derived arsenic-containing soil The adsorption function of heavy metals, etc., by a stabilizing solution with adsorbent added was verified using soil collected on site. The sample used is naturally-occurring arsenic-containing soil having the properties shown in Table 8. The stabilizing solution was a polymer-based stabilizing solution, the adsorbent was MgO and Al (OH) 3 , and the addition amount was two levels of 0.5% and 2.0% from the experimental results of FIG. Two days after shaking the stable solution and sample soil at a volume ratio of 1: 1 for 1 minute, centrifugation (3000 rpm, 20 min) and filtration with a 0.45 μm membrane filter were performed, and the As concentration of the obtained filtrate was measured. .

表9に実験結果を示す。現場で採取した土壌においてもAl(OH)よりもMgOの方が吸着機能は高く、MgO添加量0.5%で安定液のAs濃度は地下水環境基準値未満に低減した。 Table 9 shows the experimental results. Even in the soil collected at the site, the adsorption function of MgO was higher than that of Al (OH) 3 , and the As concentration of the stable solution was reduced to less than the groundwater environmental standard value at an MgO addition amount of 0.5%.

6.まとめ
以上をまとめると、ベントナイト系安定液は吸着剤の添加によりゲル化しやすいこと、水酸化アルミニウムはpHが9未満になり、夏場にバクテリアによる劣化の可能性があることなどから、実施工への適用の際の安定液と吸着剤の組み合わせは、ポリマー系安定液に添加剤としてMgOを0.5〜5%を添加することが効果的であると考えられる。
6). In summary, the bentonite-based stabilizer is easily gelled by the addition of an adsorbent, and aluminum hydroxide has a pH of less than 9 and may be degraded by bacteria in the summer. As for the combination of the stabilizer and the adsorbent when applied, it is considered effective to add 0.5 to 5% of MgO as an additive to the polymer stabilizer.

(安定液の設計手法・施工管理手法の考察)
1.安定液の設計手法
(1)配合設計
ここでは、重金属等の拡散防止効果を有する安定液の配合設計について検討する。上述した実施例3において、アースドリル工法による掘削では掘削土壌と安定液はおおよそ体積比1:1で接触することを示した。したがってトリータビリティー試験における固液比は1とする。
(Study on design method and construction management method of stabilizer)
1. Stabilizing liquid design method (1) Blending design Here, we examine the blending design of the stabilizing liquid that has the effect of preventing diffusion of heavy metals and the like. In Example 3 described above, it was shown that the excavated soil and the stabilizing liquid are in contact with each other at a volume ratio of approximately 1: 1 in excavation by the earth drill method. Therefore, the solid-liquid ratio in the treatability test is 1.

上述した実施例3の結果から、安定液はポリマー系安定液、吸着剤はMgOで添加率は0.5、1、2、5%の4水準とする。溶出試験結果から、添加率−溶出量のグラフを作成し添加率d1を算出する。安定液の転用回数をn回(1≦n≦4)としd1×n≦dnとなるdnを吸着剤の添加率とする。以上をふまえ、配合設計のフローチャートの一例を図20に示す。   From the results of Example 3 described above, the stabilizer is a polymer-based stabilizer, the adsorbent is MgO, and the addition rate is set to four levels of 0.5, 1, 2, and 5%. From the dissolution test result, a graph of addition rate-elution amount is created, and the addition rate d1 is calculated. The number of diversions of the stabilizing liquid is n times (1 ≦ n ≦ 4), and dn that satisfies d1 × n ≦ dn is defined as the adsorbent addition rate. Based on the above, an example of a blending design flowchart is shown in FIG.

上述したとおり、酸化マグネシウムは水和反応により水酸化マグネシウムを生成するが、この反応速度は遅く作液後の養生日数によって吸着効果が変動する可能性がある。したがって、実施工の作業工程にあったトリータビリティー試験を行う必要がある。   As described above, magnesium oxide produces magnesium hydroxide by a hydration reaction, but this reaction rate is slow, and the adsorption effect may vary depending on the number of days of curing after the liquid preparation. Therefore, it is necessary to conduct a treatability test suitable for the working process of the working construction.

(2)安全率について
アースドリル工法では一般的にドリリングバケットによる掘削から排土までの1サイクルは10分程度であり、土壌はドリリングバケット内に収まったまま地上部に引きき上げられるため、掘削土壌と安定液とは十分に接触しているとは言えない。溶出試験における検液作成方法(毎分200回の振とうを6時間)に比べて接触時間は短く、接触面積も小さいことから、土壌から安定液への重金属の溶出量は溶出試験結果よりも小さいと考えられる。
(2) Safety factor In the earth drill method, generally, one cycle from drilling to excavation with a drilling bucket is about 10 minutes, and the soil is pulled up to the ground while staying in the drilling bucket. It cannot be said that the soil and the stabilizing liquid are in sufficient contact. Compared with the preparation method in the dissolution test (200 shakes per minute for 6 hours), the contact time is shorter and the contact area is smaller. It is considered small.

また、上述したように安定液と地盤との間の泥膜は、一定のろ過機能をもつと考えられる。したがって、この2点については設計上の「安全しろ」と考えることができる。設計者はこれらを考慮したうえで、吸着剤の添加率を割り増しするなど、安全率を設定する必要がある。   Further, as described above, the mud film between the stabilizing liquid and the ground is considered to have a certain filtration function. Therefore, these two points can be considered as “safety” in design. The designer needs to set a safety factor, such as increasing the adsorbent addition rate, taking these into consideration.

2.施工管理手法
(1)安定液の品質管理
本発明の工法の施工時には、安定液の品質管理試験の際に、対象となる重金属等の濃度を確認する必要がある。特に、重金属等を含む地盤を掘削したのち、非汚染地盤の手前で一旦掘削を中断し、安定液の液相濃度が地下水環境基準値未満であることを確認することが最も重要である。分析の結果、重金属等の濃度が地下水環境基準値未満であれば掘削を再開し、そうでなければ安定液の入替えや吸着剤の追加等の処置が必要となる。
2. Construction Management Method (1) Quality Control of Stabilizing Liquid During construction of the method of the present invention, it is necessary to confirm the concentration of the target heavy metal or the like during the quality control test of the stabilizing liquid. In particular, after excavating the ground containing heavy metals, etc., it is most important to temporarily stop excavation before the uncontaminated ground and confirm that the liquid phase concentration of the stable liquid is below the groundwater environmental standard value. As a result of the analysis, if the concentration of heavy metals or the like is less than the groundwater environmental standard value, the excavation is resumed.

施工中の重金属等の濃度確認では、公定法による分析結果を待って施工を進めることは現実的ではなく、また上述したようにサンプリングからろ過までのタイムラグによって濃度が低く評価される可能性があることから、迅速判定法の採用が望まれる。   When confirming the concentration of heavy metals, etc. during construction, it is not realistic to wait for the analysis result by the official method to proceed with construction, and as mentioned above, the concentration may be evaluated low due to the time lag from sampling to filtration Therefore, it is desirable to adopt a rapid determination method.

(2)安定液の処分
コンクリートを打設後、コンクリートに置き換わった安定液は回収槽にいったん貯留される。一般に、この安定液は品質管理試験ののち修正処理を行ない、再度掘削に使用する。再度の使用に耐えないもの、および工事終了時には産業廃棄物として処分する。しかしながら、本発明の工法の場合、吸着機能の修正処理として吸着剤の追加はゲル化の恐れがあるためすべきではなく、今のところ、配合設計で設定した転用回数で廃棄処分すべきである。
(2) Disposal of stable liquid After placing concrete, the stable liquid replaced with concrete is temporarily stored in the recovery tank. In general, this stabilizer is subjected to a correction process after a quality control test and is used again for excavation. Dispose of it as an industrial waste that cannot be used again or at the end of construction. However, in the case of the construction method of the present invention, addition of an adsorbent should not be performed as a modification process for the adsorption function because there is a risk of gelation, and at present, it should be disposed of at the number of diversions set in the formulation design. .

(3)コスト効果
本発明の工法のコスト効果の概算について表10に示す。モデルケースとして、杭径2000mm、杭長30m、重金属等を含む土層厚10m(GL±0〜10m)、難透水層厚7m(GL−10〜17m)、重金属はAs、F、Pbが共存し、溶出量は土壌溶出量基準値の2、5、10倍に設定した。また、実施例3の実験結果をふまえ、ポリマー系安定液に5%のMgOを添加し、この安定液を用いた1回の掘削で土壌溶出量基準値の10倍のAs、Pb、F濃度が土壌溶出量基準値まで低下すると仮定した。工事費については、地盤汚染対策なしの場合の杭一本当りの工事費を100として、他のケースの工事費を算出した。
(3) Cost effect Table 10 shows an estimate of the cost effect of the construction method of the present invention. As a model case, pile diameter 2000mm, pile length 30m, soil layer thickness including heavy metals 10m (GL ± 0-10m), hard-permeable layer thickness 7m (GL-10-17m), heavy metals As, F, Pb coexist The elution amount was set to 2, 5, and 10 times the soil elution amount reference value. In addition, based on the experimental results of Example 3, 5% MgO was added to the polymer-based stabilizing solution, and the As, Pb, and F concentrations 10 times the soil elution standard value in one excavation using this stabilizing solution. Was reduced to the soil elution standard value. Regarding the construction cost, the construction cost per pile with no soil contamination countermeasures was taken as 100, and the construction costs for other cases were calculated.

土壌溶出量が基準値の2倍程度であれば、通常の施工と同様に安定液の4回の転用が可能と思われ、工事費の増額は3%程度である。土壌溶出量が基準値の5倍程度で、安定液の転用は2回に減り、工事費の増額は12%となる。土壌溶出量が基準値の10倍程度になり安定液の転用ができない場合でも、工事費の増額は30%程度で、現行の地盤汚染対策と比較しても大幅なコスト縮減となる。   If the amount of soil elution is about twice the standard value, it will be possible to divert the stabilizer four times in the same way as normal construction, and the increase in construction costs is about 3%. The amount of soil elution is about 5 times the standard value, the diversion of the stabilizer is reduced to 2 times, and the construction cost increase is 12%. Even if the amount of soil elution is about 10 times the standard value and the diversion of the stabilizer is not possible, the construction cost increases by about 30%, which is a significant cost reduction compared to the current ground contamination countermeasures.

汚染地盤をアースドリル工法で掘削し、現場打ち杭を構築する際、安定液に重金属等(ヒ素、フッ素、鉛)が混入する。本発明では、このときの、安定液による重金属等の吸着機能を明らかにした。次に、安定液に吸着剤を添加し、液相のヒ素、フッ素、鉛の濃度を地下水環境基準値未満に低減するための配合設計手法について実験的に検討を行った。得られた成果は以下のとおりである。   When excavating the contaminated ground with the earth drill method and constructing the on-site pile, heavy metals, etc. (arsenic, fluorine, lead) are mixed in the stable liquid. In the present invention, the adsorption function of heavy metals and the like by the stabilizing liquid at this time was clarified. Next, an experimental study was conducted on a blending design method for adding an adsorbent to the stable liquid and reducing the concentrations of arsenic, fluorine, and lead in the liquid phase below the groundwater environmental standard value. The results obtained are as follows.

(1)アースドリル工法で一般に使用されている安定液は、鉛に対する吸着機能が高いことがわかった。吸着機能は、安定液に含まれるベントナイト量と、安定液のpH(8.5〜12.0)の影響が大きいと考えられる。   (1) It was found that the stabilizing liquid generally used in the earth drill method has a high adsorption function for lead. The adsorption function is considered to be greatly influenced by the amount of bentonite contained in the stabilizing solution and the pH (8.5 to 12.0) of the stabilizing solution.

(2)ベントナイト系安定液に吸着剤を添加することにより、ヒ素、フッ素に対する吸着機能を持たせることが可能である。吸着剤はMgO(添加量2%以下)、Al(OH)(添加量5%以下)であれば適用可能である。
(3)ポリマー系安定液に吸着剤を添加することにより、ヒ素、フッ素に対する吸着機能を持たせることが可能である。吸着剤はMgO(添加量5%以下)、Al(OH)(添加量5%以下)であれば適用可能である。
(2) By adding an adsorbent to the bentonite-based stabilizer, it is possible to have an adsorption function for arsenic and fluorine. The adsorbent is applicable if it is MgO (addition amount 2% or less), Al (OH) 3 (addition amount 5% or less).
(3) By adding an adsorbent to the polymer-based stabilizer, it is possible to provide an adsorption function for arsenic and fluorine. The adsorbent is applicable if it is MgO (addition amount 5% or less), Al (OH) 3 (addition amount 5% or less).

(4)自然由来程度(土壌溶出量基準値の10倍以内)の重金属等を含む地盤(ヒ素、フッ素、鉛)であれば、安定液に適量の吸着剤を添加することで、安定液本来の性能を保持しながら、重金属濃度を地下水環境基準値未満に抑え、重金属等の拡散を防止し得ることが示唆された。   (4) If the ground (arsenic, fluorine, lead) contains heavy metals, etc. that are naturally derived (within 10 times the soil elution standard value), an appropriate amount of adsorbent is added to the stable liquid, It was suggested that the concentration of heavy metals can be kept below the groundwater environmental standard value while preventing the diffusion of heavy metals.

(5)本発明の工法の工事費は、対象重金属等の種類、溶出量などから決まる吸着剤の量と安定液の転用回数により変動する。しかしながら、杭の掘削工事費全体に占める安定液の割合はわずかであり、重金属等の溶出量が基準値の10倍程度としても、工事費の増加は30%程度であり、従来の工法(例えば、二重管工法)と比較するとコスト縮減効果は大きい。   (5) The construction cost of the construction method of the present invention varies depending on the amount of adsorbent determined based on the type of the target heavy metal and the like, the amount of elution, and the number of times the stabilizer is used. However, the proportion of the stable liquid in the entire excavation cost of the pile is small, and even if the elution amount of heavy metals etc. is about 10 times the standard value, the increase in the construction cost is about 30%. Compared with the double pipe method, the cost reduction effect is large.

上述した本発明の現場打ち杭工法は、安定液を杭孔に満たして掘削する従来の現場打ち杭工法(例えば、アースドリル工法、リバース工法、BH工法)と施工手順が同じであり、地盤改良は不要である。
また、従来の施工手順に追加される工程は、上述した安定液調製工程S1、中間確認工程S21、及び品質管理工程S22のみであり、短時間で実施できる。
したがって、本発明の現場打ち杭工法は、地盤改良なしで土壌汚染の拡散を大幅に低減又は防止することができる。
The above-mentioned in-situ pile method of the present invention has the same construction procedure as the conventional in-situ pile method (for example, earth drill method, reverse method, BH method) for excavating by filling the pile hole with a stabilizing liquid, and ground improvement Is unnecessary.
Moreover, the process added to the conventional construction procedure is only the stabilizing liquid preparation process S1, the intermediate confirmation process S21, and the quality control process S22, which can be performed in a short time.
Therefore, the on-site pile method of the present invention can significantly reduce or prevent the spread of soil contamination without ground improvement.

なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない限りで種々に変更できることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously, unless it deviates from the summary of this invention.

n 安定液の転用回数、1 汚染土壌(沖積層)、
2 難透水層、3 下部支持層(下部帯水層)
n Number of diversions of the stabilizer, 1 Contaminated soil (alluvium),
2 Hardly permeable layer, 3 Lower support layer (lower aquifer)

Claims (10)

安定液を杭孔に満たして掘削する現場打ち杭工法において、
重金属汚染物質を吸着する吸着剤を前記安定液に添加して添加安定液を調製する安定液調製工程と、
前記添加安定液を前記杭孔に満たして前記杭孔を掘削する杭孔掘削工程と、を有する、現場打ち杭工法。
In the field pile driving method to fill the hole with the stable liquid and excavate,
A stabilizing solution preparation step of preparing an added stabilizing solution by adding an adsorbent that adsorbs heavy metal contaminants to the stabilizing solution;
A pile hole excavation process for excavating the pile hole by filling the pile hole with the added stabilizing liquid.
前記安定液調製工程は、
前記重金属汚染物質を含む地盤から汚染土壌を採取するサンプリング工程と、
前記汚染土壌と、吸着剤添加率が異なる複数の前記添加安定液とを混合して、液中の前記重金属汚染物質の溶出量を検出する溶出試験工程と、
前記吸着剤添加率と前記溶出量の関係を求める関係検出工程と、
前記関係から前記添加安定液の前記吸着剤添加率を決定する添加率決定工程と、を有する請求項1に記載の現場打ち杭工法。
The stabilizing solution preparation step includes
A sampling step of collecting contaminated soil from the ground containing the heavy metal pollutant;
Mixing the contaminated soil and a plurality of the addition stabilizers having different adsorbent addition rates, and detecting an elution amount of the heavy metal contaminants in the solution,
A relationship detection step for obtaining a relationship between the adsorbent addition rate and the elution amount;
An in-situ pile driving method according to claim 1, further comprising: an addition rate determining step for determining the adsorbent addition rate of the added stabilizing liquid from the relationship.
前記杭孔掘削工程は、
前記重金属汚染物質を含む地盤を掘削したのち、非汚染地盤の手前で一旦掘削を中断し、前記添加安定液の液相濃度が基準値未満であることを確認する中間確認工程を有する、請求項1に記載の現場打ち杭工法。
The pile hole excavation process includes:
After excavating the ground containing the heavy metal pollutant, the excavation is temporarily interrupted before the non-contaminated ground, and an intermediate confirmation step of confirming that the liquid phase concentration of the added stabilizing liquid is less than a reference value. The on-site pile method described in 1.
前記重金属汚染物質は、ヒ素、フッ素、又は鉛であり、
前記安定液は、ポリマー系安定液又はベントナイト系安定液であり、
前記吸着剤は、酸化マグネシウム又は水酸化アルミニウムである、請求項1に記載の現場打ち杭工法。
The heavy metal contaminant is arsenic, fluorine, or lead;
The stabilizer is a polymer stabilizer or a bentonite stabilizer,
The in-situ pile driving method according to claim 1, wherein the adsorbent is magnesium oxide or aluminum hydroxide.
前記重金属汚染物質は、ヒ素、フッ素、又は鉛であり、
前記安定液は、ポリマー系安定液であり、
前記吸着剤は、0.5〜5%の酸化マグネシウム、又は0.5〜5%の水酸化アルミニウムである、請求項1に記載の現場打ち杭工法。
The heavy metal contaminant is arsenic, fluorine, or lead;
The stabilizer is a polymer stabilizer,
The on-site pile method according to claim 1, wherein the adsorbent is 0.5 to 5% magnesium oxide or 0.5 to 5% aluminum hydroxide.
前記重金属汚染物質は、ヒ素、フッ素、又は鉛であり、
前記安定液は、ベントナイト系安定液であり、
前記吸着剤は、0.5〜2%の酸化マグネシウム、又は0.5〜5%の水酸化アルミニウムである、請求項1に記載の現場打ち杭工法。
The heavy metal contaminant is arsenic, fluorine, or lead;
The stabilizer is a bentonite stabilizer.
The in-situ pile method according to claim 1, wherein the adsorbent is 0.5 to 2% magnesium oxide or 0.5 to 5% aluminum hydroxide.
前記杭孔掘削工程は、使用中の前記添加安定液が含有する前記重金属汚染物質の溶出量を検査する品質管理工程を有する、請求項1に記載の現場打ち杭工法。   The pile driving method according to claim 1, wherein the pile hole excavation step includes a quality control step of inspecting an elution amount of the heavy metal contaminant contained in the added stabilizing liquid in use. 前記現場打ち杭工法は、アースドリル工法であり、
表層ケーシングの建込み予定深度まで掘削して前記表層ケーシングを立て込み、
前記添加安定液を注入し、
前記添加安定液の液面を一定に保ちながらドリリングバケットで掘削し地上への排土作業を繰り返す、請求項1に記載の現場打ち杭工法。
The on-site pile method is an earth drill method,
Drilling up to the expected depth of installation of the surface casing and standing up the surface casing,
Injecting the added stabilizing solution,
The in-situ pile driving method according to claim 1, wherein excavation with a drilling bucket is performed while soil removal to the ground is repeated while keeping the liquid level of the added stabilizing liquid constant.
前記杭孔掘削工程において、前記添加安定液の孔内水位を地下水位以上に保ちながら掘削を行う、請求項1に記載の現場打ち杭工法。   The in-situ pile driving method according to claim 1, wherein, in the pile hole excavation step, excavation is performed while maintaining an in-hole water level of the added stabilizing liquid at or above a groundwater level. 前記杭孔内にコンクリートを打設するコンクリート打設工程と、
前記コンクリートで置換された前記添加安定液を回収槽に回収する安定液回収工程と、を有する、請求項1に記載の現場打ち杭工法。
A concrete placing process for placing concrete in the pile hole;
The in-situ pile driving method according to claim 1, further comprising: a stabilizing liquid recovery step of recovering the added stabilizing liquid replaced with the concrete in a recovery tank.
JP2016158213A 2016-08-10 2016-08-10 Cast-in-place pile method Active JP6884527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016158213A JP6884527B2 (en) 2016-08-10 2016-08-10 Cast-in-place pile method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016158213A JP6884527B2 (en) 2016-08-10 2016-08-10 Cast-in-place pile method

Publications (2)

Publication Number Publication Date
JP2018025055A true JP2018025055A (en) 2018-02-15
JP6884527B2 JP6884527B2 (en) 2021-06-09

Family

ID=61195231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016158213A Active JP6884527B2 (en) 2016-08-10 2016-08-10 Cast-in-place pile method

Country Status (1)

Country Link
JP (1) JP6884527B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019025466A (en) * 2017-08-04 2019-02-21 株式会社大林組 Method for rendering arsenic-containing muddy water harmless

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180350A (en) * 1978-03-30 1979-12-25 Early California Industries, Inc. Method for forming foundation piers
JPH05115862A (en) * 1991-08-13 1993-05-14 Raito Kogyo Co Ltd Environmental protection technique and structure of interruption wall for environmental protection
JPH11347511A (en) * 1998-06-09 1999-12-21 Tone Geo Tech Co Ltd Water-seal type water-barrier wall and method for controlling its function
JP3367042B2 (en) * 1998-05-28 2003-01-14 大成建設株式会社 Pile construction method
JP2005273411A (en) * 2004-03-26 2005-10-06 Okumura Corp Method for preparing in-place concrete pile
JP2012057355A (en) * 2010-09-08 2012-03-22 Ohbayashi Corp Manufacturing method of backfill material, backfill method of backfill material, recycle method of slurry, backfill system of backfill material and recycle system of slurry
JP2013057061A (en) * 2011-08-17 2013-03-28 Waseda Univ Stable liquid composition of swollen superabsorbent polymer for ground excavation and construction method using the same
JP2014226640A (en) * 2013-05-24 2014-12-08 栗田工業株式会社 Method for designing permeable wall for purifying groundwater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180350A (en) * 1978-03-30 1979-12-25 Early California Industries, Inc. Method for forming foundation piers
JPH05115862A (en) * 1991-08-13 1993-05-14 Raito Kogyo Co Ltd Environmental protection technique and structure of interruption wall for environmental protection
JP3367042B2 (en) * 1998-05-28 2003-01-14 大成建設株式会社 Pile construction method
JPH11347511A (en) * 1998-06-09 1999-12-21 Tone Geo Tech Co Ltd Water-seal type water-barrier wall and method for controlling its function
JP2005273411A (en) * 2004-03-26 2005-10-06 Okumura Corp Method for preparing in-place concrete pile
JP2012057355A (en) * 2010-09-08 2012-03-22 Ohbayashi Corp Manufacturing method of backfill material, backfill method of backfill material, recycle method of slurry, backfill system of backfill material and recycle system of slurry
JP2013057061A (en) * 2011-08-17 2013-03-28 Waseda Univ Stable liquid composition of swollen superabsorbent polymer for ground excavation and construction method using the same
JP2014226640A (en) * 2013-05-24 2014-12-08 栗田工業株式会社 Method for designing permeable wall for purifying groundwater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019025466A (en) * 2017-08-04 2019-02-21 株式会社大林組 Method for rendering arsenic-containing muddy water harmless
JP7167419B2 (en) 2017-08-04 2022-11-09 株式会社大林組 Method for rendering arsenic-containing mud water harmless

Also Published As

Publication number Publication date
JP6884527B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
US5591118A (en) Low permeability waste containment construction and composition containing granular activated carbon and method of making
Wilkin et al. Rare-earth elements as natural tracers for in situ remediation of groundwater
Navarro et al. Permeable reactive barriers for the removal of heavy metals: lab‐scale experiments with low‐grade magnesium oxide
Hong et al. Long-term column testing of zeolite-amended backfills. I: Testing methodology and chemical compatibility
Thornton et al. Attenuation of landfill leachate by clay liner materials in laboratory columns: 2. Behaviour of inorganic contaminants
JP2018025055A (en) Cast-in-place pace construction method
Hong et al. Numerical evaluation of vertical cutoff walls comprising zeolite-amended backfills for enhanced metals containment
Banwart The Äspö redox investigations in block scale. Project summary and implications for repository performance assessment
Tucker et al. Adsorption of RDX to soil with low organic carbon: Laboratory results, field observations, remedial implications
Kashir et al. Compatibility of slurry wall backfill soils with acid mine drainage
Morrison et al. Design and performance of a permeable reactive barrier for containment of uranium, arsenic, selenium, vanadium, molybdenum, and nitrate at Monticello, Utah
Blowes et al. An in situ permeable reactive barrier for the treatment of hexavalent chromium and trichloroethylene in ground water
JP5967397B2 (en) Methods for insolubilizing hazardous substances
Reed et al. Soil flushing of a sandy loam contaminated with Pb (II), PbS4 (s), PbCO3 (3), or Pb‐Naphthalene: Column results
Hong et al. Characterizing zeolite-amended soil-bentonite backfill for enhanced metals containment with vertical cutoff walls
Igloria et al. NOM and Trace Metal Attenuation During Storm-Water Infiltration
Broxton et al. PRELIMINARY DRILLING RESULTS FOR BOREHOLES LADP-3AND LADP-4
Jang et al. Hydrogeological characteristics and water chemistry in a coastal aquifer of Korea: implications for land subsidence
Mo et al. Effectiveness of immobilizing agent used as a sorption layer against natural contamination
Simon et al. Groundwater remediation using active and passive processes
RU2316068C1 (en) Method for protecting natural waters against radioactive and toxic materials escaping from liquid waste stores
Kato et al. Anaerobic batch leaching tests of shale rock grains
Sheahan et al. A reactive geocomposite to remediate contaminated, subaqueous sediments
Cantrell et al. A Review of Subsurface Behavior of Plutonium and Americium at the 200-PW-1/3/6 Operable Units
Blowes et al. An In-situ Permeable Reactive Barrier for the Treatment of Hexavalent Chromium and Trichloroethylene in Ground Water: Design and installation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160907

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210512

R150 Certificate of patent or registration of utility model

Ref document number: 6884527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150