JP2018024912A - Magnesium alloy substrate, electronic apparatus, and formation method of anticorrosive coating sheet - Google Patents

Magnesium alloy substrate, electronic apparatus, and formation method of anticorrosive coating sheet Download PDF

Info

Publication number
JP2018024912A
JP2018024912A JP2016157179A JP2016157179A JP2018024912A JP 2018024912 A JP2018024912 A JP 2018024912A JP 2016157179 A JP2016157179 A JP 2016157179A JP 2016157179 A JP2016157179 A JP 2016157179A JP 2018024912 A JP2018024912 A JP 2018024912A
Authority
JP
Japan
Prior art keywords
magnesium alloy
coating
substrate
corrosion
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016157179A
Other languages
Japanese (ja)
Other versions
JP6659961B2 (en
Inventor
柏川 貴弘
Takahiro Kashiwakawa
貴弘 柏川
木村 浩一
Koichi Kimura
浩一 木村
長沼 靖雄
Yasuo Naganuma
靖雄 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016157179A priority Critical patent/JP6659961B2/en
Publication of JP2018024912A publication Critical patent/JP2018024912A/en
Application granted granted Critical
Publication of JP6659961B2 publication Critical patent/JP6659961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casings For Electric Apparatus (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve corrosion resistance of a magnesium alloy substrate furthermore than hitherto, concerning the magnesium alloy substrate, an electronic apparatus, and a formation method of an anticorrosive coating sheet.SOLUTION: A first coating sheet mainly composed of Si and O which are reaction products between sodium silicate and a magnesium alloy is provided on the surface of a substrate comprising the magnesium alloy, and a second coating sheet comprising a reaction product of sodium fluorosilicate mainly composed of Si and F is provided on the surface of the first coating sheet.SELECTED DRAWING: Figure 1

Description

本発明はマグネシウム合金基体、電子機器及び耐食性被膜の形成方法に関するものであり、例えば、携帯電話やノートパソコン等の電子機器等の使用される耐食性被膜を設けたマグネシウム合金基体、電子機器及び耐食性被膜の形成方法に関するものである。   TECHNICAL FIELD The present invention relates to a magnesium alloy substrate, an electronic device, and a method for forming a corrosion-resistant coating. For example, a magnesium alloy substrate, an electronic device, and a corrosion-resistant coating provided with a corrosion-resistant coating used for electronic devices such as mobile phones and laptop computers. It is related with the formation method of this.

ノートパソコン等の電気製品の筐体内部は機械駆動部や電源等の内部部品を配置する構造を持つ。このような電子機器は、外部から受ける衝撃や圧力等から内部構造を保護する必要があるため、筐体には機械的強度が要求される。さらに、電子機器の中でも持ち運ぶ事を想定したモバイル機器の場合、筐体材料には前記機械的強度の他、軽さも要求される。   The inside of a casing of an electric product such as a notebook personal computer has a structure in which internal components such as a mechanical drive unit and a power source are arranged. Such an electronic device needs to protect the internal structure from an impact, pressure, or the like received from the outside, so that the casing is required to have mechanical strength. Furthermore, in the case of a mobile device that is assumed to be carried among electronic devices, the casing material is required to be light in addition to the mechanical strength.

従来の金属筐体は鉄、アルミニウム合金のプレス加工品や切削加工品が多く用いられてきたが、近年は軽量かつ高剛性であるマグネシウム合金をプレス加工したものが使用されるようになってきた。プレス加工用のマグネシウム合金としてはAZ31Bが上市されており、その他にはリチウムを含有するマグネシウム合金が開発されている(例えば、特許文献1参照)。これらの材料は鉄やアルミニウム合金と比較すると非常に活性なため、耐食性に劣る。   Conventionally, metal and aluminum alloy press-worked products and machined products have been widely used, but in recent years, lightweight and highly rigid magnesium alloys that have been press-worked have come to be used. . As a magnesium alloy for press working, AZ31B is marketed, and in addition, a magnesium alloy containing lithium has been developed (for example, see Patent Document 1). Since these materials are very active as compared with iron and aluminum alloys, they are inferior in corrosion resistance.

そこで、マグネシウム合金の耐食性を向上させるため、酸化防止被膜を表面に形成する。被膜は生産性やコスト、外観等により厚さが約0.5μm〜20μm前後で形成される。被膜の種類としてはメッキ、化成処理、陽極酸化等が有る。   Therefore, in order to improve the corrosion resistance of the magnesium alloy, an antioxidant coating is formed on the surface. The coating is formed with a thickness of about 0.5 μm to 20 μm depending on productivity, cost, appearance, and the like. Examples of coating types include plating, chemical conversion treatment, and anodizing.

例えば、金属メッキ(例えば、非特許文献1参照)、化成処理(例えば、特許文献2或いは特許文献3参照)、或いは、亜鉛拡散膜(例えば、特許文献4参照)等の筐体表面に被膜を形成し、表面の耐食性を向上される方法が提案されている。   For example, a coating is applied to the surface of the housing such as metal plating (for example, see Non-Patent Document 1), chemical conversion treatment (for example, see Patent Document 2 or Patent Document 3), or zinc diffusion film (for example, see Patent Document 4). Methods have been proposed for forming and improving the corrosion resistance of the surface.

特開平09−041066号公報JP 09-041066 A 特開平10−040369号公報JP-A-10-040369 特開2009−221507号公報JP 2009-221507 A 特開2000−160320号公報JP 2000-160320 A

アルミニウム研究会誌No.9,p.121(1993)Journal of Aluminum Society No. 9, p. 121 (1993)

しかし、上述の金属メッキや亜鉛拡散膜等でマグネシウム合金表面に被膜形成を行っても必ずしも十分な耐食性を得られないという問題がある。鋭意研究の結果、これは、マグネシウム合金の表面に新たな金属層もしくは金属化合物層の被膜を形成する際に、マグネシウム合金表面の被膜の密着性を向上させずに、被膜形成を行うためであるとの結論に至った。   However, there is a problem that sufficient corrosion resistance cannot always be obtained even when a film is formed on the surface of the magnesium alloy with the above-described metal plating or zinc diffusion film. As a result of earnest research, this is because when a new metal layer or metal compound layer film is formed on the surface of the magnesium alloy, the film is formed without improving the adhesion of the film on the surface of the magnesium alloy. I came to the conclusion.

したがって、マグネシウム合金基体、電子機器及び耐食性被膜の形成方法において、マグネシウム合金基体の耐食性を従前以上に向上することを目的とする。   Accordingly, it is an object of the present invention to improve the corrosion resistance of a magnesium alloy substrate more than before in a magnesium alloy substrate, an electronic device, and a method for forming a corrosion-resistant film.

一つの態様では、マグネシウム合金基体は、マグネシウム合金からなる基体と、前記基体の表面に設けたケイ酸ナトリウムと前記マグネシウム合金との反応生成物であるSi及びOを主要成分とする第1の被膜と、前記第1の被膜の表面に設けたSi及びFを主要成分とするフルオロケイ酸ナトリウムの反応生成物からなる第2の被膜とを有する。   In one embodiment, the magnesium alloy substrate includes a substrate made of a magnesium alloy, and a first coating mainly comprising Si and O, which are reaction products of sodium silicate and the magnesium alloy provided on the surface of the substrate. And a second coating made of a reaction product of sodium fluorosilicate having Si and F as main components provided on the surface of the first coating.

他の態様では、電子機器は、上述のマグネシウム合金基体を、電子機器筐体として用いている。   In another aspect, the electronic device uses the above-described magnesium alloy substrate as an electronic device casing.

さらに、他の態様では、耐食性被膜の形成方法は、マグネシウム合金からなる基体をケイ酸ナトリウム水溶液に浸漬して、前記マグネシウム合金と前記ケイ酸ナトリウムとの反応物からなる第1の被膜を形成する工程と、前記第1の被膜を形成した前記基体をフルオロケイ酸ナトリウム水溶液に浸漬して第2の被膜を形成する工程とを有する。   Furthermore, in another aspect, the method for forming a corrosion-resistant coating includes immersing a substrate made of a magnesium alloy in an aqueous sodium silicate solution to form a first coating made of a reaction product of the magnesium alloy and the sodium silicate. And a step of immersing the substrate on which the first coating is formed in an aqueous sodium fluorosilicate solution to form a second coating.

一つの側面として、マグネシウム合金基体の耐食性を従前以上に向上することが可能になる。   As one aspect, the corrosion resistance of the magnesium alloy substrate can be improved more than before.

本発明の実施の形態のマグネシウム合金基体の説明図である。It is explanatory drawing of the magnesium alloy base | substrate of embodiment of this invention. 本発明の実施の形態の耐食性被膜の形成工程のフロー図である。It is a flowchart of the formation process of the corrosion-resistant film of embodiment of this invention. 本発明の実施例1の耐食性被膜の形成工程のフロー図である。It is a flowchart of the formation process of the corrosion-resistant film of Example 1 of this invention. 本発明の実施例1を適用するノートパソコンを示す概略斜視図である。It is a schematic perspective view which shows the notebook computer to which Example 1 of this invention is applied. フロントカバー形状にプレス加工した状態の説明図である。It is explanatory drawing of the state pressed into the shape of a front cover. バックカバー形状にプレス加工した状態の説明図である。It is explanatory drawing of the state pressed into the shape of a back cover. アッパーカバー形状にプレス加工した状態の説明図である。It is explanatory drawing of the state pressed into the upper cover shape. ロアカバー形状にプレス加工した状態の説明図である。It is explanatory drawing of the state pressed into the shape of a lower cover.

ここで、図1及び図2を参照して、本発明の実施の形態を説明する。本発明者等は上記課題を解決するために鋭意検討した結果、マグネシウム合金基体の表面のMg等のアルカリ金属イオンと反応する無機化合物の耐食性被膜を形成することにより、耐食性を向上させることを見いだした。図1は、マグネシウム合金基体の説明図であり、図2は耐食性被膜の形成工程の説明図である。図1(a)に示すように、本発明の実施の形態のマグネシウム合金基体は、マグネシウム合金からなる基体11の表面に設けたケイ酸ナトリウム(NaSiO,NaSiO)とマグネシウム合金との反応生成物であるSi及びOを主要成分とする第1の被膜12を設ける。この第1の被膜12はマグネシウム合金との反応生成物であるので基体11との密着性が良好になる。この第1の被膜12の表面に設けたSi及びFを主要成分とするフルオロケイ酸ナトリウム(NaSiF)を用いた反応生成物からなる第2の被膜13を設ける。 Here, with reference to FIG.1 and FIG.2, embodiment of this invention is described. As a result of intensive studies to solve the above problems, the present inventors have found that the corrosion resistance is improved by forming a corrosion-resistant film of an inorganic compound that reacts with alkali metal ions such as Mg on the surface of the magnesium alloy substrate. It was. FIG. 1 is an explanatory diagram of a magnesium alloy substrate, and FIG. 2 is an explanatory diagram of a process for forming a corrosion-resistant coating. As shown in FIG. 1 (a), a magnesium alloy substrate according to an embodiment of the present invention includes a sodium silicate (Na 2 SiO 3 , Na 4 SiO 4 ) and a magnesium alloy provided on the surface of a substrate 11 made of a magnesium alloy. The first film 12 containing Si and O, which are reaction products of the above, as main components is provided. Since the first coating 12 is a reaction product with the magnesium alloy, the adhesion with the substrate 11 is improved. A second coating 13 made of a reaction product using sodium fluorosilicate (Na 2 SiF 6 ) containing Si and F as main components is provided on the surface of the first coating 12.

この場合、図1(b)に示すように、第2の被膜13は、第1の被膜が形成されていない第1の被膜11のピンホール部14における基体11の表面を覆うようにしても良い。   In this case, as shown in FIG. 1B, the second film 13 may cover the surface of the substrate 11 in the pinhole portion 14 of the first film 11 where the first film is not formed. good.

マグネシウム合金としては、Mgが最大成分の合金であれば良く、Mg(90wt%)、Li(9wt%)、Zn(1wt%)のようなリチウムを含有している合金やAZ91{Mg(90wt%)、Al(9wt%)、Zn(1wt%)}のようなLiを含まないマグネシウム合金でも良い。なお、軽量化のためには、Liを含むマグネシウム合金が望ましい。   As a magnesium alloy, Mg may be an alloy having the largest component, such as an alloy containing lithium such as Mg (90 wt%), Li (9 wt%), Zn (1 wt%), or AZ91 {Mg (90 wt%). ), Al (9 wt%), Zn (1 wt%)}, or a magnesium alloy that does not contain Li. Note that a magnesium alloy containing Li is desirable for weight reduction.

このような、耐食性被膜を設けたマグネシウム合金基体は、携帯電話やノート型PC等の電子機器用の筐体として好適である。   Such a magnesium alloy substrate provided with a corrosion-resistant coating is suitable as a housing for an electronic device such as a mobile phone or a notebook PC.

このような耐食性被膜を形成するためには、図2に示すように、まず、マグネシウム合金からなる基体11をケイ酸ナトリウム水溶液に浸漬して、マグネシウム合金とケイ酸ナトリウムとの反応物からなる第1の被膜12を形成する。この第1の被膜12は、Si及びOを主成分とするが、基体11の構成元素であるMg(Li)やケイ酸ナトリウムの成分であるNaを若干含んでいる。   In order to form such a corrosion-resistant film, as shown in FIG. 2, first, a base 11 made of a magnesium alloy is immersed in an aqueous solution of sodium silicate, and a reaction product of a magnesium alloy and sodium silicate is first formed. 1 coating 12 is formed. The first coating 12 contains Si and O as main components, but contains some Mg (Li), which is a constituent element of the base 11, and Na, which is a component of sodium silicate.

次いで、第1の被膜12を形成した基体11をフルオロケイ酸ナトリウム水溶液に浸漬して第2の被膜13を形成する。この第1の被膜12は、Si及びFを主成分とするフッ化物被膜であるが、基体11の構成元素であるMg(Li)やOやフルオロケイ酸ナトリウムの成分であるNaを若干含んでいる。通常は、第1の被膜12の形成工程と、第2の被膜13の形成工程との間に、第1の被膜12を形成したマグネシウム合金基体11を水洗したのち乾燥する工程を設ける。   Next, the substrate 11 on which the first coating 12 is formed is immersed in an aqueous sodium fluorosilicate solution to form a second coating 13. The first coating 12 is a fluoride coating mainly composed of Si and F, but contains a little of Mg (Li), which is a constituent element of the substrate 11, O, and Na which is a component of sodium fluorosilicate. Yes. Usually, between the formation process of the 1st coating film 12 and the formation process of the 2nd coating film 13, the process of drying after washing the magnesium alloy base | substrate 11 in which the 1st coating film 12 was formed is provided.

ケイ酸ナトリウムとしては、オルトケイ酸ナトリウム(NaSiO)或いはメタケイ酸ナトリウム(NaSiO)のいずれかを用いれば良くこれらを混合したものを用いても良い。オルトケイ酸ナトリウム(NaSiO)は、水溶液中でNaSiOの水和物を形成する。 As sodium silicate, any of sodium orthosilicate (Na 4 SiO 4 ) or sodium metasilicate (Na 2 SiO 3 ) may be used, and a mixture thereof may be used. Sodium orthosilicate (Na 4 SiO 4 ) forms a hydrate of Na 2 SiO 3 in aqueous solution.

ケイ酸ナトリウム水溶液におけるケイ酸ナトリウムの濃度は、3wt%〜10wt%の範囲が好適であり、薄すぎると被膜形成の時間がかかりすぎてスループットが低下する。フルオロケイ酸ナトリウム水溶液におけるフルオロケイ酸ナトリウムの濃度が、0.5wt%〜3wt%の範囲が好適である。なお、フルオロケイ酸ナトリウムは水に溶けにくく、20℃において水100mlに対して0.67g程度溶ける。   The concentration of sodium silicate in the aqueous solution of sodium silicate is preferably in the range of 3 wt% to 10 wt%. If it is too thin, it takes too much time to form a film and the throughput decreases. The concentration of sodium fluorosilicate in the sodium fluorosilicate aqueous solution is preferably in the range of 0.5 wt% to 3 wt%. In addition, sodium fluorosilicate is hardly soluble in water, and dissolves at about 0.67 g per 100 ml of water at 20 ° C.

このマグネシウム合金の耐食性処理は、プレス加工などを行う前の板材に提供することも可能であるが、プレスなどの機械加工後に耐食性被膜の形成を行うことが好ましい。また、浸漬温度、時間を変えることで耐食被膜の厚さを変えることができる。さらに,本耐食性処理被膜の上に他の化成処理、メッキ処理等を行う事も可能である。   Although the corrosion resistance treatment of the magnesium alloy can be provided to a plate material before press working or the like, it is preferable to form a corrosion resistant coating after machining such as pressing. Further, the thickness of the corrosion-resistant coating can be changed by changing the immersion temperature and time. Furthermore, other chemical conversion treatments, plating treatments, and the like can be performed on the corrosion-resistant treatment coating film.

本発明の実施の形態によれば、マグネシウム合金の表面にケイ酸ナトリウムとの反応生成物及びフルオロケイ酸ナトリウムの反応生成物からなる複数の化成処理膜を形成することで、従前より耐食性に優れたマグネシウム合金耐食性被膜を得ることができる。   According to the embodiment of the present invention, by forming a plurality of chemical conversion treatment films composed of a reaction product with sodium silicate and a reaction product of sodium fluorosilicate on the surface of the magnesium alloy, the corrosion resistance is better than before. A magnesium alloy corrosion resistant coating can be obtained.

次に、本発明の実施例1の耐食性被膜の形成工程を説明するが、その前に、耐食性の評価方法を説明する。

Figure 2018024912
表1は、サンプルに対する温湿度サイクル試験条件の説明図であり、この1サイクル24時間の試験を5サイクル繰り返す。 Next, although the formation process of the corrosion-resistant coating film of Example 1 of this invention is demonstrated, the corrosion resistance evaluation method is demonstrated before that.
Figure 2018024912
Table 1 is an explanatory diagram of the temperature and humidity cycle test conditions for the sample, and this one cycle 24 hour test is repeated 5 cycles.

この温湿度サイクル試験後、JIS K5400に規定されている五番目試験によるJIS評点と表面状態を分光色彩計(コニカミノルタ製CM−5)により10点計測し温湿度試験前との色差(ΔE)により評価し表2に示す評価を付けた。評価3以上を合格とした。

Figure 2018024912
After this temperature / humidity cycle test, the JIS score and surface state of the fifth test specified in JIS K5400 were measured with a spectrocolorimeter (CM-5 manufactured by Konica Minolta) at 10 points, and the color difference (ΔE) from before the temperature / humidity test. The evaluation shown in Table 2 was given. An evaluation of 3 or more was accepted.
Figure 2018024912

次に、図3を参照して、本発明の実施例1の耐食性被膜の形成工程を説明する。まず、
a.マグネシウム合金として、Mg(90wt%)、Al(9wt%)、Zn(1wt%)のAZ91合金を用い、ノートPCの筐体形状にプレス加工を行う。次いで、
b.プレス加工後に50×100mmの形状に切り出したサンプルをアルカリ溶液で脱脂処理する。ここでは、脱脂処理において脱脂処理用アルカリ系薬液としてグランダファイナーMG−15SX+グランダファイナー添加剤F21を用いる。次いで、
c.80℃の5wt%オルトケイ酸ナトリウム(NaSiO)水溶液に1分間浸漬する。次いで、
d.水洗及び乾燥を行う。次いで、
e.60℃の1wt%のフルオロケイ酸ナトリウム水溶液に30秒間浸漬する。次いで、f.水洗及び乾燥を行う。
このように耐食性被膜を形成したサンプルを上述の耐食性試験にかけた後の耐食性評価結果はJIS評点10点、ΔEは2となり評価5点であった。なお、工程cで形成される被膜の厚さは1.0μm程度であり、工程eで形成される被膜の厚さは0.5μm程度である。
Next, with reference to FIG. 3, the formation process of the corrosion-resistant film of Example 1 of this invention is demonstrated. First,
a. An AZ91 alloy of Mg (90 wt%), Al (9 wt%), and Zn (1 wt%) is used as the magnesium alloy, and press processing is performed on the case shape of the notebook PC. Then
b. A sample cut into a 50 × 100 mm shape after press working is degreased with an alkaline solution. Here, Grandafiner MG-15SX + Grandafiner additive F21 is used as an alkaline chemical solution for the degreasing process in the degreasing process. Then
c. Immerse in an aqueous solution of 5 wt% sodium orthosilicate (Na 4 SiO 4 ) at 80 ° C. for 1 minute. Then
d. Wash with water and dry. Then
e. Immerse in a 1 wt% sodium fluorosilicate aqueous solution at 60 ° C. for 30 seconds. F. Wash with water and dry.
Thus, after the sample in which the corrosion-resistant film was formed was subjected to the above-described corrosion resistance test, the corrosion resistance evaluation result was JIS score 10 points and ΔE was 2, which was 5 points. Note that the thickness of the film formed in the step c is about 1.0 μm, and the thickness of the film formed in the step e is about 0.5 μm.

図4乃至図7は、実施例1の耐食性被膜を適用するノートパソコンの説明図である。図4はノートパソコンを示す概略斜視図である。ノートパソコン20は、本体21の表面の少なくとも一部が筐体22により覆われている。筐体22は、液晶モニタ部の液晶パネル27を支持するフロントカバー23、バックカバー24と、本体21を支持するアッパーカバー25とロアカバー26とからなる。図5はフロントカバー形状にプレス加工した状態の説明図であり、図6はバックカバー形状にプレス加工した状態の説明図であり、図7はアッパーカバー形状にプレス加工した状態の説明図であり、図8はロアカバー形状にプレス加工した状態の説明図である。これらのカバーの全て或いはその内の一部に対して耐食性被膜を形成してノートパソコンを形成する。   4 to 7 are explanatory diagrams of a notebook computer to which the corrosion-resistant film of Example 1 is applied. FIG. 4 is a schematic perspective view showing a notebook computer. In the notebook computer 20, at least a part of the surface of the main body 21 is covered with a housing 22. The housing 22 includes a front cover 23 and a back cover 24 that support the liquid crystal panel 27 of the liquid crystal monitor unit, and an upper cover 25 and a lower cover 26 that support the main body 21. FIG. 5 is an explanatory diagram of a state pressed into a front cover shape, FIG. 6 is an explanatory diagram of a state pressed into a back cover shape, and FIG. 7 is an explanatory diagram of a state pressed into an upper cover shape. FIG. 8 is an explanatory view showing a state where the lower cover is pressed. A notebook personal computer is formed by forming a corrosion-resistant film on all or a part of these covers.

次に、本発明の実施例2を説明するが、実施例1の工程cにおけるオルトケイ酸ナトリウムをメタケイ酸ナトリウムに変えた以外は同様の条件で製造した。即ち、まず、
a.マグネシウム合金として、AZ91合金を用い、ノートPCの筐体形状にプレス加工を行う。次いで、
b.プレス加工後に50×100mmの形状に切り出したサンプルをアルカリ溶液で脱脂処理する。次いで、
c.80℃の5wt%メタケイ酸ナトリウム(NaSiO)水溶液に1分間浸漬する。次いで、
d.水洗及び乾燥を行う。次いで、
e.60℃の1wt%のフルオロケイ酸ナトリウム水溶液に30秒間浸漬する。次いで、f.水洗及び乾燥を行う。
このように耐食性被膜を形成したサンプルを上述の耐食性試験にかけた後の耐食性評価結果はJIS評点10点、ΔEは3となり評価5点であった。
Next, Example 2 of the present invention will be described, and it was produced under the same conditions except that sodium orthosilicate in Step c of Example 1 was changed to sodium metasilicate. First of all,
a. An AZ91 alloy is used as the magnesium alloy, and the notebook PC is pressed into a casing shape. Then
b. A sample cut into a 50 × 100 mm shape after press working is degreased with an alkaline solution. Then
c. Immerse in an aqueous solution of 5 wt% sodium metasilicate (Na 2 SiO 3 ) at 80 ° C. for 1 minute. Then
d. Wash with water and dry. Then
e. Immerse in a 1 wt% sodium fluorosilicate aqueous solution at 60 ° C. for 30 seconds. F. Wash with water and dry.
Thus, after the sample which formed the corrosion-resistant film was subjected to the above-mentioned corrosion resistance test, the corrosion resistance evaluation result was JIS score 10 points and ΔE was 3, which was 5 points.

次に、本発明の実施例3を説明するが、実施例1の工程cにおけるオルトケイ酸ナトリウムをオルトケイ酸ナトリウムとメタケイ酸ナトリウムとの混合物に変えた以外は同様の条件で製造した。即ち、まず、
a.マグネシウム合金として、AZ91合金を用い、ノートPCの筐体形状にプレス加工を行う。次いで、
b.プレス加工後に50×100mmの形状に切り出したサンプルをアルカリ溶液で脱脂処理する。次いで、
c.80℃の5wt%ケイ酸ナトリウム(オルトケイ酸ナトリウム50wt%+メタケイ酸ナトリウム50wt%)水溶液に1分間浸漬する。次いで、
d.水洗及び乾燥を行う。次いで、
e.60℃の1wt%のフルオロケイ酸ナトリウム水溶液に30秒間浸漬する。次いで、f.水洗及び乾燥を行う。
このように耐食性被膜を形成したサンプルを上述の耐食性試験にかけた後の耐食性評価結果はJIS評点10点、ΔEは3となり評価5点であった。
Next, although Example 3 of this invention is demonstrated, it manufactured on the same conditions except having changed the sodium orthosilicate in the process c of Example 1 into the mixture of sodium orthosilicate and sodium metasilicate. First of all,
a. An AZ91 alloy is used as the magnesium alloy, and the notebook PC is pressed into a casing shape. Then
b. A sample cut into a 50 × 100 mm shape after press working is degreased with an alkaline solution. Then
c. Immerse in an aqueous solution of 5 wt% sodium silicate (50 wt% sodium orthosilicate + 50 wt% sodium metasilicate) at 80 ° C. for 1 minute. Then
d. Wash with water and dry. Then
e. Immerse in a 1 wt% sodium fluorosilicate aqueous solution at 60 ° C. for 30 seconds. F. Wash with water and dry.
Thus, after the sample which formed the corrosion-resistant film was subjected to the above-mentioned corrosion resistance test, the corrosion resistance evaluation result was JIS score 10 points and ΔE was 3, which was 5 points.

次に、本発明の実施例4を説明するが、実施例1の工程cにおけるオルトケイ酸ナトリウム水溶液への浸漬時間を30秒に変えた以外は同様の条件で製造した。即ち、まず、
a.マグネシウム合金として、AZ91合金を用い、ノートPCの筐体形状にプレス加工を行う。次いで、
b.プレス加工後に50×100mmの形状に切り出したサンプルをアルカリ溶液で脱脂処理する。次いで、
c.80℃の5wt%オルトケイ酸ナトリウム水溶液に30秒間浸漬する。次いで、
d.水洗及び乾燥を行う。次いで、
e.60℃の1wt%のフルオロケイ酸ナトリウム水溶液に30秒間浸漬する。次いで、f.水洗及び乾燥を行う。
このように耐食性被膜を形成したサンプルを上述の耐食性試験にかけた後の耐食性評価結果はJIS評点9点、ΔEは7となり評価4点であった。
Next, Example 4 of the present invention will be described. It was manufactured under the same conditions except that the immersion time in the sodium orthosilicate aqueous solution in Step c of Example 1 was changed to 30 seconds. First of all,
a. An AZ91 alloy is used as the magnesium alloy, and the notebook PC is pressed into a casing shape. Then
b. A sample cut into a 50 × 100 mm shape after press working is degreased with an alkaline solution. Then
c. Immerse in a 5 wt% sodium orthosilicate aqueous solution at 80 ° C. for 30 seconds. Then
d. Wash with water and dry. Then
e. Immerse in a 1 wt% sodium fluorosilicate aqueous solution at 60 ° C. for 30 seconds. F. Wash with water and dry.
Thus, after the sample which formed the corrosion-resistant film was subjected to the above-mentioned corrosion resistance test, the evaluation result of the corrosion resistance was 9 points for JIS and 7 was ΔE, which was 4 points.

次に、本発明の実施例5を説明するが、実施例1の工程eにおけるフルオロケイ酸ナトリウム水溶液への浸漬時間を15秒に変えた以外は同様の条件で製造した。即ち、まず、
a.マグネシウム合金として、AZ91合金を用い、ノートPCの筐体形状にプレス加工を行う。次いで、
b.プレス加工後に50×100mmの形状に切り出したサンプルをアルカリ溶液で脱脂処理する。次いで、
c.80℃の5wt%オルトケイ酸ナトリウム水溶液に1分間浸漬する。次いで、
d.水洗及び乾燥を行う。次いで、
e.60℃の1wt%のフルオロケイ酸ナトリウム水溶液に15秒間浸漬する。次いで、f.水洗及び乾燥を行う。
このように耐食性被膜を形成したサンプルを上述の耐食性試験にかけた後の耐食性評価結果はJIS評点9点、ΔEは11となり評価3点であった。
Next, Example 5 of the present invention will be described, but it was produced under the same conditions except that the immersion time in the sodium fluorosilicate aqueous solution in Step e of Example 1 was changed to 15 seconds. First of all,
a. An AZ91 alloy is used as the magnesium alloy, and the notebook PC is pressed into a casing shape. Then
b. A sample cut into a 50 × 100 mm shape after press working is degreased with an alkaline solution. Then
c. Immerse in an aqueous solution of 5 wt% sodium orthosilicate at 80 ° C. for 1 minute. Then
d. Wash with water and dry. Then
e. Immerse in 1 wt% sodium fluorosilicate aqueous solution at 60 ° C. for 15 seconds. F. Wash with water and dry.
Thus, after the sample which formed the corrosion-resistant film was subjected to the above-mentioned corrosion resistance test, the corrosion resistance evaluation result was JIS score 9 and ΔE was 11, which was 3 points.

次に、本発明の実施例6を説明するが、実施例1の工程cにおけるオルトケイ酸ナトリウム水溶液の濃度を3wt%に変えた以外は同様の条件で製造した。即ち、まず、
a.マグネシウム合金として、AZ91合金を用い、ノートPCの筐体形状にプレス加工を行う。次いで、
b.プレス加工後に50×100mmの形状に切り出したサンプルをアルカリ溶液で脱脂処理する。次いで、
c.80℃の3wt%オルトケイ酸ナトリウムに30秒間浸漬する。次いで、
d.水洗及び乾燥を行う。次いで、
e.60℃の1wt%のフルオロケイ酸ナトリウム水溶液に30秒間浸漬する。次いで、f.水洗及び乾燥を行う。
このように耐食性被膜を形成したサンプルを上述の耐食性試験にかけた後の耐食性評価結果はJIS評点8点、ΔEは7となり評価3点であった。
Next, Example 6 of the present invention will be described, and it was produced under the same conditions except that the concentration of the sodium orthosilicate aqueous solution in Step c of Example 1 was changed to 3 wt%. First of all,
a. An AZ91 alloy is used as the magnesium alloy, and the notebook PC is pressed into a casing shape. Then
b. A sample cut into a 50 × 100 mm shape after press working is degreased with an alkaline solution. Then
c. Immerse in 3 wt% sodium orthosilicate at 80 ° C. for 30 seconds. Then
d. Wash with water and dry. Then
e. Immerse in a 1 wt% sodium fluorosilicate aqueous solution at 60 ° C. for 30 seconds. F. Wash with water and dry.
Thus, after the sample which formed the corrosion-resistant film was subjected to the above-mentioned corrosion resistance test, the corrosion resistance evaluation result was JIS score of 8 points and ΔE was 7, which was 3 points of evaluation.

次に、本発明の実施例7を説明するが、実施例1の工程eにおけるフルオロケイ酸ナトリウム水溶液の濃度を3wt%に変えた以外は同様の条件で製造した。即ち、まず、
a.マグネシウム合金として、AZ91合金を用い、ノートPCの筐体形状にプレス加工を行う。次いで、
b.プレス加工後に50×100mmの形状に切り出したサンプルをアルカリ溶液で脱脂処理する。次いで、
c.80℃の5wt%オルトケイ酸ナトリウムに30秒間浸漬する。次いで、
d.水洗及び乾燥を行う。次いで、
e.60℃の3wt%のフルオロケイ酸ナトリウム水溶液に30秒間浸漬する。次いで、f.水洗及び乾燥を行う。
このように耐食性被膜を形成したサンプルを上述の耐食性試験にかけた後の耐食性評価結果はJIS評点8点、ΔEは5となり評価3点であった。
Next, Example 7 of the present invention will be described. It was manufactured under the same conditions except that the concentration of the sodium fluorosilicate aqueous solution in Step e of Example 1 was changed to 3 wt%. First of all,
a. An AZ91 alloy is used as the magnesium alloy, and the notebook PC is pressed into a casing shape. Then
b. A sample cut into a 50 × 100 mm shape after press working is degreased with an alkaline solution. Then
c. Immerse in 5 wt% sodium orthosilicate at 80 ° C. for 30 seconds. Then
d. Wash with water and dry. Then
e. Immerse in 3 wt% sodium fluorosilicate aqueous solution at 60 ° C. for 30 seconds. F. Wash with water and dry.
Thus, after the sample which formed the corrosion-resistant film was subjected to the above-mentioned corrosion resistance test, the corrosion resistance evaluation result was JIS score of 8 points and ΔE was 5 which was 3 points of evaluation.

次に、本発明の実施例8を説明するが、実施例1の工程aにおけるマグネシウム合金の組成におけるAlをLiに変えた以外は同様の条件で製造した。即ち、まず、
a.マグネシウム合金として、Mg(90wt%)、Li(9wt%)、Zn(1wt%)の合金を用い、ノートPCの筐体形状にプレス加工を行う。次いで、
b.プレス加工後に50×100mmの形状に切り出したサンプルをアルカリ溶液で脱脂処理する。次いで、
c.80℃の5wt%オルトケイ酸ナトリウムに30秒間浸漬する。次いで、
d.水洗及び乾燥を行う。次いで、
e.60℃の1wt%のフルオロケイ酸ナトリウム水溶液に30秒間浸漬する。次いで、f.水洗及び乾燥を行う。
このように耐食性被膜を形成したサンプルを上述の耐食性試験にかけた後の耐食性評価結果はJIS評点10点、ΔEは2となり評価5点であった。
Next, Example 8 of the present invention will be described. It was manufactured under the same conditions except that Al in the composition of the magnesium alloy in step a of Example 1 was changed to Li. First of all,
a. An alloy of Mg (90 wt%), Li (9 wt%), and Zn (1 wt%) is used as the magnesium alloy, and press processing is performed on the shape of the notebook PC casing. Then
b. A sample cut into a 50 × 100 mm shape after press working is degreased with an alkaline solution. Then
c. Immerse in 5 wt% sodium orthosilicate at 80 ° C. for 30 seconds. Then
d. Wash with water and dry. Then
e. Immerse in a 1 wt% sodium fluorosilicate aqueous solution at 60 ° C. for 30 seconds. F. Wash with water and dry.
Thus, after the sample in which the corrosion-resistant film was formed was subjected to the above-described corrosion resistance test, the corrosion resistance evaluation result was JIS score 10 points and ΔE was 2, which was 5 points.

ここで、本発明の各実施例との対比のために比較例を説明する。
(比較例1)マグネシウム合金としてAZ91合金を用い、脱脂のみを行い耐食性被膜の形成を行わず耐食性試験を行った。耐食性被膜が形成されていないことからJIS評点は評価せず、ΔEのみで評価を行った結果、ΔEは37となり、評価1点となった。
(比較例2)比較例1で作成したサンプルに亜鉛メッキを行い、耐食性試験を行った結果、JIS評点は3店、ΔEは22となり、評価は1点となった。
Here, a comparative example will be described for comparison with each embodiment of the present invention.
(Comparative Example 1) An AZ91 alloy was used as a magnesium alloy, and only a degreasing was performed, and a corrosion resistance test was not performed without forming a corrosion resistant film. Since no corrosion-resistant film was formed, the JIS score was not evaluated, and as a result of evaluation using only ΔE, ΔE was 37, which was 1 rating.
(Comparative Example 2) The sample prepared in Comparative Example 1 was galvanized and subjected to a corrosion resistance test. As a result, the JIS score was 3 stores, ΔE was 22, and the evaluation was 1 point.

本発明の各実施例においては、まず、ケイ酸ナトリウムをMg合金に含まれるアルカリ金属であるMgやLiと反応させてSi及びOを主成分とする基体との密着性が良好な第1の耐食性被膜を形成する。次いで、この第1の耐食性被膜の上にフッ化物系の第2の耐食性被膜を形成しているので、JISの耐食性試験をクリアすることができる。   In each of the embodiments of the present invention, first, sodium silicate is reacted with Mg or Li, which are alkali metals contained in an Mg alloy, so that the first adhesive having good adhesion to a substrate mainly composed of Si and O is used. Form a corrosion resistant coating. Next, since the fluoride-based second corrosion-resistant film is formed on the first corrosion-resistant film, the JIS corrosion resistance test can be cleared.

ここで、実施例1乃至実施例8を含む本発明の実施の形態に関して、以下の付記を付す。
(付記1)マグネシウム合金からなる基体と前記基体の表面に設けたケイ酸ナトリウムと前記マグネシウム合金との反応生成物であるSi及びOを主要成分とする第1の被膜と前記第1の被膜の表面に設けたSi及びFを主要成分とするフルオロケイ酸ナトリウムの反応生成物からなる第2の被膜とを有するマグネシウム合金基体。
(付記2)前記第2の被膜が、前記第1の被膜が形成されていない前記第1のピンホール部における前記基体の表面を覆っている付記1に記載のマグネシウム合金基体。
(付記3)前記マグネシウム合金がリチウムを含有している付記1または付記2に記載のマグネシウム合金基体。
(付記4)付記1乃至付記3のいずれか1に記載のマグネシウム合金基体を、電子機器筐体として用いた電子機器。
(付記5)マグネシウム合金からなる基体をケイ酸ナトリウム水溶液に浸漬して、前記マグネシウム合金と前記ケイ酸ナトリウムとの反応物からなる第1の被膜を形成する工程と、前記第1の被膜を形成した前記基体をフルオロケイ酸ナトリウム水溶液に浸漬して第2の被膜を形成する工程とを有する耐食性被膜の形成方法。
(付記6)前記第1の被膜の形成工程と、前記第2の被膜の形成工程との間に、前記第1の被膜を形成した前記マグネシウム合金基体を水洗したのち乾燥する工程を有する付記5に記載の耐食性被膜の形成方法。
(付記7)前記ケイ酸ナトリウムが、オルトケイ酸ナトリウム或いはメタケイ酸ナトリウムのいずれか、また、それらの混合物である付記5または付記6に記載の耐食性被膜の形成方法。
(付記8)前記マグネシウム合金がリチウムを含有している付記5乃至付記7のいずれか1に記載の耐食性被膜の形成方法。
(付記9)前記ケイ酸ナトリウム水溶液におけるケイ酸ナトリウムの濃度が、3wt%〜10wt%である付記5乃至付記8のいずれか1に記載の耐食性被膜の形成方法。
(付記10)前記フルオロケイ酸ナトリウム水溶液におけるフルオロケイ酸ナトリウムの濃度が、0.5wt%〜3wt%である付記5乃至付記9のいずれか1に記載の耐食性被膜の形成方法。
(付記11)前記マグネシウム合金からなる基体が、ケイ酸ナトリウム水溶液に浸漬する工程の前に、電子機器用の筐体としてプレス加工されている付記5乃至付記10のいずれか1に記載の耐食性被膜の形成方法。
Here, the following additional notes are attached to the embodiment of the present invention including Examples 1 to 8.
(Supplementary Note 1) A first coating containing Si and O as main components, which are reaction products of a base made of a magnesium alloy, a sodium silicate provided on the surface of the base and the magnesium alloy, and the first coating A magnesium alloy substrate having a second coating film comprising a reaction product of sodium fluorosilicate having Si and F as main components provided on the surface.
(Supplementary note 2) The magnesium alloy substrate according to supplementary note 1, wherein the second coating covers the surface of the substrate in the first pinhole portion where the first coating is not formed.
(Supplementary Note 3) The magnesium alloy substrate according to Supplementary Note 1 or 2, wherein the magnesium alloy contains lithium.
(Appendix 4) An electronic device using the magnesium alloy substrate according to any one of appendices 1 to 3 as an electronic device casing.
(Supplementary Note 5) A step of immersing a base made of a magnesium alloy in an aqueous sodium silicate solution to form a first film made of a reaction product of the magnesium alloy and the sodium silicate, and forming the first film And a step of immersing the substrate in an aqueous sodium fluorosilicate solution to form a second coating.
(Additional remark 6) Between the formation process of the said 1st film and the formation process of the said 2nd film, it has the process of drying, after washing | cleaning the said magnesium alloy base | substrate which formed the said 1st film. A method for forming a corrosion-resistant film as described in 1. above.
(Additional remark 7) The formation method of the corrosion-resistant film of Additional remark 5 or Additional remark 6 whose said sodium silicate is either orthosilicate sodium or sodium metasilicate, and those mixtures.
(Appendix 8) The method for forming a corrosion-resistant coating film according to any one of appendices 5 to 7, wherein the magnesium alloy contains lithium.
(Supplementary note 9) The method for forming a corrosion-resistant coating film according to any one of supplementary notes 5 to 8, wherein a concentration of sodium silicate in the aqueous sodium silicate solution is 3 wt% to 10 wt%.
(Supplementary note 10) The method for forming a corrosion-resistant coating film according to any one of supplementary notes 5 to 9, wherein a concentration of sodium fluorosilicate in the sodium fluorosilicate aqueous solution is 0.5 wt% to 3 wt%.
(Supplementary note 11) The corrosion-resistant coating film according to any one of supplementary notes 5 to 10, wherein the base made of the magnesium alloy is pressed as a casing for an electronic device before the step of immersing in a sodium silicate aqueous solution. Forming method.

11 基体
12 第1の被膜
13 第2の被膜
14 ピンホール部
20 ノートパソコン
21 本体
22 筐体
23 フロントカバー
24 バックカバー
25 アッパーカバー
26 ロアカバー
27 液晶パネル
DESCRIPTION OF SYMBOLS 11 Base 12 1st film 13 2nd film 14 Pinhole part 20 Notebook personal computer 21 Main body 22 Case 23 Front cover 24 Back cover 25 Upper cover 26 Lower cover 27 Liquid crystal panel

Claims (5)

マグネシウム合金からなる基体と
前記基体の表面に設けたケイ酸ナトリウムと前記マグネシウム合金との反応生成物であるSi及びOを主要成分とする第1の被膜と、
前記第1の被膜の表面に設けたSi及びFを主要成分とするフルオロケイ酸ナトリウムの反応生成物からなる第2の被膜と
を有するマグネシウム合金基体。
A base film made of a magnesium alloy; a first coating mainly comprising Si and O, which are reaction products of sodium silicate and the magnesium alloy provided on the surface of the base body;
A magnesium alloy substrate having a second coating made of a reaction product of sodium fluorosilicate containing Si and F as main components provided on the surface of the first coating.
前記第2の被膜が、前記第1の被膜が形成されていない前記第1のピンホール部における前記基体の表面を覆っている請求項1に記載のマグネシウム合金基体。   2. The magnesium alloy substrate according to claim 1, wherein the second coating covers a surface of the substrate in the first pinhole portion where the first coating is not formed. 3. 請求項1または請求項2に記載のマグネシウム合金基体を、電子機器筐体として用いた電子機器。   An electronic device using the magnesium alloy substrate according to claim 1 or 2 as an electronic device casing. マグネシウム合金からなる基体をケイ酸ナトリウム水溶液に浸漬して、前記マグネシウム合金と前記ケイ酸ナトリウムとの反応物からなる第1の被膜を形成する工程と、
前記第1の被膜を形成した前記基体をフルオロケイ酸ナトリウム水溶液に浸漬して第2の被膜を形成する工程と
を有する耐食性被膜の形成方法。
Immersing a base made of a magnesium alloy in an aqueous sodium silicate solution to form a first film made of a reaction product of the magnesium alloy and the sodium silicate;
Forming a second coating by immersing the substrate on which the first coating has been formed in a sodium fluorosilicate aqueous solution.
前記マグネシウム合金からなる基体が、ケイ酸ナトリウム水溶液に浸漬する工程の前に、電子機器用の筐体としてプレス加工されている請求項4に記載の耐食性被膜の形成方法。
The method for forming a corrosion-resistant coating film according to claim 4, wherein the substrate made of the magnesium alloy is pressed as a housing for electronic equipment before the step of immersing in the sodium silicate aqueous solution.
JP2016157179A 2016-08-10 2016-08-10 Magnesium alloy substrate, electronic device, and method of forming corrosion-resistant coating Active JP6659961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016157179A JP6659961B2 (en) 2016-08-10 2016-08-10 Magnesium alloy substrate, electronic device, and method of forming corrosion-resistant coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157179A JP6659961B2 (en) 2016-08-10 2016-08-10 Magnesium alloy substrate, electronic device, and method of forming corrosion-resistant coating

Publications (2)

Publication Number Publication Date
JP2018024912A true JP2018024912A (en) 2018-02-15
JP6659961B2 JP6659961B2 (en) 2020-03-04

Family

ID=61195159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157179A Active JP6659961B2 (en) 2016-08-10 2016-08-10 Magnesium alloy substrate, electronic device, and method of forming corrosion-resistant coating

Country Status (1)

Country Link
JP (1) JP6659961B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050948A1 (en) * 2020-09-04 2022-03-10 Hewlett-Packard Development Company, L.P. Housings for electronic devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033360A (en) * 1983-08-02 1985-02-20 Dow Chem Nippon Kk Treatment of magnesium or magnesium alloy
JPH05195246A (en) * 1991-11-01 1993-08-03 Nippon Parkerizing Co Ltd Phosphate chemical coating composition and coating method using the same
JPH06504815A (en) * 1991-02-26 1994-06-02 テクノロジー・アプリケーションズ・グループ・インコーポレーテッド Two-step chemical/electrochemical method for magnesium coating
JPH06508182A (en) * 1991-05-22 1994-09-14 ダンカー インコーポレイテッド Surface protection method using silicic acid compound
JP2001288580A (en) * 2000-03-31 2001-10-19 Nippon Parkerizing Co Ltd Surface treating method for magnesium alloy and magnesium alloy member
JP2003160898A (en) * 2001-09-17 2003-06-06 Fujitsu Ltd Method for coloring magnesium material and housing made from magnesium material colored with the same
JP2006511698A (en) * 2002-02-14 2006-04-06 マクダーミド・インコーポレーテツド Magnesium conversion coating composition and method of using the same
JP2009221507A (en) * 2008-03-14 2009-10-01 Shingijutsu Kenkyusho:Kk Magnesium alloy molding and its manufacturing method
JP2011074490A (en) * 2009-09-07 2011-04-14 Ofutekku Kk Surface treatment method of magnesium and magnesium alloy for imparting brightness/decorating property, high corrosion resistance and functionality

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033360A (en) * 1983-08-02 1985-02-20 Dow Chem Nippon Kk Treatment of magnesium or magnesium alloy
JPH06504815A (en) * 1991-02-26 1994-06-02 テクノロジー・アプリケーションズ・グループ・インコーポレーテッド Two-step chemical/electrochemical method for magnesium coating
JPH06508182A (en) * 1991-05-22 1994-09-14 ダンカー インコーポレイテッド Surface protection method using silicic acid compound
JPH05195246A (en) * 1991-11-01 1993-08-03 Nippon Parkerizing Co Ltd Phosphate chemical coating composition and coating method using the same
JP2001288580A (en) * 2000-03-31 2001-10-19 Nippon Parkerizing Co Ltd Surface treating method for magnesium alloy and magnesium alloy member
JP2003160898A (en) * 2001-09-17 2003-06-06 Fujitsu Ltd Method for coloring magnesium material and housing made from magnesium material colored with the same
JP2006511698A (en) * 2002-02-14 2006-04-06 マクダーミド・インコーポレーテツド Magnesium conversion coating composition and method of using the same
JP2009221507A (en) * 2008-03-14 2009-10-01 Shingijutsu Kenkyusho:Kk Magnesium alloy molding and its manufacturing method
JP2011074490A (en) * 2009-09-07 2011-04-14 Ofutekku Kk Surface treatment method of magnesium and magnesium alloy for imparting brightness/decorating property, high corrosion resistance and functionality

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050948A1 (en) * 2020-09-04 2022-03-10 Hewlett-Packard Development Company, L.P. Housings for electronic devices

Also Published As

Publication number Publication date
JP6659961B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
Kamil et al. Soft plasma electrolysis with complex ions for optimizing electrochemical performance
Montemor et al. Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection
Hu et al. Deposition behaviour of nickel phosphorus coating on magnesium alloy in a weak corrosive electroless nickel plating bath
Nezamdoust et al. Application of CeH–V/sol–gel composite coating for corrosion protection of AM60B magnesium alloy
Lee et al. Corrosion resistance studies of cerium conversion coating with a fluoride-free pretreatment on AZ91D magnesium alloy
JP2011058074A (en) Magnesium-lithium alloy, rolled material, formed article, and process for producing same
CN103339288A (en) Magnesium alloy with dense surface texture and surface treatment method thereof
Lim et al. Plasma electrolytic oxidation/cerium conversion composite coatings for the improved corrosion protection of AZ31 Mg alloys
Eslami et al. Deposition and characterization of cerium-based conversion coating on HPDC low Si content aluminum alloy
Huang et al. Acid pickling pretreatment and stannate conversion coating treatment of AZ91D magnesium alloy
JP2014084500A (en) Method of treating surface of magnesium or magnesium alloy, acid cleaning agent, conversion treatment agent and conversion-treated structure of magnesium or magnesium alloy
JP6659961B2 (en) Magnesium alloy substrate, electronic device, and method of forming corrosion-resistant coating
US20160194518A1 (en) Aluminum-resin composite and method for producing the same
CN102762768A (en) Magnesium-lithium alloy and surface treatment method therefor
Wang et al. Effect of additives and heat treatment on the formation and performance of electroless nickel-boron plating on AZ91D Mg alloy
JP2017503076A (en) Color-treated substrate and method for coloring the substrate for the same
US2172171A (en) Production of bright copper
Medhashree et al. Synergistic inhibition effect of trisodium phosphate and sodium benzoate with sodium dodecyl benzene sulphonate on the corrosion of Mg-Al-Zn-Mn alloy in 30% ethylene glycol containing chloride ions
JP2000096255A (en) Body of magnesium-containing metal treated with low electric resistance coating and its surface treatment
JP2001123274A (en) High corrosion resistance surface treated magnesium alloy product and producing method therefor
Cruz et al. Cyanide-free copper-silver electroplated coatings on carbon steel exposed to 5% NaClO bleacher
CN102296259B (en) Aluminum plating liquid, hot dip aluminum plating method and metal device manufactured thereby
Liu et al. Formation mechanism of discoloration on die-cast AZ91D components surface after chemical conversion
JP5292195B2 (en) Method for tin plating on magnesium alloy and etching solution for magnesium alloy
Shukla et al. Autocatalytic silver-plating of aluminium radio frequency waveguides with autocatalytic nickel as the undercoat for space applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6659961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150