JP2018023929A - Platinum catalyst, fuel cell electrode and fuel cell - Google Patents

Platinum catalyst, fuel cell electrode and fuel cell Download PDF

Info

Publication number
JP2018023929A
JP2018023929A JP2016157206A JP2016157206A JP2018023929A JP 2018023929 A JP2018023929 A JP 2018023929A JP 2016157206 A JP2016157206 A JP 2016157206A JP 2016157206 A JP2016157206 A JP 2016157206A JP 2018023929 A JP2018023929 A JP 2018023929A
Authority
JP
Japan
Prior art keywords
platinum
catalyst
fuel cell
platinum catalyst
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016157206A
Other languages
Japanese (ja)
Inventor
松田 敏彦
Toshihiko Matsuda
敏彦 松田
典昭 朝倉
Noriaki Asakura
典昭 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2016157206A priority Critical patent/JP2018023929A/en
Publication of JP2018023929A publication Critical patent/JP2018023929A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a platinum catalyst capable of being used for a fuel cell electrode and having high durability and high activity.SOLUTION: A platinum catalyst in which platinum is carried by a nitrogen dope carbon by burning porous metal complex (PCP/MOF) containing low boiling metals exhibits high durability and high activity and can be a catalyst for fuel cell electrode. The low boiling metal contained in the porous metal complex is preferably zinc, and the nitrogen dope carbon has preferably nitrogen content of 2 wt% to 20 wt% and specific surface area of 500 m/g to 2000 m/g.SELECTED DRAWING: Figure 1

Description

本発明は、窒素ドープカーボンに白金を担持した白金触媒及びそれを用いた燃料電池に関する。   The present invention relates to a platinum catalyst in which platinum is supported on nitrogen-doped carbon and a fuel cell using the same.

固体高分子形燃料電池(以下PEFCと称す)の電極触媒として白金担持カーボンが現在の主流であるが、今後のPEFCの本格的な普及に向け、貴金属である白金以外の金属を用いた非白金触媒の開発あるいは耐久性の向上や白金触媒の高活性化による省白金による低コスト化が急務である。   Platinum-supported carbon is currently the mainstream as an electrocatalyst for polymer electrolyte fuel cells (hereinafter referred to as PEFC), but non-platinum using metals other than platinum, which is a precious metal, for the full-scale spread of PEFC in the future. There is an urgent need to reduce the cost of platinum development by improving the durability of the catalyst or increasing the platinum catalyst activation.

また、白金触媒を高活性化するために担持する炭素材料の開発も進められている。
白金触媒を高活性化するために担持する炭素材料に関する先行技術の例示として特許文献1及び特許文献2を示す。
In addition, development of a carbon material to be supported for highly activating the platinum catalyst is also in progress.
Patent Document 1 and Patent Document 2 are shown as examples of prior art relating to a carbon material supported to activate a platinum catalyst.

特開2015−90851号公報Japanese Patent Laying-Open No. 2015-90851 特開2008−269850号公報JP 2008-269850 A

本発明の目的は、触媒担持体の製造原料として多孔性金属錯体(以下、適宜「PCP/MOF」と称する場合がある。)を焼成して得られる窒素ドープカーボン(以下、適宜「NDC」と称する場合がある。)を利用することにより、高耐久性かつ高活性な触媒の製造を可能にすることにある。   An object of the present invention is to form nitrogen-doped carbon (hereinafter referred to as “NDC” as appropriate) obtained by firing a porous metal complex (hereinafter sometimes referred to as “PCP / MOF” as appropriate) as a raw material for producing a catalyst carrier. In other words, it is possible to produce a highly durable and highly active catalyst.

本発明者らは、上記問題を解決すべく鋭意検討した結果、低沸点金属を構成要素とするPCP/MOFを焼成することにより得られるNDCに少量の白金を担持した白金触媒が高活性であることを見出したことから、本発明に到達した。   As a result of intensive studies to solve the above problems, the inventors of the present invention have a high activity of a platinum catalyst in which a small amount of platinum is supported on NDC obtained by firing PCP / MOF containing a low boiling point metal as a constituent element. As a result, the present invention has been reached.

すなわち、本発明は、以下の技術的手段から構成される。
〔1〕 低沸点金属を含む多孔性金属錯体(PCP/MOF)を焼成した窒素ドープカーボンに白金を担持した白金触媒。
〔2〕 前記低沸点金属が亜鉛である前記〔1〕に記載の白金触媒。
〔3〕 前記窒素ドープカーボンの窒素含有量が2wt%〜20wt%である前記〔1〕又は前記〔2〕に記載の白金触媒。
〔4〕 前記窒素ドープカーボンの比表面積が500m/g〜2000m/gである前記〔1〕〜〔3〕のいずれかに記載の白金触媒。
〔5〕 前記〔1〕〜〔4〕のいずれかに記載の白金触媒を含む燃料電池電極。
〔6〕 前記〔5〕に記載の燃料電池電極を含む燃料電池。
That is, the present invention comprises the following technical means.
[1] A platinum catalyst in which platinum is supported on nitrogen-doped carbon obtained by calcining a porous metal complex (PCP / MOF) containing a low boiling point metal.
[2] The platinum catalyst according to [1], wherein the low boiling point metal is zinc.
[3] The platinum catalyst according to [1] or [2], wherein the nitrogen content of the nitrogen-doped carbon is 2 wt% to 20 wt%.
[4] a platinum catalyst according to any of the specific surface area of the nitrogen-doped carbon is 500m 2 / g~2000m 2 / g [1] to [3].
[5] A fuel cell electrode comprising the platinum catalyst according to any one of [1] to [4].
[6] A fuel cell comprising the fuel cell electrode according to [5].

本発明の触媒担持体の製造法によれば、低沸点金属により構成されるPCP/MOFを製造原料として用いるため原料由来の金属をほとんど含まず、大きな比表面積を有するNDCである触媒担持体を得ることができ、少量の白金担持により高活性な白金触媒を得ることができる。加えて、製造原料であるPCP/MOF由来の金属が含まれないため、焼成条件を自由に設定できる優位性を有する。すなわち、原料として用いるPCP/MOFの有機化合物リンカーの変更や焼成温度の調節により、得られるNDC中の含窒素量や結晶化度をコントロールすることが可能となる。   According to the method for producing a catalyst carrier of the present invention, since a PCP / MOF composed of a low boiling point metal is used as a production raw material, a catalyst carrier that is an NDC having a large specific surface area and containing almost no metal derived from the raw material is obtained. A highly active platinum catalyst can be obtained by loading a small amount of platinum. In addition, since a metal derived from PCP / MOF, which is a manufacturing raw material, is not included, there is an advantage that firing conditions can be set freely. That is, it is possible to control the nitrogen content and crystallinity in the obtained NDC by changing the organic compound linker of PCP / MOF used as a raw material and adjusting the firing temperature.

実施例3、比較例1および比較例2の酸素還元活性評価の結果を示す図。The figure which shows the result of the oxygen reduction activity evaluation of Example 3, the comparative example 1, and the comparative example 2. FIG.

以下、本発明を実施するための最良の形態を説明する。
本発明におけるNDCは、窒素原子を含有する有機化合物をリンカーとし、低沸点金属を格子点とするPCP/MOFを焼成することによって得られる。PCP/MOFは、リンカーとなる有機分子と、格子点となる金属原子から構成される三次元の広がりを有する多孔性の有機金属錯体であり、本発明の実施には、市販品あるいは合成品のいずれのPCP/MOFも用いることができる。
Hereinafter, the best mode for carrying out the present invention will be described.
NDC in the present invention can be obtained by firing PCP / MOF having an organic compound containing a nitrogen atom as a linker and a low boiling point metal as a lattice point. PCP / MOF is a porous organometallic complex having a three-dimensional extension composed of an organic molecule serving as a linker and a metal atom serving as a lattice point. Any PCP / MOF can be used.

本発明においてNDCの原料として用いるPCP/MOFのリンカーである窒素原子を含有する有機化合物としては、窒素原子を含む複素環化合物であれば特に制限を受けないが、例えば、イミダゾール、ピラゾールトリアゾール、チアゾール、オキサゾール、オキサジアゾール、オキサトリアゾール、チアジアゾール、ピリジン、ピラジン、トリアジン、オキサジン、オキサジアジン、ジカルボキシルアニリン、2−ニトロテレフタル酸、トリフェニルアミン、およびそれら構造を含む誘導体を用いることができる。   The organic compound containing a nitrogen atom which is a PCP / MOF linker used as a raw material for NDC in the present invention is not particularly limited as long as it is a heterocyclic compound containing a nitrogen atom. For example, imidazole, pyrazole triazole, thiazole , Oxazole, oxadiazole, oxatriazole, thiadiazole, pyridine, pyrazine, triazine, oxazine, oxadiazine, dicarboxylaniline, 2-nitroterephthalic acid, triphenylamine, and derivatives containing these structures can be used.

本発明においてNDCの原料として用いることのできるPCP/MOFとしては、1000℃程度である程度の蒸気圧が得られる低沸点金属を格子点とするPCP/MOFを用いることができる。例えば、ナトリウム、マグネシウム、マンガン、亜鉛、インジウムからなる群から選択される金属を格子点とするようなPCP/MOFを例示することができる。
これらの中でも、亜鉛を格子点とするPCP/MOFが数多く知られており、亜鉛を低沸点金属とするのが好ましい。
As the PCP / MOF that can be used as a raw material for NDC in the present invention, PCP / MOF having a lattice point of a low boiling point metal that can obtain a certain vapor pressure at about 1000 ° C. can be used. For example, PCP / MOF in which a metal selected from the group consisting of sodium, magnesium, manganese, zinc, and indium is used as a lattice point can be exemplified.
Among these, many PCP / MOFs having zinc as a lattice point are known, and zinc is preferably a low boiling point metal.

(NDCの製造方法)
本発明におけるNDCの製造方法は、まず原料となるPCP/MOFを不活性ガス通気下、熱処理により焼成し黒鉛化する。その後、無機酸による洗浄により、焼成で生じた金属成分を除去する。その後、アンモニアガス通気下、熱処理により賦活化することで黒色粉体としてNDCを得る。上記黒鉛化に用いる不活性ガスとしては、焼成温度において安定であり炭素原子を酸化しないアルゴンガス、窒素ガス、ヘリウムガスなどを例示することができる。また、金属成分の除去に用いる無機酸としては、硫酸、硝酸、塩酸あるいはそれらの混合物などの使用を例示できる。
(Manufacturing method of NDC)
In the method for producing NDC in the present invention, first, PCP / MOF as a raw material is fired and graphitized by heat treatment under aeration gas. Then, the metal component produced by baking is removed by washing with an inorganic acid. Then, NDC is obtained as black powder by activating by heat treatment under ammonia gas flow. Examples of the inert gas used for the graphitization include argon gas, nitrogen gas, and helium gas that are stable at the firing temperature and do not oxidize carbon atoms. Examples of the inorganic acid used for removing the metal component include use of sulfuric acid, nitric acid, hydrochloric acid, or a mixture thereof.

上記焼成方法により、比表面積が500m/g〜2000m/gであり、窒素含有量が2wt%〜20wt%であるNDCが通常得られる。後述する炭素材料表面への白金触媒担持の観点から、白金ナノ粒子の高分散な担持のため比表面積は500m/g以上であることが好ましく、比表面積が2000m/g以上になると炭素材料の電子伝導性が低下してくるため触媒担体として不適当である。また、窒素含有量に関しては、担持する白金触媒との相互作用の観点から2wt%以上含んでいることが好ましく、黒鉛化することで電気化学的な酸化条件における安定性を確保するという観点から20wt%以下程度の窒素含有量であることが好ましい。 By the calcination process, the specific surface area of 500m 2 / g~2000m 2 / g, a nitrogen content of NDC is obtained usually in the 2 wt% 20 wt%. From the viewpoint of supporting a platinum catalyst on the surface of the carbon material, which will be described later, the specific surface area is preferably 500 m 2 / g or more for high dispersion of platinum nanoparticles, and when the specific surface area is 2000 m 2 / g or more, the carbon material This is unsuitable as a catalyst carrier because the electron conductivity of the catalyst is lowered. Further, the nitrogen content is preferably 2 wt% or more from the viewpoint of interaction with the supported platinum catalyst, and 20 wt% from the viewpoint of ensuring stability under electrochemical oxidation conditions by graphitization. The nitrogen content is preferably about% or less.

(NDCへの白金担持法)
本発明においてNDCへの白金担持はいずれの担持方法を用いても良いが、一例をあげるとポリオール法により実施することができる。具体的には、上記焼成により得られるNDC粉末をエチレングリコールに加え、超音波処理により分散液を得る。その後、所定量の白金前駆体を加え、続いて還元剤を加えることで、系中で白金ナノ粒子を発生させNDC表面に担持させる。白金前駆体として用いる化合物としては、塩化白金酸や種々の二価の白金錯体などを例示することができる。得られた白金担持触媒の白金担持量は熱重量分析やICP−MS分析により求めることができる。
(Platinum loading method on NDC)
In the present invention, any supporting method may be used for supporting platinum on NDC, but as an example, it can be performed by a polyol method. Specifically, NDC powder obtained by the above baking is added to ethylene glycol, and a dispersion is obtained by ultrasonic treatment. Thereafter, a predetermined amount of platinum precursor is added, and subsequently a reducing agent is added, thereby generating platinum nanoparticles in the system and supporting them on the NDC surface. Examples of the compound used as the platinum precursor include chloroplatinic acid and various divalent platinum complexes. The platinum carrying amount of the obtained platinum carrying catalyst can be determined by thermogravimetric analysis or ICP-MS analysis.

(触媒インクの調製)
本発明における白金担持触媒の活性評価法を例示する。上記製造方法により得られる粉末を用い触媒インクを調製する。触媒インクは、白金担持触媒と高分子電解質とを任意の溶媒に分散することで調製される。高分子電解質としてはプロトン伝導性のフッ素系高分子電解質あるいは炭化水素系高分子電解質を用いることができる。また、分散溶媒としては、メタノール、エタノールなどの低級アルコールや、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類、あるいはテトラヒドロフラン、ジオキサン、ジブチルエーテルなどのエーテル類、その他ジメチルホルムアミド、ジメチルアセトアミド、エチレングリコールなどの極性溶媒などの各種有機溶媒を用いることができる。これらは単独、あるいは二種以上の混合溶媒としても用いることができる。また、触媒インクの発火性の危険を低減するために、水を混合溶媒として用いることもできる。
(Preparation of catalyst ink)
The activity evaluation method of the platinum supported catalyst in this invention is illustrated. A catalyst ink is prepared using the powder obtained by the above production method. The catalyst ink is prepared by dispersing a platinum-supported catalyst and a polymer electrolyte in an arbitrary solvent. As the polymer electrolyte, a proton-conductive fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte can be used. Dispersing solvents include lower alcohols such as methanol and ethanol, ketones such as acetone, methyl ethyl ketone, and cyclohexanone, or ethers such as tetrahydrofuran, dioxane, and dibutyl ether, and polar substances such as dimethylformamide, dimethylacetamide, and ethylene glycol. Various organic solvents such as a solvent can be used. These can be used alone or as a mixed solvent of two or more. Also, water can be used as a mixed solvent in order to reduce the risk of ignition of the catalyst ink.

(白金担持NDC触媒の評価方法)
調製した触媒インクを所定量塗布した作用電極を用い、回転ディスク電極(RDE)法により評価する。例えば、触媒インクをグラッシーカーボン上に塗布した電極を作用電極とし、酸素飽和の過塩素酸電解質溶液中で回転電極装置を用いて活性を評価することができる。
(Evaluation method of platinum-supported NDC catalyst)
Using a working electrode coated with a predetermined amount of the prepared catalyst ink, evaluation is performed by a rotating disk electrode (RDE) method. For example, the activity can be evaluated using a rotating electrode apparatus in an oxygen-saturated perchloric acid electrolyte solution using an electrode obtained by applying catalyst ink on glassy carbon as a working electrode.

(燃料電池電極の作製)
本発明における燃料電池電極の作製について記載する。本発明において得られる触媒粉末を用い、上述の調製法により触媒インクを調製する。得られた触媒インクを固体高分子電解質膜に塗布することでカソード(空気極)触媒層を作製する。用いる固体高分子膜としては、例えば市販のフッ素系高分子電解質であるNafion(登録商標)が挙げられる。塗布法としては、スプレー塗布装置を用いる方法、あるいはバーコーターを用いる方法のいずれによっても可能である。カソード触媒塗布面の対面に、アノード(燃料極)触媒として任意の触媒を用いた触媒インクを塗布することで触媒層が両面塗布された固体高分子電解質膜を得る。得られた触媒塗布電解質膜の両側をガス拡散層で挟むように積層し、ホットプレスにより密着させることで膜電極複合体:MEA(membrane electrode assembly)が作製される。得られるMEAを燃料電池電極とし、所定のセルに組み付けることでPEFCが完成する。
(Fabrication of fuel cell electrode)
The production of the fuel cell electrode in the present invention will be described. Using the catalyst powder obtained in the present invention, a catalyst ink is prepared by the above-described preparation method. The obtained catalyst ink is applied to a solid polymer electrolyte membrane to produce a cathode (air electrode) catalyst layer. Examples of the solid polymer membrane used include Nafion (registered trademark), which is a commercially available fluoropolymer electrolyte. As a coating method, either a method using a spray coating device or a method using a bar coater is possible. By applying a catalyst ink using an arbitrary catalyst as an anode (fuel electrode) catalyst on the opposite side of the cathode catalyst application surface, a solid polymer electrolyte membrane having both catalyst layers applied is obtained. By laminating both sides of the obtained catalyst-coated electrolyte membrane so as to be sandwiched between gas diffusion layers and bringing them into close contact with each other by hot pressing, a membrane electrode assembly: MEA (membrane electrode assembly) is produced. The obtained MEA is used as a fuel cell electrode and assembled into a predetermined cell to complete the PEFC.

以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example and a comparative example explain the present invention further, the present invention is not limited to these.

〔実施例1〕
(NDCの製造)
市販のPCP/MOFであるBasolite(登録商標)Z1200をセラミックボートに入れ石英管内に静置し、高純度アルゴンガス通気下、電気管状炉で1050℃まで昇温し、1時間加熱した。その後、アルゴンガス通気下、自然放冷により室温まで冷却し黒色粉体を得た。得られた粉体を1M HSO水溶液に加え一晩撹拌後、不溶物をろ取し、濾液が中性になるまでイオン交換水により洗浄した。洗浄後の粉体を、再びセラミックボートに入れ石英管内に静置し、アンモニアガス通気下、電気管状炉で950℃まで昇温し、15分間加熱した。放冷後、黒色のNDCを得た。得られたNDCは、窒素ガス等温吸着線より比表面積が989m/gであり、元素分析より窒素含有量が2.51wt%、亜鉛含有量が0.27wt%であった。
[Example 1]
(Manufacturing NDC)
A commercially available PCP / MOF, Basolite (registered trademark) Z1200, was placed in a ceramic boat and allowed to stand in a quartz tube, and heated to 1050 ° C. in an electric tubular furnace under high-purity argon gas ventilation, and heated for 1 hour. Then, it cooled to room temperature by natural cooling under argon gas ventilation, and obtained black powder. The obtained powder was added to a 1M H 2 SO 4 aqueous solution and stirred overnight, and then insoluble matters were collected by filtration and washed with ion-exchanged water until the filtrate became neutral. The powder after washing was again placed in a ceramic boat and allowed to stand in a quartz tube. The temperature was raised to 950 ° C. in an electric tubular furnace under ammonia gas flow and heated for 15 minutes. After cooling, black NDC was obtained. The obtained NDC had a specific surface area of 989 m 2 / g from the nitrogen gas isotherm adsorption line, and the elemental analysis showed a nitrogen content of 2.51 wt% and a zinc content of 0.27 wt%.

〔実施例2〕
(白金触媒の製造)
実施例1で得られたNDC粉末4mgを、エチレングリコールに加え、超音波処理により分散液とした。25mMに調整したHPtClエチレングリコール溶液を0.70mL加え撹拌後、1MのNaOHのエチレングリコール溶液にてpH10に調整した。フラスコに調製液を移し、還流管を取り付け後、140℃で3時間加熱還流した。反応後、遠心分離により不溶物を単離し、白金担持NDC触媒を得た。得られた白金担時触媒の白金担持量を熱重量分析により求めたところ、2.8wt%の白金が担持されていることが明らかとなった。
[Example 2]
(Production of platinum catalyst)
4 mg of the NDC powder obtained in Example 1 was added to ethylene glycol, and a dispersion was obtained by ultrasonic treatment. 0.70 mL of H 2 PtCl 6 ethylene glycol solution adjusted to 25 mM was added and stirred, and then adjusted to pH 10 with 1 M NaOH ethylene glycol solution. The prepared solution was transferred to the flask, and a reflux tube was attached, followed by heating to reflux at 140 ° C. for 3 hours. After the reaction, insoluble matter was isolated by centrifugation to obtain a platinum-supported NDC catalyst. The amount of platinum supported on the obtained platinum-supported catalyst was determined by thermogravimetric analysis, and it was revealed that 2.8 wt% of platinum was supported.

〔実施例3〕
(活性評価)
実施例2で得られた白金担持NDC触媒2mgと市販のフッ素系高分子電解質である10%Nafion(登録商標)5.7μLを水:エタノール=1:1の混合溶液2mLに加え超音波処理により分散させて触媒インクを調製した。得られた触媒インクをグラッシーカーボン電極に塗布し乾燥させ活性評価を行った結果を図1に示す。
Example 3
(Activity evaluation)
2 mg of the platinum-supported NDC catalyst obtained in Example 2 and 5.7 μL of 10% Nafion (registered trademark), which is a commercially available fluoropolymer electrolyte, are added to 2 mL of a mixed solution of water: ethanol = 1: 1 by sonication. A catalyst ink was prepared by dispersing. The obtained catalyst ink was applied to a glassy carbon electrode, dried, and the results of activity evaluation were shown in FIG.

〔比較例1〕
実施例1で得られたNDC粉末2mgを用い、実施例3と同様の方法で調製した触媒インクを用いて活性評価を行った結果を図1に示す。
[Comparative Example 1]
FIG. 1 shows the results of activity evaluation using 2 mg of the NDC powder obtained in Example 1 and the catalyst ink prepared by the same method as in Example 3.

〔比較例2〕
市販Pt/C触媒(田中貴金属工業株式会社製TEC10V30E、担持体:VULCAN(登録商標)XC72、白金担持量:30wt%)を2mg使用し、実施例3と同様の方法で調製した触媒インクを用いて活性評価を行った結果を図1に示す。
[Comparative Example 2]
Using 2 mg of a commercially available Pt / C catalyst (TEC10V30E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., support: VULCAN (registered trademark) XC72, platinum loading: 30 wt%), and using a catalyst ink prepared in the same manner as in Example 3. The results of the activity evaluation are shown in FIG.

図1に実施例3、比較例1および比較例2の酸素還元活性評価の結果を示す。
電解質溶液に0.1M過塩素酸水溶液、対極に白金コイル、参照極に硝酸銀を用い、回転数1600ppmで回転ディスク電極(RDE)法により評価した。
図1において、0.9Vでの酸素還元電流を比較すると、(比較例1)0.032mA/cm、(実施例3)1.18mA/cmおよび(比較例2)1.95mA/cmであった。この電流値から使用した白金重量あたりの活性を比較すると、実施例3の活性が1.17A/mg、比較例2の市販触媒(TEC10V30E)の活性が0.29A/mgであり、約4倍の活性向上が確認された。
FIG. 1 shows the results of the oxygen reduction activity evaluation of Example 3, Comparative Example 1 and Comparative Example 2.
A 0.1M perchloric acid aqueous solution was used for the electrolyte solution, a platinum coil was used for the counter electrode, and silver nitrate was used for the reference electrode, and evaluation was performed by the rotating disk electrode (RDE) method at a rotational speed of 1600 ppm.
In FIG. 1, the oxygen reduction current at 0.9 V is compared. (Comparative Example 1) 0.032 mA / cm 2 (Example 3) 1.18 mA / cm 2 and (Comparative Example 2) 1.95 mA / cm 2 . When the activity per weight of platinum used was compared from the current value, the activity of Example 3 was 1.17 A / mg, and the activity of the commercial catalyst (TEC10V30E) of Comparative Example 2 was 0.29 A / mg, which was about 4 times. The activity improvement of was confirmed.

本発明のNDCおよびそれらを担持体として使用し調製される白金担持NDC触媒は自動車産業やコジェネレーションに代表される燃料電池の分野の電極触媒に使用できる。

The NDC catalyst of the present invention and the platinum-supported NDC catalyst prepared by using them as a support can be used as an electrode catalyst in the field of fuel cells represented by the automobile industry and cogeneration.

Claims (6)

低沸点金属を含む多孔性金属錯体(PCP/MOF)を焼成した窒素ドープカーボンに白金を担持した白金触媒。   A platinum catalyst in which platinum is supported on nitrogen-doped carbon obtained by calcining a porous metal complex (PCP / MOF) containing a low boiling point metal. 前記低沸点金属が亜鉛である請求項1に記載の白金触媒。   The platinum catalyst according to claim 1, wherein the low boiling point metal is zinc. 前記窒素ドープカーボンの窒素含有量が2wt%〜20wt%である請求項1又は請求項2に記載の白金触媒。   The platinum catalyst according to claim 1 or 2, wherein the nitrogen content of the nitrogen-doped carbon is 2 wt% to 20 wt%. 前記窒素ドープカーボンの比表面積が500m/g〜2000m/gである請求項1〜3のいずれかに記載の白金触媒。 The nitrogen-doped platinum catalyst according to claim 1 specific surface area of the carbon is 500m 2 / g~2000m 2 / g. 請求項1〜4のいずれかに記載の白金触媒を含む燃料電池電極。   The fuel cell electrode containing the platinum catalyst in any one of Claims 1-4. 請求項5に記載の燃料電池電極を含む燃料電池。

A fuel cell comprising the fuel cell electrode according to claim 5.

JP2016157206A 2016-08-10 2016-08-10 Platinum catalyst, fuel cell electrode and fuel cell Pending JP2018023929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016157206A JP2018023929A (en) 2016-08-10 2016-08-10 Platinum catalyst, fuel cell electrode and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157206A JP2018023929A (en) 2016-08-10 2016-08-10 Platinum catalyst, fuel cell electrode and fuel cell

Publications (1)

Publication Number Publication Date
JP2018023929A true JP2018023929A (en) 2018-02-15

Family

ID=61193403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157206A Pending JP2018023929A (en) 2016-08-10 2016-08-10 Platinum catalyst, fuel cell electrode and fuel cell

Country Status (1)

Country Link
JP (1) JP2018023929A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950566A (en) * 2019-04-15 2019-06-28 南京大学 A kind of high-performance oxygen reduction catalyst and its preparation method based on function of surface enhancing
CN113270599A (en) * 2021-05-25 2021-08-17 西安交通大学 Electrode catalyst, composite electrode and preparation process thereof
CN114899437A (en) * 2022-05-27 2022-08-12 北京理工大学 Preparation method of nitrogen-doped mesoporous carbon supported Pt fuel cell cathode catalyst
CN115133051A (en) * 2022-08-10 2022-09-30 北京亿华通科技股份有限公司 Ultralow platinum fuel cell catalyst and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950566A (en) * 2019-04-15 2019-06-28 南京大学 A kind of high-performance oxygen reduction catalyst and its preparation method based on function of surface enhancing
CN113270599A (en) * 2021-05-25 2021-08-17 西安交通大学 Electrode catalyst, composite electrode and preparation process thereof
CN114899437A (en) * 2022-05-27 2022-08-12 北京理工大学 Preparation method of nitrogen-doped mesoporous carbon supported Pt fuel cell cathode catalyst
CN115133051A (en) * 2022-08-10 2022-09-30 北京亿华通科技股份有限公司 Ultralow platinum fuel cell catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6125580B2 (en) Three-way platinum alloy catalyst
JP5855023B2 (en) Method for producing catalyst carrier, method for producing composite catalyst, composite catalyst, and fuel cell using the same
JP4629699B2 (en) Supported catalyst and production method thereof, electrode and fuel cell using the same
KR101797782B1 (en) Catalyst with metal oxide doping for fuel cells
JP3576108B2 (en) Electrode, fuel cell using the same, and method of manufacturing electrode
US10103388B2 (en) Method for producing fine catalyst particle and fuel cell comprising fine catalyst particle produced by the production method
CN108028391B (en) Electrocatalyst on carbonitride matrix
WO2009157033A2 (en) Core-shell mono/plurimetallic carbon nitride based electrocatalysts for low-temperature fuel cells (pemfcs, dmfcs, afcs and electrolysers
JP2004146367A (en) Fuel cell unit, production method thereof, and fuel cell employing the fuel cell unit
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP2018023929A (en) Platinum catalyst, fuel cell electrode and fuel cell
KR20130054008A (en) Electrode for fuel cell, method of preparing the electrode, catalyst slurry, and fuel cell including the electrode
WO2019018467A1 (en) Multi-functional electrode additive
JP5813627B2 (en) Fuel cell
JP5015489B2 (en) Fuel cell electrode catalyst and fuel cell
KR20170054145A (en) Catalyst, manufacturing method of the same and fuel cell comprising the same
CN111569868A (en) Method for preparing catalyst loaded on carbon
JP5386978B2 (en) Fuel cell catalyst, membrane electrode assembly, fuel cell, and redox catalyst using heat-treated coordination polymer metal complex containing fine metal particles
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP5288718B2 (en) Electrode catalyst for electrochemical cell, method for producing the same, electrochemical cell, fuel cell and fuel cell
JP5326585B2 (en) Method for producing metal catalyst-supported carbon powder
CN108232211B (en) Self-doped fullerene fixed palladium nano electro-catalyst and preparation method and application thereof
CN108461762A (en) Fuel cell electrode catalyst layer and its manufacturing method
JP2006179427A (en) Electrode catalyst for fuel cell, and the fuel cell
CN114342127A (en) Method for producing catalyst, method for producing composition, electrode, method for producing electrode, fuel cell, and metal-air battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210316