JP2018022863A - Semiconductor apparatus - Google Patents

Semiconductor apparatus Download PDF

Info

Publication number
JP2018022863A
JP2018022863A JP2016252850A JP2016252850A JP2018022863A JP 2018022863 A JP2018022863 A JP 2018022863A JP 2016252850 A JP2016252850 A JP 2016252850A JP 2016252850 A JP2016252850 A JP 2016252850A JP 2018022863 A JP2018022863 A JP 2018022863A
Authority
JP
Japan
Prior art keywords
semiconductor element
intermetallic compound
metal
alloy
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016252850A
Other languages
Japanese (ja)
Other versions
JP6430473B2 (en
Inventor
重信 関根
Shigenobu Sekine
重信 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Napra Co Ltd
Original Assignee
Napra Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Napra Co Ltd filed Critical Napra Co Ltd
Publication of JP2018022863A publication Critical patent/JP2018022863A/en
Application granted granted Critical
Publication of JP6430473B2 publication Critical patent/JP6430473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector

Abstract

PROBLEM TO BE SOLVED: To provide a power device meeting the following requirement in regard to a SiC semiconductor element which has been attracting attentions as a power device for controlling a large electric power because of having a higher dielectric breakdown electric field strength and a wider band gap in comparison to a Si semiconductor element: a junction portion of a semiconductor element and a connection member retains a high junction strength and has superior heat resistance over a long period of time in such a power device.SOLUTION: The above problem is solved by a semiconductor apparatus comprising: a semiconductor element; and a connection member connected to the semiconductor element. In the semiconductor apparatus, a junction portion forming a junction of the semiconductor element and the connection member has an intermetallic compound including Sn and Cu, and a metal matrix including a Sn alloy. The intermetallic compound is dispersed in the metal matrix; and At least a part of the intermetallic compound forms an epitaxial junction with the Sn alloy.SELECTED DRAWING: Figure 3

Description

本発明は、半導体素子と、前記半導体素子と接続される接続部材と、を有する半導体装置に関するものである。   The present invention relates to a semiconductor device having a semiconductor element and a connection member connected to the semiconductor element.

近年、SiC(炭化珪素)を用いたSiC半導体素子の開発が進められている。
SiC半導体素子はSi半導体素子に比較して絶縁破壊電界強度が高く、バンドギャップが広いため、大電力を制御するパワーデバイスとして注目されている。SiC半導体素子は、Si半導体素子の限界を超える150℃以上の高温においても動作が可能であり、理論的には500℃以上でも動作が可能とされている(特許文献1参照)。
このようなパワーデバイスは、長時間にわたって高温動作状態が継続し、しかも、高温動作状態から低温停止状態へと大きな温度変動を伴うなど、過酷な環境下で使用される。したがって、半導体素子およびこれと接続される接続部材を有する半導体装置では、両者の接合を形成する接合部に対し、長期にわたり高い接合強度を維持するとともに、優れた耐熱性も要求される。
しかし、従来より知られた接合材は、必ずしも、上述した要求を満たし得るものではなかった。
In recent years, SiC semiconductor elements using SiC (silicon carbide) have been developed.
SiC semiconductor elements are attracting attention as power devices that control high power because they have higher breakdown field strength and wider band gaps than Si semiconductor elements. The SiC semiconductor element can operate even at a high temperature of 150 ° C. or higher, which exceeds the limit of the Si semiconductor element, and theoretically can operate even at 500 ° C. or higher (see Patent Document 1).
Such a power device is used in a harsh environment such that a high temperature operation state continues for a long time and a large temperature fluctuation occurs from a high temperature operation state to a low temperature stop state. Therefore, in a semiconductor device having a semiconductor element and a connecting member connected to the semiconductor element, high bonding strength is required for a long period of time and excellent heat resistance is required for a bonding portion that forms the bonding between the two.
However, conventionally known bonding materials are not necessarily capable of satisfying the above-described requirements.

例えば、特許文献2に開示されている半導体接合構造体では、到底上述した要求を満たすことができない。   For example, the semiconductor junction structure disclosed in Patent Document 2 cannot satisfy the above-described requirements.

特開2011−80796号公報JP 2011-80796 A 特開2013−4894号公報JP 2013-4894 A

したがって本発明の目的は、半導体素子と、前記半導体素子と接続される接続部材と、を有する半導体装置において、前記半導体素子と前記接続部材との接合を形成する接合部が、長期にわたって高い耐熱性、接合強度および機械的強度を維持し得る半導体装置を提供することにある。   Accordingly, an object of the present invention is to provide a semiconductor device having a semiconductor element and a connection member connected to the semiconductor element, in which a bonding portion that forms a bond between the semiconductor element and the connection member has high heat resistance over a long period of time. Another object of the present invention is to provide a semiconductor device capable of maintaining bonding strength and mechanical strength.

上述した課題を解決するため、本発明に係る半導体装置は、半導体素子と、前記半導体素子と接続される接続部材と、を有し、前記半導体素子と前記接続部材との接合を形成する接合部は、SnおよびCuからなる金属間化合物とSn合金を含む金属マトリクスとを有し、前記金属間化合物は、前記金属マトリクス中に分散し、前記金属間化合物の少なくとも1部は、前記Sn合金とエピタキシャル接合を形成していることを特徴とする。   In order to solve the above-described problem, a semiconductor device according to the present invention includes a semiconductor element and a connection member connected to the semiconductor element, and forms a junction between the semiconductor element and the connection member. Has an intermetallic compound composed of Sn and Cu and a metal matrix containing an Sn alloy, the intermetallic compound is dispersed in the metal matrix, and at least a part of the intermetallic compound is composed of the Sn alloy and An epitaxial junction is formed.

前記金属間化合物は、CuSnの組成を有するのが好適である。 The intermetallic compound preferably has a composition of Cu 6 Sn 5 .

本発明に係る半導体装置における接合部は、SnおよびCuからなる金属間化合物がSn合金を含む金属マトリクス中に分散するとともに金属間化合物の少なくとも1部がSn合金とエピタキシャル接合を形成している。エピタキシャル接合の形成によって、Snおよび/またはCuが一方向に結晶成長して長軸結晶を生成することによるクラック現象の抑制が可能となる。また接合部が、金属間化合物による高温耐熱性と、金属マトリクスによる柔軟性とを兼ね備えることになる。このため、長時間にわたって高温動作状態が継続した場合でも、また、高温動作状態から低温停止状態へと大きな温度変動を伴うなど、過酷な環境下で使用された場合でも、長期にわたって高い耐熱性、接合強度及び機械的強度が維持されることになる。   In the junction part in the semiconductor device according to the present invention, an intermetallic compound composed of Sn and Cu is dispersed in a metal matrix containing an Sn alloy, and at least a part of the intermetallic compound forms an epitaxial junction with the Sn alloy. By forming the epitaxial junction, it is possible to suppress the crack phenomenon due to Sn and / or Cu growing in one direction to form a long axis crystal. Moreover, a junction part has the high temperature heat resistance by an intermetallic compound, and the softness | flexibility by a metal matrix. For this reason, even when used in a harsh environment, such as when the high temperature operation state continues for a long time, or when it is used in a harsh environment such as a large temperature fluctuation from the high temperature operation state to the low temperature stop state, high heat resistance, Bonding strength and mechanical strength will be maintained.

以上述べたように、本発明によれば、半導体素子と、前記半導体素子と接続される接続部材と、を有する半導体装置において、前記半導体素子と前記接続部材との接合を形成する接合部が、長期にわたって高い耐熱性、接合強度および機械的強度を維持し得る半導体装置を提供することができる。   As described above, according to the present invention, in a semiconductor device having a semiconductor element and a connection member connected to the semiconductor element, a bonding portion that forms a bond between the semiconductor element and the connection member includes: A semiconductor device that can maintain high heat resistance, bonding strength, and mechanical strength over a long period of time can be provided.

本発明における接合部の構造を説明するための模式断面図である。It is a schematic cross section for demonstrating the structure of the junction part in this invention. 接合部300の一部断面の電子顕微鏡写真である。3 is an electron micrograph of a partial cross section of a joint 300. FIG. 図2中のA部の拡大図である。It is an enlarged view of the A section in FIG. 図2中のB部の拡大図である。It is an enlarged view of the B section in FIG. 8Cu・92Snの金属粒子の電子顕微鏡写真である。It is an electron micrograph of 8Cu · 92Sn metal particles. 金属粒子の製造に好適な製造装置の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing apparatus suitable for manufacture of a metal particle.

以下、本発明をさらに詳しく説明する。
図1は、本発明における接合部の構造を説明するための模式断面図である。
図1において、接合部300は、対向配置された基板100、500に形成された金属/合金体101、501(図1ではCu電極)を接合する。接合部300は、金属間化合物としてCuSnを含み(その他CuSn)、金属マトリクスとしてSn合金を含み、金属間化合物CuSnが金属マトリクス中に分散し、CuSnの少なくとも1部がSn合金とエピタキシャル接合を形成している。
Hereinafter, the present invention will be described in more detail.
FIG. 1 is a schematic cross-sectional view for explaining the structure of the joint in the present invention.
In FIG. 1, a joining portion 300 joins metal / alloy bodies 101 and 501 (Cu electrodes in FIG. 1) formed on substrates 100 and 500 arranged to face each other. The joint portion 300 includes Cu 6 Sn 5 as an intermetallic compound (other Cu 3 Sn), includes an Sn alloy as a metal matrix, the intermetallic compound Cu 6 Sn 5 is dispersed in the metal matrix, and Cu 6 Sn 5 At least a part forms an epitaxial junction with the Sn alloy.

基板100,500は、半導体素子を備え、例えばパワーデバイスなどの電子・電気機器を構成する基板であり、金属/合金体101,501は、電極、バンプ、端子またはリード導体などとして、基板100,500に一体的に設けられている接続部材である。パワーデバイスなどの電子・電気機器では、金属/合金体101,501は、一般にはCuまたはその合金として構成される。もっとも、基板100,500に相当する部分が、金属/合金体で構成されたものを排除するものではない。   The substrates 100 and 500 are substrates that include semiconductor elements and constitute electronic / electrical equipment such as power devices. The metal / alloy bodies 101 and 501 are electrodes, bumps, terminals, lead conductors, 500 is a connection member provided integrally with 500. In electronic / electric equipment such as power devices, the metal / alloy bodies 101, 501 are generally configured as Cu or an alloy thereof. However, the portion corresponding to the substrates 100 and 500 is not excluded from the case where the portion is made of a metal / alloy body.

本発明で言うエピタキシャル接合とは、異種物質の結晶が結晶面同士で接合している状態を意味する。   The term “epitaxial junction” as used in the present invention means a state in which crystals of different substances are joined at crystal planes.

図2は、接合部300の一部断面の電子顕微鏡写真である。金属間化合物としてのCuSn、金属マトリクスとしてのSn合金が観察される。図3および図4は、図2中のA部およびB部の拡大図をそれぞれ示している。
図3から、CuSnとSn合金の結晶同士が結晶面でかみ合った状態であることから、金属マトリクス中に分散した金属間化合物CuSnがSn合金(例えば4質量%Cu及び96質量%Snからなる合金を含む)とエピタキシャル接合を形成していることが分かる。
一方、図4から、金属間化合物CuSnとSn合金との接合面のすべてがエピタキシャル接合を形成せず、接合面の1部はアモルファス層(非結晶質)が介在することもある。
FIG. 2 is an electron micrograph of a partial cross section of the joint 300. Cu 6 Sn 5 as an intermetallic compound and Sn alloy as a metal matrix are observed. 3 and 4 show enlarged views of the A part and the B part in FIG. 2, respectively.
From FIG. 3, since the crystals of Cu 6 Sn 5 and the Sn alloy are in a state where they are meshed with each other on the crystal plane, the intermetallic compound Cu 6 Sn 5 dispersed in the metal matrix is Sn alloy (for example, 4 mass% Cu and 96 It can be seen that an epitaxial junction is formed with an alloy including mass% Sn.
On the other hand, from FIG. 4, not all of the bonding surfaces of the intermetallic compound Cu 6 Sn 5 and the Sn alloy form an epitaxial bonding, and an amorphous layer (non-crystalline) may be interposed in a part of the bonding surface.

図3で示すようなエピタキシャル接合は、金属間化合物CuSnとSn合金との接合面の全体を100%としたとき、30%以上が好ましく、60%以上がさらに好ましい。
前記エピタキシャル接合の割合は、例えば次のようにして算出できる。
接合部300の断面の電子顕微鏡写真を撮影し、金属間化合物CuSnとSn合金との接合面を任意に50か所サンプリングする。続いて、その接合面を画像解析し、図3で示すようなエピタキシャル接合が、サンプリングした接合面に対してどの程度存在するのかを調べる。
The epitaxial bonding as shown in FIG. 3 is preferably 30% or more, and more preferably 60% or more, assuming that the entire bonding surface between the intermetallic compound Cu 6 Sn 5 and the Sn alloy is 100%.
The proportion of the epitaxial junction can be calculated as follows, for example.
An electron micrograph of the cross section of the joint 300 is taken, and the joint surface between the intermetallic compound Cu 6 Sn 5 and the Sn alloy is arbitrarily sampled at 50 locations. Subsequently, image analysis is performed on the bonding surface, and it is examined how much epitaxial bonding as shown in FIG. 3 exists with respect to the sampled bonding surface.

次に本発明における接合部の形成方法について説明する。
該接合部は、CuとSnとを組み合わせた金属粒子により形成することができる。該金属粒子としては、8質量%Cu及び92質量%Snの組成(以下8Cu・92Snと称する)の金属粒子が挙げられる。
この8Cu・92Snの金属粒子の電子顕微鏡写真を図5に示す。図5の金属粒子は、その表面の一部がレーザで薄く研磨されている。
図5の金属粒子は、その表面の一部がレーザによって表面からおよそ0.1μmまで研磨されている。
8Cu・92Snの金属粒子Mは、図5から理解されるように、黒色で示す金属マトリクス中に、金属間化合物CuxSnyが、網目状121、点状又は膜状122等の形態をとっている。金属間化合物CuxSnyは、実際には、3次元構造を形成している。金属間化合物CuxSnyのサイズは、図5に図示されたスケール表示に照らして、nmサイズ(1μm以下)のものが含まれている。
すなわち、金属粒子Mは、金属マトリクス中に分布するナノコンポジット3次元構造を形成する多数のナノサイズの金属間化合物を有している。ここでナノコンポジット3次元構造とは、金属粒子Mの1/10以下のナノスケールサイズの結晶で3次元構造となっているものをいう。
8Cu・92Snの金属粒子Mは、図5から理解されるように、その表面付近に金属間化合物CuSnの網目状の構造を形成している。
Next, the method for forming the joint in the present invention will be described.
The joint can be formed of metal particles that combine Cu and Sn. Examples of the metal particles include metal particles having a composition of 8 mass% Cu and 92 mass% Sn (hereinafter referred to as 8Cu · 92Sn).
FIG. 5 shows an electron micrograph of the 8Cu · 92Sn metal particles. A part of the surface of the metal particles in FIG. 5 is thinly polished with a laser.
A part of the surface of the metal particles in FIG. 5 is polished to about 0.1 μm from the surface by a laser.
As can be understood from FIG. 5, the 8Cu · 92Sn metal particles M are in the form of a mesh 121, a dot or film 122, etc., in an intermetallic compound CuxSny in a black metal matrix. The intermetallic compound CuxSny actually forms a three-dimensional structure. The size of the intermetallic compound CuxSny includes those of nm size (1 μm or less) in light of the scale display shown in FIG.
That is, the metal particle M has a large number of nano-sized intermetallic compounds that form a nanocomposite three-dimensional structure distributed in the metal matrix. Here, the nanocomposite three-dimensional structure refers to a three-dimensional structure made of a nanoscale size crystal of 1/10 or less of the metal particles M.
As can be understood from FIG. 5, the metal particles M of 8Cu · 92Sn have a network structure of the intermetallic compound Cu 6 Sn 5 in the vicinity of the surface thereof.

このような金属粒子は、例えば窒素ガス雰囲気中で、高速回転する皿形ディスク上に、Cu8質量%とSn92質量%からなる組成の溶融金属を供給して強制的に作られた遠心場内に遠心力等により小滴として飛散させた溶融金属がその制御された環境状況下で急速冷却固化過程で強制的に自己組織化させることにより得ることができる。   Such metal particles are centrifuged in a centrifugal field forcibly formed by supplying molten metal having a composition of 8% by mass of Cu and 92% by mass of Sn on a dish-shaped disk that rotates at high speed, for example, in a nitrogen gas atmosphere. Molten metal dispersed as droplets by force or the like can be obtained by forcibly self-organizing in a rapid cooling and solidification process under controlled environmental conditions.

金属粒子の製造に好適な製造装置の一例を図6を参照して説明する。粒状化室1は上部が円筒状、下部がコーン状になっており、上部に蓋2を有する。蓋2の中心部には垂直にノズル3が挿入され、ノズル3の直下には皿形回転ディスク4が設けられている。符号5は皿形回転ディスク4を上下に移動可能に支持する機構である。また粒状化室1のコーン部分の下端には生成した粒子の排出管6が接続されている。ノズル3の上部は粒状化する金属を溶融する電気炉(高周波炉)7に接続されている。混合ガスタンク8で所定の成分に調整された雰囲気ガスは配管9及び配管10により粒状化室1内部及び電気炉7上部にそれぞれ供給される。粒状化室1内の圧力は弁11及び排気装置12、電気炉7内の圧力は弁13及び排気装置14によりそれぞれ制御される。ノズル3から皿形回転ディスク4上に供給された金属は皿形回転ディスク4による遠心力と回転軸沿いからの吹き上げ気流が作り出す平行気流環境遠心場内での作用で微細な液滴状になって飛散し、冷却されて固体粒子になる。生成した固体粒子は排出管6から自動フィルター15に供給され分別される。符号16は微粒子回収装置である。   An example of a production apparatus suitable for producing metal particles will be described with reference to FIG. The granulation chamber 1 has a cylindrical shape at the top and a cone shape at the bottom, and has a lid 2 at the top. A nozzle 3 is inserted vertically in the center of the lid 2, and a dish-shaped rotating disk 4 is provided immediately below the nozzle 3. Reference numeral 5 denotes a mechanism for supporting the dish-shaped rotating disk 4 so as to be movable up and down. The generated particle discharge pipe 6 is connected to the lower end of the cone portion of the granulating chamber 1. The upper part of the nozzle 3 is connected to an electric furnace (high frequency furnace) 7 for melting the metal to be granulated. The atmospheric gas adjusted to a predetermined component in the mixed gas tank 8 is supplied to the inside of the granulating chamber 1 and the upper part of the electric furnace 7 through the pipe 9 and the pipe 10, respectively. The pressure in the granulating chamber 1 is controlled by the valve 11 and the exhaust device 12, and the pressure in the electric furnace 7 is controlled by the valve 13 and the exhaust device 14, respectively. The metal supplied from the nozzle 3 onto the dish-shaped rotating disk 4 becomes fine droplets due to the centrifugal force generated by the dish-shaped rotating disk 4 and the action in the parallel air flow environment centrifugal field created by the blowing airflow along the rotation axis. It is scattered and cooled to solid particles. The generated solid particles are supplied from the discharge pipe 6 to the automatic filter 15 and separated. Reference numeral 16 denotes a fine particle collecting apparatus.

高速回転体が円盤状又は円錐状の場合尚遠心場が無い場合は、溶融金属が回転体のどの位置に供給されるのかによって溶融金属にかかる遠心力が大きく異なるので、粒の揃った球状粉体を得にくい。だが回転シャフト下部から不活性ガスを吹き上げデスク下部に充て遠心力にて均一な気流を造り回転中心から2m範囲内に遠心場を作り出す事にて高速回転する皿形ディスク上に供給した場合は、その皿形の周縁位置における均一な遠心力を受け粒の揃った小滴に分散して飛散する。飛散した小滴は遠心場雰囲気ガス中で急速に冷却し、固化した小粒となって落下し、回収される。   When the high-speed rotating body is disk-shaped or conical, if there is no centrifugal field, the centrifugal force applied to the molten metal varies greatly depending on the position of the molten metal supplied to the rotating body. Hard to get a body. However, when an inert gas is blown up from the lower part of the rotating shaft and filled into the lower part of the desk, a uniform air flow is created by centrifugal force, and a centrifugal field is created within the range of 2 m from the center of rotation to supply it on a dish-shaped disk that rotates at high speed. It receives a uniform centrifugal force at the peripheral edge of the dish and is dispersed and scattered into small droplets with uniform grains. The scattered droplets are rapidly cooled in a centrifugal field gas, fall as solidified particles, and are collected.

溶融金属は急速冷却固化中に自己組織化され、個々の微小粒子が前記ナノコンポジット構造を有する金属粒子となる。   The molten metal is self-assembled during rapid cooling and solidification, and individual fine particles become metal particles having the nanocomposite structure.

皿形ディスクの回転数が高くなるほど、得られた金属粒子の径は小さくなる。内径35mm、深さ5mmの皿形ディスクを用いた場合、平均粒径100μm以下の粒子を得るためには毎分100,000回転以上とすることが望ましい。これにより、遠心力が大きくなり、Snよりも軽い金属間化合物が表層に集積し、前記ナノコンポジット構造を形成し易くなる。   The higher the number of revolutions of the dish-shaped disk, the smaller the diameter of the obtained metal particles. When a dish-shaped disk having an inner diameter of 35 mm and a depth of 5 mm is used, in order to obtain particles having an average particle diameter of 100 μm or less, it is desirable that the rotation be 100,000 rotations or more per minute. As a result, the centrifugal force increases, intermetallic compounds lighter than Sn accumulate on the surface layer, and the nanocomposite structure is easily formed.

また、粒状化室に供給する雰囲気ガスの温度は室温でよいが、粒状化室内の酸素濃度は0ppm以下のオーダーにし、かつ、粒状化室内は大気圧に対して10%あるいはそれ以上の内圧にする必要がある。長時間連続操業する場合には、溶融金属小滴の急冷効果を維持するため、粒状化室内温度が100℃以下、好ましくは40℃以下になるように通気量を制御することが望ましい。この急冷工程により、前記網目状のバスケット構造を形成し易くなる。
金属粒子Mは例えば直径20μm以下となる。
The temperature of the atmospheric gas supplied to the granulation chamber may be room temperature, but the oxygen concentration in the granulation chamber is on the order of 0 ppm or less, and the granulation chamber has an internal pressure of 10% or more with respect to atmospheric pressure. There is a need to. In the case of continuous operation for a long time, in order to maintain the rapid cooling effect of the molten metal droplets, it is desirable to control the air flow rate so that the granulation chamber temperature is 100 ° C. or less, preferably 40 ° C. or less. This rapid cooling step facilitates formation of the mesh basket structure.
The metal particles M have a diameter of 20 μm or less, for example.

この8Cu・92Snの金属粒子Mをシート状あるいはペースト状に加工し、これを接合すべき2つの部材間で溶融・固化させると、金属粒子Mの3次元構造の金属間化合物が分離・再結合し、金属間化合物の新たな3次元構造が形成され、金属間化合物の少なくとも1部と、Sn合金とのエピタキシャル接合を形成することができる。
金属粒子Mからなるプリホームシートを得るには、金属粒子Mを含む粉末を、たとえば冷間圧接法を用いた金属間接合によって処理することによって得ることができる。冷間圧接法を用いた金属間接合それ自体は、種々知られている。本発明においては、それらの公知技術を適用することができる。例えば、対向する向きに回転する一対の圧接ローラの間に、本発明に係る金属粒子Mを含む粉末を供給し、圧接ローラから粉末に対して圧力を加えて、粉末を構成する金属粒子Mに金属間接合を生じさせる。実際の処理に当たっては、圧接ローラから粉末に100℃前後の熱を加えることが望ましい。これにより金属粒子Mからなるプリホームシートが得られる。
When the 8Cu · 92Sn metal particles M are processed into a sheet or paste and melted and solidified between the two members to be joined, the intermetallic compound of the three-dimensional structure of the metal particles M is separated and recombined. Then, a new three-dimensional structure of the intermetallic compound is formed, and an epitaxial junction between at least a part of the intermetallic compound and the Sn alloy can be formed.
In order to obtain a preform sheet made of the metal particles M, the powder containing the metal particles M can be obtained by, for example, processing by metal-to-metal bonding using a cold welding method. Various metal-to-metal joints using the cold welding method are known. In the present invention, those known techniques can be applied. For example, the powder containing the metal particles M according to the present invention is supplied between a pair of pressure rollers that rotate in opposite directions, and pressure is applied to the powder from the pressure rollers to the metal particles M constituting the powder. Causes metal-to-metal bonding. In actual processing, it is desirable to apply heat of about 100 ° C. to the powder from the pressure roller. As a result, a preform sheet made of the metal particles M is obtained.

金属粒子Mを含む粉末に対し、冷間圧接法を用いた金属間接合処理を施してプリホームシートを得た場合、プリホームシートの内部では、本発明の金属粒子M及び他の粒子は、外形形状は変化するものの、粒子の内部構造は、ほぼ、原形を保っている。即ち、プリホームシートは、複数の金属成分によるnmサイズの金属間化合物を含むナノコンポジット構造を有する。従って、成形体は、本発明に係る金属粒子の奏する作用効果をそのまま保存している。   When a preform sheet is obtained by performing an intermetallic joining process using a cold pressure welding method on the powder containing the metal particles M, inside the preform sheet, the metal particles M and other particles of the present invention are: Although the outer shape changes, the internal structure of the particles is almost intact. That is, the preform sheet has a nanocomposite structure including an nm-sized intermetallic compound composed of a plurality of metal components. Therefore, the molded body preserves the operational effects of the metal particles according to the present invention as they are.

次に、プリホームシートを接合すべき2つの部材間に介在させ、焼成(焼き付け処理)することで接合部が形成される。焼き付け処理温度は、例えば250℃であり、焼き付け処理時間は適宜調整される。
あるいは、金属粒子Mを用いて接合部を効率的に形成するため、例えば、金属粒子Mを有機ビヒクル中に混在させた導電性ペーストを形成する。
そして、接合すべき2つの部材の一方の面にこの導電性ペーストを塗布し、焼成(焼き付け処理)することで接合部が形成される。焼き付け処理温度は、例えば250℃であり、焼き付け処理時間は適宜調整される。
Next, the preform sheet is interposed between the two members to be joined and baked (baking treatment) to form a joined portion. The baking process temperature is, for example, 250 ° C., and the baking process time is appropriately adjusted.
Alternatively, in order to efficiently form the joint using the metal particles M, for example, a conductive paste in which the metal particles M are mixed in an organic vehicle is formed.
Then, the conductive paste is applied to one surface of the two members to be joined, and baked (baking treatment) to form a joined portion. The baking process temperature is, for example, 250 ° C., and the baking process time is appropriately adjusted.

なお、金属粒子Mに存在する金属間化合物は、金属粒子M全体に対し、3体積%以上85体積%以下の割合が好ましく、10体積%以上75体積%以下の割合がさらに好ましい。このような金属粒子Mによれば、さらに耐熱性に優れた高信頼性及び高品質の接合部が得られる。   In addition, the ratio of 3 volume% or more and 85 volume% or less is preferable with respect to the whole metal particle M, and the ratio of 10 volume% or more and 75 volume% or less is more preferable with respect to the metal particle M whole. According to such metal particles M, it is possible to obtain a highly reliable and high quality bonded portion further excellent in heat resistance.

ちなみに、350℃の高温保持試験(HTS)では、試験開始時から約100時間までは、せん断強度が約60MPaから約80MPaまで上昇し、100時間超の時間領域では、ほぼ70MPaで安定するという試験結果が得られた。   Incidentally, in the high temperature holding test (HTS) at 350 ° C., the shear strength increases from about 60 MPa to about 80 MPa from the start of the test to about 100 hours, and is stable at about 70 MPa in the time region exceeding 100 hours. Results were obtained.

また、(-40〜200℃)の冷熱サイクル試験(TCT)では、約200サイクルを超えたあたりから、全サイクル(1000サイクル)に渡って、せん断強度が約50MPaで安定するという試験結果が得られた。   In addition, in the thermal cycle test (TCT) of (−40 to 200 ° C.), the test result that the shear strength is stabilized at about 50 MPa over the entire cycle (1000 cycles) from around about 200 cycles is obtained. It was.

以上、添付図面を参照して本発明を詳細に説明したが、本発明はこれらに限定されるものではなく、当業者であれば、その基本的技術思想および教示に基づき、種々の変形例を想到できることは自明である。   The present invention has been described in detail with reference to the accompanying drawings. However, the present invention is not limited to these, and various modifications can be made by those skilled in the art based on the basic technical idea and teachings. It is self-evident that you can think of it.

M 金属粒子
1 粒状化室
2 蓋
3 ノズル
4 回転ディスク
5 回転ディスク支持機構
6 粒子排出管
7 電気炉
8 混合ガスタンク
9 配管
10 配管
11 弁
12 排気装置
13 弁
14 排気装置
15 自動フィルター
16 微粒子回収装置
100,500 基板
101,501 金属/合金体
121,122 金属間化合物
300 接合部
M metal particle 1 granulating chamber 2 lid 3 nozzle 4 rotating disk 5 rotating disk support mechanism 6 particle discharge pipe 7 electric furnace 8 mixed gas tank 9 pipe 10 pipe 11 valve 12 exhaust device 13 valve 14 exhaust device 15 automatic filter 16 particulate collection device 100,500 Substrate 101,501 Metal / alloy body 121,122 Intermetallic compound 300 Joint

Claims (2)

半導体素子と、前記半導体素子と接続される接続部材と、を有する半導体装置であって、
前記半導体素子と前記接続部材との接合を形成する接合部は、
SnおよびCuからなる金属間化合物とSn合金を含む金属マトリクスとを有し、
前記金属間化合物は、前記金属マトリクス中に分散し、
前記金属間化合物の少なくとも1部は、前記Sn合金とエピタキシャル接合を形成している、
半導体装置。
A semiconductor device having a semiconductor element and a connection member connected to the semiconductor element,
A joint portion that forms a joint between the semiconductor element and the connection member is:
An intermetallic compound composed of Sn and Cu and a metal matrix containing an Sn alloy;
The intermetallic compound is dispersed in the metal matrix;
At least a part of the intermetallic compound forms an epitaxial junction with the Sn alloy.
Semiconductor device.
前記金属間化合物は、CuSnの組成を有する、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the intermetallic compound has a composition of Cu 6 Sn 5 .
JP2016252850A 2016-07-21 2016-12-27 Semiconductor device Active JP6430473B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016143224 2016-07-21
JP2016143224 2016-07-21

Publications (2)

Publication Number Publication Date
JP2018022863A true JP2018022863A (en) 2018-02-08
JP6430473B2 JP6430473B2 (en) 2018-11-28

Family

ID=61164692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016252850A Active JP6430473B2 (en) 2016-07-21 2016-12-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6430473B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019141908A (en) * 2018-02-19 2019-08-29 有限会社 ナプラ Solder material, metal particle, paste, metal material, composite material, semiconductor device, electronic component, electrical equipment, optical equipment and lighting equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167735A (en) * 2004-12-14 2006-06-29 Hitachi Ltd Manufacturing method for equipment and structural material or the like
JP2010179336A (en) * 2009-02-05 2010-08-19 Toyota Central R&D Labs Inc Joint product, semiconductor module, and method for manufacturing the joint product
WO2016027593A1 (en) * 2014-08-22 2016-02-25 株式会社 豊田自動織機 Bonding structure, bonding material and bonding method
JP2016058526A (en) * 2014-09-09 2016-04-21 富士通株式会社 Electronic device and method of manufacturing electronic device
JP2016128184A (en) * 2015-01-09 2016-07-14 カルソニックカンセイ株式会社 Solder joint method and power module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167735A (en) * 2004-12-14 2006-06-29 Hitachi Ltd Manufacturing method for equipment and structural material or the like
JP2010179336A (en) * 2009-02-05 2010-08-19 Toyota Central R&D Labs Inc Joint product, semiconductor module, and method for manufacturing the joint product
WO2016027593A1 (en) * 2014-08-22 2016-02-25 株式会社 豊田自動織機 Bonding structure, bonding material and bonding method
JP2016058526A (en) * 2014-09-09 2016-04-21 富士通株式会社 Electronic device and method of manufacturing electronic device
JP2016128184A (en) * 2015-01-09 2016-07-14 カルソニックカンセイ株式会社 Solder joint method and power module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019141908A (en) * 2018-02-19 2019-08-29 有限会社 ナプラ Solder material, metal particle, paste, metal material, composite material, semiconductor device, electronic component, electrical equipment, optical equipment and lighting equipment

Also Published As

Publication number Publication date
JP6430473B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP6556197B2 (en) Metal particles
JP6174830B1 (en) Metal particles
JP6374072B1 (en) Bonding structure
JP6799649B1 (en) Metal particles
CN104668807B (en) Spherical low-melting-point brazing filler metal powder manufacturing method
JP2012146961A (en) Deposition of thermoelectric materials by printing
JP6799701B1 (en) Metal particles
JP6430473B2 (en) Semiconductor device
JP6205083B1 (en) Bonding structure
JP6556198B2 (en) Bonding structure
JP6744972B1 (en) Joining structure
JP4401281B2 (en) Lead-free solder alloy and method for producing the powder
JP6379170B2 (en) Semiconductor device
JP7209126B1 (en) Metal particles for bonding materials
JP6357271B1 (en) Columnar conductor structure
JP4632292B2 (en) Spherical silicon fine particles and production method thereof
CN104416252B (en) A kind of preparation method of preferred orientation texture solder joint
JP4051234B2 (en) Method for producing granular silicon
JP4498394B2 (en) Method for producing granular silicon single crystal
JP4127356B2 (en) Method for producing granular metal single crystal
KR20170065308A (en) Bi-Te-Se based thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
JP2003347605A (en) Thermoelectric module
JP2007238433A (en) Method for producing silicon germanium nanowire aggregate
KR20160103831A (en) Bi2Te3 BASED THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP2006036597A (en) Method for manufacturing granular crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180226

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181031

R150 Certificate of patent or registration of utility model

Ref document number: 6430473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250