JP2018022726A - Method of manufacturing electret substrate - Google Patents

Method of manufacturing electret substrate Download PDF

Info

Publication number
JP2018022726A
JP2018022726A JP2016151452A JP2016151452A JP2018022726A JP 2018022726 A JP2018022726 A JP 2018022726A JP 2016151452 A JP2016151452 A JP 2016151452A JP 2016151452 A JP2016151452 A JP 2016151452A JP 2018022726 A JP2018022726 A JP 2018022726A
Authority
JP
Japan
Prior art keywords
substrate
sio
layer
electrode
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016151452A
Other languages
Japanese (ja)
Other versions
JP6700139B2 (en
Inventor
山本 泉
Izumi Yamamoto
泉 山本
正也 鈴木
Masaya Suzuki
正也 鈴木
橋口 原
Gen Hashiguchi
原 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2016151452A priority Critical patent/JP6700139B2/en
Publication of JP2018022726A publication Critical patent/JP2018022726A/en
Application granted granted Critical
Publication of JP6700139B2 publication Critical patent/JP6700139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To equalize the charge of a charging layer of an electret substrate in a surface direction.SOLUTION: An electret substrate (50) constitutes a charging portion (14) of an electromechanical converter (1 or 2) that converts between electric power and mechanical power utilizing an electrostatic interaction between the charging portion and counter electrodes (15, 16). A method of manufacturing the electret substrate includes steps of: arranging a SiOlayer (52) and an electrode (54) serving as a negative electrode to face each other via an insulator (53), the SiOlayer being formed on the surface of a Si substrate (51) and containing a positive ion (K+ ion) of an alkali metal; and charging the SiOlayer by applying a voltage between the Si substrate and the electrode serving as a negative electrode while the Si substrate is used as a positive electrode.SELECTED DRAWING: Figure 1

Description

本発明は、エレクトレット基板の製造方法に関する。   The present invention relates to a method for manufacturing an electret substrate.

半永久的に電荷を保持する性質を持つエレクトレットを利用することで発生する静電的な相互作用により電力と動力の間の変換を行う電気機械変換器が知られている。例えば、特許文献1には、エレクトレット電極とその対向電極とを相対移動させることによって生じる静電誘導を利用して発電する発電装置が記載されている。また、特許文献2には、電極に電圧を印加したときにエレクトレットとの間で生じる静電気力を利用して移動子を駆動するエレクトレット駆動装置が記載されている。   2. Description of the Related Art An electromechanical converter that performs conversion between electric power and power by an electrostatic interaction generated by using an electret having a property of retaining a charge semipermanently is known. For example, Patent Document 1 describes a power generation device that generates power using electrostatic induction generated by relatively moving an electret electrode and its counter electrode. Patent Document 2 describes an electret driving device that drives a moving element by using an electrostatic force generated between the electret when a voltage is applied to an electrode.

また、特許文献3には、こうしたエレクトレットの製造方法が記載されている。この製造方法では、Si(シリコン)基板の表面にウェット酸化(熱酸化)によりK+イオン(カリウムイオン)を含むSiO層を形成し、その基板の上下端を電極で挟んでヒータで加熱しながらバイアス電圧を印加して、K+イオンをSiO層の表面に移動させることで、K+イオンを含むSiO層のエレクトレットを備えたエレクトレット基板を製造する。 Patent Document 3 describes a method for manufacturing such an electret. In this manufacturing method, SiO 2 layers containing K + ions (potassium ions) are formed by wet oxidation (thermal oxidation) on the surface of a Si (silicon) substrate, and the upper and lower ends of the substrate are sandwiched between electrodes and heated with a heater. by applying a bias voltage, by moving the K + ions on the surface of the SiO 2 layer, to produce an electret substrate with an electret SiO 2 layer containing K + ions.

図8(A)〜図8(D)は、従来のエレクトレット基板50’の製造工程を示す模式的な断面図である。   FIGS. 8A to 8D are schematic cross-sectional views showing a manufacturing process of a conventional electret substrate 50 ′.

エレクトレット基板50’の製造時には、図8(A)に示すSi基板51の表面を、K+イオンを含む雰囲気中で熱酸化させて、図8(B)に示すように、K+イオンを含有するSiO層52をSi基板51の上面に形成する。続いて、図8(C)に示すように、SiO層52の上方にSiO層52から距離を離して電極(負極)54を配置し、Si基板51を正極(GND)に接続して、ヒータ55で加熱しながら電極54とSi基板51との間に電圧を印加することにより、SiO層52を帯電させる。すると、SiO層52内のK+イオンはSiO層52の上面に移動し、その上面からSi基板51の外部に飛散するので、SiO層52の内部には負電荷が残り、結果としてSiO層52は負に帯電する。これにより、図8(D)に示すエレクトレット基板50’が完成する。 At the time of manufacturing the electret substrate 50 ′, the surface of the Si substrate 51 shown in FIG. 8A is thermally oxidized in an atmosphere containing K + ions, and as shown in FIG. 8B, SiO containing K + ions is obtained. Two layers 52 are formed on the upper surface of the Si substrate 51. Subsequently, as shown in FIG. 8 (C), an electrode (negative electrode) 54 at a distance from the SiO 2 layer 52 arranged above the SiO 2 layer 52, and connect the Si substrate 51 in the positive electrode (GND) The SiO 2 layer 52 is charged by applying a voltage between the electrode 54 and the Si substrate 51 while being heated by the heater 55. Then, K + ions in the SiO 2 layer 52 is moved to the upper surface of the SiO 2 layer 52, since scattered from the upper surface to the outside of the Si substrate 51, the interior of the SiO 2 layer 52 remains negatively charged, SiO as a result The two layers 52 are negatively charged. Thereby, the electret board | substrate 50 'shown to FIG. 8 (D) is completed.

特開2015−192577号公報Japanese Patent Laying-Open No. 2015-192577 特開2005−341675号公報JP 2005-341675 A 特開2014−049557号公報JP 2014-049557 A

エレクトレット基板50’の製造時には、図8(C)に示した帯電工程において、負極となる電極54と帯電層であるSiO層52との間には、静電気力である引力が働く。SiO層52とそれに対向する電極54との間には隙間が空いているため、この引力により、SiO層52の面上には、SiO層52と電極54とが相対的に近付くところと離れるところができる。このため、SiO層52と電極54との間の距離を一定に保つことが難しく、SiO層52と電極54との間に印加される電圧がSiO層52の面上の位置によって異なるため、SiO層52の面方向における帯電が均一にならないという問題がある。 At the time of manufacturing the electret substrate 50 ′, in the charging step shown in FIG. 8C, an attractive force, which is an electrostatic force, acts between the electrode 54 serving as the negative electrode and the SiO 2 layer 52 serving as the charging layer. Since there is a gap between the SiO 2 layer 52 and the electrode 54 facing the SiO 2 layer 52, the SiO 2 layer 52 and the electrode 54 are relatively close to each other on the surface of the SiO 2 layer 52 by this attractive force. You can leave. For this reason, it is difficult to keep the distance between the SiO 2 layer 52 and the electrode 54 constant, and the voltage applied between the SiO 2 layer 52 and the electrode 54 differs depending on the position on the surface of the SiO 2 layer 52. Therefore, there is a problem that charging in the surface direction of the SiO 2 layer 52 is not uniform.

そこで、本発明は、エレクトレット基板の帯電層の面方向における帯電を均一化することを目的とする。   Accordingly, an object of the present invention is to make the charging in the surface direction of the charging layer of the electret substrate uniform.

帯電部と対向電極との間の静電的な相互作用を利用して電力と動力の間の変換を行う電気機械変換器の帯電部を構成するエレクトレット基板の製造方法であって、Si基板の表面に形成されアルカリ金属の正イオンを含有するSiO層と、負極となる電極とを、絶縁体を介して対向配置する工程と、Si基板を正極として、負極となる電極とSi基板との間に電圧を印加することによりSiO層を帯電させる工程とを有することを特徴とする製造方法が提供される。 A method of manufacturing an electret substrate that constitutes a charging unit of an electromechanical converter that performs conversion between electric power and power using electrostatic interaction between a charging unit and a counter electrode. A step of disposing an SiO 2 layer formed on the surface and containing alkali metal positive ions and an electrode serving as a negative electrode through an insulator; and an electrode serving as a negative electrode and an Si substrate formed using an Si substrate as a positive electrode And a step of charging the SiO 2 layer by applying a voltage therebetween.

上記の対向配置する工程では、上記の絶縁体として、SiO層側の表面に凹凸を有する絶縁体をSiO層に接触させて配置することが好ましい。 In the step of opposing arrangement, it is preferable that an insulator having an unevenness on the surface on the SiO 2 layer side is arranged in contact with the SiO 2 layer as the insulator.

上記の製造方法では、絶縁体は、真空の誘電率よりも大きな誘電率を有する誘電体であることが好ましく、石英ガラス、アルミナまたはジルコニアであることが好ましい。   In the above manufacturing method, the insulator is preferably a dielectric having a dielectric constant larger than that of vacuum, and is preferably quartz glass, alumina, or zirconia.

上記の製造方法では、凹凸を有する絶縁体はすりガラスであることが好ましい。また、上記の対向配置する工程では、上記の絶縁体として、負極となる電極とSiO層との間に複数枚の層状の絶縁体を重ねて配置することが好ましい。 In said manufacturing method, it is preferable that the insulator which has an unevenness | corrugation is ground glass. Further, in the above-described opposing arrangement step, it is preferable to arrange a plurality of layered insulators as the insulators between the electrode serving as the negative electrode and the SiO 2 layer.

本発明によれば、エレクトレット基板の帯電層の面方向における帯電が均一化する。   According to the present invention, the electrification of the electret substrate in the surface direction of the charging layer is made uniform.

エレクトレット基板50の製造工程を示す模式的な断面図である。5 is a schematic cross-sectional view showing a manufacturing process of the electret substrate 50. FIG. 帯電工程で用いられる絶縁体53の算術表面粗さと製造されたエレクトレット基板50の表面電位との関係を示すグラフである。It is a graph which shows the relationship between the arithmetic surface roughness of the insulator 53 used at a charging process, and the surface potential of the manufactured electret board | substrate 50. FIG. 2枚の絶縁体53A,53Bを用いる場合の帯電工程を示す断面図である。It is sectional drawing which shows the charging process in the case of using the two insulators 53A and 53B. 電気機械変換器1の概略構成図である。1 is a schematic configuration diagram of an electromechanical converter 1. FIG. 電気機械変換器1内のアクチュエータ10の斜視図である。FIG. 2 is a perspective view of an actuator 10 in the electromechanical transducer 1. 他の電気機械変換器2の概略構成図である。FIG. 6 is a schematic configuration diagram of another electromechanical converter 2. 電気機械変換器2内の発電部10’の斜視図である。4 is a perspective view of a power generation unit 10 ′ in the electromechanical converter 2. FIG. 従来のエレクトレット基板50’の製造工程を示す模式的な断面図である。It is typical sectional drawing which shows the manufacturing process of the conventional electret board | substrate 50 '.

以下、図面を参照して、エレクトレット基板の製造方法について詳細に説明する。ただし、本発明は図面または以下に記載される実施形態には限定されないことを理解されたい。   Hereinafter, an electret substrate manufacturing method will be described in detail with reference to the drawings. However, it should be understood that the present invention is not limited to the drawings or the embodiments described below.

図1(A)〜図1(E)は、エレクトレット基板50の製造工程を示す模式的な断面図である。   FIG. 1A to FIG. 1E are schematic cross-sectional views showing the manufacturing process of the electret substrate 50.

エレクトレット基板50は、図1(A)に示すSi基板51を用いて作製される。Si基板51としては、ドーピングされていて導通するものを使用する。Si基板51の厚さは、例えば200〜600μm程度あればよい。   The electret substrate 50 is manufactured using the Si substrate 51 shown in FIG. As the Si substrate 51, a conductive substrate that is doped is used. The thickness of the Si substrate 51 may be about 200 to 600 μm, for example.

エレクトレット基板50の製造時には、最初に、例えば、K+イオンを含む雰囲気中でSi基板51の表面を熱酸化させて、図1(B)に示すように、K+イオンを含有するSiO層52をSi基板51の上面に形成する(熱酸化工程)。熱酸化は、Si基板51を熱酸化炉の中に入れ、例えば1000℃程度の温度下で、水酸化カリウム(KOH)の水溶液内に窒素ガスを通過させて(バブリング)、KOHの蒸気と窒素ガスを炉内に導入することにより行われる。これにより、K+イオンが内部に浸透した酸化膜であるSiO層52が、Si基板51の表面に形成される。SiO層52の厚さは、例えば数μm程度である。SiO層52はSi基板51の上層部のみに形成され、Si基板51の下層部はSiのままである。 At the time of manufacturing the electret substrate 50, first, for example, the surface of the Si substrate 51 is thermally oxidized in an atmosphere containing K + ions to form an SiO 2 layer 52 containing K + ions as shown in FIG. It is formed on the upper surface of the Si substrate 51 (thermal oxidation step). In the thermal oxidation, the Si substrate 51 is placed in a thermal oxidation furnace, and nitrogen gas is passed through an aqueous solution of potassium hydroxide (KOH) (bubbling) at a temperature of about 1000 ° C., for example. This is done by introducing gas into the furnace. As a result, an SiO 2 layer 52 that is an oxide film into which K + ions have permeated is formed on the surface of the Si substrate 51. The thickness of the SiO 2 layer 52 is, for example, about several μm. The SiO 2 layer 52 is formed only on the upper layer portion of the Si substrate 51, and the lower layer portion of the Si substrate 51 remains Si.

なお、熱酸化によりSi基板51の下面側にも酸化膜が形成されるが、図1(B)では、下面側の酸化膜は図示していない。下面側の酸化膜は、切削またはエッチングにより除去してもよいし、そのまま残してもよい。また、熱酸化に限らず、公知の別の方法で、K+イオンを含有するSiO層52をSi基板51の上面に形成してもよい。 Although an oxide film is also formed on the lower surface side of the Si substrate 51 by thermal oxidation, the oxide film on the lower surface side is not shown in FIG. The oxide film on the lower surface side may be removed by cutting or etching, or may be left as it is. In addition to the thermal oxidation, the SiO 2 layer 52 containing K + ions may be formed on the upper surface of the Si substrate 51 by another known method.

続いて、図1(C)に示すように、K+イオンを含有するSiO層52の上に、絶縁体53を挟んで、負極となる電極54を配置する(配置工程)。言い換えると、負極となる電極54とSiO層52とを、絶縁体53を介して対向配置する。絶縁体53は、真空の誘電率よりも大きな誘電率を有する誘電体であることが好ましく、具体的には、石英ガラス、アルミナまたはジルコニアであることが好ましい。例えば、絶縁体53として、厚さ100μm程度の石英ガラスを用いてもよい。絶縁体53にはある程度の厚さが必要であり、絶縁体53の厚さは、SiO層52の厚さよりも大きいことが好ましい。 Subsequently, as shown in FIG. 1C, an electrode 54 serving as a negative electrode is disposed on the SiO 2 layer 52 containing K + ions with an insulator 53 interposed therebetween (arrangement step). In other words, the electrode 54 serving as the negative electrode and the SiO 2 layer 52 are disposed to face each other with the insulator 53 interposed therebetween. The insulator 53 is preferably a dielectric having a dielectric constant larger than that of vacuum, and specifically, quartz glass, alumina, or zirconia is preferable. For example, quartz glass having a thickness of about 100 μm may be used as the insulator 53. The insulator 53 needs to have a certain thickness, and the thickness of the insulator 53 is preferably larger than the thickness of the SiO 2 layer 52.

そして、図1(D)に示すように、Si基板51を正極(GND)に接続し、負極となる電極54とSi基板51との間に例えば1000V程度の電圧を印加することにより、SiO層52を帯電させる(帯電工程)。その際、例えばSi基板51をヒータ55に接触させて、ヒータ55で例えば500℃程度に加熱しながら電圧を印加する。これにより、SiO層52内のK+イオンはSiO層52の上面に移動し、その上面からSi基板51の外部に飛散するので、SiO層52の内部には負電荷が残り、結果としてSiO層52は負に帯電する。 Then, as shown in FIG. 1D, the Si substrate 51 is connected to the positive electrode (GND), and a voltage of about 1000 V, for example, is applied between the electrode 54 serving as the negative electrode and the Si substrate 51, so that SiO 2 The layer 52 is charged (charging process). At that time, for example, the Si substrate 51 is brought into contact with the heater 55, and a voltage is applied while the heater 55 is heated to, for example, about 500 ° C. Thus, K + ions in the SiO 2 layer 52 is moved to the upper surface of the SiO 2 layer 52, since scattered from the upper surface to the outside of the Si substrate 51, the interior of the SiO 2 layer 52 remaining negative charge, as a result The SiO 2 layer 52 is negatively charged.

以上の各工程により、図1(E)に示すエレクトレット基板50が完成する。エレクトレット基板50の使用時には、例えばSi基板51が接地(GNDに接続)される。   Through the above steps, the electret substrate 50 shown in FIG. 1E is completed. When the electret substrate 50 is used, for example, the Si substrate 51 is grounded (connected to GND).

上記の製造方法では、SiO層52とそれに対向する電極54との間に絶縁体53を配置することにより、SiO層52と電極54との間に引力が作用しても、両者の相対移動が絶縁体53によって妨げられるため、帯電中にSiO層52と電極54との距離が一定に保たれる。これにより、SiO層52と電極54との間に加わる電圧がSiO層52の面上の位置によらず一定になるため、帯電が均一になる。 In the above manufacturing method, even if an attractive force acts between the SiO 2 layer 52 and the electrode 54 by disposing the insulator 53 between the SiO 2 layer 52 and the electrode 54 facing the SiO 2 layer 52, the relative Since the movement is hindered by the insulator 53, the distance between the SiO 2 layer 52 and the electrode 54 is kept constant during charging. As a result, the voltage applied between the SiO 2 layer 52 and the electrode 54 becomes constant regardless of the position on the surface of the SiO 2 layer 52, so that charging becomes uniform.

また、SiO層52と電極54との間に絶縁体53として真空よりも大きな誘電率を有する誘電体を配置することにより、絶縁体53を配置しない場合と比べて、帯電工程でSiO層52に印加される電圧が高くなる。このため、上記の製造方法で得られたエレクトレット基板50では、絶縁体53を配置しない場合と比べて、SiO層52の表面電位(エレクトレット基板50の基台部分であるSi基板51と、帯電層であるSiO層52との間の電位差)が高くなる。電気機械変換器にエレクトレットを利用するためには、エレクトレットの表面電位はなるべく高いことが望ましく、上記の製造方法によれば、電気機械変換器での使用に適したエレクトレット基板50を製造することができる。 Further, by disposing a dielectric material having a dielectric constant greater than the vacuum as an insulator 53 between the SiO 2 layer 52 and the electrode 54, as compared with the case not disposing the insulator 53, the SiO 2 layer in the charging step The voltage applied to 52 increases. Therefore, the electret substrate 50 obtained in the above production method, as compared with the case not disposing the insulator 53, the Si substrate 51 is a base portion of the surface potential (electret substrate 50 of SiO 2 layer 52, the charge The potential difference between the layer and the SiO 2 layer 52 is increased. In order to use the electret for the electromechanical converter, it is desirable that the surface potential of the electret is as high as possible. According to the above manufacturing method, the electret substrate 50 suitable for use in the electromechanical converter can be manufactured. it can.

なお、上記の配置工程では、SiO層52側の表面に凹凸を有する絶縁体をSiO層52に接触させて配置することが好ましい。例えば、絶縁体53として、表面が平坦な石英ガラスを用いるよりも、表面に凹凸がある石英ガラス(すりガラス)を用いた方が、製造されたエレクトレット基板50におけるSiO層52の表面電位は高くなる。これは、絶縁体53の表面に凹凸があれば、SiO層52と絶縁体53との間にわずかな隙間ができるため、帯電工程においてK+イオンがSiO層52の上面からSi基板51の外部に飛散しやすくなるためであると考えられる。 In the above arrangement step, it is preferable that an insulator having irregularities on the surface on the SiO 2 layer 52 side is arranged in contact with the SiO 2 layer 52. For example, the surface potential of the SiO 2 layer 52 in the manufactured electret substrate 50 is higher when quartz glass (ground glass) having irregularities on the surface is used as the insulator 53 than when quartz glass having a flat surface is used. Become. This is because, if the surface of the insulator 53 is uneven, a slight gap is formed between the SiO 2 layer 52 and the insulator 53, so that K + ions from the upper surface of the SiO 2 layer 52 from the upper surface of the SiO 2 layer 52 in the charging process. This is thought to be because it tends to scatter outside.

図2は、帯電工程で用いられる絶縁体53の算術表面粗さと製造されたエレクトレット基板50の表面電位との関係を示すグラフである。このグラフは、SiO層52の厚さを1μmとし、SiO層52と電極54との間に絶縁体53として厚さ100μmの石英ガラスを挟み、Si基板51が0V(GND)、電極54が−500Vとなるように電圧を印加した場合の実験結果を示す。グラフの縦軸は、エレクトレット基板50のSiO層52の表面電位V(単位V)であり、グラフの横軸は、帯電工程でSiO層52に接触した側の表面における絶縁体53の算術平均粗さRa(単位μm)である。 FIG. 2 is a graph showing the relationship between the arithmetic surface roughness of the insulator 53 used in the charging step and the surface potential of the manufactured electret substrate 50. This graph shows that the thickness of the SiO 2 layer 52 is 1 μm, quartz glass having a thickness of 100 μm is sandwiched between the SiO 2 layer 52 and the electrode 54 as the insulator 53, the Si substrate 51 is at 0 V (GND), and the electrode 54 The experimental result at the time of applying a voltage so that it may become -500V is shown. The vertical axis of the graph is the surface potential V (unit V) of the SiO 2 layer 52 of the electret substrate 50, and the horizontal axis of the graph is the arithmetic of the insulator 53 on the surface in contact with the SiO 2 layer 52 in the charging step. The average roughness Ra (unit: μm).

一般に、エレクトレットの表面電位Vは帯電層の電荷密度および膜厚に比例するので、帯電層であるSiO層52の厚さを不変にした場合には、表面電位V(より正確には、Si基板51を基準としたSiO層52の電位の絶対値)は、SiO層52の帯電量に比例して増加する。なお、図2のグラフでは、表面電位Vの符号は負であるが、電位差の絶対値を考慮し、縦軸の下方向に向かうほど電位は増加すると表現する。図2の実験結果から、絶縁体53の表面の算術平均粗さRaに比例してSiO層52の帯電量が増加し、結果としてその表面電位Vも増加することがわかる。したがって、エレクトレットの表面電位Vを高めるためには、絶縁体53の表面の算術平均粗さRaはなるべく大きい方が好ましい。 In general, the surface potential V of the electret is proportional to the charge density and film thickness of the charging layer. Therefore, when the thickness of the SiO 2 layer 52 that is the charging layer is not changed, the surface potential V (more precisely, Si The absolute value of the potential of the SiO 2 layer 52 with respect to the substrate 51 increases in proportion to the charge amount of the SiO 2 layer 52. In the graph of FIG. 2, the sign of the surface potential V is negative, but the absolute value of the potential difference is considered, and the potential increases as it goes downward in the vertical axis. From the experimental results of FIG. 2, it can be seen that the charge amount of the SiO 2 layer 52 increases in proportion to the arithmetic average roughness Ra of the surface of the insulator 53, and as a result, the surface potential V also increases. Therefore, in order to increase the surface potential V of the electret, the arithmetic average roughness Ra of the surface of the insulator 53 is preferably as large as possible.

なお、算術平均粗さRaとともに表面電位Vが際限なく増加することはなく、図示していないRa>0.3μmの範囲まで算術平均粗さRaを大きくした場合には、表面電位Vはある限界値に収束すると考えられる。しかしながら、図2では、絶縁体53として厚さ100μmの石英ガラスを用いて実験できた範囲内のデータを示している。   It should be noted that the surface potential V does not endlessly increase with the arithmetic average roughness Ra, and when the arithmetic average roughness Ra is increased to a range of Ra> 0.3 μm (not shown), the surface potential V has a certain limit. It seems to converge to the value. However, FIG. 2 shows data within a range in which an experiment was performed using quartz glass having a thickness of 100 μm as the insulator 53.

図3は、2枚の絶縁体53A,53Bを用いる場合の帯電工程を示す断面図である。上記の配置工程では、図3に示すように、SiO層52と電極54の間に複数枚の層状の絶縁体53A,53Bを重ねて配置してもよく、その上で、図1(D)に示したものと同様の帯電工程を行ってSiO層52を帯電させてもよい。なお、SiO層52と電極54の間に配置される絶縁体は、2枚に限らず、3枚以上であってもよい。 FIG. 3 is a cross-sectional view showing a charging process when two insulators 53A and 53B are used. In the above arrangement step, as shown in FIG. 3, a plurality of layered insulators 53A, 53B may be arranged between the SiO 2 layer 52 and the electrode 54, and then, FIG. The SiO 2 layer 52 may be charged by performing a charging step similar to that shown in FIG. The number of insulators disposed between the SiO 2 layer 52 and the electrode 54 is not limited to two, and may be three or more.

図3に示した例において、例えば、SiO層52側の絶縁体53Aには、SiO層52側の表面に凹凸を有するすりガラスを使用し、絶縁体53Bには、すりガラス以外の絶縁体(例えば、表面が平坦な石英ガラス)を使用してもよい。ただし、エレクトレットの表面電位Vを高めるためには、特に、絶縁体53(絶縁体53A,53B)を2枚のすりガラスで構成し、SiO層52、絶縁体53A、絶縁体53Bおよび電極54をこれらの順で厚さ方向に重ねて配置することが好ましい。特に、すりガラスを用いる場合には、1枚ではなく、図3に示すように複数枚をSiO層52と電極54の間に配置する方がより好ましい。実際、帯電工程で絶縁体53として2枚のすりガラスを用いた場合には、SiO層52と電極54の間に何も配置しない場合と比べて、SiO層52の帯電量が10倍程度多くなり、それに応じてエレクトレットの表面電位Vも高くなる。 In the example shown in FIG. 3, for example, the insulator 53A of SiO 2 layer 52 side, using a ground glass having irregularities on the surface of the SiO 2 layer 52 side, the insulator 53B, other than ground glass insulator ( For example, quartz glass having a flat surface may be used. However, in order to increase the surface potential V of the electret, in particular, the insulator 53 (insulators 53A and 53B) is made of two pieces of ground glass, and the SiO 2 layer 52, the insulator 53A, the insulator 53B, and the electrode 54 are formed. It is preferable to arrange them in the thickness direction in this order. In particular, when frosted glass is used, it is more preferable to dispose a plurality of sheets between the SiO 2 layer 52 and the electrode 54 as shown in FIG. Actually, when two pieces of ground glass are used as the insulator 53 in the charging process, the charge amount of the SiO 2 layer 52 is about 10 times that in the case where nothing is disposed between the SiO 2 layer 52 and the electrode 54. Accordingly, the surface potential V of the electret increases accordingly.

すりガラスは、その作り方に起因して、厚さ方向に貫通するクラックが生じている場合があるため、SiO層52と電極54の間に配置されるすりガラスが1枚だけの場合には、絶縁性が確保されないおそれがある。しかしながら、すりガラスを2枚重ねて配置すれば、部分的にクラックが生じていたとしても、そうしたクラックがSiO層52から電極54まではつながる可能性は低くなる。このような理由から、絶縁体53として複数枚のすりガラスを用いることで、SiO層52と電極54の間に何も配置しない場合および両者の間に1枚だけすりガラスを配置する場合と比べて、エレクトレットの表面電位Vが高くなると考えられる。 Since the ground glass may have cracks penetrating in the thickness direction due to the method of making the ground glass, if only one ground glass is disposed between the SiO 2 layer 52 and the electrode 54, the ground glass is insulated. May not be secured. However, if two pieces of frosted glass are arranged, even if a crack is partially generated, the possibility that such a crack is connected from the SiO 2 layer 52 to the electrode 54 becomes low. For this reason, by using a plurality of ground glass as the insulator 53, compared to the case where nothing is disposed between the SiO 2 layer 52 and the electrode 54 and the case where only one ground glass is disposed between the two. The surface potential V of the electret is considered to be high.

なお、エレクトレット基板を製造するための正イオンは、必ずしもK+イオンでなくてもよい。すなわち、上記した製造方法の熱酸化工程では、水酸化カリウム水溶液の代わりに、例えばNa+(ナトリウムイオン)など、K+イオン以外のアルカリ金属の正イオン(アルカリイオン)を含有する水溶液を用いてもよい。   The positive ions for manufacturing the electret substrate are not necessarily K + ions. That is, in the thermal oxidation step of the manufacturing method described above, an aqueous solution containing positive ions (alkali ions) of alkali metals other than K + ions such as Na + (sodium ions) may be used instead of the potassium hydroxide aqueous solution. .

以下では、エレクトレット基板50を利用した電気機械変換器の例を説明する。   Below, the example of the electromechanical converter using the electret board | substrate 50 is demonstrated.

図4は、電気機械変換器1の概略構成図である。また、図5は、電気機械変換器1内のアクチュエータ10の斜視図である。電気機械変換器1は、アクチュエータ10および駆動部20を有する。アクチュエータ10は、主要な構成要素として、回転軸11、回転部材12、固定基板13、エレクトレット部14および対向電極15,16を有する。電気機械変換器1は、駆動部20に入力された電気信号をもとに、エレクトレット部14と対向電極15,16との間の静電気力を利用して回転部材12を回転させることにより電力から動力を取り出す駆動装置(モータ)である。   FIG. 4 is a schematic configuration diagram of the electromechanical converter 1. FIG. 5 is a perspective view of the actuator 10 in the electromechanical transducer 1. The electromechanical converter 1 includes an actuator 10 and a drive unit 20. The actuator 10 includes a rotating shaft 11, a rotating member 12, a fixed substrate 13, an electret part 14, and counter electrodes 15 and 16 as main components. The electromechanical converter 1 uses electric power input to the drive unit 20 to generate electric power by rotating the rotating member 12 using electrostatic force between the electret unit 14 and the counter electrodes 15 and 16. It is a drive device (motor) which takes out motive power.

回転軸11は、回転部材12の回転中心となる軸である。その上下端は、軸受けを介して、図示しない電気機械変換器1の筐体に固定されている。   The rotation shaft 11 is an axis that is the rotation center of the rotation member 12. The upper and lower ends are fixed to the housing of the electromechanical transducer 1 (not shown) via bearings.

回転部材12は、例えば、シリコン基板で構成され、円板状の形状を有し、その中心で回転軸11に接続している。回転部材12は、駆動部20に入力された電気信号に応じてエレクトレット部14と対向電極15,16との間で発生する静電気力により、回転軸11の周りを、図5の矢印C方向(すなわち、時計回りおよび反時計回り)に回転可能である。回転部材12には、重量を軽くするために、円周方向に沿って等間隔に、略台形状の複数の貫通孔122が形成されている。   The rotating member 12 is made of, for example, a silicon substrate, has a disk shape, and is connected to the rotating shaft 11 at the center thereof. The rotating member 12 moves around the rotating shaft 11 in the direction indicated by the arrow C in FIG. 5 by electrostatic force generated between the electret unit 14 and the counter electrodes 15 and 16 in accordance with an electric signal input to the driving unit 20. That is, it can be rotated clockwise and counterclockwise. A plurality of substantially trapezoidal through holes 122 are formed in the rotating member 12 at equal intervals along the circumferential direction in order to reduce the weight.

固定基板13は、ガラスエポキシ基板などの周知の基板材料で構成された部材である。固定基板13は、例えば円板状の形状を有し、回転部材12の下側で回転部材12に対向して配置され、その中心を回転軸11が貫通している。ただし、固定基板13は、回転部材12とは異なり、回転可能な部材ではなく、電気機械変換器1の筐体に対して固定されている。   The fixed substrate 13 is a member made of a known substrate material such as a glass epoxy substrate. The fixed substrate 13 has, for example, a disk shape, is disposed on the lower side of the rotating member 12 so as to face the rotating member 12, and the rotating shaft 11 passes through the center thereof. However, unlike the rotating member 12, the fixed substrate 13 is not a rotatable member but is fixed to the housing of the electromechanical converter 1.

エレクトレット部14は、帯電層を備えた帯電部の一例であり、固定基板13に対向する回転部材12の下面121に形成されている。アクチュエータ10では、回転部材12の下面121に、略台形状の複数のエレクトレット部14が、略台形状の貫通孔122を間に挟んで、回転部材12の回転方向に間隔を空けて回転軸11の周りに等間隔に配置されている。各エレクトレット部14は、図1(E)に示したエレクトレット基板50で構成されており、SiO層52が対向電極15,16に対向するように配置され、例えばSi基板51が接地されている。 The electret unit 14 is an example of a charging unit including a charging layer, and is formed on the lower surface 121 of the rotating member 12 facing the fixed substrate 13. In the actuator 10, a plurality of substantially trapezoid electret portions 14 are sandwiched between the substantially trapezoidal through holes 122 on the lower surface 121 of the rotating member 12, and the rotating shaft 11 is spaced apart in the rotational direction of the rotating member 12. Are arranged at equal intervals around. Each electret unit 14 is constituted by an electret substrate 50 shown in FIG. 1 (E), it is arranged so as SiO 2 layer 52 is opposed to the counter electrodes 15 and 16, for example, Si substrate 51 is grounded .

対向電極15,16は、回転部材12に対向する固定基板13の上面131に形成されている。アクチュエータ10では、固定基板13の上面131に、エレクトレット部14と同じ略台形状の対向電極15,16が、回転軸11の周りに交互に配置されている。エレクトレット部14と対向電極15の個数、およびエレクトレット部14と対向電極16の個数は、それぞれ同じである。   The counter electrodes 15 and 16 are formed on the upper surface 131 of the fixed substrate 13 that faces the rotating member 12. In the actuator 10, the substantially trapezoidal counter electrodes 15 and 16, which are the same as the electret portions 14, are alternately arranged around the rotation shaft 11 on the upper surface 131 of the fixed substrate 13. The number of electret parts 14 and counter electrodes 15 and the number of electret parts 14 and counter electrodes 16 are the same.

なお、エレクトレット部14は回転部材12と固定基板13のいずれか一方に配置し、対向電極15,16は回転部材12と固定基板13のうちの他方に配置すればよい。このため、上記とは逆に、エレクトレット部14を固定基板13の上面131に配置し、対向電極15,16を回転部材12の下面121に配置してもよい。   The electret portion 14 may be disposed on one of the rotating member 12 and the fixed substrate 13, and the counter electrodes 15 and 16 may be disposed on the other of the rotating member 12 and the fixed substrate 13. Therefore, contrary to the above, the electret portion 14 may be disposed on the upper surface 131 of the fixed substrate 13, and the counter electrodes 15 and 16 may be disposed on the lower surface 121 of the rotating member 12.

駆動部20は、アクチュエータ10を駆動するための回路であり、クロック21および比較器22,23を有する。駆動部20は、極性が交互に切り替わる電圧を複数の対向電極15,16に印加して、複数のエレクトレット部14と複数の対向電極15,16との間で発生する静電気力により回転部材12を回転させる。   The drive unit 20 is a circuit for driving the actuator 10 and includes a clock 21 and comparators 22 and 23. The drive unit 20 applies a voltage whose polarity is alternately switched to the plurality of counter electrodes 15 and 16, and causes the rotating member 12 to be driven by the electrostatic force generated between the plurality of electret units 14 and the plurality of counter electrodes 15 and 16. Rotate.

クロック21の出力は比較器22,23の入力に接続され、比較器22の出力は複数の対向電極15に、比較器23の出力は複数の対向電極16に、それぞれ電気配線を介して接続されている。比較器22,23は、それぞれクロック21からの入力信号の電位と接地電位とを比較し、その結果を2値で出力するが、比較器22,23の出力信号は互いに逆の符号である。クロック21からの入力信号がHのときには、対向電極15は+V、対向電極16は−Vの電位になり、入力信号がLのときには、対向電極15は−V、対向電極16は+Vの電位になる。こうして、極性が交互に切り替わる電圧を駆動部20が対向電極15と対向電極16の間に印加することにより、回転部材12を回転させることができる。   The output of the clock 21 is connected to the inputs of the comparators 22 and 23, the output of the comparator 22 is connected to the plurality of counter electrodes 15, and the output of the comparator 23 is connected to the plurality of counter electrodes 16 via electric wiring. ing. The comparators 22 and 23 respectively compare the potential of the input signal from the clock 21 with the ground potential, and output the result as a binary value, but the output signals of the comparators 22 and 23 have opposite signs. When the input signal from the clock 21 is H, the counter electrode 15 has a potential of + V and the counter electrode 16 has a potential of −V. When the input signal is L, the counter electrode 15 has a potential of −V and the counter electrode 16 has a potential of + V. Become. In this way, the driving member 20 applies a voltage between the counter electrode 15 and the counter electrode 16 so that the polarity is switched alternately, whereby the rotating member 12 can be rotated.

図6は、他の電気機械変換器2の概略構成図である。また、図7は、電気機械変換器2内の発電部10’の斜視図である。電気機械変換器2は、発電部10’および蓄電部30を有する。発電部10’は、主要な構成要素として、回転軸11、回転部材12、固定基板13、複数のエレクトレット部14、複数の対向電極15,16および回転錘17を有する。電気機械変換器2は、外部環境の運動エネルギーを用いて回転部材12を回転させ、発電部10’内で静電誘導により静電気を発生させることで動力から電力を取り出す発電装置である。   FIG. 6 is a schematic configuration diagram of another electromechanical transducer 2. FIG. 7 is a perspective view of the power generation unit 10 ′ in the electromechanical converter 2. The electromechanical converter 2 includes a power generation unit 10 ′ and a power storage unit 30. The power generation unit 10 ′ includes a rotating shaft 11, a rotating member 12, a fixed substrate 13, a plurality of electret units 14, a plurality of counter electrodes 15 and 16, and a rotating weight 17 as main components. The electromechanical converter 2 is a power generation device that extracts electric power from power by rotating the rotating member 12 using kinetic energy of the external environment and generating static electricity by electrostatic induction in the power generation unit 10 ′.

発電部10’の構成要素のうち、回転軸11、回転部材12、固定基板13、エレクトレット部14および対向電極15,16は、アクチュエータ10のものと同じである。電気機械変換器1と共通するこれらの構成要素についての重複する説明は省略する。電気機械変換器2は、電気機械変換器1のアクチュエータ10に代えて蓄電部30を有し、電気機械変換器2の対向電極15,16は、それぞれ電気配線を介して蓄電部30に接続されている。   Among the components of the power generation unit 10 ′, the rotating shaft 11, the rotating member 12, the fixed substrate 13, the electret unit 14, and the counter electrodes 15 and 16 are the same as those of the actuator 10. A duplicate description of these components common to the electromechanical converter 1 is omitted. The electromechanical converter 2 includes a power storage unit 30 in place of the actuator 10 of the electromechanical converter 1, and the counter electrodes 15 and 16 of the electromechanical converter 2 are connected to the power storage unit 30 via electric wiring, respectively. ing.

回転錘17は、回転軸11の周りを図7の矢印C方向に回転可能な、重量バランスの偏りを有する錘であり、回転部材12の上側に配置されている。回転錘17は、例えば電気機械変換器2を携帯する人体の運動または電気機械変換器2が取り付けられた機械などの振動によって回転駆動されることで、回転部材12を矢印C方向に回転させる。なお、回転軸11に回転錘17を取り付ける代わりに、回転部材12に錘を取り付けて、回転部材12自体を回転錘としてもよい。   The rotating weight 17 is a weight having a weight balance bias that can rotate around the rotating shaft 11 in the direction of arrow C in FIG. 7, and is disposed on the upper side of the rotating member 12. The rotary weight 17 is rotated by, for example, the movement of a human body carrying the electromechanical transducer 2 or the vibration of a machine to which the electromechanical transducer 2 is attached, thereby rotating the rotary member 12 in the direction of arrow C. Instead of attaching the rotating weight 17 to the rotating shaft 11, the rotating member 12 itself may be used as a rotating weight by attaching a weight to the rotating member 12.

回転錘17が回転駆動されると、それに伴い、回転部材12が回転して、エレクトレット部14と対向電極15,16の間の重なり面積が増減する。例えば、エレクトレット部14の内面に負電荷が保持されているとすると、回転部材12の回転に伴い、対向電極15,16に引き寄せられる正電荷が増減して、対向電極15と対向電極16の間に交流電流が発生する。このようにして電流を発生させることにより、発電部10’は静電誘導を利用した発電を行う。   When the rotary weight 17 is driven to rotate, the rotary member 12 rotates accordingly, and the overlapping area between the electret portion 14 and the counter electrodes 15 and 16 increases or decreases. For example, if a negative charge is held on the inner surface of the electret portion 14, the positive charge drawn to the counter electrodes 15 and 16 increases and decreases with the rotation of the rotating member 12, and the gap between the counter electrode 15 and the counter electrode 16 is increased. AC current is generated. By generating a current in this manner, the power generation unit 10 ′ performs power generation using electrostatic induction.

蓄電部30は、整流回路31および二次電池32を有し、回転部材12の回転に応じて複数のエレクトレット部14と複数の対向電極15,16との間で静電誘導により発生した電力を蓄積する。対向電極15と対向電極16からの出力は整流回路31に接続され、整流回路31は二次電池32に接続されている。整流回路31は、4個のダイオードを有するブリッジ式の回路であり、対向電極15と対向電極16の間で生成された電流を整流する。二次電池32は、リチウム二次電池などの充放電可能な電池であり、発電部10’によって発電された電力を蓄積し、図示しない駆動対象の回路にその電力を供給する。   The power storage unit 30 includes a rectifier circuit 31 and a secondary battery 32, and generates electric power generated by electrostatic induction between the plurality of electret units 14 and the plurality of counter electrodes 15 and 16 according to the rotation of the rotating member 12. accumulate. Outputs from the counter electrode 15 and the counter electrode 16 are connected to a rectifier circuit 31, and the rectifier circuit 31 is connected to a secondary battery 32. The rectifier circuit 31 is a bridge-type circuit having four diodes, and rectifies the current generated between the counter electrode 15 and the counter electrode 16. The secondary battery 32 is a chargeable / dischargeable battery such as a lithium secondary battery, stores the power generated by the power generation unit 10 ′, and supplies the power to a circuit to be driven (not shown).

1,2 電気機械変換器
10 アクチュエータ
10’ 発電部
11 回転軸
12 回転部材
13 固定基板
14 エレクトレット部
15,16 対向電極
20 駆動部
30 蓄電部
50 エレクトレット基板
51 Si基板
52 SiO
53,53A,53B 絶縁体
54 電極
55 ヒータ
DESCRIPTION OF SYMBOLS 1, 2 Electromechanical converter 10 Actuator 10 'Power generation part 11 Rotating shaft 12 Rotating member 13 Fixed board 14 Electret part 15, 16 Opposite electrode 20 Drive part 30 Power storage part 50 Electret board 51 Si substrate 52 SiO 2 layer 53, 53A, 53B Insulator 54 Electrode 55 Heater

Claims (6)

帯電部と対向電極との間の静電的な相互作用を利用して電力と動力の間の変換を行う電気機械変換器の前記帯電部を構成するエレクトレット基板の製造方法であって、
Si基板の表面に形成されアルカリ金属の正イオンを含有するSiO層と、負極となる電極とを、絶縁体を介して対向配置する工程と、
前記Si基板を正極として、前記負極となる電極と前記Si基板との間に電圧を印加することにより前記SiO層を帯電させる工程と、
を有することを特徴とする製造方法。
A method of manufacturing an electret substrate constituting the charging unit of an electromechanical converter that performs conversion between electric power and power using electrostatic interaction between a charging unit and a counter electrode,
A step of disposing an SiO 2 layer formed on the surface of the Si substrate and containing alkali metal positive ions, and an electrode serving as a negative electrode through an insulator;
Charging the SiO 2 layer by applying a voltage between the Si substrate as the positive electrode and the electrode serving as the negative electrode and the Si substrate;
The manufacturing method characterized by having.
前記対向配置する工程では、前記絶縁体として、前記SiO層側の表面に凹凸を有する絶縁体を前記SiO層に接触させて配置する、請求項1に記載の製造方法。 2. The manufacturing method according to claim 1, wherein, in the step of opposingly arranging, an insulator having an unevenness on a surface on the SiO 2 layer side is arranged in contact with the SiO 2 layer as the insulator. 前記絶縁体は、真空の誘電率よりも大きな誘電率を有する誘電体である、請求項1または2に記載の製造方法。   The manufacturing method according to claim 1, wherein the insulator is a dielectric having a dielectric constant larger than a dielectric constant of a vacuum. 前記絶縁体は石英ガラス、アルミナまたはジルコニアである、請求項3に記載の製造方法。   The manufacturing method according to claim 3, wherein the insulator is quartz glass, alumina, or zirconia. 前記凹凸を有する絶縁体はすりガラスである、請求項2に記載の製造方法。   The manufacturing method according to claim 2, wherein the insulator having the unevenness is ground glass. 前記対向配置する工程では、前記絶縁体として、前記負極となる電極と前記SiO層との間に複数枚の層状の絶縁体を重ねて配置する、請求項1〜5のいずれか一項に記載の製造方法。 The counter in the step of arranging said as an insulator, the placing overlapping the insulation of a plurality of layers between the anode and the electrode and the SiO 2 layer, in any one of claims 1 to 5 The manufacturing method as described.
JP2016151452A 2016-08-01 2016-08-01 Method for manufacturing electret substrate Active JP6700139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016151452A JP6700139B2 (en) 2016-08-01 2016-08-01 Method for manufacturing electret substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016151452A JP6700139B2 (en) 2016-08-01 2016-08-01 Method for manufacturing electret substrate

Publications (2)

Publication Number Publication Date
JP2018022726A true JP2018022726A (en) 2018-02-08
JP6700139B2 JP6700139B2 (en) 2020-05-27

Family

ID=61166047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016151452A Active JP6700139B2 (en) 2016-08-01 2016-08-01 Method for manufacturing electret substrate

Country Status (1)

Country Link
JP (1) JP6700139B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113200A (en) * 1973-03-02 1974-10-29
JP2011223869A (en) * 2010-04-12 2011-11-04 Hamilton Sundstrand Corp Motor and device for use in volatile environment, and barrier structure for separating rotor in harsh environment from system rotating the rotor
JP2013013256A (en) * 2011-06-29 2013-01-17 Aoi Electronics Co Ltd Electret film and vibration power generating element using the same
JP2014049557A (en) * 2012-08-30 2014-03-17 Aoi Electronics Co Ltd Manufacturing method of stereoscopic interdigital electret electrode
JP2014107890A (en) * 2012-11-26 2014-06-09 Panasonic Corp Electret element and vibration power generator using the same
JP2017228584A (en) * 2016-06-20 2017-12-28 シチズン時計株式会社 Electret substrate, method of manufacturing the same, and electromechanical transducer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113200A (en) * 1973-03-02 1974-10-29
JP2011223869A (en) * 2010-04-12 2011-11-04 Hamilton Sundstrand Corp Motor and device for use in volatile environment, and barrier structure for separating rotor in harsh environment from system rotating the rotor
JP2013013256A (en) * 2011-06-29 2013-01-17 Aoi Electronics Co Ltd Electret film and vibration power generating element using the same
JP2014049557A (en) * 2012-08-30 2014-03-17 Aoi Electronics Co Ltd Manufacturing method of stereoscopic interdigital electret electrode
JP2014107890A (en) * 2012-11-26 2014-06-09 Panasonic Corp Electret element and vibration power generator using the same
JP2017228584A (en) * 2016-06-20 2017-12-28 シチズン時計株式会社 Electret substrate, method of manufacturing the same, and electromechanical transducer

Also Published As

Publication number Publication date
JP6700139B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP5800707B2 (en) Power generation device and power generation apparatus equipped with the same
JP5305797B2 (en) Electrostatic induction power generation device and manufacturing method thereof
JP6799484B2 (en) Electromechanical transducer and its manufacturing method
WO2011021488A1 (en) Electrostatic induction power generator
JP2016185022A (en) Power generator
JP6707018B2 (en) Electromechanical converter
WO2016086682A1 (en) Method for manufacturing mems torsional electrostatic actuator
US10840826B2 (en) Electromechanical transducer
JP7022683B2 (en) Electrostatic electromechanical converter
JP6700139B2 (en) Method for manufacturing electret substrate
JP6678526B2 (en) Electromechanical transducer
JP2018068065A (en) Electromechanical converter
JP2007151205A (en) Micromotor
US11563386B2 (en) Electromechanical transducer and method for manufacturing same
JP2017184591A (en) Electromechanical converter
JP5876179B2 (en) Power generator
JP6062081B2 (en) Power generator
Tamura et al. Demonstration of Non-Contact Type Vibrational Energy Harvester with Electric Double Layer Electrets
JP2018098833A (en) Electromechanical transducer
JP6221420B2 (en) Electrostatic motor
JP2017228584A5 (en)
RU2499350C1 (en) Piezoelectric dc generator based on casimir effect
JP2018098837A (en) Electromechanical transducer
RU2577767C2 (en) Resonant piezoelectric current generator based on casimir effect
JP2020108278A (en) Rotating member and electromechanical converter including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200430

R150 Certificate of patent or registration of utility model

Ref document number: 6700139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250