JP2018021981A - Liquid optical material and optical element - Google Patents

Liquid optical material and optical element Download PDF

Info

Publication number
JP2018021981A
JP2018021981A JP2016151690A JP2016151690A JP2018021981A JP 2018021981 A JP2018021981 A JP 2018021981A JP 2016151690 A JP2016151690 A JP 2016151690A JP 2016151690 A JP2016151690 A JP 2016151690A JP 2018021981 A JP2018021981 A JP 2018021981A
Authority
JP
Japan
Prior art keywords
liquid
optical material
nonpolar
fine particles
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016151690A
Other languages
Japanese (ja)
Inventor
沙希 小高
Saki Odaka
沙希 小高
龍也 小嶋
Tatsuya Kojima
龍也 小嶋
高橋 崇
Takashi Takahashi
崇 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2016151690A priority Critical patent/JP2018021981A/en
Publication of JP2018021981A publication Critical patent/JP2018021981A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a liquid optical material and an optical element having a high refractive index and excellent various characteristics.SOLUTION: The liquid optical material is constituted by dispersing barium titanate fine particles as ceramic fine particles 13 in diphenyl silicone that is a non-polar liquid, where the barium titanate fine particles have a refractive index of 2.49 that is higher than the refractive index of the diphenyl silicone and higher than 1.41, and have a particle dimeter equal to or smaller than 1/10 of a wavelength of light to be transmitted, for example, several nanometers to 100 nm. A liquid lens is constituted by: preparing assemblies of glass substrates 1, 2 on which transparent electrodes 3, 4, insulation films 5, 6 and water-repellent and oil-repellent films 7, 8 are successively formed, respectively, with the water-repellent and oil-repellent films 7, 8 opposing to each other; disposing a spacer member 9 between the opposing films of the above assemblies to form an enclosed space; and sealing a polar liquid 10 and a liquid optical material 11 in the enclosed space. The focal distance of the liquid lens is controlled by applying a drive voltage to the polar liquid 10 so as to change the contact angle of the polar liquid 10 with respect to the liquid optical material 11.SELECTED DRAWING: Figure 1

Description

本発明は、無極性液体を用いた液体光学材料及び光学素子に関する。   The present invention relates to a liquid optical material and an optical element using a nonpolar liquid.

エレクトロウエッティングは、電界を用いて、疎水性誘電体フィルムの表面の濡れ性(wettability)を疎水性(撥水性)から親水性の間で変化させる技術である。このエレクトロウエッティングを利用して、疎水性誘電膜の表面に誘電性液滴で形成した液体レンズ等の光学素子作成を駆動することができる。このような液体レンズは、水中に配置されることがあり、このような液体レンズを形成する誘電性液体としては、シリコーンオイルを用いることがある(特許文献1参照)。   Electrowetting is a technique that changes the wettability of the surface of a hydrophobic dielectric film from hydrophobic (water repellent) to hydrophilic using an electric field. Utilizing this electrowetting, it is possible to drive the creation of an optical element such as a liquid lens formed with dielectric droplets on the surface of the hydrophobic dielectric film. Such a liquid lens may be disposed in water, and silicone oil may be used as a dielectric liquid that forms such a liquid lens (see Patent Document 1).

特開2012−181513号公報JP 2012-181513 A

しかし、シリコーンオイルは屈折率が、低いため、光学素子として設計の自由度が低いという問題がある。   However, since silicone oil has a low refractive index, there is a problem that the degree of freedom in design as an optical element is low.

ここで、液体レンズを前提とすると液体レンズを形成する誘電性液体としての液体光学材料として下記の特性が求められる。
・水の屈折率との差が大きい
・水の相溶性がない(−30℃〜80℃)
・凝固点が低い(<−30℃)
・粘度係数(粘度の温度依存性)が小さい
Here, assuming a liquid lens, the following characteristics are required as a liquid optical material as a dielectric liquid forming the liquid lens.
・ The difference between the refractive index of water is large. ・ There is no compatibility of water (-30 ℃ ~ 80 ℃)
・ Low freezing point (<-30 ℃)
・ Low viscosity coefficient (temperature dependence of viscosity)

このような観点から各種シリコーンオイルの特性を検討すると以下のようになる。 From the above viewpoint, the characteristics of various silicone oils are examined as follows.

ここで「○」は優、「△」は可、「×」は不可を示す。 Here, “◯” indicates excellent, “Δ” indicates acceptable, and “×” indicates impossibility.

また、屈折率が高いジフェニルシリコーンに硫黄(S)を入れて各種特性を向上させることもできるが、経時的に硫黄が分離し変質してしまい、実用に耐えない。   Although various characteristics can be improved by adding sulfur (S) to diphenyl silicone having a high refractive index, the sulfur is separated and deteriorated with time, which is not practical.

本発明は、上記課題に鑑みてなされたものであり、屈折率が高く各種特性に優れた液体光学材料及び光学素子を提供することを課題とする   The present invention has been made in view of the above problems, and an object thereof is to provide a liquid optical material and an optical element having a high refractive index and excellent various characteristics.

前記課題を解決する請求項1に記載の発明は、無極性液体に前記無極性液体の屈折率より高い屈折率を有し、透過させる光の波長の1/10以下の粒径であるセラミックス微粒子を分散させたことを特徴とする。   The invention according to claim 1, which solves the above-mentioned problem, has a refractive index higher than the refractive index of the nonpolar liquid in the nonpolar liquid and has a particle diameter of 1/10 or less of the wavelength of light to be transmitted. Is dispersed.

同じく請求項2に記載の発明は、請求項1に記載の液体光学材料において、前記無極性液体は、合成油、又は鉱物油であることを特徴とする。   Similarly, the invention according to claim 2 is the liquid optical material according to claim 1, wherein the nonpolar liquid is synthetic oil or mineral oil.

同じく請求項3に記載の発明は、請求項1又は請求項2に記載の液体光学材料において、前記無極性液体は、ジメチルシリコーン、メチルフェニルシリコーン、ジフェニルシリコーンから選択した1又は複数のものであることを特徴とする。   The invention according to claim 3 is the liquid optical material according to claim 1 or 2, wherein the nonpolar liquid is one or more selected from dimethyl silicone, methylphenyl silicone, and diphenyl silicone. It is characterized by that.

同じく請求項4に記載の発明は、請求項1から請求項3までのいずれか一項に記載の液体光学材料において、前記セラミックス微粒子は、チタン酸バリウム、窒化ホウ素、フェライト、チタン酸ジルコン酸鉛、酸化アルミニウム、炭化ケイ素、窒化ケイ素、ステアタイト、高温超伝導セラミックス、酸化亜鉛、ジルコニアから選択した1又は複数のものであることを特徴とする。   Similarly, the invention according to claim 4 is the liquid optical material according to any one of claims 1 to 3, wherein the ceramic fine particles are barium titanate, boron nitride, ferrite, lead zirconate titanate. And one or more selected from aluminum oxide, silicon carbide, silicon nitride, steatite, high-temperature superconducting ceramics, zinc oxide, and zirconia.

同じく請求項5に記載の発明は、請求項1から請求項4までのいずれか一項に記載の液体光学材料において、前記セラミックス微粒子の前記無極性液体への分散量は、前記無極性液体の20質量%以下であることを特徴とする。   Similarly, the invention according to claim 5 is the liquid optical material according to any one of claims 1 to 4, wherein a dispersion amount of the ceramic fine particles in the nonpolar liquid is the amount of the nonpolar liquid. It is characterized by being 20 mass% or less.

同じく請求項6に記載の発明は、請求項1から請求項5までのいずれか一項に記載の液体光学材料を用いたことを特徴とする光学素子である。   Similarly, the invention according to claim 6 is an optical element using the liquid optical material according to any one of claims 1 to 5.

同じく請求項7に記載の発明は、透明基板に透明電極と絶縁膜と撥水性油膜とをこの順に形成した組立体を、前記撥水性油膜が互いに向き合うようにして対向させかつ該組立体の対向間にスペーサ部材を介在させて包囲空間を形成し、この包囲空間に有極性液体と無極性液体とを封入し、前記有極性液体に駆動電圧を印加することにより前記無極性液体に対する前記有極性液体の接触角を変化させて前記無極性液体の形状を変更する光学素子において、前記無極性液体が請求項1から請求項5までのいずれか一項に記載の液体光学材料であることを特徴とする光学素子である。   Similarly, in the invention according to claim 7, an assembly in which a transparent electrode, an insulating film, and a water repellent oil film are formed in this order on a transparent substrate is opposed so that the water repellent oil film faces each other, and the assembly is opposed to the assembly. An enclosed space is formed by interposing a spacer member therebetween, and a polar liquid and a nonpolar liquid are sealed in the enclosed space, and a drive voltage is applied to the polar liquid to thereby apply the polar to the nonpolar liquid. In the optical element which changes the shape of the said nonpolar liquid by changing the contact angle of a liquid, the said nonpolar liquid is the liquid optical material as described in any one of Claim 1-5. It is an optical element.

本発明に係る液体光学材料によれば、無極性液体に前記無極性液体の屈折率より高い屈折率を有し、透過させる光の波長の1/10以下の粒径であるセラミックス微粒子を分散させており、全体として高い屈折率とすることができ、光学素子の設計の自由度を上げることができる。
According to the liquid optical material of the present invention, ceramic fine particles having a refractive index higher than the refractive index of the nonpolar liquid and having a particle diameter of 1/10 or less of the wavelength of light to be transmitted are dispersed in the nonpolar liquid. Therefore, the refractive index can be increased as a whole, and the degree of freedom in designing the optical element can be increased.

本発明の実施形態に係る液体光学材料を用いた光学素子である液体レンズの構成を示す断面図である。It is sectional drawing which shows the structure of the liquid lens which is an optical element using the liquid optical material which concerns on embodiment of this invention.

本発明を実施するための形態に係る液体光学材料及び光学素子について説明する。   A liquid optical material and an optical element according to an embodiment for carrying out the present invention will be described.

以下、本発明の実施形態に係る光学素子として液体レンズについて説明する。図1は本発明の実施形態に係る液体光学材料を用いた液体レンズの構成を示す断面図である。本実施形態に係る液体レンズは、ガラス基板1、2と、電圧が印加される透明電極3、4と、絶縁膜5、6と、撥水性油膜である撥水撥油膜7、8とガラスリング部材9と、有極性液体10と、無極性液体である液体光学材料11とからなる。   Hereinafter, a liquid lens will be described as an optical element according to an embodiment of the present invention. FIG. 1 is a cross-sectional view showing a configuration of a liquid lens using a liquid optical material according to an embodiment of the present invention. The liquid lens according to the present embodiment includes glass substrates 1 and 2, transparent electrodes 3 and 4 to which a voltage is applied, insulating films 5 and 6, water and oil repellent films 7 and 8 that are water repellent oil films, and a glass ring. It consists of the member 9, the polar liquid 10, and the liquid optical material 11 which is a nonpolar liquid.

ガラス基板1、2の上面には、透明電極3、4がパターンニングにより形成されている。また、透明電極3、4の表面には、絶縁膜5、6が形成されている。この絶縁膜5、6の表面には撥水撥油膜7、8が形成されている。ガラス基板1、2は、スペーサ部材としてのガラスリング部材9を介して互いに対向して配設されている。このガラスリング部材9の外周面には耐久性接着剤9aが設けられている。   Transparent electrodes 3 and 4 are formed on the upper surfaces of the glass substrates 1 and 2 by patterning. Insulating films 5 and 6 are formed on the surfaces of the transparent electrodes 3 and 4. Water and oil repellent films 7 and 8 are formed on the surfaces of the insulating films 5 and 6. The glass substrates 1 and 2 are disposed to face each other via a glass ring member 9 as a spacer member. A durable adhesive 9 a is provided on the outer peripheral surface of the glass ring member 9.

ここで、透明電極3、4は、例えばITO(酸化インジウムスズ)を蒸着して構成されている。絶縁膜5、6は、熱可塑性フッ素重合体としてのポリフッ化ビニリデン(PVDF)の溶液に、セラミックスのナノ粒子を分散させて形成されている。撥水撥油膜7、8にはAFコートを用いる。即ち、撥水撥油膜7、8の材料には、ポリパラキシリレン、ポリテトラフルオロエタン、フッ素系のポリマー、シリコーン樹脂等が用いられる。   Here, the transparent electrodes 3 and 4 are configured by depositing, for example, ITO (indium tin oxide). The insulating films 5 and 6 are formed by dispersing ceramic nanoparticles in a solution of polyvinylidene fluoride (PVDF) as a thermoplastic fluoropolymer. An AF coat is used for the water and oil repellent films 7 and 8. That is, polyparaxylylene, polytetrafluoroethane, a fluorine-based polymer, a silicone resin, or the like is used as the material for the water / oil repellent films 7 and 8.

有極性液体10と、液体光学材料11とは、ガラス基板1、2とガラスリング部材9とにより形成された包囲空間に封入されている。包囲空間の注入口は封止剤12としてのUV硬化樹脂(紫外線硬化型接着剤)によって封止されている。   The polar liquid 10 and the liquid optical material 11 are enclosed in an enclosed space formed by the glass substrates 1 and 2 and the glass ring member 9. The inlet of the enclosed space is sealed with a UV curable resin (ultraviolet curable adhesive) as the sealant 12.

この液体レンズを製造するには、透明基板としてのガラス基板1、2に透明電極3、4と絶縁膜5、6と撥水撥油膜7、8とがこの順に形成された一対の組立体の撥水撥油膜7、8が互いに向き合うようにして組立体を対向させ、かつ組立体の対向間にスペーサ部材としてのガラスリング部材9を介在させて包囲空間を形成する。ついで、この包囲空間に有極性液体10と液体光学材料11とを封入する。   In order to manufacture this liquid lens, a pair of assemblies in which transparent electrodes 3 and 4, insulating films 5 and 6, and water and oil repellent films 7 and 8 are formed in this order on glass substrates 1 and 2 as transparent substrates. The assembly is opposed so that the water and oil repellent films 7 and 8 face each other, and a surrounding space is formed by interposing a glass ring member 9 as a spacer member between the opposed surfaces of the assembly. Next, the polar liquid 10 and the liquid optical material 11 are sealed in the enclosed space.

本実施形態に液体レンズによれば、透明電極3、4に所定の駆動電圧(電位差)を与えると、有極性液体10に対する液体光学材料11の接触角が変化し、液体光学材料11が破線で示すように形状を変更する。このため、有極性液体10と液体光学材料11との界面10cの曲率と厚みとが変化し、液体レンズ全体の焦点距離が変化する。よって、駆動電圧を制御することにより液体レンズの焦点距離を制御できる。   According to the liquid lens of this embodiment, when a predetermined drive voltage (potential difference) is applied to the transparent electrodes 3 and 4, the contact angle of the liquid optical material 11 with respect to the polar liquid 10 changes, and the liquid optical material 11 is indicated by a broken line. Change the shape as shown. For this reason, the curvature and thickness of the interface 10c between the polar liquid 10 and the liquid optical material 11 change, and the focal length of the entire liquid lens changes. Therefore, the focal length of the liquid lens can be controlled by controlling the drive voltage.

有極性液体10は、例えば、水を主成分として、不凍液が添加されている。液体光学材料11は、この例では、透明な無極性液体であるジメチルシリコーンにこのジメチルシリコーンの屈折率より高い屈折率を有し、透過させる光の波長の1/10以下の粒径であるセラミックス微粒子13を分散させている。即ち、液体光学材料11内にチタン酸バリウムのナノ粒子が混入されている。   For example, the polar liquid 10 contains water as a main component and an antifreeze liquid added thereto. In this example, the liquid optical material 11 is a ceramic having a refractive index higher than the refractive index of dimethyl silicone, which is a transparent nonpolar liquid, and a particle diameter of 1/10 or less of the wavelength of light to be transmitted. Fine particles 13 are dispersed. That is, nanoparticles of barium titanate are mixed in the liquid optical material 11.

混入するセラミックスは、チタン酸バリウムの他、チタン酸バリウム、窒化ホウ素、フェライト、チタン酸ジルコン酸鉛、酸化アルミニウム、炭化ケイ素、窒化ケイ素、ステアタイト、高温超伝導セラミックス、酸化亜鉛、ジルコニア等から1又は複数のものを選択できる。上述したセラミックスのうちのいくつかのものの屈折率は、下表の通りである。   In addition to barium titanate, mixed ceramics are 1 from barium titanate, boron nitride, ferrite, lead zirconate titanate, aluminum oxide, silicon carbide, silicon nitride, steatite, high temperature superconducting ceramics, zinc oxide, zirconia, etc. Alternatively, a plurality of items can be selected. The refractive indexes of some of the ceramics described above are as shown in the table below.

分散するチタン酸バリウム微粒子の粒径は、数nm〜100nm、分散するセラミックス微粒子の分散量は、ジメチルシリコーン重量の20質量%以下とする。セラミックス微粒子が20%を超えると、粘性が増してしまい液体光学材料11が変形しにくくなる。   The particle diameter of the barium titanate fine particles to be dispersed is several nm to 100 nm, and the dispersion amount of the ceramic fine particles to be dispersed is 20% by mass or less of the weight of dimethyl silicone. If the ceramic fine particle exceeds 20%, the viscosity increases and the liquid optical material 11 is hardly deformed.

ここで、ジフェニルシリコーンにチタン酸バリウムなどの微粒子を均一かつ安定的に分散するには、その粒子の表面をシリコーン化合物で修飾すればよい。   Here, in order to uniformly and stably disperse fine particles such as barium titanate in diphenyl silicone, the surface of the particles may be modified with a silicone compound.

粒径10〜20nmのチタン酸バリウム微粒子を屈折率1.40のジメチルシリコーンに20%分散したとき、屈折率は1.56であった。   When 20% of barium titanate fine particles having a particle diameter of 10 to 20 nm were dispersed in dimethyl silicone having a refractive index of 1.40, the refractive index was 1.56.

更に、他のセラミックス微粒子として、チタン酸バリウム、酸化アルミニウム、ジルコニア、酸化セリウム、アルミン酸イットリウム、酸化イットリウム、等を使用できる。
また、他のシリコーンオイルとして、メチルフェニル、ジフェニルなどや変性シリコーンオイル等を使用できる。
Furthermore, barium titanate, aluminum oxide, zirconia, cerium oxide, yttrium aluminate, yttrium oxide, and the like can be used as other ceramic fine particles.
Further, as other silicone oils, methylphenyl, diphenyl and the like, modified silicone oils and the like can be used.

シリコーンオイル中に高屈折率のセラミックス微粒子を分散させると入射した光は、セラミックスにより屈折され、全体として屈折率がシリコーンオイルの屈折率より増加する。また、セラミックス微粒子を入射する光の波長の1/10以下とすると、微粒子による透明性に影響を与えない。   When ceramic particles having a high refractive index are dispersed in silicone oil, incident light is refracted by the ceramic, and the refractive index as a whole increases from the refractive index of silicone oil. Further, when the ceramic fine particles are set to 1/10 or less of the wavelength of incident light, the transparency by the fine particles is not affected.

本実施形態に係る液体光学材料11は、ジメチルシリコーン中にチタン酸バリウム微粒子を散乱させている。このため、液体光学材料11の屈折率はジメチルシリコーンの屈折率より大きくなる。この屈折率の増加は、チタン酸バリウム微粒子の量を増加するほど大きくなる。   In the liquid optical material 11 according to the present embodiment, barium titanate fine particles are scattered in dimethyl silicone. For this reason, the refractive index of the liquid optical material 11 becomes larger than the refractive index of dimethyl silicone. This increase in refractive index increases as the amount of barium titanate fine particles increases.

このように本実施形態では流体レンズの屈折率を、チタン酸バリウム微粒子を分散しないジメチルシリコーンを使用した場合より大きくすることができる。また、液体レンズに必要とされる各種特性を満たすものとできる。これにより、流体レンズの設計の自由度が向上する。   Thus, in this embodiment, the refractive index of the fluid lens can be made larger than when dimethyl silicone that does not disperse the barium titanate fine particles is used. Moreover, it can satisfy various characteristics required for the liquid lens. Thereby, the freedom degree of design of a fluid lens improves.

なお、無極性液体としては、上述したジメチルシリコーンの他、メチルフェニルシリコーン、ジフェニルシリコーン等のシリコーンオイルの他、室温において液体状である合成油、鉱物油等を使用できる。このような合成油、鉱物油は、水系の極性液体ではなく、無極性液体であり、上述した本発明の液体光学材料に使用する条件、即ち、水の屈折率との差が大きい、水の相溶性がない、凝固点が低い、粘度係数を満たしている。
なお、上記例では光学素子として液体レンズについて説明したが、本発明に係る光学素子により液体レンズの他、入射した光を走査するスキャナ素子に適用できる。
As the nonpolar liquid, in addition to the above-described dimethyl silicone, silicone oil such as methylphenyl silicone and diphenyl silicone, synthetic oil, mineral oil, and the like that are liquid at room temperature can be used. Such synthetic oils and mineral oils are not polar polar liquids but are nonpolar liquids, and the conditions used for the above-described liquid optical material of the present invention, that is, the difference in water refractive index is large. It is not compatible, has a low freezing point, and satisfies the viscosity coefficient.
In the above example, the liquid lens is described as the optical element. However, the optical element according to the present invention can be applied to a scanner element that scans incident light in addition to the liquid lens.

そして、本発明に係る液体光学材料及び光学素子は、視力計、レフラクトメータ、ハンディタイプOCT(眼底断層像観察装置)の光学レンズ、カメラ等のズーム光学系、検眼用メガネの交換レンズなどに用いることができる。また、本発明に係る液体光学材料及び光学素子は、測量機のコンペンセーサーなどオイルを使ったチルトセンサー、シャッター部材、エンコーダ等の光学素子に適用可能である。   The liquid optical material and the optical element according to the present invention are used in a vision meter, a refractometer, an optical lens of a handy type OCT (fundus tomographic image observation apparatus), a zoom optical system such as a camera, an interchangeable lens of optometry glasses, etc. Can be used. Moreover, the liquid optical material and the optical element according to the present invention can be applied to optical elements such as tilt sensors, shutter members, and encoders using oil such as a compensator of a surveying instrument.

1、2:ガラス基板
3、4:透明電極
5、6:絶縁膜
7、8:撥水撥油膜
9:スペーサ部材、
9a:耐久性接着剤
10:有極性液体
10’:液滴
10a:電極
10c:界面
11:液体光学材料
12:封止材
13:セラミックス微粒子
θ:接触角
V:駆動電圧
1, 2: glass substrate 3, 4: transparent electrode 5, 6: insulating film 7, 8: water / oil repellent film 9: spacer member,
9a: durable adhesive 10: polar liquid 10 ′: droplet 10a: electrode 10c: interface 11: liquid optical material 12: sealing material 13: ceramic fine particles θ: contact angle V: driving voltage

Claims (7)

無極性液体に前記無極性液体の屈折率より高い屈折率を有し、透過させる光の波長の1/10以下の粒径であるセラミックス微粒子を分散させたことを特徴とする液体光学材料。   A liquid optical material, characterized in that ceramic fine particles having a refractive index higher than that of the nonpolar liquid and having a particle diameter of 1/10 or less of the wavelength of light to be transmitted are dispersed in the nonpolar liquid. 前記無極性液体は、合成油、又は鉱物油であることを特徴とする請求項1に記載の液体光学材料。   The liquid optical material according to claim 1, wherein the nonpolar liquid is synthetic oil or mineral oil. 前記無極性液体は、ジメチルシリコーン、メチルフェニルシリコーン、ジフェニルシリコーンから選択した1又は複数のものであることを特徴とする請求項1に記載の液体光学材料。   The liquid optical material according to claim 1, wherein the nonpolar liquid is one or more selected from dimethyl silicone, methylphenyl silicone, and diphenyl silicone. 前記セラミックス微粒子は、チタン酸バリウム、窒化ホウ素、フェライト、チタン酸ジルコン酸鉛、酸化アルミニウム、炭化ケイ素、窒化ケイ素、ステアタイト、高温超伝導セラミックス、酸化亜鉛、ジルコニアから選択した1又は複数のものであることを特徴とする請求項1から請求項3までのいずれか一項に記載の液体光学材料。   The ceramic fine particles are one or more selected from barium titanate, boron nitride, ferrite, lead zirconate titanate, aluminum oxide, silicon carbide, silicon nitride, steatite, high temperature superconducting ceramics, zinc oxide, zirconia. The liquid optical material according to any one of claims 1 to 3, wherein the liquid optical material is provided. 前記セラミックス微粒子の前記無極性液体への分散量は、前記無極性液体の20質量%以下であることを特徴とする請求項1から請求項4までのいずれか一項に記載の液体光学材料。   The liquid optical material according to any one of claims 1 to 4, wherein a dispersion amount of the ceramic fine particles in the nonpolar liquid is 20% by mass or less of the nonpolar liquid. 請求項1から請求項5までのいずれか一項に記載の液体光学材料を用いたことを特徴とする光学素子。   An optical element using the liquid optical material according to any one of claims 1 to 5. 透明基板に透明電極と絶縁膜と撥水性油膜とをこの順に形成した組立体を、前記撥水性油膜が互いに向き合うようにして対向させかつ該組立体の対向間にスペーサ部材を介在させて包囲空間を形成し、この包囲空間に有極性液体と前記無極性液体とを封入し、前記有極性液体に駆動電圧を印加することにより前記無極性液体に対する前記有極性液体の接触角を変化させて前記無極性液体の形状を変更する光学素子において、
前記無極性液体が請求項1から請求項5までのいずれか一項に記載の液体光学材料であることを特徴とする光学素子。

An assembly in which a transparent electrode, an insulating film, and a water repellent oil film are formed in this order on a transparent substrate are opposed to each other so that the water repellent oil film faces each other, and a spacer member is interposed between the opposed surfaces of the assembly. The polar liquid and the nonpolar liquid are enclosed in the enclosed space, and a contact voltage of the polar liquid with respect to the nonpolar liquid is changed by applying a driving voltage to the polar liquid, thereby In an optical element that changes the shape of a nonpolar liquid,
The optical element, wherein the nonpolar liquid is the liquid optical material according to any one of claims 1 to 5.

JP2016151690A 2016-08-02 2016-08-02 Liquid optical material and optical element Pending JP2018021981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016151690A JP2018021981A (en) 2016-08-02 2016-08-02 Liquid optical material and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016151690A JP2018021981A (en) 2016-08-02 2016-08-02 Liquid optical material and optical element

Publications (1)

Publication Number Publication Date
JP2018021981A true JP2018021981A (en) 2018-02-08

Family

ID=61165470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016151690A Pending JP2018021981A (en) 2016-08-02 2016-08-02 Liquid optical material and optical element

Country Status (1)

Country Link
JP (1) JP2018021981A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541796A (en) * 2018-12-26 2019-03-29 北京旷视科技有限公司 Antidote, device, system and the optical transmitting set of lens curvature
CN110661955A (en) * 2019-10-14 2020-01-07 Oppo广东移动通信有限公司 Control method of camera module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124516A (en) * 1988-11-02 1990-05-11 Canon Inc Optical element
JP2006078650A (en) * 2004-09-08 2006-03-23 Fuji Photo Film Co Ltd Optical element, lens unit, and imaging apparatus
WO2008053692A1 (en) * 2006-11-01 2008-05-08 Konica Minolta Opto, Inc. Optical element, resin molding metal die and optical element manufacturing method
JP2008170632A (en) * 2007-01-10 2008-07-24 Sony Corp Liquid device, and device and method for manufacturing liquid device
JP2014109782A (en) * 2012-11-30 2014-06-12 National Chung Hsing Univ Electro-wetting apparatus and manufacturing method thereof
JP2014182368A (en) * 2013-03-18 2014-09-29 Polight As Transparent optical device structure
US20150036205A1 (en) * 2011-06-24 2015-02-05 Myongji University Industry And Academia Cooperation Foundation Electrowetting device and method for improving response speed of electrowetting device
JP2016047900A (en) * 2014-08-28 2016-04-07 株式会社トプコン Film forming material for electrowetting, and evaluation method of contact angle of film forming material for electrowetting, and optical element using the film forming material for electrowetting

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124516A (en) * 1988-11-02 1990-05-11 Canon Inc Optical element
JP2006078650A (en) * 2004-09-08 2006-03-23 Fuji Photo Film Co Ltd Optical element, lens unit, and imaging apparatus
WO2008053692A1 (en) * 2006-11-01 2008-05-08 Konica Minolta Opto, Inc. Optical element, resin molding metal die and optical element manufacturing method
JP2008170632A (en) * 2007-01-10 2008-07-24 Sony Corp Liquid device, and device and method for manufacturing liquid device
US20150036205A1 (en) * 2011-06-24 2015-02-05 Myongji University Industry And Academia Cooperation Foundation Electrowetting device and method for improving response speed of electrowetting device
JP2014109782A (en) * 2012-11-30 2014-06-12 National Chung Hsing Univ Electro-wetting apparatus and manufacturing method thereof
JP2014182368A (en) * 2013-03-18 2014-09-29 Polight As Transparent optical device structure
JP2016047900A (en) * 2014-08-28 2016-04-07 株式会社トプコン Film forming material for electrowetting, and evaluation method of contact angle of film forming material for electrowetting, and optical element using the film forming material for electrowetting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541796A (en) * 2018-12-26 2019-03-29 北京旷视科技有限公司 Antidote, device, system and the optical transmitting set of lens curvature
CN110661955A (en) * 2019-10-14 2020-01-07 Oppo广东移动通信有限公司 Control method of camera module

Similar Documents

Publication Publication Date Title
JP4310704B2 (en) Optical element
EP1623263B1 (en) Electrowetting module
US8488249B2 (en) Optical element, imaging device, and method of driving the optical element
Agarwal et al. Polymer-based variable focal length microlens system
TWI677729B (en) Varaiable focal length optical element
KR101969852B1 (en) Microfluidic device and method of control the fluid included the same
US9134568B2 (en) Varifocal lens
US20140016176A1 (en) Hydrophobic dielectric film for electrowetting
US20060215274A1 (en) Electrowetting module
US7327523B2 (en) Optical element
JP5590901B2 (en) Refractive power variable element
US8804248B2 (en) Optical element
KR20080091790A (en) Optical electrowetting device
KR20130016943A (en) Device and method for variable curvature
KR101871296B1 (en) Microelectrofluidic device and method for driving the same
JP2007086451A (en) Optical element
JP2007057843A (en) Optical element
JP2009128791A5 (en)
JP2006250974A (en) Optical element
JP2011150329A (en) Liquid lens
An et al. Spherically encapsulated variable liquid lens on coplanar electrodes
CN109031651B (en) Electrowetting liquid lens with high focal power
KR101239151B1 (en) Variable liquid lens
WO2019226483A1 (en) Negative optical power liquid lens
JP2016050951A (en) Concave fresnel lens and control method of concave fresnel lens

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200522

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201202