JP2018021154A - Resin foam container and method for producing the same - Google Patents

Resin foam container and method for producing the same Download PDF

Info

Publication number
JP2018021154A
JP2018021154A JP2016154554A JP2016154554A JP2018021154A JP 2018021154 A JP2018021154 A JP 2018021154A JP 2016154554 A JP2016154554 A JP 2016154554A JP 2016154554 A JP2016154554 A JP 2016154554A JP 2018021154 A JP2018021154 A JP 2018021154A
Authority
JP
Japan
Prior art keywords
foamed resin
resin container
heat
foamed
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016154554A
Other languages
Japanese (ja)
Other versions
JP6797594B2 (en
Inventor
山田 浩久
Hirohisa Yamada
浩久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2016154554A priority Critical patent/JP6797594B2/en
Publication of JP2018021154A publication Critical patent/JP2018021154A/en
Application granted granted Critical
Publication of JP6797594B2 publication Critical patent/JP6797594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin foam container having excellent heat resistance, and excellent low-temperature brittleness and a method for producing the same.SOLUTION: A resin foam container 20 contains a foam layer of a thermoplastic polyester resin, where an absolute value of crystallization calory is 1-5 mJ/mg, and a crystallinity calculated by formula (I) is 20% or more. Formula (I): crystallinity (%)={(absolute value of fusion calory (J/g)-absolute value of crystallization calory (J/g))÷completely crystallization calory (J/g)}×100.SELECTED DRAWING: Figure 2

Description

本発明は、発泡樹脂容器及びその製造方法に関する。   The present invention relates to a foamed resin container and a method for producing the same.

従来から、断熱性を有する発泡樹脂容器が使用されている。なかでも熱可塑性ポリエステル系樹脂発泡シートを成形してなる発泡樹脂容器は、耐熱性に優れることで知られている。このため、熱可塑性ポリエステル系樹脂発泡シートを成形してなる発泡樹脂容器は、オーブンで加熱調理する食品の容器に使用されている。   Conventionally, a foamed resin container having heat insulating properties has been used. Among them, a foamed resin container formed by molding a thermoplastic polyester resin foam sheet is known to have excellent heat resistance. For this reason, a foamed resin container formed by molding a thermoplastic polyester resin foamed sheet is used as a container for food that is cooked in an oven.

このような発泡樹脂容器を得ることのできる熱可塑性ポリエステル系樹脂発泡シートとして、特許文献1には、熱可塑性ポリエステル系樹脂に対する気体透過率が特定の範囲である気体を発泡剤として含有する樹脂を使用した、熱可塑性ポリエステル系樹脂発泡シートが提案されている。   As a thermoplastic polyester resin foam sheet capable of obtaining such a foamed resin container, Patent Document 1 discloses a resin containing a gas whose gas permeability with respect to the thermoplastic polyester resin is in a specific range as a foaming agent. A used thermoplastic polyester resin foam sheet has been proposed.

特開平8−3358号公報JP-A-8-3358

しかしながら、特許文献1の発泡シートによる発泡樹脂容器は耐熱性に優れるが、冷凍保存等の低温条件下で割れやすくなる(低温脆性に劣る)という問題がある。   However, although the foamed resin container of the foamed sheet of Patent Document 1 is excellent in heat resistance, there is a problem that it is easily broken (inferior in low temperature brittleness) under low temperature conditions such as frozen storage.

そこで、本発明は、上記事情に鑑みてなされたものであり、耐熱性に優れ、且つ低温脆性に優れる発泡樹脂容器及びその製造方法を提供することを課題とする。   Then, this invention is made | formed in view of the said situation, and makes it a subject to provide the foamed resin container which is excellent in heat resistance, and excellent in low temperature brittleness, and its manufacturing method.

本発明は以下の態様を有する。
[1]熱可塑性ポリエステル系樹脂の発泡層を含む発泡樹脂容器であって、
結晶化熱量の絶対値が1〜5mJ/mgであり、
下記式(I)で算出される結晶化度が20%以上である、発泡樹脂容器。
結晶化度(%)={(融解熱量の絶対値(J/g)−結晶化熱量の絶対値(J/g))÷完全結晶化熱量(J/g)}×100・・・(I)
[2]前記発泡層の厚み方向の気泡数が、10〜25個である[1]に記載の発泡樹脂容器。
[3]加熱調理する食品に用いられる[1]又は[2]に記載の発泡樹脂容器。
[4][1]〜[3]のいずれか一項に記載の発泡樹脂容器の製造方法であって、
熱可塑性ポリエステル系樹脂発泡層を含む発泡シートを120〜180℃で加熱する加熱工程、及び
前記加熱工程後、加熱した前記発泡シートを160〜200℃の金型で挟み4〜15秒間加熱成形する成形工程、を含む発泡樹脂容器の製造方法。
[5]前記成形工程後、成形した前記発泡シートを表面温度が50〜70℃になるまで放冷する放冷工程を含む、[4]に記載の発泡樹脂容器の製造方法。
The present invention has the following aspects.
[1] A foamed resin container including a foamed layer of thermoplastic polyester resin,
The absolute value of the amount of crystallization heat is 1 to 5 mJ / mg,
A foamed resin container having a crystallinity calculated by the following formula (I) of 20% or more.
Crystallinity (%) = {(absolute value of heat of fusion (J / g) −absolute value of heat of crystallization (J / g)) ÷ complete heat of crystallization (J / g)} × 100 (I )
[2] The foamed resin container according to [1], wherein the foam layer has 10 to 25 bubbles in the thickness direction.
[3] The foamed resin container according to [1] or [2] used for food to be cooked.
[4] A method for producing a foamed resin container according to any one of [1] to [3],
A heating step of heating a foamed sheet including a thermoplastic polyester resin foam layer at 120 to 180 ° C, and after the heating step, the heated foamed sheet is sandwiched between 160 to 200 ° C molds and heat molded for 4 to 15 seconds. A method for producing a foamed resin container, comprising a molding step.
[5] The method for producing a foamed resin container according to [4], including a cooling step of cooling the molded foam sheet until the surface temperature reaches 50 to 70 ° C. after the molding step.

本発明によれば、耐熱性に優れ、且つ低温脆性に優れる発泡樹脂容器及びその製造方法を提供することができる。   According to the present invention, it is possible to provide a foamed resin container excellent in heat resistance and excellent in low-temperature brittleness and a method for producing the same.

本発明の発泡樹脂容器の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the foamed resin container of this invention. 本発明の発泡樹脂容器の一実施形態のA−A断面図である。It is AA sectional drawing of one Embodiment of the foamed resin container of this invention. 発泡数を測定するためのサンプルの切り出し方を示す模式図である。It is a schematic diagram which shows how to cut out the sample for measuring the foaming number. 底壁中央部分のMD面のSEM画像を示す図である。It is a figure which shows the SEM image of MD surface of a bottom wall center part. 底壁中央部分のTD面のSEM画像を示す図である。It is a figure which shows the SEM image of the TD surface of the bottom wall center part. 側壁のMD面のSEM画像を示す図である。It is a figure which shows the SEM image of MD surface of a side wall. 側壁のTD面のSEM画像を示す図である。It is a figure which shows the SEM image of the TD surface of a side wall. DSC曲線の模式図である。It is a schematic diagram of a DSC curve. 本発明の発泡樹脂容器のDSC曲線の一例を示す図である。It is a figure which shows an example of the DSC curve of the foamed resin container of this invention.

本発明の発泡樹脂容器は、熱可塑性ポリエステル系樹脂発泡シートが加熱成形されてなるものである。   The foamed resin container of the present invention is obtained by thermoforming a thermoplastic polyester resin foam sheet.

(熱可塑性ポリエステル系樹脂発泡シート)
本発明において熱可塑性ポリエステル系樹脂発泡シート(以下単に「発泡シート」ともいう。)は、ポリエステル系樹脂を含有する樹脂組成物の発泡樹脂層を備えるものである。該発泡樹脂層は、ポリエステル系樹脂を含む樹脂、及び発泡剤等を含む樹脂組成物から形成される。
かかる発泡シートは、発泡樹脂層のみからなる単層構造であってもよいし、発泡樹脂層の少なくとも一方の面に非発泡樹脂層等が設けられた積層構造であってもよい。
(Thermoplastic polyester resin foam sheet)
In the present invention, a thermoplastic polyester resin foam sheet (hereinafter also simply referred to as “foam sheet”) includes a foam resin layer of a resin composition containing a polyester resin. The foamed resin layer is formed from a resin composition containing a polyester resin and a foaming agent.
Such a foamed sheet may have a single-layer structure composed only of a foamed resin layer, or may have a laminated structure in which a non-foamed resin layer or the like is provided on at least one surface of the foamed resin layer.

<樹脂>
樹脂はポリエステル系樹脂を含む。ポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられる。これらのポリエステル系樹脂は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
IV値は0.5〜1.50が好ましく、0.90〜1.10がより好ましい。
好ましい理由は、IV値が0.5未満の場合には発泡しにくくなり押出発泡シートが得られにくくなり、IV値が1.50超になると平滑なシートが得られにくくなる。
IV値は、JIS K 7367−5(2000)の方法で測定できる。
<Resin>
The resin includes a polyester resin. Examples of the polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate. These polyester resins may be used alone or in combination of two or more.
The IV value is preferably 0.5 to 1.50, more preferably 0.90 to 1.10.
A preferable reason is that when the IV value is less than 0.5, foaming is difficult and an extruded foam sheet is hardly obtained, and when the IV value exceeds 1.50, a smooth sheet is hardly obtained.
The IV value can be measured by the method of JIS K 7367-5 (2000).

<発泡剤>
発泡剤としては、プロパン、ブタン、ペンタン等の炭化水素が挙げられる。中でも、ブタンが好ましく、ノルマルブタンとイソブタンとの混合物が好ましい。これらの発泡剤は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
さらに、強度及び断熱性を向上させるために気泡の調整が容易な窒素、炭酸ガスを用いてもよい。
<Foaming agent>
Examples of the blowing agent include hydrocarbons such as propane, butane, and pentane. Of these, butane is preferable, and a mixture of normal butane and isobutane is preferable. These foaming agents may be used individually by 1 type, and may be used in combination of 2 or more type.
Furthermore, in order to improve strength and heat insulation, nitrogen or carbon dioxide gas, which can easily adjust bubbles, may be used.

<任意成分>
本発明の発泡シートは、その他成分(任意成分)を含有していてもよい。
かかる任意成分としては、気泡調整剤、界面活性剤、着色剤、収縮防止剤、難燃剤、滑剤、劣化防止剤などが挙げられる。
気泡調整剤としては、タルク、四フッ化エチレン樹脂等が挙げられる。
<Optional component>
The foamed sheet of the present invention may contain other components (optional components).
Examples of such optional components include a bubble regulator, a surfactant, a colorant, a shrinkage inhibitor, a flame retardant, a lubricant, and a deterioration inhibitor.
Examples of the air conditioner include talc and tetrafluoroethylene resin.

(熱可塑性ポリエステル系樹脂発泡シートの製造方法)
熱可塑性ポリエステル系樹脂発泡シートの製造方法は、ポリエステル系樹脂を含有する原料組成物と、発泡剤と、を溶融混練した溶融混合物を、押出発泡させる方法である。
かかる熱可塑性ポリエステル系樹脂発泡シートの好適な製造方法としては、公知の発泡シートの製造方法を採用することができ、例えば、以下に示す製造方法が挙げられる。
(Method for producing thermoplastic polyester resin foam sheet)
The method for producing a thermoplastic polyester resin foam sheet is a method in which a molten mixture obtained by melting and kneading a raw material composition containing a polyester resin and a foaming agent is extruded and foamed.
As a suitable method for producing such a thermoplastic polyester resin foam sheet, a known foam sheet production method can be employed, and examples thereof include the following production methods.

ポリエステル系樹脂を含む樹脂並びにその他成分を含有する原料組成物と、発泡剤と、を押出機に供給して溶融混練する。続いて、前記押出機の先端に取り付けたサーキュラーダイから押出発泡して円筒状の発泡体を得る。この円筒状の発泡体を、拡径させた上でマンドレルに供給して冷却する。冷却された円筒状の発泡体をその内外周面間に亘って押出方向に連続的に切断して展開することにより、熱可塑性ポリエステル系樹脂発泡シートを製造する方法が挙げられる。   A raw material composition containing a polyester-based resin and other components and a foaming agent are supplied to an extruder and melt-kneaded. Subsequently, a cylindrical foam is obtained by extrusion foaming from a circular die attached to the tip of the extruder. The cylindrical foam is expanded and then supplied to a mandrel to be cooled. A method of producing a thermoplastic polyester resin foam sheet by continuously cutting and expanding a cooled cylindrical foam in the extrusion direction across the inner and outer peripheral surfaces thereof can be mentioned.

(発泡樹脂容器)
本発明の発泡樹脂容器(以下単に「容器」ともいう。)は、上記熱可塑性ポリエステル系樹脂発泡シートを、公知の成形方法等を用いて、所望の形状に成形してなるものである。たとえば、熱可塑性ポリエステル系樹脂発泡シートは、押出発泡法を用いて製造された厚み0.5〜5.0mm、発泡倍率2〜6倍、結晶化度13%以下のものを用いる。また、熱可塑性ポリエステル系樹脂発泡シートは、非発泡樹脂層等が設けられた積層構造であってもよく、非発泡樹脂層としては、上述のポリエステル、ポリオレフィン、ポリスチレン等の樹脂を含むことが好ましい。積層構造にすることにより、さらに強度を上げ、美麗性も得ることができる。
(Foamed resin container)
The foamed resin container of the present invention (hereinafter also simply referred to as “container”) is formed by molding the thermoplastic polyester resin foam sheet into a desired shape using a known molding method or the like. For example, as the thermoplastic polyester resin foam sheet, a sheet having a thickness of 0.5 to 5.0 mm, an expansion ratio of 2 to 6 times, and a crystallinity of 13% or less manufactured by an extrusion foaming method is used. Further, the thermoplastic polyester resin foam sheet may have a laminated structure provided with a non-foamed resin layer and the like, and the non-foamed resin layer preferably contains the above-described resins such as polyester, polyolefin and polystyrene. . By using a laminated structure, the strength can be further increased and beauty can be obtained.

図1は本発明の発泡樹脂容器の一実施形態を示す平面図である。
図1に示すように、本発明の発泡樹脂容器20は、平面視で楕円形の底壁1と、底壁1の周縁から立ち上がり、底壁1を囲む略円筒状の側壁2とを有し、側壁2の上端で囲まれた開口部7が形成された容器本体8を備えるものであることが好ましい。側壁2は開口部7から底壁1に向かうに従い窄まっている。開口部7は平面視において、X2方向を長手、Y2方向を短手とする楕円形である。
本実施形態では、側壁2の上端に、開口部7の外方に張り出すフランジ部3を有する。フランジ部3は開口部7を周回しており、長手方向X2の両側に張り出したつまみ部3Aが形成されている。
また、底壁1の中央に平面視で十字状の底壁補強部24A、24Bを有する。側壁2に断面形状が波状の側壁補強部5を有する。
なお、本実施形態の開口部7は、平面視で楕円形であるが、本発明はこれに限定されない。開口部7の平面視形状は、正円でもよいし多角形でもよい。
FIG. 1 is a plan view showing an embodiment of the foamed resin container of the present invention.
As shown in FIG. 1, the foamed resin container 20 of the present invention has an elliptical bottom wall 1 in plan view and a substantially cylindrical side wall 2 that rises from the periphery of the bottom wall 1 and surrounds the bottom wall 1. The container body 8 is preferably provided with an opening 7 surrounded by the upper end of the side wall 2. The side wall 2 is narrowed from the opening 7 toward the bottom wall 1. The opening 7 has an elliptical shape with the X2 direction as the long side and the Y2 direction as the short side in plan view.
In the present embodiment, the upper end of the side wall 2 has a flange portion 3 that projects outward from the opening 7. The flange portion 3 circulates around the opening portion 7, and is formed with a knob portion 3A projecting on both sides in the longitudinal direction X2.
Further, the bottom wall 1 has cross-shaped bottom wall reinforcing portions 24A and 24B in a plan view in the center. The side wall 2 has a side wall reinforcing portion 5 having a wavy cross section.
In addition, although the opening part 7 of this embodiment is elliptical by planar view, this invention is not limited to this. The planar view shape of the opening 7 may be a perfect circle or a polygon.

本実施態様の発泡樹脂容器20は、長手方向の長さL2が190〜230mmであり、短手方向の長さW2が120〜150mmであり、高さH2が25〜45mmであることが好ましい。   The foamed resin container 20 of this embodiment preferably has a length L2 in the longitudinal direction of 190 to 230 mm, a length W2 in the short direction of 120 to 150 mm, and a height H2 of 25 to 45 mm.

発泡樹脂容器20の高さH2と開口部7の開口面積を正円に換算したときの直径との比は、[発泡樹脂容器20の高さ]/[開口部7の開口面積を正円に換算したときの直径]で表して0.05〜0.40が好ましく、0.10〜0.30がより好ましい。
上記数値範囲とすることにより、耐熱性に優れた発泡樹脂容器とすることができる。
ここで開口部7の開口面積は、画像解析により測定することができる。
The ratio between the height H2 of the foamed resin container 20 and the diameter when the opening area of the opening 7 is converted into a perfect circle is [height of the foamed resin container 20] / [open area of the opening 7 is a perfect circle. 0.05 to 0.40 is preferable, and 0.10 to 0.30 is more preferable.
By setting it as the said numerical range, it can be set as the foamed resin container excellent in heat resistance.
Here, the opening area of the opening 7 can be measured by image analysis.

底壁1の平均厚みと側壁2の平均厚みとの比は、[底壁1の平均厚み]/[側壁2の平均厚み]で表して0.60〜2.10が好ましく、0.80〜1.90がより好ましい。
上記数値範囲とすることにより、耐熱性に優れた発泡樹脂容器とすることができる。
底壁1の平均厚みとは、発泡樹脂容器の重心近傍(重心から30mm以内の領域)において、任意の3箇所の厚みを測定し、その平均値を測定した値である。
側壁2の平均厚みとは、側壁2を高さ方向に3等分し、それぞれの中央部分で厚みを測定し、平均した値である。
なお、本明細書において厚みとは、マイクロゲージを用いて測定される。
The ratio of the average thickness of the bottom wall 1 to the average thickness of the side wall 2 is preferably expressed as [average thickness of the bottom wall 1] / [average thickness of the side wall 2], and is preferably 0.60 to 2.10, and is preferably 0.80. 1.90 is more preferable.
By setting it as the said numerical range, it can be set as the foamed resin container excellent in heat resistance.
The average thickness of the bottom wall 1 is a value obtained by measuring the thickness of three arbitrary locations in the vicinity of the center of gravity of the foamed resin container (region within 30 mm from the center of gravity) and measuring the average value.
The average thickness of the side wall 2 is a value obtained by dividing the side wall 2 into three equal parts in the height direction, measuring the thickness at each central portion, and averaging the results.
In the present specification, the thickness is measured using a micro gauge.

図2に示すように、底壁1と側壁2との間のコーナー部6は、断面形状が円弧状であることが好ましい。
コーナー部6の平均厚みと側壁2の平均厚みとの比は、[コーナー部6の平均厚み]/[側壁2の平均厚み]で表して0.40〜1.40が好ましく、0.20〜0.55がより好ましい。
コーナー部6の平均厚みは、コーナー部6を高さ方向に3等分し、それぞれの中央部分で厚みを測定し、平均した値である。
As shown in FIG. 2, the corner portion 6 between the bottom wall 1 and the side wall 2 preferably has an arc shape in cross section.
The ratio of the average thickness of the corner portion 6 to the average thickness of the side wall 2 is preferably expressed as [average thickness of the corner portion 6] / [average thickness of the side wall 2], and is preferably 0.40 to 1.40, and is preferably 0.20. 0.55 is more preferable.
The average thickness of the corner portion 6 is a value obtained by dividing the corner portion 6 into three equal parts in the height direction, measuring the thickness at each central portion, and averaging.

図2は図1の発泡樹脂容器のA−A断面図である。
底壁補強部24Aから底壁1までの高さh2は4〜7mmが好ましい。
底壁補強部24Aから底壁1までの高さh2と発泡樹脂容器20の高さH2との比は、[底壁補強部24Aから底壁1までの高さh2]/[発泡樹脂容器20の高さH2]で表して、0.05〜0.35が好ましく、0.10〜0.30が好ましい。
底壁補強部24A及び24Bの平面視の面積と底壁1の平面視の面積との比は、[底壁補強部24A及び24Bの平面視の面積]/[底壁1の平面視の面積]で表して、0.05〜0.55が好ましく、0.10〜0.45がより好ましい。
底壁補強部24A、24Bは、図1に示すように平面視で、長手方向X2に伸びる底壁補強部24Aと、短手方向Y2に伸びる底壁補強部24Bとが発泡樹脂容器中央で交差する十字状であってもよい。あるいは底壁の中央から外側に伸びる放射線状であってもよいし、ドーナツ状であってもよいし、円形であってもよいし、多角形であってもよい。底壁補強部24A、24Bの断面は、凹状であってもよく凸状であってもよい。底壁に凹状または凸状の底壁補強部が底壁の中央部を通るように形成されていることにより、発泡樹脂容器を加熱した時に底壁の歪な変形を防ぐことができる。すなわち、発泡樹脂容器に入れる内容物がグラタン、ラザニア等比較的重量のあるものであっても、片手で発泡樹脂容器を持ちあげることができるので取り扱いやすい。また、発泡樹脂容器を載置したときにも底壁の平坦性を保持することで安定性が良い。さらに、グラタンなどの粘度の高い食品であれば底壁を滑り、発泡樹脂容器から内容物がこぼれ落ちることを防止することができる。凸状である場合、底壁補強部24A、24Bの断面形状は開口面側に向かって窄まる台形が好ましい。
2 is a cross-sectional view taken along the line AA of the foamed resin container of FIG.
The height h2 from the bottom wall reinforcing portion 24A to the bottom wall 1 is preferably 4 to 7 mm.
The ratio of the height h2 from the bottom wall reinforcing portion 24A to the bottom wall 1 and the height H2 of the foamed resin container 20 is [height h2 from the bottom wall reinforcing portion 24A to the bottom wall 1] / [foamed resin container 20]. The height H2] is preferably 0.05 to 0.35, more preferably 0.10 to 0.30.
The ratio of the area in plan view of the bottom wall reinforcing portions 24A and 24B to the area in plan view of the bottom wall 1 is [area of the bottom wall reinforcing portions 24A and 24B in plan view] / [area in plan view of the bottom wall 1]. ], 0.05 to 0.55 is preferable, and 0.10 to 0.45 is more preferable.
As shown in FIG. 1, the bottom wall reinforcing portions 24A and 24B are planarly viewed, and the bottom wall reinforcing portion 24A extending in the longitudinal direction X2 and the bottom wall reinforcing portion 24B extending in the short direction Y2 intersect at the center of the foamed resin container. It may be a cross shape. Alternatively, it may be a radial shape extending outward from the center of the bottom wall, may be a donut shape, may be a circle, or may be a polygon. The cross sections of the bottom wall reinforcing portions 24A and 24B may be concave or convex. By forming the concave or convex bottom wall reinforcing portion on the bottom wall so as to pass through the center portion of the bottom wall, it is possible to prevent distortion of the bottom wall when the foamed resin container is heated. That is, even if the contents put in the foamed resin container are relatively heavy, such as gratin or lasagna, the foamed resin container can be lifted with one hand, so that it is easy to handle. Moreover, stability is good by maintaining the flatness of the bottom wall even when the foamed resin container is placed. Furthermore, if the food has a high viscosity such as gratin, the bottom wall can be slid to prevent the contents from spilling out of the foamed resin container. When it is convex, the cross-sectional shape of the bottom wall reinforcing portions 24A and 24B is preferably a trapezoid that narrows toward the opening surface.

側壁補強部5は、図1のように連続して形成されていてもよく、分断して形成されていてもよい。側壁補強部5の断面は、波状であることが好ましい。   The side wall reinforcing portion 5 may be formed continuously as shown in FIG. 1 or may be divided and formed. The cross section of the side wall reinforcing portion 5 is preferably wavy.

フランジ部3の平面視の面積と発泡樹脂容器20全体の平面視の面積との比は、[フランジ部3の平面視の面積]/[発泡樹脂容器20全体の平面視の面積]で表して、0.05〜0.45が好ましく、0.10〜0.35がより好ましい。
上記数値範囲とすることにより、耐熱性に優れた発泡樹脂容器とすることができる。
フランジ部3の外縁の形状は特に限定されないが、平面視で楕円形であってもよく、楕円形の長手方向の端部を面取りされた形状であってもよい。
フランジ部3の平均厚みと側壁2の平均厚みとの比は、[フランジ部3の平均厚み]/[側壁2の平均厚み]で表して、0.6〜1.65が好ましく、0.75〜1.50がより好ましい。
フランジ部3の平均厚みは、フランジ部3の任意の5箇所の厚みを測定し、平均値を算出することで得られる。
The ratio of the area in plan view of the flange portion 3 to the area in plan view of the entire foamed resin container 20 is expressed by [area in plan view of the flange portion 3] / [area in plan view of the foamed resin container 20]. 0.05 to 0.45 is preferable, and 0.10 to 0.35 is more preferable.
By setting it as the said numerical range, it can be set as the foamed resin container excellent in heat resistance.
The shape of the outer edge of the flange portion 3 is not particularly limited, but may be an ellipse in plan view, or may be a shape in which the end of the ellipse in the longitudinal direction is chamfered.
The ratio of the average thickness of the flange portion 3 to the average thickness of the side wall 2 is preferably expressed as [Average thickness of the flange portion 3] / [Average thickness of the side wall 2], and is preferably 0.6 to 1.65, 0.75. -1.50 is more preferable.
The average thickness of the flange portion 3 is obtained by measuring the thickness of any five locations of the flange portion 3 and calculating the average value.

発泡層の厚み方向の気泡数は、10〜25個が好ましい。
底壁の厚み方向の気泡数は、10〜25個が好ましい。
側壁の厚み方向の気泡数は、10〜25個が好ましい。
気泡数が上記数値範囲内であると、発泡樹脂容器の強度を向上しやすくなり、断熱性を向上しやすくなる。
厚み方向の気泡数とは、底壁又は側壁を厚み方向に切り取り、切り取った断面に厚み方向に沿って線を描き、走査電子顕微鏡(SEM)で観察し、線に重なる気泡数をカウントしたものである。
例えば底壁の場合には、図3に示すように中央部分をサンプルとして採取し、MD方向(押出方向)に沿った面(MD面)、及びTD方向(押出方向と直交する方向)に沿った面(TD面)を走査電子顕微鏡(SEM)で観察できる大きさにカットする。これらMD面、及びTD面についてSEMを用いて写真を撮影する。倍率は50〜200倍で撮影する。図4は底壁中央部分のMD面のSEM画像であり、図5は底壁中央部分のTD面のSEM画像である。写真において底壁の厚み方向に直線を引き、直線上に接触するか交差する気泡数をそれぞれカウントする。MD面、TD面で得られた気泡数の値から平均値として算出したものを底壁の厚み方向の気泡数とする。
側壁の場合には、容器を長手方向に沿って切断した時の断面をMD面とし、容器を短手方向に沿って切断した時の断面をTD面とし、上記と同様にSEMを用いて写真を撮影する。倍率は50〜200倍で撮影する。図6が側壁のMD面のSEM画像であり、図7が側壁のTD面のSEM画像である。写真において側壁の厚み方向に直線を引き、直線上に接触するか交差する気泡数をそれぞれカウントする。MD面、TD面で得られた気泡数の値から平均値として算出したものを側壁の厚み方向の気泡数とする。
The number of cells in the thickness direction of the foam layer is preferably 10 to 25.
The number of bubbles in the thickness direction of the bottom wall is preferably 10-25.
The number of bubbles in the thickness direction of the side wall is preferably 10 to 25.
It becomes easy to improve the intensity | strength of a foamed resin container as the number of bubbles is in the said numerical range, and it becomes easy to improve heat insulation.
The number of bubbles in the thickness direction is the bottom wall or side wall cut in the thickness direction, a line is drawn along the thickness direction on the cut section, observed with a scanning electron microscope (SEM), and the number of bubbles overlapping the line is counted It is.
For example, in the case of the bottom wall, as shown in FIG. 3, the central portion is taken as a sample, and along the surface (MD surface) along the MD direction (extrusion direction) and along the TD direction (direction orthogonal to the extrusion direction). The cut surface (TD surface) is cut to a size that can be observed with a scanning electron microscope (SEM). These MD surface and TD surface are photographed using SEM. Shoot at a magnification of 50 to 200 times. 4 is an SEM image of the MD surface of the center portion of the bottom wall, and FIG. 5 is an SEM image of the TD surface of the center portion of the bottom wall. In the photograph, a straight line is drawn in the thickness direction of the bottom wall, and the number of bubbles that touch or cross each other is counted. An average value calculated from the value of the number of bubbles obtained on the MD surface and the TD surface is defined as the number of bubbles in the thickness direction of the bottom wall.
In the case of a side wall, the cross section when the container is cut along the longitudinal direction is the MD surface, and the cross section when the container is cut along the short direction is the TD surface, and a photograph is taken using the SEM in the same manner as above. Shoot. Shoot at a magnification of 50 to 200 times. 6 is an SEM image of the MD surface of the side wall, and FIG. 7 is an SEM image of the TD surface of the side wall. In the photograph, a straight line is drawn in the thickness direction of the side wall, and the number of bubbles that touch or cross each other is counted. The average value calculated from the value of the number of bubbles obtained on the MD surface and the TD surface is defined as the number of bubbles in the thickness direction of the side wall.

本発明の発泡樹脂容器において、樹脂の結晶化熱量の絶対値は、1〜5mJ/mgであり、2〜3mJ/mgがより好ましい。
結晶化熱量の絶対値を上記範囲とすることにより、低温脆性を向上しやすくなる。
結晶化熱量は発泡シートの成形条件によって調節することができる。
結晶化熱量は、JIS K7122:2012「プラスチックの転移熱測定方法」に従い測定したDSC曲線から求めることができる。
具体的には、熱差走査熱量計装置(DSC6220型、SIIナノテクノロジー株式会社製)を用いアルミニウム製測定容器の底に隙間のないように試料を約6mg充填する。次に窒素ガス流量20mL/minのもと30℃で2分間保持し、速度10℃/minで30℃から290℃まで昇温した時のDSC曲線を得る。このときの基準物質としてアルミナを用いる。
In the foamed resin container of the present invention, the absolute value of the crystallization heat quantity of the resin is 1 to 5 mJ / mg, and more preferably 2 to 3 mJ / mg.
By setting the absolute value of the heat of crystallization within the above range, low temperature brittleness can be easily improved.
The amount of crystallization heat can be adjusted by the molding conditions of the foam sheet.
The amount of crystallization heat can be determined from a DSC curve measured according to JIS K7122: 2012 “Method of measuring the transition heat of plastic”.
Specifically, about 6 mg of the sample is filled using a thermal difference scanning calorimeter (DSC 6220 type, manufactured by SII Nano Technology Co., Ltd.) so that there is no gap at the bottom of the aluminum measurement container. Next, a DSC curve is obtained when the temperature is maintained at 30 ° C. for 2 minutes under a nitrogen gas flow rate of 20 mL / min and the temperature is increased from 30 ° C. to 290 ° C. at a rate of 10 ° C./min. Alumina is used as a reference material at this time.

本発明の発泡樹脂容器において、下記式(I)で算出される結晶化度が20%以上であり、30%以上がより好ましい。上限値は、30%以下が好ましく、27%以下がより好ましい。
結晶化度(%)={(融解熱量の絶対値(J/g)−結晶化熱量の絶対値(J/g))÷完全結晶化熱量(J/g)}×100・・・(I)
結晶化度を上記範囲とすることにより、発泡樹脂容器の耐熱性が向上しやすくなる。
ここで、融解熱量、結晶化熱量はJIS K7122:2012「プラスチックの転移熱測定方法」に従い測定したDSC曲線から求めることができる。測定条件は上述の通りである。
本発明において算出される結晶化度とは、融熱ピークの面積から求められる融解熱量(J/g)と結晶化ピークの面積から求められる結晶化熱量(J/g)の差を、樹脂の完全結晶の理論融解熱量で除して求められる値である。融解熱量及び結晶化熱量は、装置付属の解析ソフトを用いて算出することができる。図8は、DSC曲線から融解熱量と結晶化熱量の算出方法を説明するためのDCS曲線の模式図である。図8において、融解熱量は、融熱ピークとベースラインとで囲まれる面積(図8における右側斜線部分)から算出され、結晶化熱量は、結晶化ピークとベースラインとで囲まれる面積(図8における左側斜線部分)から算出される。
図9は、PETを使用した時のDSC曲線を表す図である。図9において、110〜140℃の間のピークが結晶化熱量を表し、210〜260℃の間のピークが融解熱量を表す。完全結晶化熱量は、100%結晶化した場合の熱量を表す。なお、PETの完全結晶化熱量は、140.1J/gである。
発泡樹脂容器の結晶化度は発泡シートの成形条件によって調節することができる。
In the foamed resin container of the present invention, the crystallinity calculated by the following formula (I) is 20% or more, and more preferably 30% or more. The upper limit is preferably 30% or less, and more preferably 27% or less.
Crystallinity (%) = {(absolute value of heat of fusion (J / g) −absolute value of heat of crystallization (J / g)) ÷ complete heat of crystallization (J / g)} × 100 (I )
By setting the crystallinity within the above range, the heat resistance of the foamed resin container is easily improved.
Here, the heat of fusion and the heat of crystallization can be determined from the DSC curve measured according to JIS K7122: 2012 “Method for measuring the transition heat of plastic”. The measurement conditions are as described above.
The crystallinity calculated in the present invention is the difference between the heat of fusion (J / g) determined from the area of the heat fusion peak and the heat of crystallization (J / g) determined from the area of the crystallization peak. It is a value obtained by dividing by the theoretical heat of fusion of a complete crystal. The heat of fusion and the heat of crystallization can be calculated using analysis software attached to the apparatus. FIG. 8 is a schematic diagram of a DCS curve for explaining a method of calculating the heat of fusion and the heat of crystallization from the DSC curve. In FIG. 8, the heat of fusion is calculated from the area surrounded by the heat melting peak and the base line (the right hatched portion in FIG. 8), and the heat of crystallization is the area surrounded by the crystallization peak and the base line (FIG. 8). (Left hatched portion) in FIG.
FIG. 9 is a diagram showing a DSC curve when PET is used. In FIG. 9, the peak between 110-140 ° C. represents the crystallization heat amount, and the peak between 210-260 ° C. represents the heat of fusion. The complete crystallization heat amount represents the heat amount when 100% crystallization occurs. The complete crystallization heat amount of PET is 140.1 J / g.
The crystallinity of the foamed resin container can be adjusted by the molding conditions of the foamed sheet.

(発泡樹脂容器の製造方法)
本発明の発泡樹脂容器は、熱可塑性ポリエステル系樹脂発泡シート(以下「発泡シート」という)を120〜180℃で加熱する加熱工程、及び前記加熱工程後、引き続き前記発泡シートを160〜200℃の金型で挟み4〜15秒間加熱成形する成形工程、を含む製造方法で製造することができる。さらに、前記成形工程後、成形された前記発泡シートを50〜70℃になるまで放冷する放冷工程を含んでいてもよい。
(Method for producing foamed resin container)
The foamed resin container of the present invention comprises a heating step of heating a thermoplastic polyester resin foamed sheet (hereinafter referred to as “foamed sheet”) at 120 to 180 ° C., and after the heating step, the foamed sheet is continuously heated to 160 to 200 ° C. It can be manufactured by a manufacturing method including a molding step of sandwiching between molds and performing heat molding for 4 to 15 seconds. Furthermore, after the said shaping | molding process, the cooling process which cools until the said foamed sheet | seat shape | molded becomes 50-70 degreeC may be included.

<加熱工程>
加熱工程では、発泡シートを120〜180℃のヒーター槽で加熱して発泡シートを軟らかくする。
このとき発泡シートの表面温度を105〜135℃にすることが好ましい。
加熱工程における発泡シートの加熱時間は、20〜60秒が好ましい。
<Heating process>
In the heating step, the foamed sheet is softened by heating the foamed sheet in a heater tank at 120 to 180 ° C.
At this time, the surface temperature of the foamed sheet is preferably set to 105 to 135 ° C.
The heating time of the foam sheet in the heating step is preferably 20 to 60 seconds.

<成形工程>
成形工程では、加熱工程後、加熱した発泡シートを160〜200℃の金型で挟み4〜15秒間加熱成形する。
160〜200℃の金型で挟み4〜15秒間加熱することにより樹脂の結晶化が進み、樹脂の結晶化熱量の絶対値を1〜5mJ/mgとし、且つ結晶化度を20%以上とすることができる。
成形方法としては、例えば、真空成形又は圧空成形が挙げられる。真空成形又は圧空成形としては、プラグ成形、フリードローイング成形、プラグ・アンド・リッジ成形、マッチド・モールド成形、ストレート成形、ドレープ成形、リバースドロー成形、エアスリップ成形、プラグアシスト成形、プラグアシストリバースドロー成形などが挙げられる。なかでも圧空成形が好ましい。圧空成形では、金型として160〜200℃に加熱したプラグ型及びキャビ型を用い、プラグ型側から圧縮空気を供給して、加熱した熱可塑性ポリエステル系樹脂発泡シートをキャビ型に4〜15秒間密着させることが好ましい。
成形工程における金型の温度は、加熱工程におけるヒーター槽の温度よりも高いことが好ましい。
<Molding process>
In the molding step, after the heating step, the heated foamed sheet is sandwiched between 160-200 ° C. molds and heat molded for 4-15 seconds.
The resin is crystallized by being sandwiched between 160-200 ° C. molds and heated for 4-15 seconds, the absolute value of the heat of crystallization of the resin is 1-5 mJ / mg, and the crystallinity is 20% or more. be able to.
Examples of the forming method include vacuum forming and pressure forming. As vacuum forming or pressure forming, plug forming, free drawing forming, plug and ridge forming, matched mold forming, straight forming, drape forming, reverse draw forming, air slip forming, plug assist forming, plug assist reverse drawing forming Etc. Of these, compressed air molding is preferred. In the pressure forming, a plug mold and a mold mold heated to 160 to 200 ° C. are used as molds, compressed air is supplied from the plug mold side, and the heated thermoplastic polyester resin foam sheet is applied to the mold mold for 4 to 15 seconds. It is preferable to adhere.
The mold temperature in the molding step is preferably higher than the temperature of the heater tank in the heating step.

<放冷工程>
放冷工程では、成形した発泡シートを表面温度が50〜70℃になるまで放冷する。
放冷工程では、成形した発泡シートを50〜60秒かけて、発泡シートの表面温度が50〜70℃になるまで放冷することが好ましい。放冷することにより、樹脂の結晶化が進み、結晶化度を20%以上とすることができる。
<Cooling process>
In the cooling step, the molded foam sheet is allowed to cool until the surface temperature reaches 50 to 70 ° C.
In the cooling step, the molded foam sheet is preferably allowed to cool for 50 to 60 seconds until the surface temperature of the foam sheet reaches 50 to 70 ° C. By allowing to cool, the crystallization of the resin proceeds and the crystallinity can be increased to 20% or more.

本発明の発泡樹脂容器は、内表面に非発泡樹脂層を有していてもよい。非発泡樹脂層を有することにより、発泡樹脂容器の強度が向上し、熱によって変形しにくくなる。
また、2枚の非発泡樹脂層の間に印刷層を挟み、これを発泡樹脂容器の内表面に積層した構造としてもよい。このような構成とすることにより、発泡樹脂容器表面を着色及び装飾できるため、意匠性が向上する。
The foamed resin container of the present invention may have a non-foamed resin layer on the inner surface. By having a non-foamed resin layer, the strength of the foamed resin container is improved and it is difficult to be deformed by heat.
Moreover, it is good also as a structure which pinched | interposed the printing layer between the two non-foamed resin layers, and laminated | stacked this on the inner surface of the foamed resin container. By setting it as such a structure, since the foamed resin container surface can be colored and decorated, the designability improves.

本発明の発泡樹脂容器は、食品包装用容器等の容器として使用され、特に、オーブン及び電子レンジで加熱調理する食品用のものであることが好ましい。   The foamed resin container of the present invention is used as a container such as a food packaging container, and is particularly preferably for food that is cooked in an oven and a microwave oven.

以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
本実施例で用いた原料を以下に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description.
The raw materials used in this example are shown below.

<熱可塑性ポリエステル系樹脂発泡シート>
ポリエチレンテレフタレート発泡シート(積水化成品工業株式会社製、ポリエチレンテレフタレートのIV値:1.0、発泡剤:窒素、気泡調整剤:タルク粉末、押し出し発泡法で製造されたもの、シート重量:330g/m、シート厚み:0.75mm)。
<Thermoplastic polyester resin foam sheet>
Polyethylene terephthalate foam sheet (manufactured by Sekisui Plastics Co., Ltd., polyethylene terephthalate IV value: 1.0, foaming agent: nitrogen, bubble regulator: talc powder, manufactured by extrusion foaming method, sheet weight: 330 g / m 2 , sheet thickness: 0.75 mm).

(実施例1)
[発泡樹脂容器の製造]
図1に示す発泡樹脂容器であって、L2が205mm、W2が135mm、H2が31mmの発泡樹脂容器を製造した。
熱可塑性ポリエステル系樹脂発泡シートを90秒間150℃のヒーター槽で加熱してシート表面温度を125℃にした後、プラグ型側から圧縮空気を供給してキャビ型にシートを密着させてプラグ型とキャビ型を8秒間閉じて180℃にて真空圧空成形し、図1に示す発泡樹脂容器を得た。
Example 1
[Manufacture of foamed resin containers]
A foamed resin container shown in FIG. 1 having L2 of 205 mm, W2 of 135 mm, and H2 of 31 mm was produced.
After the thermoplastic polyester resin foam sheet is heated in a heater bath at 150 ° C. for 90 seconds to bring the sheet surface temperature to 125 ° C., compressed air is supplied from the plug mold side to bring the sheet into close contact with the mold mold, The mold was closed for 8 seconds and vacuum-pressure molded at 180 ° C. to obtain a foamed resin container shown in FIG.

(比較例1)
圧空成形の時間を20秒に変更した以外は、実施例1と同様にして発泡樹脂容器を製造した。
(Comparative Example 1)
A foamed resin container was produced in the same manner as in Example 1 except that the pressure forming time was changed to 20 seconds.

(比較例2)
圧空成形の時間を3秒に変更した以外は、実施例1と同様にして発泡樹脂容器を製造した。
(Comparative Example 2)
A foamed resin container was produced in the same manner as in Example 1 except that the pressure forming time was changed to 3 seconds.

製造された発泡樹脂容器について、各測定及び評価を行い、結果を表1に示した。   Each measurement and evaluation was performed on the manufactured foamed resin container, and the results are shown in Table 1.

[発泡樹脂容器の結晶化熱量の測定]
得られた発泡樹脂容器の底面から試料を採取し、下記測定条件のもと、JIS K7122に従いDSC測定を行い、結晶化熱量を求めた。得られた結果を表1に示す。
測定装置:示差走査熱量計装置 DSC7000X型((株)日立ハイテクサイエンス社製)
試料量:5.5±0.5mg
リファレンス(アルミナ)量:5mg
窒素ガス流量:20mL/min
試験数:2
[Measurement of heat of crystallization of foamed resin container]
A sample was taken from the bottom surface of the obtained foamed resin container, and DSC measurement was performed according to JIS K7122 under the following measurement conditions to determine the heat of crystallization. The obtained results are shown in Table 1.
Measuring apparatus: differential scanning calorimeter DSC7000X (manufactured by Hitachi High-Tech Science Co., Ltd.)
Sample amount: 5.5 ± 0.5 mg
Reference (alumina) amount: 5mg
Nitrogen gas flow rate: 20 mL / min
Number of tests: 2

[発泡樹脂容器の結晶化度の測定]
上記[発泡樹脂容器の結晶化熱量の測定]で得られたDSC曲線の融解熱量、及び結晶化熱量から、下記式(II)より結晶化度を算出した。得られた結果を表1に示す。
結晶化度(%)={(融解熱量の絶対値(J/g)−結晶化熱量の絶対値(J/g))÷完全結晶化熱量(J/g)}×100・・・(II)
[Measurement of crystallinity of foamed resin container]
The degree of crystallinity was calculated from the following formula (II) from the heat of fusion and the heat of crystallization of the DSC curve obtained in [Measurement of heat of crystallization of foamed resin container]. The obtained results are shown in Table 1.
Crystallinity (%) = {(Absolute value of heat of fusion (J / g) −Absolute value of heat of crystallization (J / g)) ÷ Complete heat of crystallization (J / g)} × 100 (II )

[発泡樹脂容器の耐熱性の評価]
得られた発泡樹脂容器を200℃で10分間焼成し、発泡樹脂容器の変形具合を確認した。得られた結果を表1に示す。
○:大きな変形はない。
×:変形が大きく、容器として機能しない。
[Evaluation of heat resistance of foamed resin container]
The obtained foamed resin container was baked at 200 ° C. for 10 minutes, and the deformation state of the foamed resin container was confirmed. The obtained results are shown in Table 1.
○: No major deformation.
X: Deformation is large and does not function as a container.

[発泡樹脂容器の低温脆性の評価]
得られた発泡樹脂容器に水を250mL入れて凍らせ、これを高さ80cmから落下させ、発泡樹脂容器の破損状況を確認した。得られた結果を表1に示す。
○:破損の割合が少ない。
×:破損の割合が多い。
[Evaluation of low-temperature brittleness of foamed resin containers]
The obtained foamed resin container was frozen by adding 250 mL of water, dropped from a height of 80 cm, and the state of breakage of the foamed resin container was confirmed. The obtained results are shown in Table 1.
○: The rate of breakage is small.
X: There is much damage rate.

表1に示す結果から、結晶化度が20%以上である実施例1及び比較例1は耐熱性に優れるのに対し、結晶化度が20%未満である比較例2は耐熱性に劣っていた。
また、結晶化熱量の絶対値が1mJ/mg以上の実施例1及び比較例2は低温脆性に優れるのに対し、結晶化熱量の絶対値が1mJ/mg未満の比較例1は低温脆性に劣っていた。
From the results shown in Table 1, Example 1 and Comparative Example 1 having a crystallinity of 20% or more are excellent in heat resistance, whereas Comparative Example 2 having a crystallinity of less than 20% is inferior in heat resistance. It was.
Further, Example 1 and Comparative Example 2 having an absolute value of crystallization heat quantity of 1 mJ / mg or more are excellent in low-temperature brittleness, whereas Comparative Example 1 having an absolute value of crystallization heat quantity of less than 1 mJ / mg is inferior in low-temperature brittleness. It was.

20 発泡樹脂容器、1 底壁、2 側壁、3 フランジ部、3A つまみ部、24A、24B 底壁補強部、5 側壁補強部、6 コーナー部、7 開口部、8 容器本体 20 foamed resin container, 1 bottom wall, 2 side walls, 3 flanges, 3A knob, 24A, 24B bottom wall reinforcement, 5 sidewall reinforcement, 6 corner, 7 opening, 8 container body

Claims (5)

熱可塑性ポリエステル系樹脂の発泡層を含む発泡樹脂容器であって、
結晶化熱量の絶対値が1〜5mJ/mgであり、
下記式(I)で算出される結晶化度が20%以上である、発泡樹脂容器。
結晶化度(%)={(融解熱量の絶対値(J/g)−結晶化熱量の絶対値(J/g))÷完全結晶化熱量(J/g)}×100・・・(I)
A foamed resin container comprising a foamed layer of thermoplastic polyester resin,
The absolute value of the amount of crystallization heat is 1 to 5 mJ / mg,
A foamed resin container having a crystallinity calculated by the following formula (I) of 20% or more.
Crystallinity (%) = {(absolute value of heat of fusion (J / g) −absolute value of heat of crystallization (J / g)) ÷ complete heat of crystallization (J / g)} × 100 (I )
前記発泡層の厚み方向の気泡数が、10〜25個である請求項1に記載の発泡樹脂容器。   The foamed resin container according to claim 1, wherein the foam layer has 10 to 25 bubbles in the thickness direction. 加熱調理する食品に用いられる請求項1又は2に記載の発泡樹脂容器。 The foamed resin container according to claim 1, which is used for food to be cooked. 請求項1〜3のいずれか一項に記載の発泡樹脂容器の製造方法であって、
熱可塑性ポリエステル系樹脂発泡層を含む発泡シートを120〜180℃で加熱する加熱工程、及び
前記加熱工程後、加熱した前記発泡シートを160〜200℃の金型で挟み4〜15秒間加熱成形する成形工程、を含む発泡樹脂容器の製造方法。
It is a manufacturing method of the foamed resin container according to any one of claims 1 to 3,
A heating step of heating a foamed sheet including a thermoplastic polyester resin foam layer at 120 to 180 ° C, and after the heating step, the heated foamed sheet is sandwiched between 160 to 200 ° C molds and heat molded for 4 to 15 seconds. A method for producing a foamed resin container, comprising a molding step.
前記成形工程後、成形した前記発泡シートを表面温度が50〜70℃になるまで放冷する放冷工程を含む、請求項4に記載の発泡樹脂容器の製造方法。   The manufacturing method of the foamed resin container of Claim 4 including the cooling process which cools until the surface temperature becomes 50-70 degreeC after the said formation process.
JP2016154554A 2016-08-05 2016-08-05 Foamed resin container and its manufacturing method Active JP6797594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016154554A JP6797594B2 (en) 2016-08-05 2016-08-05 Foamed resin container and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016154554A JP6797594B2 (en) 2016-08-05 2016-08-05 Foamed resin container and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018021154A true JP2018021154A (en) 2018-02-08
JP6797594B2 JP6797594B2 (en) 2020-12-09

Family

ID=61164333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016154554A Active JP6797594B2 (en) 2016-08-05 2016-08-05 Foamed resin container and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6797594B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177933A (en) * 2018-03-30 2019-10-17 積水化成品工業株式会社 Heat-resistant container

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345071A (en) * 1993-06-11 1994-12-20 Sekisui Plastics Co Ltd Heat resistant food container
JPH07195506A (en) * 1993-12-28 1995-08-01 Sekisui Plastics Co Ltd Molding of crystalline foamed polyethylene terephthalate sheet
JP2551854B2 (en) * 1990-02-16 1996-11-06 積水化成品工業株式会社 Forming method of expanded polyethylene terephthalate sheet
JP2005008776A (en) * 2003-06-19 2005-01-13 Jsp Corp Method for producing in-mold expansion molded product of polylactic acid-based resin and in-mold expansion molded product of polylactic acid-based resin
EP1652876A2 (en) * 2004-11-02 2006-05-03 Jsp Corporation Polylactic acid resin foamed molding and process for manufacturing the same
CN1931902A (en) * 2002-07-01 2007-03-21 株式会社Jsp Polylactic acid foamed particle and molded product of the polylactic acid foamed particle
JP2007100025A (en) * 2005-10-07 2007-04-19 Sekisui Plastics Co Ltd Polylactic acid-based resin expansion molded product
JP2014139333A (en) * 2014-05-08 2014-07-31 Sekisui Plastics Co Ltd Polylactic acid-based resin-foamed sheet molding, and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551854B2 (en) * 1990-02-16 1996-11-06 積水化成品工業株式会社 Forming method of expanded polyethylene terephthalate sheet
JPH06345071A (en) * 1993-06-11 1994-12-20 Sekisui Plastics Co Ltd Heat resistant food container
JPH07195506A (en) * 1993-12-28 1995-08-01 Sekisui Plastics Co Ltd Molding of crystalline foamed polyethylene terephthalate sheet
CN1931902A (en) * 2002-07-01 2007-03-21 株式会社Jsp Polylactic acid foamed particle and molded product of the polylactic acid foamed particle
JP2005008776A (en) * 2003-06-19 2005-01-13 Jsp Corp Method for producing in-mold expansion molded product of polylactic acid-based resin and in-mold expansion molded product of polylactic acid-based resin
EP1652876A2 (en) * 2004-11-02 2006-05-03 Jsp Corporation Polylactic acid resin foamed molding and process for manufacturing the same
JP2007100025A (en) * 2005-10-07 2007-04-19 Sekisui Plastics Co Ltd Polylactic acid-based resin expansion molded product
JP2014139333A (en) * 2014-05-08 2014-07-31 Sekisui Plastics Co Ltd Polylactic acid-based resin-foamed sheet molding, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177933A (en) * 2018-03-30 2019-10-17 積水化成品工業株式会社 Heat-resistant container
JP7097211B2 (en) 2018-03-30 2022-07-07 積水化成品工業株式会社 Heat-resistant container

Also Published As

Publication number Publication date
JP6797594B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
JP5360975B2 (en) Method for producing polyethylene resin foam blow molded article and polyethylene resin foam blow molded article
US8435615B2 (en) Hollow foamed blow-molded article
JP7342178B2 (en) Microcell foam sheet and fabrication process and use
US10766166B2 (en) Method for producing skin-covered, expanded bead molded article
JP5024166B2 (en) Foamed plastic molding and method for producing the same
JP2018021154A (en) Resin foam container and method for producing the same
JP2907749B2 (en) Method for producing modified polypropylene resin foam, method for producing molded article, and foam and molded article obtained from those methods
JP5883900B2 (en) Polylactic acid-based resin foam sheet molded body and method for producing polylactic acid-based resin foam sheet molded body
JP2017193668A (en) Thermoplastic polyester-based resin foam container
JP7100216B1 (en) Coextruded sheet
JP3223407U (en) Thermoplastic polyester resin foam container
JP3717376B2 (en) Non-crosslinked polyethylene resin foam, method for producing the same, and molded article using the same
JP6588855B2 (en) Polystyrene resin foam sheet, laminated sheet, container and lid
JP3221532U (en) Crystalline resin foam container
JP3851651B2 (en) High density polyethylene resin foam sheet and method for producing the sheet container
JP6233927B2 (en) Polystyrene resin foam sheet for thermoforming
JP4771764B2 (en) Polystyrene resin foam sheet and method for producing the same
JP2013248797A (en) High density polyethylene resin container and method of molding the same
JP5751670B2 (en) Polyethylene resin multilayer foam sheet and molded article thereof
JP4422985B2 (en) Styrene resin foam sheet, molded container, and method for producing the same
JP7271262B2 (en) CRYSTALLINE RESIN FOAM SHEET AND CRYSTALLINE RESIN FOAM CONTAINER
WO2024014391A1 (en) Co-extruded sheet
WO2023188487A1 (en) Coextruded sheet
JP2005335168A (en) Method for manufacturing inversely tapered container formed of polyolefinic resin expanded sheet
KR20170029230A (en) A method for producing kinds of tray and containers using non-crosslinked pp foamed sheet mixed with high melt strength pp resin

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201118

R150 Certificate of patent or registration of utility model

Ref document number: 6797594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150