JP2018019516A - 並列型電圧調整装置及び電圧調整システム - Google Patents

並列型電圧調整装置及び電圧調整システム Download PDF

Info

Publication number
JP2018019516A
JP2018019516A JP2016148466A JP2016148466A JP2018019516A JP 2018019516 A JP2018019516 A JP 2018019516A JP 2016148466 A JP2016148466 A JP 2016148466A JP 2016148466 A JP2016148466 A JP 2016148466A JP 2018019516 A JP2018019516 A JP 2018019516A
Authority
JP
Japan
Prior art keywords
svc
voltage
output
voltage regulator
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016148466A
Other languages
English (en)
Other versions
JP6855696B2 (ja
Inventor
亮太 小田崎
Ryota Odazaki
亮太 小田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016148466A priority Critical patent/JP6855696B2/ja
Publication of JP2018019516A publication Critical patent/JP2018019516A/ja
Application granted granted Critical
Publication of JP6855696B2 publication Critical patent/JP6855696B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】出力余裕を確保することができる並列型電圧調整装置及び電圧調整システムを提供する。【解決手段】この並列型電圧調整装置は、配電系統に並列に接続されるSVC(静止型無効電力補償装置)等であって、自端及び隣接機器の無効電力等の出力情報から、自端と隣接機器の制御量を均すよう、例えば平均または重み付き平均等の統計処理を用いて自端の出力指令値を変更する。【選択図】図5

Description

本発明は、配電系統に並列に接続され配電系統の電圧を制御する並列型電圧調整装置及び電圧調整システムに関する。
配電系統の電圧は、配電用変電所に設置された負荷時タップ切替変圧器(LRT:Load Ratio Control Transformer)によるタップ位置切替、配電線路(フィーダ)に設置された自動電圧調整器(SVR:Step Voltage Regulator)によるタップ位置切替、配電線路に設置された静的同期直列補償装置(SSSC:Static Synchronous Series
Compensator)等によって制御される。LRT、SVRは、ステップ型の直列型電圧調整装置であり、SSSCは連続型の直列型電圧調整装置である。以後これらを総称して直列型電圧調整装置という。
ところで、近年の配電系統では太陽光発電装置(PV:PhotoVoltaics)を備えた需要家が増大している。太陽光発電装置の発電出力は天候変動に左右され配電系統の急激な電圧変動を生じさせる原因となっている。これに対し、高速な無効電力出力制御によって電圧変動を迅速に抑制する機能を持つ静止型無効電力補償装置(SVC:Static Var Compensator)、無効電力補償装置(STATCOM:Static Synchronous CoMpensator)を配電系統に接続し、急激な電圧変動を抑制することが期待されている。以後これらを総称して並列型電圧調整装置という。
直列型電圧調整装置が変電所側(送出し側)に設置され、並列型電圧調整装置が配電線路の末端側に設置される。並列型電圧調整装置は、直列型電圧調整装置よりも高速で動作するので、電圧変動に対して、直列型電圧調整装置よりも先に動作する。並列型電圧調整装置が直列型電圧調整装置に先行して電圧制御するため、直列型電圧調整装置が動作しない現象が発生することが懸念される。並列型電圧調整装置が設置点電圧を適正範囲内に収束させるように動作すると、並列型電圧調整装置は最大出力で運転し続ける可能性があり、急峻な電圧変動を抑制するための出力余裕がなくなる。その結果、急峻な電圧変動の抑制という並列型電圧調整装置の本来の機能が果たせなくなる恐れがある。
そこで、直列型電圧調整装置と並列型電圧調整装置を協調して適切に動作させる電力制御システムが提案されている(例えば、特許文献1参照)。特許文献1に記載の電力制御システムでは、SVRは、SVCの出力現在値または出力履歴情報を把握し、その情報を元にSVCが出力なしの場合を想定した自端の電圧値を推定する。自端の電圧値の推定には、例えばSVCの出力電流と配電用変電所側の短絡リアクタンスに相当するパラメータとを用いて、電圧補正量ΔVsを計算する。電圧補正量ΔVsは、SVCが出力なしの場合と、出力ありの場合とで生じる電圧差分を示している。SVCの出力による電圧変動分を含んでいるタップ動作判定基準値Vsから電圧補正量ΔVsを差し引いて、SVCの出力による電圧変動分の影響分を除外し、この補正電圧がSVRの目標電圧点において適正電圧を逸脱していた場合、無効電力補償装置SVCの出力を減ずるように自動電圧調整器SVRを動作させることが開示されている。
特開2014−33492号公報
しかしながら、特許文献1の電力制御システムでは、並列型電圧調整機器であるSVCが複数存在する場合を想定していない。よって、直列型電圧調整機器であるSVRと協調動作されるSVCの出力余力は確保されるが、当該SVCとは別の更に負荷側に存在するSVCは、SVRと協調動作せずに出力余力が確保されない可能性がある、という問題がある。
本発明は、このような問題に鑑みてなされたもので、出力余裕を確保することができる並列型電圧調整装置及び電圧調整システムを提供することを目的とする。
本発明の一態様の並列型電圧調整装置は、配電系統に並列に接続される並列型電圧調整装置であって、自端及び隣接機器の出力情報から、自端と隣接機器の制御量を均すように自端の出力指令値を変更することを特徴とする。ここで、本明細書及び特許請求の範囲において、一の系統において複数の並列型電圧調整装置を設置するときに、当該系統において自端以外の任意の並列型電圧調整装置との関係を隣接機器として扱う。
また、本発明の一態様の電圧調整システムは、前記並列型電圧調整装置を複数有しているとともに、直列型電圧調整装置を含んで構成され、前記直列型電圧調整装置に前記並列型電圧調整装置の制御量を加担させることを特徴とする。
本発明の並列型電圧調整装置によれば、自端の出力情報だけでなく隣接機器の出力情報から自端の出力指令値を変更するので、系統にて直列型電圧調整装置と協調動作しない場合であっても、自端の出力余裕を確保することができる。
本実施の形態における電圧調整システムの全体構成の一例を示す図である。 複数のSVC及びSSSCでの出力情報の様子を示す図である。 SSSCの構成例を示す図である。 本実施の形態におけるSVCの制御内容を示す図である。 隣接機器となるSVCがある場合にSVCにおける制御内容を伝達関数で示す図である。 従来例におけるSSSCでの協調制御動作を説明する図である。 従来例におけるSVCでの制御動作を説明する図である。 本実施の形態における2台のSVCの制御動作を説明する図である。 本実施の形態におけるSVCでのフロー図である。
以下、添付図面を参照して本実施の形態の並列型電圧調整装置について説明する。図1は本実施の形態の並列型電圧調整装置が設置された電圧調整システムの構成例を示す図である。図1に示す電圧調整システムとなる配電系統は、変電所に定電圧電源11が設置され、変電所のバンクの送り出しにLRT12が設置されている。LRT12の二次側に接続された母線には複数本の配電線路13が並列に接続される(図1では1系統のみ示している)。配電線路13には、配電線路13に対して直列に接続される直列型電圧調整装置となるSSSC14が接続され、SSSC14の下位側に配電線路13に対して並列に第1SVC15、第2SVC16が接続される。各SVC15、16は、SSSC14の制御対象区間に設置され、配電線路13に対して並列に接続される並列型電圧調整装置である。また、各SVC15、16は相互に隣接機器となり、言い換えると、第1SVC15から見て第2SVC16は隣接機器となり、且つ、第2SVC16から見て第1SVC15は隣接機器となる。本実施の形態では、配電線路13に対して並列に接続される複数(3台以上)のSVCのうちの一部として、第1SVC15と第2SVC16とを図示説明し、第1SVC15と第2SVC16との関係は、他のSVCと比べたときに相互間の電気的なインピーダンスが最小になって隣り合う関係とされる。また、第1SVC15は、他のSVCと比べたときにSSSC14との電気的なインピーダンスが最小になる関係とされる。本実施の形態では、直列型電圧調整装置となるSSSC14から第1SVC15、第2SVC16までの区間、又は、隣接機器同士となる第1SVC15及び第2SVC16の間の区間に着目して説明する。なお、SSSC14の制御対象区間にある配電線路13には需要家17及び太陽光発電装置18が接続されている。
図2に示すように、直列型電圧調整装置となるSSSC14と第1SVC15とは通信ネットワーク21を介して通信可能に接続されており、第1SVC15の出力情報(無効電力、電流等)がSSSC14へ通知される。また、第1SVC15と第2SVC16とにおいても、通信ネットワーク22を介して通信可能に接続されており、第1SVC15及び第2SVC16の間で相互に出力情報(無効電力、電流等)が通知、交換される。SSSC14は、ローカル制御により制御対象区間の目標電圧が適正電圧(電圧管理幅)に収まるように出力指令値を決定して電圧制御を行う。第1SVC15及び第2SVC16はローカル制御によりそれぞれのSVC制御点の電圧が設定値になるように出力を制御している。SVC制御点は、各SVC15、16と配電線路13との接続点である。
図3はSSSC14の構成例を示している。SSSC14は、直列変圧器14aと自励式変換器14bとを有しており、直列変圧器14aが配電線路13に直列に接続されている。SSSC14は、自励式変換器14bで電圧調整することで制御対象区間の電圧を変化させる。また、第1SVC15及び第2SVC16は、例えば降圧用変圧器、直列リアクトル、進相コンデンサ、高電圧大容量サイリスタ装置で構成され、サイリスタを用いた高速制御により、負荷状態において無効電力を連続的に変化させて、応答速度の速い無効電力補償を行う。
本実施の形態では、並列型電圧調整装置同士となる第1SVC15及び第2SVC16が、互いに出力を均すように動作する。これにより、配電系統にて末端側となる第2SVC16の出力情報を第1SVC15を介してSSSC14まで伝搬することができる。この結果、SSSC14に隣り合う第1SVC15のみならず、さらに系統末端側の第2SVC16の出力余裕を確保することができる。
図4は並列型電圧調整装置であるSVCの制御内容を示す図である。以下に述べる制御内容は、系統に接続される隣接SVC同士で実施され、本実施の形態では、第1SVC15及び第2SVC16の両方にて実施される。SVCは、自端の出力情報(無効電力)と、隣接機器となるSVCの出力情報(無効電力)とを統計処理制御して自端の出力指令値(出力変更量)を決定している。統計処理としては、自端の出力情報を含む複数の出力情報についての単純平均処理の他、重み付き(加重)平均処理を例示することができる。単純平均処理では、出力情報の総和に対し、出力情報の個数で割る演算を行っており、仮に、並列型電圧調整装置が第1SVC15及び第2SVC16の2体である場合、それぞれの出力情報を加算してから2で除算する。重み付き平均処理では、複数のSVCの装置性能や配電系統における各種条件に応じ、それぞれの出力情報に対応する重みを付けてから平均化する。なお、出力変更量となる出力指令値は、無効電力指令値とする他、電圧指令値、電流指令値としてもよい。
図5はSVCの制御内容を伝達関数で実現した一例を示している。平均化処理器31において、自端となるSVCの出力情報と、隣接機器となるSVCの出力情報とを通信周期毎に取り込んで上述のように平均処理制御し、この制御による計算値を出力指令値とする。加減算器32において、出力指令値と自端となるSVCの出力情報との偏差をとり、積分器33で複数周期分を積算して電圧指令値変更量を出力する。そして、加算器34にて、電圧指令値変更量と、単位換算用の電圧基準値とを加算して新しい電圧指令値に変換する。新しい電圧指令値は制御点電圧逸脱防止リミッタ35を通して最終的な電圧指令値として出力する。上記の各出力情報は無効電力であり、プラスとなる場合とマイナスとなる場合とがある。電圧基準値は、配電系統で決まっている基準の電圧であり、本実施の形態では1を入力したが、1より増減した値に設定してもよい。積分器33を比例器に変更し、加減算器32の偏差を比例制御して電圧指令値変更量を演算してもよい。但し、図5のように伝達関数に積分制御を組み込むことにより、偏差が小さい状況であっても、偏差を繰り返し加算して電圧指令値を出力するので、偏差が残らない制御が実現される。リミッタ35は、SVCの目標電圧がSVCの適正範囲内に収まるように上限値及び下限値が設定される。例えば、SVCの目標電圧が上限逸脱する場合、リミッタ35の上限値を低下させて、新しい電圧指令値を低下させる。
ここで、本実施の形態の並列型電圧調整装置(SVC)による具体的な動作について説明する前に、図6及び図7を参照して、従来例に係る並列型電圧調整装置の動作について説明する。図6及び図7において、横軸はSSSC、第1SVC及び第2SVCに対応した配電線路上の各位置を示しており、縦軸は各位置での電圧を示している。図6は第1SVC及び第2SVCの動作前の電圧プロファイルを点線で示し、動作後の電圧プロファイルを実線で示している。第1SVC及び第2SVCの動作前は、点線の電圧プロファイルで示すように、SSSCの制御点での電圧が適正電圧の範囲内にあるものの、SVCの各制御点の電圧が適正範囲上限より上昇している。この状態で、第1SVC及び第2SVCを動作することで、実線の電圧プロファイルで示すように、ローカル制御により決定した出力により各SVCの制御点電圧を適正範囲上限付近に抑え込む。また、SSSCによる協調動作を実施すべく、第1SVCからSSSCに出力情報を出力する。
図7は、SSSCによる協調動作前の電圧プロファイルを実線で示し、協調動作後の電圧プロファイルを点線で示している。SSSCが第1SVCの出力情報を基に制御対象区間の電圧を下げる協調動作を行うと、電圧プロファイルが実線から点線で示した状態となり、この協調動作によって第1SVCの出力が減少する。言い換えると、第1SVCの出力がSSSCによって加担され、第1SVCの出力余力を確保した状態にすることができる。
但し、従来例においては、SSSCの協調動作において、第1SVCより更に負荷側に存在する第2SVCの出力情報を反映した制御を行っていなかった。このため、場合によっては第2SVCの出力が図7に示すように継続して維持され、第2SVCの出力余力を確保できなくなることがあった。本実施の形態では、このような状態であっても、第1SVCのみならず第2SVCの出力も低減させるよう、以下に述べるように制御を行っている。
図8を参照して、本実施の形態の並列型電圧調整装置(SVC)による具体的な動作について説明する。図8においても、横軸はSSSC、第1SVC及び第2SVCに対応した配電線路上の各位置を示しており、縦軸は各位置での電圧を示している。図8は、2台のSVCによる協調動作前の電圧プロファイルを実線で示し、協調動作後の電圧プロファイルを点線で示している。本実施の形態においても、従来例と同様に、SSSCが第1SVCの出力情報を基に制御対象区間の電圧を下げる協調動作を行うことによって第1SVCの出力を減少しているものとする。本実施の形態では、第1SVC及び第2SVCが相互に隣接SVC(隣接機器)同士となり、第1SVCが第2SVCの出力情報を取得し、第2SVCが第1SVCの出力情報を取得する。第1SVCは、自端の出力情報と、隣接SVCとなる第2SVCの出力情報とに基づいて平均化処理を実施し、この平均化処理の演算結果を基に自端出力を協調制御する。同様にして、第2SVCは、自端の出力情報と、隣接SVCとなる第1SVCの出力情報とに基づいて平均化処理を実施し、この平均化処理の演算結果を基に自端出力を協調制御する。従って、第1SVC及び第2SVCの両方にて出力(制御量)を均すように動作し、図7で示した状態に比べて第2SVCの出力が減少する。上記動作を繰り返すことで、第1SVCだけでなく、さらに負荷側の第2SVCの出力を低減させることができ、各SVCの出力余力を確保した状態にすることができる。
図9は、隣接SVC同士における協調動作のフロー図である。第1SVC及び第2SVCは、自端に対して隣接SVCとなる互いの出力情報を通信周期毎に取得する(ステップS1)。第1SVC及び第2SVCは、自端の出力情報を取得する(ステップS2)。第1SVC及び第2SVCは、ステップS1で取得した隣接SVCの出力情報と、ステップS2で取得した自端の出力情報とを平均化処理した平均値を演算する(ステップS3)。第1SVC及び第2SVCは、演算した平均値に基づき、自端の電圧指令値をどの程度変更すべきか計算して決定する(ステップS4)。ステップS4で決定した電圧指令値変更量は、演算した平均値と自端の出力情報との偏差を積分制御によって電圧量へ換算したものである。ここで、第1SVC及び第2SVCにおける設置点電圧を取得し、かかる設置点電圧が適正範囲から逸脱しないか判断する(ステップS5)。設置点電圧が適正範囲から逸脱しないと判断した場合は、自端の現在の電圧指令値に、ステップS4で計算した電圧指令値変更量を加算し、新たな電圧指令値に変更する(ステップS6)。一方、ステップS5において、設置点電圧が適正範囲から逸脱すると判断した場合は、電圧指令値を変更することなくステップS1の処理へ移行する(ステップS7)。
なお、上記実施の形態において、直列型電圧調整装置として連続型直列型電圧調整装置となるSSSCを例に説明したが、それ以外の連続型直列型電圧調整装置として統合電力潮流制御装置(UPFC:Unined Power Fiow Controller)に対しても同様に適用できる。 また、直列型電圧調整装置としては、ステップ型直列型電圧調整装置を適用してもよく、例えば、自動電圧調整器(SVR:Step Voltage Regulator)やサイリスタ式自動電圧調整装置(TVR:Thyristor Voltage Regulator)を同様に適用できる。
また、上記のように協調動作する隣接SVC同士において、何れか一方のSVCで図4や図5で示す制御を実施して出力指令値や電圧指令値を演算し、その演算結果を何れか他方の両方SVCで入力して動作を制御するようにしてもよい。
また、上記実施の形態では、第1SVC15と第2SVC16との間の電気的なインピーダンスが他のSVCと比べて最小になる関係としたが、最小に限定されるものでなく任意に設定してもよい。更に、配電線路13に対して並列に3台以上のSVCが接続される場合、SSSC14から負荷側に向かって対になる隣接SVCが順に上記協調動作を行うようになり、SSSC14に複数台のSVCの制御量を加担することができる。言い換えると、配電系統にて末端側となるSVCの出力情報を一次側のSVCを介してSSSC14まで伝搬可能となり、SSSC14に電気的に近いSVCだけでなく系統末端側のSVCの出力余裕を確保することができる。
11 定電圧電源
12 LRT
13 配電線路
14 SSSC
15 第1SVC
16 第2SVC
17 需要家
18 太陽光発電装置
31 平均化処理器
32 加減算器
33 積分器
34 加算器
35 保護リミッタ

Claims (5)

  1. 配電系統に並列に接続される並列型電圧調整装置であって、
    自端及び隣接機器の出力情報から、自端と隣接機器の制御量を均すように自端の出力指令値を変更することを特徴とする並列型電圧調整装置。
  2. 自端及び前記隣接機器が出力する無効電力の出力情報の平均または重み付き平均を用いて、自端の出力指令値を変更することを特徴とする請求項1に記載の並列型電圧調整装置。
  3. 前記請求項1または請求項2に記載された並列型電圧調整装置を複数有しているとともに、直列型電圧調整装置を含んで構成され、
    前記直列型電圧調整装置に前記並列型電圧調整装置の制御量を加担させることを特徴とする電圧調整システム。
  4. 前記直列型電圧調整装置は連続型電圧調整機器であることを特徴とする請求項3に記載の電圧調整システム。
  5. 前記並列型電圧調整装置が3台以上接続されている請求項3または請求項4に記載の電圧調整システム。
JP2016148466A 2016-07-28 2016-07-28 並列型電圧調整装置及び電圧調整システム Active JP6855696B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016148466A JP6855696B2 (ja) 2016-07-28 2016-07-28 並列型電圧調整装置及び電圧調整システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016148466A JP6855696B2 (ja) 2016-07-28 2016-07-28 並列型電圧調整装置及び電圧調整システム

Publications (2)

Publication Number Publication Date
JP2018019516A true JP2018019516A (ja) 2018-02-01
JP6855696B2 JP6855696B2 (ja) 2021-04-07

Family

ID=61076470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016148466A Active JP6855696B2 (ja) 2016-07-28 2016-07-28 並列型電圧調整装置及び電圧調整システム

Country Status (1)

Country Link
JP (1) JP6855696B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333112A (ja) * 1991-05-08 1992-11-20 Toshiba Corp 静止形無効電力補償装置の協調制御装置
JPH11289663A (ja) * 1998-04-06 1999-10-19 Kansai Electric Power Co Inc:The 配電系統制御システム
JP2001045667A (ja) * 1999-07-30 2001-02-16 Matsushita Electric Ind Co Ltd 無効電力補償装置の並列運転方法
JP2001119860A (ja) * 1999-10-19 2001-04-27 Toshiba Corp 電力系統電圧調整方法及び装置
US20080258559A1 (en) * 2004-12-16 2008-10-23 Bertil Berggren Electric Power Flow Control
JP2012029433A (ja) * 2010-07-22 2012-02-09 Energy Support Corp 無効電力補償装置
JP2014033492A (ja) * 2012-08-01 2014-02-20 Hitachi Ltd 配電系統の電圧調整装置、電圧調整方法および電力制御システム
JP2014225976A (ja) * 2013-05-16 2014-12-04 富士電機株式会社 配電系統の潮流制御装置、配電系統の潮流制御システム、配電系統の潮流制御方法、プログラム
JP2015149880A (ja) * 2014-02-10 2015-08-20 富士電機株式会社 制御装置、電力貯蔵システム、制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333112A (ja) * 1991-05-08 1992-11-20 Toshiba Corp 静止形無効電力補償装置の協調制御装置
JPH11289663A (ja) * 1998-04-06 1999-10-19 Kansai Electric Power Co Inc:The 配電系統制御システム
JP2001045667A (ja) * 1999-07-30 2001-02-16 Matsushita Electric Ind Co Ltd 無効電力補償装置の並列運転方法
JP2001119860A (ja) * 1999-10-19 2001-04-27 Toshiba Corp 電力系統電圧調整方法及び装置
US20080258559A1 (en) * 2004-12-16 2008-10-23 Bertil Berggren Electric Power Flow Control
JP2012029433A (ja) * 2010-07-22 2012-02-09 Energy Support Corp 無効電力補償装置
JP2014033492A (ja) * 2012-08-01 2014-02-20 Hitachi Ltd 配電系統の電圧調整装置、電圧調整方法および電力制御システム
JP2014225976A (ja) * 2013-05-16 2014-12-04 富士電機株式会社 配電系統の潮流制御装置、配電系統の潮流制御システム、配電系統の潮流制御方法、プログラム
JP2015149880A (ja) * 2014-02-10 2015-08-20 富士電機株式会社 制御装置、電力貯蔵システム、制御方法

Also Published As

Publication number Publication date
JP6855696B2 (ja) 2021-04-07

Similar Documents

Publication Publication Date Title
Guo et al. Hierarchical automatic voltage control for integration of large-scale wind power: Design and implementation
EP3005515B2 (en) Multivariable modulator controller for power generation facility
CN107240934B (zh) 交直流混合微网多模式运行协调控制方法及平滑切换方法
US20140046500A1 (en) Use of distributed generator (dg) inverters as statcoms for decreasing line losses
US10389125B2 (en) Expanded reactive following for distributed generation and loads of other reactive controller(s)
US11586236B2 (en) Use of distributed generator (DG) inverters as STATCOMs for decreasing line losses
CN111837309A (zh) 操作能量产生系统的方法和能量产生系统的逆变器
Zad et al. Coordinated control of on-load tap changer and D-STATCOM for voltage regulation of radial distribution systems with DG units
Rizy et al. Volt/Var control using inverter-based distributed energy resources
JP5978088B2 (ja) 無効電力補償装置
Mehrabankhomartash et al. Model predictive control based AC line overload alleviation by using multi-terminal DC grids
Lee et al. A coordinated control strategy for LCC HVDC systems for frequency support with suppression of AC voltage fluctuations
CN108336743B (zh) 一种基于分布式电源并网逆变器的本地电压控制方法
WO2016140034A1 (ja) 配電系統の電圧調整装置および電圧調整方法
Gao et al. Distributed multi‐agent control for combined AC/DC grids with wind power plant clusters
CN112600219A (zh) 一种交直流电网动态无功备用优化方法
KR20220126446A (ko) 전압조정기기의 동작 횟수 저감을 위한 협조 전압 제어 방법 및 그 장치
Švenda et al. Volt var watt optimization in distribution network with high penetration of renewable energy sources and electric vehicles
Elmitwally et al. Multi-agent-based voltage stabilization scheme considering load model effect
JP6855696B2 (ja) 並列型電圧調整装置及び電圧調整システム
Mohanty et al. An optimized STATCOM controller for voltage stability and reactive power compensation in an isolated micro grid
JP4569223B2 (ja) 電源装置
JP4337687B2 (ja) 電源装置
Lu et al. Profit optimization-based power compensation control strategy for grid-connected PV system
Gebremariam et al. Enhanced dc-link voltage control in a virtual synchronous generator-based building-to-building grid considering islanded mode operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6855696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250