JP2018018931A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2018018931A
JP2018018931A JP2016147393A JP2016147393A JP2018018931A JP 2018018931 A JP2018018931 A JP 2018018931A JP 2016147393 A JP2016147393 A JP 2016147393A JP 2016147393 A JP2016147393 A JP 2016147393A JP 2018018931 A JP2018018931 A JP 2018018931A
Authority
JP
Japan
Prior art keywords
light emitting
phosphor
light
emitting device
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016147393A
Other languages
Japanese (ja)
Other versions
JP6772621B2 (en
Inventor
真規子 岩浅
Makiko Iwasa
真規子 岩浅
幸治 梶川
Koji Kajikawa
幸治 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2016147393A priority Critical patent/JP6772621B2/en
Publication of JP2018018931A publication Critical patent/JP2018018931A/en
Application granted granted Critical
Publication of JP6772621B2 publication Critical patent/JP6772621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce high-energy light of 435nm or less in wavelength while suppressing the reduction in light emission intensity.SOLUTION: A light-emitting device comprises: a light-emitting element having light emission peak wavelength in a range of 420 to 470 nm; and a fluorescent member including a first phosphor having a light emission peak wavelength in a range of 450-470 nm, of which the relative reflectance is 55% or less to a reflectance of calcium hydrogen phosphate in a range of 380-435 nm.SELECTED DRAWING: Figure 7B

Description

本開示は、発光装置に関する。   The present disclosure relates to a light emitting device.

発光ダイオード(Light emitting diode、以下、「LED」と呼ぶ。)のような発光素子を用いる発光装置として、青色発光の発光素子と黄色発光等の蛍光体とを用いる白色系の発光装置がよく知られている。このような発光装置は、一般照明、車載照明、ディスプレイ、液晶用バックライト等の幅広い分野で使用されている。また単色青色光を発光する発光装置として、発光波長が390nmから420nmの発光素子と、410nmから480nmの青色発光の蛍光体を備える発光装置が提案されている(例えば、特許文献1参照)。   As a light emitting device using a light emitting element such as a light emitting diode (hereinafter referred to as “LED”), a white light emitting device using a blue light emitting element and a yellow light emitting phosphor is well known. It has been. Such light emitting devices are used in a wide range of fields such as general lighting, in-vehicle lighting, displays, and backlights for liquid crystals. As a light-emitting device that emits monochromatic blue light, a light-emitting device including a light-emitting element with an emission wavelength of 390 to 420 nm and a blue-emitting phosphor with a wavelength of 410 to 480 nm has been proposed (see, for example, Patent Document 1).

特開2002−171000号公報JP 2002-171000 A

近年、このような発光装置から発せられる、短波長の光、特に波長435nm以下の高エネルギー光について、例えば、人間の眼に悪影響を及ぼすことが懸念されている。このような高エネルギー光を軽減する方法としてカラーフィルターを用いる場合には、青色領域の発光強度が低下するため、発光装置の発光強度も低下することになる。一方、発光装置の製造工程において、発光ピーク波長が長い発光素子を選択する方法では、所望の範囲から発光ピーク波長が外れてしまうため、実用的ではない。   In recent years, there is a concern that, for example, short-wavelength light emitted from such a light-emitting device, particularly high-energy light having a wavelength of 435 nm or less, adversely affects human eyes. When a color filter is used as a method for reducing such high-energy light, the light emission intensity of the light-emitting device also decreases because the light emission intensity in the blue region decreases. On the other hand, in a method of manufacturing a light emitting device, a method of selecting a light emitting element having a long emission peak wavelength is not practical because the emission peak wavelength is out of a desired range.

そこで、本開示に係る一実施形態は、発光強度の低下を抑制しつつ波長435nm以下の高エネルギー光を低減可能な発光装置を提供することを目的とする。   Therefore, an embodiment according to the present disclosure aims to provide a light emitting device capable of reducing high energy light having a wavelength of 435 nm or less while suppressing a decrease in light emission intensity.

本開示にかかる第一態様は、420nm以上470nm以下の範囲に発光ピーク波長を有する発光素子と、380nm以上435nm以下の範囲においてリン酸水素カルシウムの反射率に対する相対反射率が55%以下であり、450nm以上470nm以下の範囲に発光ピーク波長を有する第一蛍光体を含む蛍光部材とを備える発光装置である。   The first aspect according to the present disclosure is a light emitting device having an emission peak wavelength in a range of 420 nm or more and 470 nm or less, and a relative reflectance with respect to a reflectance of calcium hydrogen phosphate in a range of 380 nm or more and 435 nm or less is 55% or less, And a fluorescent member including a first phosphor having an emission peak wavelength in a range of 450 nm to 470 nm.

本開示に係る一実施形態によれば、発光強度の低下を抑制しつつ波長435nm以下の高エネルギー光を低減可能な発光装置を提供することができる。   According to an embodiment of the present disclosure, it is possible to provide a light emitting device capable of reducing high energy light having a wavelength of 435 nm or less while suppressing a decrease in light emission intensity.

本実施形態に係る発光装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the light-emitting device which concerns on this embodiment. 本実施形態に係る発光装置の別の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the light-emitting device which concerns on this embodiment. 第一蛍光体の波長に対する相対発光強度を示す発光スペクトルの一例を示す図である。It is a figure which shows an example of the emission spectrum which shows the relative light emission intensity with respect to the wavelength of 1st fluorescent substance. 第一蛍光体の波長に対する分光反射率の一例を示す図である。It is a figure which shows an example of the spectral reflectance with respect to the wavelength of a 1st fluorescent substance. 比較例1から3で得られた発光装置の波長に対する相対発光強度を示す発光スペクトルを示す図である。It is a figure which shows the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the light-emitting device obtained by Comparative Examples 1-3. 実施例1から3で得られた発光装置の波長に対する相対発光強度を示す発光スペクトルを示す図である。It is a figure which shows the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the light-emitting device obtained in Example 1-3. 実施例4から6で得られた発光装置の波長に対する相対発光強度を示す発光スペクトルを示す図である。It is a figure which shows the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the light-emitting device obtained in Example 4-6. 実施例7及び8で得られた発光装置の波長に対する相対発光強度を示す発光スペクトルを示す図である。It is a figure which shows the emission spectrum which shows the relative light emission intensity with respect to the wavelength of the light-emitting device obtained in Example 7 and 8. 比較例4、実施例9及び12で得られた発光装置のカラーフィルター透過後の波長に対する相対発光強度を示す発光スペクトルを示す図である。It is a figure which shows the emission spectrum which shows the relative light emission intensity with respect to the wavelength after the color filter permeation | transmission of the light-emitting device obtained by the comparative example 4 and Example 9 and 12. 図6Aの部分拡大図である。It is the elements on larger scale of FIG. 6A. 比較例5、実施例10、13及び15で得られた発光装置のカラーフィルター透過後の波長に対する相対発光強度を示す発光スペクトルを示す図である。It is a figure which shows the emission spectrum which shows the relative light emission intensity with respect to the wavelength after the color filter permeation | transmission of the light-emitting device obtained by the comparative example 5, Example 10, 13 and 15. 図7Aの部分拡大図である。It is the elements on larger scale of FIG. 7A. 比較例6、実施例11、14及び16で得られた発光装置のカラーフィルター透過後の波長に対する相対発光強度を示す発光スペクトルを示す図である。It is a figure which shows the emission spectrum which shows the relative light emission intensity with respect to the wavelength after the color filter permeation | transmission of the light-emitting device obtained by the comparative example 6, Example 11, 14, and 16. FIG. 図8Aの部分拡大図である。It is the elements on larger scale of FIG. 8A.

以下、本開示に係る発光装置を、実施の形態に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための、発光装置を例示するものであって、本発明は、発光装置を以下のものに特定しない。なお、色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また平均粒径は、フィッシャー・サブ・シーブ・サイザーズ・ナンバー(Fisher Sub Sieve Sizer's No.)と呼ばれる数値であり、空気透過法を用いて測定される。蛍光体の半値幅は、発光スペクトルにおいて最大発光強度の50%の発光強度を示す発光スペクトルの波長幅を意味する。   Hereinafter, a light-emitting device according to the present disclosure will be described based on embodiments. However, the embodiment described below exemplifies a light emitting device for embodying the technical idea of the present invention, and the present invention does not specify the light emitting device as follows. The relationship between the color name and the chromaticity coordinates, the relationship between the wavelength range of light and the color name of monochromatic light, and the like comply with JIS Z8110. In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. means. The average particle diameter is a numerical value called Fisher Sub Sieve Sizer's No., and is measured using an air permeation method. The full width at half maximum of the phosphor means the wavelength width of the emission spectrum showing the emission intensity of 50% of the maximum emission intensity in the emission spectrum.

本実施形態に係る発光装置100を図1に基づいて詳細に説明する。発光装置100は、表面実装型発光装置の一例である。
発光装置100は、可視光の短波長側(例えば、380nm以上485nm以下の範囲)の光を発し、発光ピーク波長が420nm以上470nm以下の範囲内にある窒化ガリウム系化合物半導体の発光素子10と、発光素子10を配置する成形体40と、を備える。成形体40は、第1のリード20及び第2のリード30と、樹脂部42とが一体的に成形されてなるものである。成形体40は底面と側面を持つ凹部を形成しており、凹部の底面に発光素子10が配置されている。発光素子10は一対の正負の電極を有しており、その一対の正負の電極はそれぞれ第1のリード20及び第2のリード30とワイヤ60を介して電気的に接続されている。発光素子10は蛍光部材50により被覆されている。蛍光部材50は例えば、発光素子10からの光を波長変換する蛍光体71(第一蛍光体)と樹脂とを含有してなる。
The light emitting device 100 according to the present embodiment will be described in detail with reference to FIG. The light emitting device 100 is an example of a surface mount type light emitting device.
The light emitting device 100 emits light on the short wavelength side of visible light (for example, a range of 380 nm to 485 nm), and the light emitting device 10 of a gallium nitride compound semiconductor having an emission peak wavelength in a range of 420 nm to 470 nm, And a molded body 40 on which the light emitting element 10 is disposed. The molded body 40 is formed by integrally molding the first lead 20 and the second lead 30 and the resin portion 42. The molded body 40 forms a recess having a bottom surface and side surfaces, and the light emitting element 10 is disposed on the bottom surface of the recess. The light emitting element 10 has a pair of positive and negative electrodes, and the pair of positive and negative electrodes are electrically connected to the first lead 20 and the second lead 30 through wires 60, respectively. The light emitting element 10 is covered with a fluorescent member 50. The fluorescent member 50 includes, for example, a phosphor 71 (first phosphor) that converts the wavelength of light from the light emitting element 10 and a resin.

図2に示す発光装置200では、蛍光部材50は蛍光体70として第一蛍光体71、第二蛍光体72及び第三蛍光体73の少なくとも3種の蛍光体と樹脂とを含有してなる。   In the light emitting device 200 shown in FIG. 2, the fluorescent member 50 includes, as the phosphor 70, at least three kinds of phosphors of a first phosphor 71, a second phosphor 72, and a third phosphor 73 and a resin.

第一蛍光体71は、380nm以上435nm以下の範囲においてリン酸水素カルシウムの反射率に対する相対反射率が55%以下であり、450nm以上470nm以下の範囲に発光ピーク波長を有する。特定の発光ピーク波長を有する発光素子10に、特定の反射率及び発光ピーク波長を有する第一蛍光体71を含む蛍光部材50を組合せて発光装置100を構成することで、発光強度の低下を抑制しつつ波長435nm以下の高エネルギー光を低減することが可能となる。   The first phosphor 71 has a relative reflectance of 55% or less with respect to the reflectance of calcium hydrogen phosphate in the range of 380 nm to 435 nm, and has an emission peak wavelength in the range of 450 nm to 470 nm. The light emitting device 100 is configured by combining the light emitting element 10 having the specific emission peak wavelength with the fluorescent member 50 including the first phosphor 71 having the specific reflectance and the emission peak wavelength, thereby suppressing a decrease in emission intensity. However, it becomes possible to reduce high energy light having a wavelength of 435 nm or less.

発光素子10
発光素子10の発光ピーク波長は、420nm以上470nm以下の範囲にあり、発光効率の観点や最終的に得たい発光装置全体としての色調の観点から、430nm以上460nm以下の範囲にあることが好ましい。この範囲に発光ピーク波長を有する発光素子10の光の一部を蛍光体70の励起光として用いることにより、発光素子10の光の一部を外部に放射される光の一部として有効に利用することができるため、高効率な発光装置を得ることができる。さらに、発光ピーク波長が近紫外領域よりも長波側にあり、紫外線の成分が少ないため、光源としての安全性にも優れる。
Light emitting element 10
The light emission peak wavelength of the light emitting element 10 is in the range of 420 nm or more and 470 nm or less, and is preferably in the range of 430 nm or more and 460 nm or less from the viewpoint of light emission efficiency and the color tone of the entire light emitting device to be finally obtained. By using a part of the light of the light emitting element 10 having the emission peak wavelength in this range as the excitation light of the phosphor 70, a part of the light of the light emitting element 10 is effectively used as a part of the light emitted to the outside. Therefore, a highly efficient light-emitting device can be obtained. Furthermore, since the emission peak wavelength is on the longer wave side than the near-ultraviolet region and there are few ultraviolet components, the safety as a light source is excellent.

発光素子10の発光スペクトルの半値幅は例えば、30nm以下とすることができる。
発光素子10にはLEDなどの半導体発光素子を用いることが好ましい。励起光源として、例えば、窒化物系半導体(InAlGa1−X−YN、ここでX及びYは、0≦X、0≦Y、X+Y≦1を満たす)を用いた半導体発光素子を用いることによって、高効率で入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を得ることができる。
The half width of the emission spectrum of the light emitting element 10 can be set to 30 nm or less, for example.
The light emitting element 10 is preferably a semiconductor light emitting element such as an LED. As an excitation light source, for example, nitride semiconductor (In X Al Y Ga 1- X-Y N, where X and Y, 0 ≦ X, 0 ≦ Y, X + satisfy Y ≦ 1) semiconductor light emitting device using By using this, it is possible to obtain a stable light-emitting device that is highly efficient, has high output linearity with respect to input, and is resistant to mechanical shock.

蛍光部材50
蛍光部材50は、発光素子10から発せられる光を吸収し、青色に発光する第一蛍光体71の少なくとも1種を含み、必要に応じてその他の蛍光体、樹脂等を含むことができる。蛍光部材50が第一蛍光体71を含むことで、発光素子10から発せられる光のうち波長435nm以下の高エネルギー光の少なくとも一部が吸収される。そして、例えば、450nm以上470nm以下の範囲に発光素子10からの光と第一蛍光体71からの蛍光とが重なって単一の発光ピーク波長を有する光が形成されることにより、発光強度の低下を抑制しつつ435nm以下の短波長の高エネルギー光が低減された発光スペクトルを有する発光装置100を構成することができる。
Fluorescent member 50
The fluorescent member 50 includes at least one first phosphor 71 that absorbs light emitted from the light emitting element 10 and emits blue light, and may include other phosphors, resins, and the like as necessary. When the fluorescent member 50 includes the first phosphor 71, at least a part of the high energy light having a wavelength of 435 nm or less is absorbed among the light emitted from the light emitting element 10. For example, the light from the light emitting element 10 and the fluorescence from the first phosphor 71 overlap in the range of 450 nm to 470 nm to form light having a single light emission peak wavelength, thereby reducing the light emission intensity. Thus, it is possible to configure the light emitting device 100 having an emission spectrum in which high energy light having a short wavelength of 435 nm or less is reduced.

第一蛍光体71
第一蛍光体71は、380nm以上435nm以下の範囲においてリン酸水素カルシウムの反射率に対する相対反射率が55%以下であり、45%以下が好ましく、40%以下がより好ましい。相対反射率が55%以下であることで、波長435nm以下の高エネルギー光の少なくとも一部が吸収され、人体への悪影響が低減された発光装置とすることができる。ここで、第一蛍光体71の相対反射率は、リン酸水素カルシウム(CaHPO、平均粒径2.7μm)の380nm以上435nm以下の各波長における分光反射率を100%とした場合の第一蛍光体71の分光反射率として測定される。相対反射率が55%以下であるとは、380nm以上435nm以下の範囲における相対反射率の最大値が55%以下であることを意味する。
First phosphor 71
The first phosphor 71 has a relative reflectance of 55% or less, preferably 45% or less, more preferably 40% or less, with respect to the reflectance of calcium hydrogen phosphate in the range of 380 nm to 435 nm. When the relative reflectance is 55% or less, a light-emitting device in which at least part of high-energy light having a wavelength of 435 nm or less is absorbed and adverse effects on the human body are reduced can be obtained. Here, the relative reflectance of the first phosphor 71 is the first when the spectral reflectance at each wavelength of 380 nm to 435 nm of calcium hydrogen phosphate (CaHPO 4 , average particle size 2.7 μm) is 100%. It is measured as the spectral reflectance of the phosphor 71. The relative reflectance being 55% or less means that the maximum value of the relative reflectance in the range of 380 nm to 435 nm is 55% or less.

第一蛍光体71の発光ピーク波長は450nm以上470nm以下の範囲にあり、455nm以上465nm以下の範囲にあることが好ましい。第一蛍光体71の発光スペクトルにおける半値幅は、例えば20nm以上60nm以下であり、20nm以上50nm以下が好ましい。   The emission peak wavelength of the first phosphor 71 is in the range of 450 nm to 470 nm, and preferably in the range of 455 nm to 465 nm. The full width at half maximum in the emission spectrum of the first phosphor 71 is, for example, 20 nm to 60 nm, and preferably 20 nm to 50 nm.

また、第1蛍光体71の発光ピーク波長を発光素子10の発光ピーク波長の近傍に位置させることにより、単一の発光ピークを有する発光スペクトルの発光装置を構成することもできる。この単一の発光ピーク波長の半値幅をより狭くするために、第1蛍光体71の発光ピーク波長と、発光素子10の発光ピーク波長との差は、例えば30nm以下、好ましくは20nm以下とすることができる。この場合、第一蛍光体71を、発光素子10と同じように蛍光体の励起光源として利用することができる。   Further, by positioning the emission peak wavelength of the first phosphor 71 in the vicinity of the emission peak wavelength of the light emitting element 10, a light emitting device having an emission spectrum having a single emission peak can be configured. In order to narrow the half width of the single emission peak wavelength, the difference between the emission peak wavelength of the first phosphor 71 and the emission peak wavelength of the light emitting element 10 is, for example, 30 nm or less, preferably 20 nm or less. be able to. In this case, the first phosphor 71 can be used as a phosphor excitation light source in the same manner as the light emitting element 10.

第一蛍光体71は、発光強度維持と波長435nm以下の高エネルギー光低減の観点から、例えば式(I)で表される組成を有することが好ましく、式(Ia)又は(Ib)で表される組成を有することがより好ましい。
(I) (Ca,Sr,Ba,Mg)10(PO(F,Cl,Br,I,OH):Eu
(Ia) Ca10(POCl:Eu
(Ib) Ca10(PO(Cl,Br):Eu
The first phosphor 71 preferably has, for example, a composition represented by the formula (I) from the viewpoint of maintaining emission intensity and reducing high energy light having a wavelength of 435 nm or less, and is represented by the formula (Ia) or (Ib). It is more preferable to have a composition.
(I) (Ca, Sr, Ba, Mg) 10 (PO 4 ) 6 (F, Cl, Br, I, OH) 2 : Eu
(Ia) Ca 10 (PO 4 ) 6 Cl 2 : Eu
(Ib) Ca 10 (PO 4 ) 6 (Cl, Br) 2 : Eu

第一蛍光体71の平均粒径は、例えば3μm以上40μm以下であり、5μm以上30μm以下が好ましい。平均粒径を所定値以上とすることにより発光強度を大きくすることができる。平均粒径を所定値以下とすることにより、発光装置の製造工程における作業性を向上させることができる。   The average particle diameter of the first phosphor 71 is, for example, 3 μm or more and 40 μm or less, and preferably 5 μm or more and 30 μm or less. The emission intensity can be increased by setting the average particle size to a predetermined value or more. By setting the average particle size to a predetermined value or less, workability in the manufacturing process of the light emitting device can be improved.

蛍光部材50中の第一蛍光体71の含有率は、蛍光部材50に含まれる樹脂に対して、例えば1質量%以上であり、5質量%以上が好ましい。また第一蛍光体71の含有率は、蛍光部材50が含む樹脂に対して、例えば40質量%以下であり、35質量%以下が好ましい。蛍光部材50中の第一蛍光体71の含有率を上記範囲内とすることにより、発光装置の発光強度を維持しつつ、波長435nm以下の高エネルギー光が低減された発光スペクトルを有する発光装置100を構成することができる。   The content rate of the 1st fluorescent substance 71 in the fluorescent member 50 is 1 mass% or more with respect to resin contained in the fluorescent member 50, for example, and 5 mass% or more is preferable. Moreover, the content rate of the 1st fluorescent substance 71 is 40 mass% or less with respect to resin which the fluorescent member 50 contains, for example, and 35 mass% or less is preferable. By setting the content of the first phosphor 71 in the fluorescent member 50 within the above range, the light emitting device 100 having an emission spectrum in which high energy light having a wavelength of 435 nm or less is reduced while maintaining the light emission intensity of the light emitting device. Can be configured.

発光装置100が第一蛍光体71を含む蛍光部材50を備えることで、発光装置100から発せられる波長435nm以下の高エネルギー光が低減される。発光装置100における波長435nm以下の高エネルギー光の低減率は、例えば10%以上であり、20%以上が好ましい。ここで波長435nm以下の高エネルギー光の低減率は、380nm以上435nm以下の範囲における発光強度の積分値について、同様の発光素子10を備えながら、第一蛍光体71を含む蛍光部材50を備えない発光装置を基準(低減率0%)とし、詳細は実施例で後述するが、積分球で測定される放射束で補正された積分値に基づいて算出される。   Since the light emitting device 100 includes the fluorescent member 50 including the first phosphor 71, high energy light having a wavelength of 435 nm or less emitted from the light emitting device 100 is reduced. The reduction rate of high energy light having a wavelength of 435 nm or less in the light emitting device 100 is, for example, 10% or more, and preferably 20% or more. Here, the reduction rate of the high energy light having a wavelength of 435 nm or less is not provided with the fluorescent member 50 including the first phosphor 71 while having the same light emitting element 10 for the integrated value of the emission intensity in the range of 380 nm to 435 nm. The light emitting device is used as a reference (reduction rate 0%), and details will be described later in the embodiment, but the calculation is based on an integral value corrected with a radiant flux measured by an integrating sphere.

第二蛍光体72
蛍光部材50は第一蛍光体71に加えて第二蛍光体72を含んでいてもよい。蛍光部材50が第二蛍光体72を含むことで、発光素子10、第一蛍光体71及び第二蛍光体72が発する光の混合色を発する発光装置を構成することができる。第二蛍光体72は発光ピーク波長を500nm以上600nm以下の範囲に有し、510nm以上580nm以下範囲に有することが好ましい。第二蛍光体72の発光スペクトルにおける半値幅は、例えば20nm以上130nm以下である。また第二蛍光体72は発光ピーク波長を510nm以上550nm以下の範囲に有し、半値幅が20nm以上80nm以下であることがより好ましい。
Second phosphor 72
The fluorescent member 50 may include a second phosphor 72 in addition to the first phosphor 71. When the fluorescent member 50 includes the second phosphor 72, a light emitting device that emits a mixed color of light emitted from the light emitting element 10, the first phosphor 71, and the second phosphor 72 can be configured. The second phosphor 72 has an emission peak wavelength in the range of 500 nm to 600 nm, and preferably in the range of 510 nm to 580 nm. The half width in the emission spectrum of the second phosphor 72 is, for example, not less than 20 nm and not more than 130 nm. The second phosphor 72 preferably has an emission peak wavelength in the range of 510 nm to 550 nm and a half width of 20 nm to 80 nm.

第二蛍光体72は、例えば下記式(IIa)、(IIb)、(IIc)及び(IId)のいずれかで表される組成を有する少なくとも1種の蛍光体を含むことが好ましい。これらのうち、例えば画像表示装置に適用する場合に発光装置の色再現性の範囲を拡大する上で、比較的半値幅が狭い発光スペクトルを有する式(IIa)、(IIc)または(IId)で表される組成を有する少なくとも1種の蛍光体を含むことがより好ましい。また式(IIb)で表される組成を有する少なくとも1種の蛍光体を含むことで、良好な発光効率を有する発光装置を構成することができる。
(IIa) Si6−zAl8−z:Eu (0<z≦4.2)
(IIb) LnAl5−pGa12:Ce
式(IIb)中、LnはY、Lu、Gd及びTbからなる群から選択される少なくとも1種であり、pは0≦p≦3を満たす。
(IIc) (Sr1−x−y,M ,Eu)Ga
式(IIc)中、Mは、Be、Mg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素を表し、x及びyは0.03≦x≦0.25、0≦y<0.97及びx+y<1を満たす。
(IId) M11 8MgSi16:Eu
式(IId)中、M11は、Ca、Sr、Ba及びZnからなる群から選択される少なくとも1種であり、Xは、F、Cl、Br及びIからなる群から選択される少なくとも1種である。
The second phosphor 72 preferably includes at least one phosphor having a composition represented by any of the following formulas (IIa), (IIb), (IIc) and (IId), for example. Among these, for example, when applied to an image display device, the range of the color reproducibility of the light emitting device is expanded, and in the formula (IIa), (IIc) or (IId) having an emission spectrum with a relatively narrow half width. More preferably, it comprises at least one phosphor having the composition represented. In addition, by including at least one phosphor having a composition represented by the formula (IIb), a light emitting device having good light emission efficiency can be configured.
(IIa) Si 6-z Al z O z N 8-z: Eu (0 <z ≦ 4.2)
(IIb) Ln 3 Al 5- p Ga p O 12: Ce
In the formula (IIb), Ln is at least one selected from the group consisting of Y, Lu, Gd and Tb, and p satisfies 0 ≦ p ≦ 3.
(IIc) (Sr 1-xy , M 1 y , Eu x ) Ga 2 S 4
In formula (IIc), M 1 represents at least one element selected from the group consisting of Be, Mg, Ca, Ba, and Zn, and x and y are 0.03 ≦ x ≦ 0.25, 0 ≦ Satisfy y <0.97 and x + y <1.
(IId) M 11 8 MgSi 4 O 16 X 2 : Eu
In formula (IId), M 11 is at least one selected from the group consisting of Ca, Sr, Ba and Zn, and X is at least one selected from the group consisting of F, Cl, Br and I It is.

第二蛍光体72の平均粒径は、例えば1μm以上40μm以下であり、5μm以上30μm以下が好ましい。平均粒径を所定値以上とすることにより発光強度を大きくすることができる。平均粒径を所定値以下とすることにより、発光装置の製造工程における作業性を向上させることができる。   The average particle diameter of the second phosphor 72 is, for example, 1 μm or more and 40 μm or less, and preferably 5 μm or more and 30 μm or less. The emission intensity can be increased by setting the average particle size to a predetermined value or more. By setting the average particle size to a predetermined value or less, workability in the manufacturing process of the light emitting device can be improved.

蛍光部材50が第二蛍光体72を含む場合、第二蛍光体72の含有率は、蛍光部材50に含まれる樹脂に対して、例えば5質量%以上であり、10質量%以上が好ましい。また第二蛍光体72の含有率は、蛍光部材72に含まれる樹脂に対して、例えば90質量%以下であり、80質量%以下が好ましい。   When the fluorescent member 50 includes the second fluorescent material 72, the content rate of the second fluorescent material 72 is, for example, 5% by mass or more with respect to the resin included in the fluorescent member 50, and preferably 10% by mass or higher. Moreover, the content rate of the 2nd fluorescent substance 72 is 90 mass% or less with respect to resin contained in the fluorescent member 72, for example, and 80 mass% or less is preferable.

第三蛍光体73
蛍光部材50は第一蛍光体71及び第二蛍光体72に加えて、第三蛍光体73を含んでいてもよい。蛍光部材50が第一蛍光体71、第二蛍光体72及び第三蛍光体73を含む発光装置200を例えば、画像表示装置に適用する場合、より広い色再現域を達成することができる。第三蛍光体73は発光ピーク波長を620nm以上670nm以下の範囲に有し、625nm以上660nm以下の範囲に有することが好ましい。第三蛍光体73の発光スペクトルにおける半値幅は、例えば5nm以上100nm以下であり、5nm以上30nm以下が好ましい。
Third phosphor 73
The fluorescent member 50 may include a third phosphor 73 in addition to the first phosphor 71 and the second phosphor 72. When the light emitting device 200 in which the fluorescent member 50 includes the first phosphor 71, the second phosphor 72, and the third phosphor 73 is applied to, for example, an image display device, a wider color reproduction range can be achieved. The third phosphor 73 has an emission peak wavelength in the range of 620 nm to 670 nm, and preferably in the range of 625 nm to 660 nm. The half width in the emission spectrum of the third phosphor 73 is, for example, 5 nm to 100 nm, and preferably 5 nm to 30 nm.

第三蛍光体73は、例えば下記式(IIIa)から(IIIf)のいずれかで表される組成を有する少なくとも1種の蛍光体を含むことが好ましい。これらのうち、発光装置の色再現性の範囲を拡大する上で、比較的半値幅が狭い発光スペクトルを有する、(IIIa)、(IIIb)、(IIId)または(IIIf)で示される組成を有する少なくとも1種の蛍光体を含むことが好ましい。
(IIIa) A[M1−aMn
式(IIIa)中、Aは、アルカリ金属及びアンモニウムからなる群から選択される少なくとも1種を示し、Mは、第4族元素及び第14族元素からなる群から選択される少なくとも1種を示し、aは0.01<a<0.2を満たす。
(IIIb) (i-j)MgO・(j/2)Sc・kMgF・mCaF・(1-n)GeO・(n/2)M :zMn
式(IIIb)中、MはAl、Ga及Inからなる群から選択される少なくとも1種であり、i、j、k、m、n及びzはそれぞれ、2≦i≦4、0<k<1.5、0<z<0.05、0≦j<0.5、0<n<0.5、及び0≦m<1.5を満たす数である。
(IIIc) (Ca1−p−qSrEu)AlSiN
式(IIIc)中、p及びqは、0≦p≦1.0、0<q<1.0及びp+q<1.0を満たす数である。
(IIId) M Al3−ySi
式(IIId)中、Mは、Ca、Sr、Ba及びMgからなる群より選択される少なくとも1種の元素であり、Mは、Li、Na及びKからなる群より選択される少なくとも1種の元素であり、Mは、Eu、Ce、Tb及びMnからなる群より選択される少なくとも1種の元素であり、v、w、x、y及びzは、それぞれ0.80≦v≦1.05、0.80≦w≦1.05、0.001<x≦0.1、0≦y≦0.5、3.0≦z≦5.0を満たす数である。
(IIIe) (Ca1−r−s−tSrBaEuSi
式(IIIe)中、r、s及びtは、0≦r≦1.0、0≦s≦1.0、0<t<1.0及びr+s+t≦1.0を満たす数である。
(IIIf) (Ca,Sr)S:Eu
The third phosphor 73 preferably includes at least one phosphor having a composition represented by any of the following formulas (IIIa) to (IIIf), for example. Among these, in order to expand the color reproducibility range of the light emitting device, it has an emission spectrum having a relatively narrow half width, and has a composition represented by (IIIa), (IIIb), (IIId) or (IIIf) It is preferable to include at least one phosphor.
(IIIa) A 2 [M 1-a Mn a F 6 ]
In formula (IIIa), A represents at least one selected from the group consisting of alkali metals and ammonium, and M represents at least one selected from the group consisting of Group 4 elements and Group 14 elements. , A satisfies 0.01 <a <0.2.
(IIIb) (i-j) MgO. (J / 2) Sc 2 O 3 .kMgF 2 .mCaF 2. (1-n) GeO 2. (N / 2) M t 2 O 3 : zMn
In formula (IIIb), M t is at least one selected from the group consisting of Al, Ga and In, and i, j, k, m, n and z are 2 ≦ i ≦ 4 and 0 <k, respectively. <1.5, 0 <z <0.05, 0 ≦ j <0.5, 0 <n <0.5, and 0 ≦ m <1.5.
(IIIc) (Ca 1-p -q Sr p Eu q) AlSiN 3
In formula (IIIc), p and q are numbers satisfying 0 ≦ p ≦ 1.0, 0 <q <1.0 and p + q <1.0.
(IIId) M a v M b w M c x Al 3-y Si y N z
In formula (IIId), M a is at least one element selected from the group consisting of Ca, Sr, Ba and Mg, and M b is at least one selected from the group consisting of Li, Na and K And M c is at least one element selected from the group consisting of Eu, Ce, Tb and Mn, and v, w, x, y and z are each 0.80 ≦ v ≦ 1.05, 0.80 ≦ w ≦ 1.05, 0.001 <x ≦ 0.1, 0 ≦ y ≦ 0.5, 3.0 ≦ z ≦ 5.0.
(IIIe) (Ca 1-r -s-t Sr r Ba s Eu t) 2 Si 5 N 8
In formula (IIIe), r, s, and t are numbers that satisfy 0 ≦ r ≦ 1.0, 0 ≦ s ≦ 1.0, 0 <t <1.0, and r + s + t ≦ 1.0.
(IIIf) (Ca, Sr) S: Eu

第三蛍光体73の平均粒径は、例えば1μm以上40μm以下であり、5μm以上30μm以下が好ましい。平均粒径を所定値以上とすることにより発光強度を大きくすることができる。平均粒径を所定値以下とすることにより、発光装置の製造工程における作業性を向上させることができる。   The average particle diameter of the third phosphor 73 is, for example, 1 μm or more and 40 μm or less, and preferably 5 μm or more and 30 μm or less. The emission intensity can be increased by setting the average particle size to a predetermined value or more. By setting the average particle size to a predetermined value or less, workability in the manufacturing process of the light emitting device can be improved.

蛍光部材50が第三蛍光体73を含む場合、第三蛍光体73の含有率は、蛍光部材50に含まれる樹脂に対して、例えば5質量%以上であり、10質量%以上が好ましい。また第三蛍光体73の含有率は、蛍光部材50含まれる樹脂に対して、例えば90質量%以下であり、80質量%以下が好ましい。   When the fluorescent member 50 includes the third fluorescent material 73, the content of the third fluorescent material 73 is, for example, 5% by mass or more with respect to the resin included in the fluorescent member 50, and preferably 10% by mass or higher. Moreover, the content rate of the 3rd fluorescent substance 73 is 90 mass% or less with respect to resin contained in the fluorescent member 50, for example, and 80 mass% or less is preferable.

樹脂
蛍光部材50は、蛍光体70に加えて少なくとも1種の樹脂を含むことができる。樹脂は熱可塑性樹脂及び熱硬化性樹脂のいずれであってもよい。熱硬性樹脂として、具体的には、エポキシ樹脂、シリコーン樹脂などを挙げることができる。
Resin The fluorescent member 50 can include at least one resin in addition to the phosphor 70. The resin may be either a thermoplastic resin or a thermosetting resin. Specific examples of the thermosetting resin include an epoxy resin and a silicone resin.

その他成分
蛍光部材50は、第一蛍光体71及び樹脂に加えてその他の成分を必要に応じて含んでいてもよい。その他の成分としては、シリカ、チタン酸バリウム、酸化チタン、酸化アルミニウム等のフィラー、光安定化剤、着色剤等を挙げることができる。蛍光部材が例えば、その他の成分としてフィラーを含む場合、その含有量は樹脂に対して0.01質量%から20質量%とすることができる。
Other Components The fluorescent member 50 may include other components as needed in addition to the first phosphor 71 and the resin. Examples of other components include fillers such as silica, barium titanate, titanium oxide, and aluminum oxide, light stabilizers, and colorants. For example, when a fluorescent member contains a filler as another component, the content can be 0.01 mass% to 20 mass% with respect to resin.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

第一蛍光体71として、以下の組成を有する2種のハロリン酸蛍光体を準備した。
Ca10(POCl:Eu (以下、「CCA」ともいう)
Ca10(PO(Cl,Br):Eu (以下、「CBA」ともいう)
As the first phosphor 71, two types of halophosphate phosphors having the following compositions were prepared.
Ca 10 (PO 4 ) 6 Cl 2 : Eu (hereinafter also referred to as “CCA”)
Ca 10 (PO 4 ) 6 (Cl, Br) 2 : Eu (hereinafter also referred to as “CBA”)

図3にCCA及びCBAの発光スペクトルを示す。図3では、それぞれの最大発光強度を1とした場合の相対発光強度の波長に対する発光スペクトルが示されている。また図4にCCA及びCBAの分光反射率を示す。図4では、波長に対する、各波長におけるリン酸水素カルシウム(CaHPO,平均粒径2.7μm)の反射率を100%とした場合の相対反射率が示されている。380nm以上435nm以下の範囲における第一蛍光体71の相対反射率の最大値は、435nmにおける値としてCCAが33%であり、CBAが43%であり、どちらも55%以下であった。 FIG. 3 shows emission spectra of CCA and CBA. In FIG. 3, the emission spectrum with respect to the wavelength of the relative light emission intensity when each maximum light emission intensity is set to 1 is shown. FIG. 4 shows the spectral reflectance of CCA and CBA. FIG. 4 shows the relative reflectance when the reflectance of calcium hydrogen phosphate (CaHPO 4 , average particle diameter of 2.7 μm) at each wavelength is 100% with respect to the wavelength. The maximum relative reflectance of the first phosphor 71 in the range of 380 nm to 435 nm was 33% CCA and 43% CBA as values at 435 nm, both of which were 55% or less.

図3から、CCA及びCBAは460nm付近に発光ピーク波長を有することが分かる。また図4から、380nm以上480nm以下の範囲においてCCAの方がCBAよりも反射率が低い、すなわち、この波長域においてCBAよりもCCAの方が発光素子からの光をより多く吸収することが分かる。   3 that CCA and CBA have an emission peak wavelength in the vicinity of 460 nm. Further, FIG. 4 shows that CCA has a lower reflectance than CBA in the range of 380 nm to 480 nm, that is, CCA absorbs more light from the light emitting element than CBA in this wavelength region. .

(実施例1)
シリコーン樹脂と、そのシリコーン樹脂に対して10質量%のCCAとを混合分散した後、更に脱泡することにより蛍光体含有樹脂組成物を得た。次に凹部を有する成形体40を準備し、凹部の底面に発光ピーク波長が443nmである発光素子10を配置した後、蛍光体含有樹脂組成物を、発光素子10の上に注入、充填し、さらに加熱することで樹脂組成物を硬化させた。このような工程により発光装置100を作製した。
Example 1
A silicone resin and 10% by mass of CCA with respect to the silicone resin were mixed and dispersed, and then defoamed to obtain a phosphor-containing resin composition. Next, a molded body 40 having a recess is prepared, and after the light emitting element 10 having an emission peak wavelength of 443 nm is disposed on the bottom surface of the recess, a phosphor-containing resin composition is injected and filled on the light emitting element 10. Furthermore, the resin composition was hardened by heating. The light emitting device 100 was manufactured through such steps.

(実施例2)
発光素子10を、発光ピーク波長が447nmの発光素子に変更したこと以外は実施例1と同様にして発光装置100を作製した。
(Example 2)
A light emitting device 100 was manufactured in the same manner as in Example 1 except that the light emitting element 10 was changed to a light emitting element having an emission peak wavelength of 447 nm.

(実施例3)
発光素子10を、発光ピーク波長が455nmの発光素子に変更したこと以外は実施例1と同様にして発光装置100を作製した。
(Example 3)
A light emitting device 100 was manufactured in the same manner as in Example 1 except that the light emitting element 10 was changed to a light emitting element having an emission peak wavelength of 455 nm.

(実施例4)
シリコーン樹脂に対して30質量%のCCAを用いたこと以外は実施例1と同様にして発光装置100を作製した。
Example 4
A light emitting device 100 was produced in the same manner as in Example 1 except that 30% by mass of CCA was used with respect to the silicone resin.

(実施例5)
シリコーン樹脂に対して30質量%のCCAを用いたこと以外は実施例2と同様にして発光装置100を作製した。
(Example 5)
A light emitting device 100 was produced in the same manner as in Example 2 except that 30% by mass of CCA was used with respect to the silicone resin.

(実施例6)
シリコーン樹脂に対して30質量%のCCAを用いたこと以外は実施例3と同様にして発光装置100を作製した。
(Example 6)
A light emitting device 100 was produced in the same manner as in Example 3 except that 30% by mass of CCA was used with respect to the silicone resin.

(実施例7)
CCAの代わりにCBAを用いたこと以外は実施例5と同様にして発光装置100を作製した。
(Example 7)
A light emitting device 100 was manufactured in the same manner as in Example 5 except that CBA was used instead of CCA.

(実施例8)
CCAの代わりにCBAを用いたこと以外は実施例6と同様にして発光装置100を作製した。
(Example 8)
A light emitting device 100 was fabricated in the same manner as in Example 6 except that CBA was used instead of CCA.

(比較例1)
CCAを配合せず、シリコーン樹脂のみを凹部に注入したこと以外は実施例1と同様にして発光装置を作製した。
(Comparative Example 1)
A light emitting device was produced in the same manner as in Example 1 except that CCA was not blended and only the silicone resin was injected into the recess.

(比較例2)
発光素子10を、発光ピーク波長が447nmの発光素子に変更したこと以外は比較例1と同様にして発光装置を作製した。
(Comparative Example 2)
A light emitting device was fabricated in the same manner as in Comparative Example 1 except that the light emitting element 10 was changed to a light emitting element having an emission peak wavelength of 447 nm.

(比較例3)
発光素子10を、発光ピーク波長が455nmの発光素子に変更したこと以外は比較例1と同様にして発光装置を作製した。
(Comparative Example 3)
A light emitting device was manufactured in the same manner as in Comparative Example 1 except that the light emitting element 10 was changed to a light emitting element having an emission peak wavelength of 455 nm.

以下の表1に実施例1から8と比較例1から3の構成を示す。また図5Aに比較例1から3で得られた発光装置の波長に対する相対発光強度を示す発光スペクトルを示す。図5Bに実施例1から3で得られた発光装置100の波長に対する相対発光強度を示す発光スペクトルを示す。図5Cに実施例4から6で得られた発光装置100の波長に対する相対発光強度を示す発光スペクトルを示す。図5Dに実施例7及び8で得られた発光装置100の波長に対する相対発光強度を示す発光スペクトルをそれぞれ示す。なお、図5Aから図5Dに示される発光スペクトルは、図5Aに示される比較例1の発光ピーク波長における発光強度を基準(100%)として相対的に描いている。図5Bから図5Dに示されるように、実施例1から8の発光装置100の発光スペクトルは、単一の発光ピークを有する。また、発光素子10の発光ピーク波長が長くなる程、発光装置100の発光スペクトルにおける発光ピーク波長も長くなっていることが分かる。   Table 1 below shows configurations of Examples 1 to 8 and Comparative Examples 1 to 3. FIG. 5A shows an emission spectrum showing the relative emission intensity with respect to the wavelength of the light emitting devices obtained in Comparative Examples 1 to 3. FIG. 5B shows an emission spectrum showing the relative emission intensity with respect to the wavelength of the light emitting device 100 obtained in Examples 1 to 3. FIG. 5C shows an emission spectrum showing the relative emission intensity with respect to the wavelength of the light emitting device 100 obtained in Examples 4 to 6. FIG. 5D shows emission spectra indicating relative emission intensities with respect to wavelengths of the light emitting devices 100 obtained in Examples 7 and 8, respectively. The emission spectra shown in FIGS. 5A to 5D are relatively drawn with the emission intensity at the emission peak wavelength of Comparative Example 1 shown in FIG. 5A as a reference (100%). As shown in FIGS. 5B to 5D, the emission spectra of the light emitting devices 100 of Examples 1 to 8 have a single emission peak. It can also be seen that the emission peak wavelength in the emission spectrum of the light emitting device 100 becomes longer as the emission peak wavelength of the light emitting element 10 becomes longer.

実施例1から8で得られた発光装置100及び比較例1から3で得られた発光装置について、積分球を用いて放射束を測定し、発光素子10の発光ピーク波長別に各比較例の放射束を100%として実施例に係る発光装置100の放射束を相対値(%)として算出した。また放射束と発光スペクトルから以下のようにして435nm以下の発光強度低減率を算出した。結果を発光素子10の発光ピーク波長443nm、447nm及び455nmごとに表2から4にまとめた。   With respect to the light emitting devices 100 obtained in Examples 1 to 8 and the light emitting devices obtained in Comparative Examples 1 to 3, the radiant flux was measured using an integrating sphere, and the radiation of each comparative example was classified according to the emission peak wavelength of the light emitting element 10. The radiant flux of the light emitting device 100 according to the example was calculated as a relative value (%) with the bundle as 100%. The emission intensity reduction rate of 435 nm or less was calculated from the radiant flux and emission spectrum as follows. The results are summarized in Tables 2 to 4 for each of emission peak wavelengths 443 nm, 447 nm, and 455 nm of the light emitting device 10.

発光素子10の発光ピーク波長ごとに、比較例を基準として、実施例の発光装置100の放射束が比較例の放射束と等しくなる係数を求めた。380nm以上435nm以下の範囲で、先に求めた係数を掛けた発光強度の積分値を算出した。比較例の発光装置の積分値を基準(0%)として下式により、実施例の発光装置100における435nm以下の発光強度低減率を算出した。
435nm以下の発光強度低減率(%)
={1−(実施例の積分値/比較例の積分値)}×100
For each emission peak wavelength of the light-emitting element 10, a coefficient that makes the radiant flux of the light-emitting device 100 of the example equal to the radiant flux of the comparative example was obtained based on the comparative example. In the range of 380 nm or more and 435 nm or less, the integral value of the emission intensity multiplied by the previously obtained coefficient was calculated. Using the integrated value of the light emitting device of the comparative example as a reference (0%), the emission intensity reduction rate of 435 nm or less in the light emitting device 100 of the example was calculated by the following formula.
Reduction rate of emission intensity below 435nm (%)
= {1- (Integral value of Example / Integral value of Comparative Example)} × 100

実施例1から8で得られた発光装置100では、発光素子10の発光ピーク波長443nm、447nm及び455nmのそれぞれについて、比較例1から3で得られた発光装置に比べて、435nm以下の範囲における発光強度が20%以上低減されている。また、この時の放射束は90%以上を維持している。具体的に例えば、発光素子10の発光ピーク波長が比較的短波長である443nmである実施例1においては、第一蛍光体(CCA)71の含有率がシリコーン樹脂に対して10質量%であり、比較例1に対して435nm以下の発光強度低減率は24%でありながら、放射束は99%を維持している。また、実施例4では、CCAの含有率がシリコーン樹脂に対して30質量%であり、435nm以下の発光強度低減率が48%にも達していながら、放射束は94%を維持している。   In the light emitting device 100 obtained in Examples 1 to 8, the emission peak wavelengths of 443 nm, 447 nm, and 455 nm of the light emitting element 10 are in the range of 435 nm or less as compared with the light emitting devices obtained in Comparative Examples 1 to 3, respectively. The emission intensity is reduced by 20% or more. At this time, the radiant flux is maintained at 90% or more. Specifically, for example, in Example 1 where the emission peak wavelength of the light-emitting element 10 is 443 nm, which is a relatively short wavelength, the content of the first phosphor (CCA) 71 is 10% by mass with respect to the silicone resin. The emission intensity reduction rate of 435 nm or less with respect to Comparative Example 1 is 24%, but the radiant flux is maintained at 99%. In Example 4, the CCA content was 30% by mass with respect to the silicone resin, and the emission intensity reduction rate of 435 nm or less reached 48%, while the radiant flux maintained 94%.

実施例2及び5、並びに実施例3及び6の評価結果に見られるように、発光素子10の発光ピーク波長が長波長になるほど435nm以下の発光強度低減率は小さくなる。例えば、第一蛍光体71(CCA)の含有率が樹脂に対して10質量%の場合、発光素子10の発光ピーク波長が443nmである実施例1では、発光強度低減率は24%であるが、発光素子10の発光ピーク波長が455nmである実施例3では、発光強度低減率は20%と低くなっている。これは第一蛍光体71であるCCAまたはCBAの分光反射率が青色領域において長波長ほど高くなるため、つまり発光素子10の発光を吸収し難くなるためと考えられる。   As can be seen from the evaluation results of Examples 2 and 5, and Examples 3 and 6, the emission intensity reduction rate of 435 nm or less decreases as the emission peak wavelength of the light-emitting element 10 increases. For example, when the content of the first phosphor 71 (CCA) is 10% by mass with respect to the resin, in Example 1 where the emission peak wavelength of the light emitting element 10 is 443 nm, the emission intensity reduction rate is 24%. In Example 3 where the emission peak wavelength of the light emitting element 10 is 455 nm, the emission intensity reduction rate is as low as 20%. This is presumably because the spectral reflectance of CCA or CBA, which is the first phosphor 71, increases as the wavelength increases in the blue region, that is, it becomes difficult to absorb the light emitted from the light emitting element 10.

実施例7及び8で用いた第一蛍光体71は、青色領域における反射率がCCAより高いCBAであり、実施例7及び8の発光強度低減率はそれぞれ45%及び31%である。これを第一蛍光体71がCCAである実施例5及び6の発光強度低減率の46%及び37%と比較すると、発光強度低減率がやや小さくなっている。これは発光素子10の発光波長域の青色領域でCBAがCCAより反射率が高いため、つまり発光素子の発光をCCAよりもCBAが吸収しにくいためと考えられる。   The first phosphor 71 used in Examples 7 and 8 is CBA having a higher reflectance in the blue region than CCA, and the emission intensity reduction rates in Examples 7 and 8 are 45% and 31%, respectively. Compared with 46% and 37% of the emission intensity reduction rates of Examples 5 and 6 in which the first phosphor 71 is CCA, the emission intensity reduction rate is slightly smaller. This is probably because CBA has a higher reflectance than CCA in the blue region of the light emission wavelength region of light emitting element 10, that is, CBA is less likely to absorb light emitted from the light emitting element than CCA.

(実施例9)
第一蛍光体71としてCCAをシリコーン樹脂に対して10質量%、第二蛍光体72として式(IIa)で表されるβサイアロン蛍光体を27質量%、第三蛍光体73として式(IIIa)で表されるKSF蛍光体を73質量%用いて色度座標がx=0.300、y=0.290付近となるように配合した蛍光体70と、シリコーン樹脂とを混合分散した後、更に脱泡することにより蛍光体含有樹脂組成物を得た。次に凹部を有する成形体40を準備し、凹部の底面に発光ピーク波長が443nmである発光素子を配置した後、蛍光体含有樹脂組成物を、発光素子10の上に注入、充填し、さらに加熱することで樹脂組成物を硬化させた。このような工程により発光装置200を作製した。
Example 9
CCA as the first phosphor 71 is 10% by mass with respect to the silicone resin, β-sialon phosphor represented by the formula (IIa) is 27% by mass as the second phosphor 72, and the formula (IIIa) is as the third phosphor 73. After mixing and dispersing phosphor 70 blended so that the chromaticity coordinates are about x = 0.300 and y = 0.290 using 73% by mass of the KSF phosphor represented by The phosphor-containing resin composition was obtained by defoaming. Next, a compact 40 having a recess is prepared, and a light emitting element having an emission peak wavelength of 443 nm is disposed on the bottom surface of the recess, and then a phosphor-containing resin composition is injected and filled onto the light emitting element 10. The resin composition was cured by heating. The light emitting device 200 was manufactured through such a process.

(実施例10から16)
第一蛍光体71の種類及び対樹脂含有率を以下の表5から7に示すように変更したことと、発光素子10の発光ピーク波長を、実施例10、13及び15では447nmに、実施例11、14及び16では455nmに変更したことと、第二蛍光体72及び第三蛍光体73の対樹脂含有率を色度座標がx=0.300、y=0.290付近となるように変更したこと以外は実施例9と同様にして発光装置200を作製した。
(Examples 10 to 16)
The type of the first phosphor 71 and the content ratio with respect to the resin were changed as shown in Tables 5 to 7 below, and the emission peak wavelength of the light-emitting element 10 was changed to 447 nm in Examples 10, 13, and 15. 11, 14 and 16 were changed to 455 nm, and the content ratio of the second phosphor 72 and the third phosphor 73 with respect to the resin was such that the chromaticity coordinates were near x = 0.300 and y = 0.290. A light emitting device 200 was fabricated in the same manner as in Example 9 except that the change was made.

(比較例4から6)
第一蛍光体71を使用しなかったこと以外は実施例9と同様にして発光装置を作製した。但し、比較例5では発光素子10の発光ピーク波長を447nmに変更し、比較例6では455nmに変更した。
(Comparative Examples 4 to 6)
A light emitting device was produced in the same manner as in Example 9 except that the first phosphor 71 was not used. However, in Comparative Example 5, the emission peak wavelength of the light-emitting element 10 was changed to 447 nm, and in Comparative Example 6, it was changed to 455 nm.

実施例9から16で得られた発光装置200、比較例4から6で得られた発光装置について、任意のカラーフィルターを透過させた後の発光特性、NTSC含有比(%)及びDCI包含率(%)をシミュレーションにより求めた。相対輝度は、発光素子10の発光ピーク波長ごとに比較例の発光装置の輝度を基準(100%)として算出した。また放射束の代わりに相対輝度で補正したこと以外は上記と同様にして435nm以下の発光強度低減率を算出した。結果を表5から7に示す。   For the light emitting devices 200 obtained in Examples 9 to 16 and the light emitting devices obtained in Comparative Examples 4 to 6, the light emission characteristics after passing through any color filter, the NTSC content ratio (%), and the DCI coverage ( %) Was obtained by simulation. The relative luminance was calculated for each emission peak wavelength of the light emitting element 10 with the luminance of the light emitting device of the comparative example as a reference (100%). Further, the emission intensity reduction rate of 435 nm or less was calculated in the same manner as described above except that the correction was made with the relative luminance instead of the radiant flux. The results are shown in Tables 5 to 7.

図6Aに比較例4で得られた発光装置、実施例9及び12で得られた発光装置200のカラーフィルター透過後の波長に対する相対発光強度を示す発光スペクトルを示し、図6Bにその部分拡大図を示す。図7Aに比較例5で得られた発光装置、実施例10、13及び15で得られた発光装置200のカラーフィルター透過後の波長に対する相対発光強度を示す発光スペクトルを示し、図7Bにその部分拡大図を示す。図8Aに比較例6で得られた発光装置、実施例11、14及び16で得られた発光装置200のカラーフィルター透過後の波長に対する相対発光強度を示す発光スペクトルを示し、図8Bにその部分拡大図を示す。   FIG. 6A shows an emission spectrum showing the relative emission intensity with respect to the wavelength after passing through the color filter of the light emitting device obtained in Comparative Example 4 and the light emitting device 200 obtained in Examples 9 and 12, and FIG. 6B shows a partially enlarged view thereof. Indicates. FIG. 7A shows an emission spectrum showing the relative emission intensity with respect to the wavelength after passing through the color filter of the light emitting device obtained in Comparative Example 5 and the light emitting device 200 obtained in Examples 10, 13 and 15, and FIG. An enlarged view is shown. FIG. 8A shows an emission spectrum showing the relative emission intensity with respect to the wavelength after passing through the color filter of the light emitting device obtained in Comparative Example 6 and the light emitting device 200 obtained in Examples 11, 14 and 16, and FIG. An enlarged view is shown.

発光素子10の発光ピーク波長が最も短い443nmの場合、第一蛍光体71としてのCCAの含有率がシリコーン樹脂に対して30質量%である実施例12では、435nm以下の発光強度低下率は40%であり、相対輝度比は93%である。色再現範囲を評価するNTSC比、DCI包含率については、実施例12及び比較例4のNTSC比がそれぞれ86.4%及び87.3%であり、DCI包含率がそれぞれ85.5%と同じ値となっており同等の色再現範囲となっている。このように実施例12の発光装置200では色再現範囲の数値を低下させることなく、435nm以下の発光強度を40%も低減している。また相対輝度は90%以上を維持している。   When the light emission element 10 has the shortest emission peak wavelength of 443 nm, in Example 12 in which the content of CCA as the first phosphor 71 is 30% by mass with respect to the silicone resin, the emission intensity reduction rate of 435 nm or less is 40%. %, And the relative luminance ratio is 93%. Regarding the NTSC ratio and DCI coverage for evaluating the color reproduction range, the NTSC ratios of Example 12 and Comparative Example 4 are 86.4% and 87.3%, respectively, and the DCI coverage is the same as 85.5%, respectively. It is a value and is in the same color reproduction range. Thus, in the light emitting device 200 of Example 12, the light emission intensity of 435 nm or less is reduced by 40% without reducing the numerical value of the color reproduction range. The relative luminance is maintained at 90% or higher.

発光素子10の発光ピーク波長が最も長い455nmの場合、第一蛍光体71のCCAの含有率がシリコーン樹脂に対して30質量%である実施例14では、435nm以下の発光強度低減率は36%であり、相対輝度は95%である。色再現範囲を評価するNTSC比、DCI包含率については実施例14及び比較例6のNTSC比がそれぞれ83.5%及び84.0%であり、DCI包含率がそれぞれ84.4%及び84.7%となっており同等の色再現範囲となっている。このように実施例14の発光装置200では色再現範囲の数値を低下させることなく、435nm以下の発光強度を35%以上低減している。また相対輝度は90%以上を維持している。   When the light emission element 10 has the longest emission peak wavelength of 455 nm, in Example 14 in which the CCA content of the first phosphor 71 is 30% by mass with respect to the silicone resin, the emission intensity reduction rate of 435 nm or less is 36%. And the relative luminance is 95%. Regarding the NTSC ratio and DCI coverage for evaluating the color reproduction range, the NTSC ratios of Example 14 and Comparative Example 6 are 83.5% and 84.0%, respectively, and the DCI coverage is 84.4% and 84.%, respectively. The color reproduction range is equivalent to 7%. Thus, in the light-emitting device 200 of Example 14, the emission intensity of 435 nm or less is reduced by 35% or more without reducing the numerical value of the color reproduction range. The relative luminance is maintained at 90% or higher.

さらに、実施例15及び16では、第一蛍光体71が青色領域における分光反射率がCCAより高いCBAであり、実施例15及び16の435nm以下の発光強度低減率はそれぞれ39%及び35%である。第一蛍光体71がCCAである実施例13及び14の発光強度低減率の41%及び36%と比較すると、435nm以下の発光強度低減率は少し小さくなっている。これは発光素子10の発光波長域の青色領域でCBAがCCAより反射率が高いため、つまり半導体発光素子の発光を吸収しにくいためと考えられる。しかしながら、第一蛍光体71がCCAの実施例13とCBAの実施例15における色再現範囲を評価するNTSC比はそれぞれ86.1%及び86.2%であり、DCI包含率はそれぞれ85.5%と同じ値である。第一蛍光体71がCCAの実施例14とCBAの実施例16におけるNTSC比はそれぞれ83.5%及び83.6%であり、DCI包含率はそれぞれ84.4%と同じ値である。第一蛍光体71としてCBAを使用するとCCAを使用する場合より435nm以下の発光強度低減率はやや小さくなるものの、CBAを使用してもCCAを使用する場合と同様に実用的には問題ない程度と考えられる。
以上のように、本発明の一実施形態により得られた発光装置を液晶用バックライト光源として使用した液晶テレビ、モバイル機器等は発光強度を低減させることなく、435nm以下の発光強度を低減することができる。そのため、本発明の一実施形態にかかる発光装置は、例えば、眼への悪影響を抑えることが可能になる。
Furthermore, in Examples 15 and 16, the first phosphor 71 is CBA having a spectral reflectance higher than CCA in the blue region, and the emission intensity reduction rates of 435 nm or less of Examples 15 and 16 are 39% and 35%, respectively. is there. Compared to 41% and 36% of the emission intensity reduction rates of Examples 13 and 14 in which the first phosphor 71 is CCA, the emission intensity reduction rate of 435 nm or less is slightly smaller. This is presumably because CBA has a higher reflectance than CCA in the blue region of the light emission wavelength region of the light emitting element 10, that is, it is difficult to absorb light emitted from the semiconductor light emitting element. However, the NTSC ratios at which the first phosphor 71 evaluates the color reproduction range in CCA Example 13 and CBA Example 15 are 86.1% and 86.2%, respectively, and the DCI coverage is 85.5%, respectively. It is the same value as%. The NTSC ratios of the first phosphor 71 in Example 14 of CCA and Example 16 of CBA are 83.5% and 83.6%, respectively, and the DCI coverage is the same value as 84.4%, respectively. When CBA is used as the first phosphor 71, the emission intensity reduction rate of 435 nm or less is slightly smaller than when CCA is used, but even if CBA is used, there is no practical problem as with CCA. it is conceivable that.
As described above, liquid crystal televisions, mobile devices, and the like that use the light-emitting device obtained according to the embodiment of the present invention as a backlight light source for liquid crystal can reduce the emission intensity of 435 nm or less without reducing the emission intensity. Can do. Therefore, the light emitting device according to the embodiment of the present invention can suppress, for example, adverse effects on the eyes.

10:発光素子、50:蛍光部材、70:蛍光体、71:第一蛍光体、72:第二蛍光体、73:第三蛍光体、100、200:発光装置。   10: light emitting element, 50: fluorescent member, 70: phosphor, 71: first phosphor, 72: second phosphor, 73: third phosphor, 100, 200: light emitting device.

Claims (7)

420nm以上470nm以下の範囲に発光ピーク波長を有する発光素子と、
380nm以上435nm以下の範囲においてリン酸水素カルシウムの反射率に対する相対反射率が55%以下であり、450nm以上470nm以下の範囲に発光ピーク波長を有する第一蛍光体を含む蛍光部材と、
を備える発光装置。
A light emitting element having an emission peak wavelength in a range of 420 nm or more and 470 nm or less;
A fluorescent member including a first phosphor having a relative reflectance of 55% or less with respect to the reflectance of calcium hydrogen phosphate in a range of 380 nm to 435 nm and having an emission peak wavelength in a range of 450 nm to 470 nm;
A light emitting device comprising:
前記第一蛍光体は、下記式
(Ca,Sr,Ba,Mg)10(PO(F,Cl,Br,I,OH):Eu
で表される組成を有する蛍光体である請求項1に記載の発光装置。
The first phosphor has the following formula (Ca, Sr, Ba, Mg) 10 (PO 4 ) 6 (F, Cl, Br, I, OH) 2 : Eu
The light-emitting device according to claim 1, wherein the phosphor has a composition represented by:
前記第一蛍光体は、下記式
Ca10(POCl:Eu
で表される組成を有する請求項1に記載の発光装置。
The first phosphor has the following formula Ca 10 (PO 4 ) 6 Cl 2 : Eu
The light emitting device according to claim 1, having a composition represented by:
前記第一蛍光体は、下記式
Ca10(PO(Cl,Br):Eu
で表される組成を有する請求項1に記載の発光装置。
The first phosphor has the following formula Ca 10 (PO 4 ) 6 (Cl, Br) 2 : Eu
The light emitting device according to claim 1, having a composition represented by:
前記蛍光部材は、500nm以上600nm以下の範囲に発光ピーク波長を有する第二蛍光体を更に含む請求項1から4のいずれか1項に記載の発光装置。   5. The light emitting device according to claim 1, wherein the fluorescent member further includes a second phosphor having an emission peak wavelength in a range of 500 nm to 600 nm. 前記蛍光部材は、620nm以上670nm以下の範囲に発光ピーク波長を有する第三蛍光体を更に含む請求項5に記載の発光装置。   The light emitting device according to claim 5, wherein the fluorescent member further includes a third phosphor having an emission peak wavelength in a range of 620 nm to 670 nm. 前記蛍光部材は、樹脂を含み、前記第一蛍光体の前記樹脂に対する含有率が1質量%以上40質量%以下である請求項1から6のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein the fluorescent member includes a resin, and a content ratio of the first phosphor to the resin is 1% by mass or more and 40% by mass or less.
JP2016147393A 2016-07-27 2016-07-27 Light emitting device Active JP6772621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016147393A JP6772621B2 (en) 2016-07-27 2016-07-27 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016147393A JP6772621B2 (en) 2016-07-27 2016-07-27 Light emitting device

Publications (2)

Publication Number Publication Date
JP2018018931A true JP2018018931A (en) 2018-02-01
JP6772621B2 JP6772621B2 (en) 2020-10-21

Family

ID=61082009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016147393A Active JP6772621B2 (en) 2016-07-27 2016-07-27 Light emitting device

Country Status (1)

Country Link
JP (1) JP6772621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10804442B2 (en) 2018-01-29 2020-10-13 Nichia Corporation Light emitting device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168996A (en) * 2002-09-24 2004-06-17 General Electric Co <Ge> Phosphor blend and backlight source for liquid crystal display
JP2004363564A (en) * 2003-04-30 2004-12-24 Samsung Electronics Co Ltd Light emitting diode element comprising fluorescent multilayer
US20050029927A1 (en) * 2003-08-07 2005-02-10 Setlur Anant Achyut Deep red phosphor for general illumination applications
JP2005340748A (en) * 2003-09-18 2005-12-08 Nichia Chem Ind Ltd Light emitting device
JP2006049553A (en) * 2004-08-04 2006-02-16 Nichia Chem Ind Ltd Light emitting device
JP2008021973A (en) * 2006-06-13 2008-01-31 Nichia Chem Ind Ltd Light emitting device
WO2008069101A1 (en) * 2006-12-08 2008-06-12 Sharp Kabushiki Kaisha Light source, light source system and illumination device
JP2009065145A (en) * 2007-08-10 2009-03-26 Mitsubishi Chemicals Corp Semiconductor light-emitting device, backlight, and color image display device
JP2010209311A (en) * 2008-09-05 2010-09-24 Mitsubishi Chemicals Corp Phosphor and process for producing the same, phosphor-containing composition and light-emitting device using the same, and image display and lighting apparatus using light-emitting device
JP2010285583A (en) * 2009-06-15 2010-12-24 Nichia Corp Phosphor and light-emitting device using the same
JP2015188050A (en) * 2014-03-12 2015-10-29 株式会社東芝 light-emitting device
JP2016037483A (en) * 2014-08-11 2016-03-22 シャープ株式会社 Binuclear complex and light-emitting device using the same, color conversion substrate and medical apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168996A (en) * 2002-09-24 2004-06-17 General Electric Co <Ge> Phosphor blend and backlight source for liquid crystal display
JP2004363564A (en) * 2003-04-30 2004-12-24 Samsung Electronics Co Ltd Light emitting diode element comprising fluorescent multilayer
US20050029927A1 (en) * 2003-08-07 2005-02-10 Setlur Anant Achyut Deep red phosphor for general illumination applications
JP2005340748A (en) * 2003-09-18 2005-12-08 Nichia Chem Ind Ltd Light emitting device
JP2006049553A (en) * 2004-08-04 2006-02-16 Nichia Chem Ind Ltd Light emitting device
JP2008021973A (en) * 2006-06-13 2008-01-31 Nichia Chem Ind Ltd Light emitting device
WO2008069101A1 (en) * 2006-12-08 2008-06-12 Sharp Kabushiki Kaisha Light source, light source system and illumination device
JP2009065145A (en) * 2007-08-10 2009-03-26 Mitsubishi Chemicals Corp Semiconductor light-emitting device, backlight, and color image display device
JP2010209311A (en) * 2008-09-05 2010-09-24 Mitsubishi Chemicals Corp Phosphor and process for producing the same, phosphor-containing composition and light-emitting device using the same, and image display and lighting apparatus using light-emitting device
JP2010285583A (en) * 2009-06-15 2010-12-24 Nichia Corp Phosphor and light-emitting device using the same
JP2015188050A (en) * 2014-03-12 2015-10-29 株式会社東芝 light-emitting device
JP2016037483A (en) * 2014-08-11 2016-03-22 シャープ株式会社 Binuclear complex and light-emitting device using the same, color conversion substrate and medical apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10804442B2 (en) 2018-01-29 2020-10-13 Nichia Corporation Light emitting device
US11195977B2 (en) 2018-01-29 2021-12-07 Nichia Corporation Light emitting device

Also Published As

Publication number Publication date
JP6772621B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
US10008644B2 (en) Light emitting device and fabricating method thereof
TWI718305B (en) Light emitting device
US8710532B2 (en) White light emitting lamp and white LED lighting apparatus including the same
JP6940764B2 (en) Light emitting device
US8106579B2 (en) Semiconductor light emitting device
JP6558378B2 (en) Light emitting device
JP2019016632A (en) Light-emitting device
JP2017017132A (en) Light-emitting device
US10270015B1 (en) Light-emitting device
JP6428245B2 (en) Light emitting device
JP6772621B2 (en) Light emitting device
JP7004892B2 (en) Luminescent device
JP2023036729A (en) Light-emitting device
JP6923816B2 (en) Light emitting device
JP5697765B2 (en) Phosphor and light emitting device
JP5956643B2 (en) Yellow light emitting phosphor and light emitting device package using the same
WO2013118330A1 (en) Fluorophore and light emitting device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161019

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6772621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250