JP2018017698A - Method for monitoring pipe state in installing pipe underground - Google Patents

Method for monitoring pipe state in installing pipe underground Download PDF

Info

Publication number
JP2018017698A
JP2018017698A JP2016150486A JP2016150486A JP2018017698A JP 2018017698 A JP2018017698 A JP 2018017698A JP 2016150486 A JP2016150486 A JP 2016150486A JP 2016150486 A JP2016150486 A JP 2016150486A JP 2018017698 A JP2018017698 A JP 2018017698A
Authority
JP
Japan
Prior art keywords
pipe
tube
support
ground
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016150486A
Other languages
Japanese (ja)
Other versions
JP6723862B2 (en
Inventor
茂治 岩永
Shigeji Iwanaga
茂治 岩永
河越 勝
Masaru Kawagoe
勝 河越
博一 北川
Hiroichi Kitagawa
博一 北川
正毅 稲田
Masaki Inada
正毅 稲田
渉 仲野谷
Wataru Nakanoya
渉 仲野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2016150486A priority Critical patent/JP6723862B2/en
Publication of JP2018017698A publication Critical patent/JP2018017698A/en
Application granted granted Critical
Publication of JP6723862B2 publication Critical patent/JP6723862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for monitoring a pipe state in installing the pipe underground, the method capable of continuously confirming a position of the pipe during jacking work while performing the jacking work efficiently.SOLUTION: A method for monitoring a pipe state in installing the pipe uses a pipe installation device 1 that installs pipes 2, 2... underground by excavating natural ground 10A using a rotary excavation body 10, and meanwhile, pressing the rotary excavation body from the rear with a jacking device 5 and thereby jacking the pipes successively joined in the rear of the rotary excavation body. In the method, an inclination sensor (inclination detection means) X2 for detecting an inclination angle of the pipe is mounted on a leading pipe 2A joined to the rotary excavation body, the inclination detection means for detecting an inclination angle of the pipe is mounted on one or more succeeding pipes among succeeding pipes 2B, 2B... successively joined to the rear of the leading pipe, and on the basis of an actual value continuously measured by each inclination detection means during jacking of the pipes, a state of the pipes during jacking in the underground is monitored.SELECTED DRAWING: Figure 1

Description

本発明は、管を地中に設置する際に、推進作業の効率化が図れるとともに管の位置を連続して確認することが可能な管の状態監視方法に関する。   The present invention relates to a pipe state monitoring method capable of improving the efficiency of propulsion work and continuously checking the position of the pipe when the pipe is installed in the ground.

管を地中に設置する際に、地中での管の位置を確認するために、例えばレーザー投光器とターゲットと監視カメラとを備えた計測器を用いる方法が知られている(特許文献1参照)。   In order to confirm the position of the tube in the ground when the tube is installed in the ground, for example, a method using a measuring instrument including a laser projector, a target, and a monitoring camera is known (see Patent Document 1). ).

特開2003−254750号公報JP 2003-254750 A

上述した方法によれば、管の推進を停止した状態で測定しなければならず、推進作業を中断させなければならないため、推進作業の効率が悪くなるという課題があった。また、推進作業の効率悪化を抑制するため、測定時間間隔を長くすれば、測定時間間隔が長い程、その間の管の状況が不明となる。つまり、この場合、管の推進中において連続的な監視ができず、推進中の管の状況の詳細がわからなくなるという課題があった。
本発明は、推進作業の効率化が図れるとともに推進作業中において管の位置を連続して確認することが可能な、管を地中に設置する際の管の状態監視方法を提供する。
According to the above-described method, since the measurement must be performed in a state in which the propulsion of the pipe is stopped and the propulsion work must be interrupted, there is a problem that the efficiency of the propulsion work is deteriorated. Further, if the measurement time interval is lengthened in order to suppress the deterioration of the efficiency of the propulsion work, the longer the measurement time interval, the more unclear the status of the pipes in between. That is, in this case, there is a problem that continuous monitoring cannot be performed during the propulsion of the pipe, and details of the state of the pipe being propelled cannot be understood.
The present invention provides a method for monitoring the state of a pipe when the pipe is installed in the ground, which can improve the efficiency of the propulsion work and can continuously check the position of the pipe during the propulsion work.

本発明によれば、回転掘削体により地山を掘削しながら回転掘削体を推進装置で後方から押圧することにより回転掘削体の後続に順次継ぎ足された管を推進させて地中に設置する管設置装置を用いて管を地中に設置する際の管の状態監視方法であって、回転掘削体に接続される先頭管に管の傾斜角度を検出するための傾斜検出手段を取付けるとともに、先頭管の後方に順次接続される後続管のうちの1つ以上の後続管に管の傾斜角度を検出するための傾斜検出手段を取付け、管の推進中において各傾斜検出手段で連続的に計測される実測値に基づいて推進中の管の地中での状態を監視するようにしたので、推進作業の効率化が図れるとともに推進作業中において管の位置を連続して確認することが可能となる。
先頭管の後方に順次接続されるすべての後続管にそれぞれ管の傾斜角度を検出する傾斜検出手段を取付けたので、推進作業中において各管の位置を連続して確認することが可能となる。
地中に設置する予定の先頭管及び後続管の設計位置と、管の地山への入口から管の地中への推進量と傾斜検出手段で計測された傾斜角度の実測値とに基づいて算出される推進中の先頭管及び後続管の実測位置と、を同一の表示画面上に同時に表示するので、監視者は、設計位置に対する推進作業中の各管の実測位置のずれを視覚的に把握できるようになる。
管の地山への入口から管の地中への推進量をストローク計で測定したので、管の推進量を正確に計測できる。
地中に設置する予定の先頭管及び後続管が一定距離推進する毎の傾斜角度の設計値に基づく設計評価値を求めるとともに、推進作業中の先頭管及び後続管が一定距離推進する毎に傾斜検出手段から得られる先頭管及び後続管の傾斜角度の実測値に基づく実測評価値を求め、先頭管及び後続管の設計評価値と実測評価値との差を求めて表示画面上に表示するので、監視者は、設計値に対する推進作業中の各管の実測値のずれを数量的に把握できるようになる。
設計評価値が任意に決めた基準と設計値とで算出される管の設計高さであり、実測評価値が任意に決めた基準と管の傾斜角度の実測値とに基づいて算出される管の実測高さであることとしたので、地中に推進する管の高さを基準に管の推進状況を把握できるようになる。
管設置装置は、断面四角形の先頭管と、先頭管の一端開口よりも前側に位置されて先頭管の推進方向と交差する回転中心線を回転中心として回転する回転掘削体と、先頭管の内面に支持された支持体と、基端側が支持体に連結されるとともに回転掘削体を回転可能に支持する連結支柱部と、回転掘削体を先頭管の高さ方向で互いに対向する一方の一対の内面と直交する方向に揺動可能に駆動する揺動駆動手段と、推進力を支持体を介して先頭管及び回転掘削体に付与する推進装置と、を備えた構成であるので、推進装置による推進力を制御したり、揺動駆動手段を制御して掘削方向を制御することにより、推進中の各管の地中での実測位置と設計位置とずれを少なくすることが可能となり、各管を設計位置に近い位置に設置できて、精度の高い設置工事を実現できるようになる。
According to the present invention, a pipe installed in the ground by propelling a pipe sequentially added to the rear of the rotary excavator by pushing the rotary excavator from behind with a propulsion device while excavating a natural ground with the rotary excavator. A pipe state monitoring method for installing a pipe into the ground using an installation device, wherein a tilt detecting means for detecting the tilt angle of the pipe is attached to the leading pipe connected to the rotary excavation body, and the leading At least one of the succeeding pipes sequentially connected to the rear of the pipe is provided with an inclination detecting means for detecting the inclination angle of the pipe, and continuously measured by each inclination detecting means during the propulsion of the pipe. Because the state of the pipe being propelled in the ground is monitored based on the actual measured value, the efficiency of the propulsion work can be improved and the position of the pipe can be confirmed continuously during the propulsion work. .
Since the inclination detecting means for detecting the inclination angle of each pipe is attached to all the succeeding pipes sequentially connected behind the leading pipe, the position of each pipe can be confirmed continuously during the propulsion operation.
Based on the design positions of the first and subsequent pipes to be installed in the ground, the amount of propulsion from the entrance to the ground of the pipe into the ground of the pipe, and the measured value of the inclination angle measured by the inclination detection means Since the calculated actual measured positions of the leading pipe and the succeeding pipe are simultaneously displayed on the same display screen, the monitor visually indicates the deviation of the actual measured position of each pipe during the propulsion work from the design position. It becomes possible to grasp.
Since the amount of propulsion from the entrance to the natural ground of the tube to the underground of the tube was measured with a stroke meter, the amount of propulsion of the tube can be accurately measured.
Obtain the design evaluation value based on the design value of the inclination angle every time the leading pipe and the succeeding pipe to be installed in the ground are propelled for a certain distance, and incline every time the leading pipe and the succeeding pipe being propelled propel a certain distance. Since the measured evaluation value based on the measured values of the inclination angle of the leading pipe and the succeeding pipe obtained from the detection means is obtained, and the difference between the design evaluation value and the measured evaluation value of the leading pipe and the succeeding pipe is obtained and displayed on the display screen. The monitor can quantitatively grasp the deviation of the measured value of each pipe during the propulsion work with respect to the design value.
The design height of the pipe is calculated based on the standard and design value determined arbitrarily by the design evaluation value, and the pipe is calculated based on the standard determined by the measured evaluation value and the actual measured value of the inclination angle of the pipe. Therefore, it becomes possible to grasp the status of pipe promotion based on the height of the pipe propelled underground.
The pipe installation device includes a front pipe having a rectangular cross section, a rotary excavator that rotates on a rotation center line that is positioned in front of one end opening of the front pipe and intersects the propulsion direction of the front pipe, and an inner surface of the front pipe A support body supported on the base, a connecting strut portion whose base end side is connected to the support body and rotatably supports the rotary excavation body, and one pair of the rotary excavation body facing each other in the height direction of the top pipe According to the propulsion device, the oscillating drive means for driving the oscillating member in a direction orthogonal to the inner surface and the propulsion device that applies propulsive force to the leading pipe and the rotary excavation body via the support body. By controlling the driving force and the excavation direction by controlling the swing drive means, it becomes possible to reduce the deviation between the actual measurement position and design position of each pipe being propelled. Can be installed at a position close to the design position, So that the installation work can be realized.

管設置システムの概要を示す図。The figure which shows the outline | summary of a pipe installation system. 側壁が台形状に形成された管を示す斜視図。The perspective view which shows the pipe | tube with which the side wall was formed in trapezoid shape. 地中への管の設置方法を示す図。The figure which shows the installation method of the pipe | tube in the ground. 各管の設計位置及び実測位置の表示を示す図。The figure which shows the display of the design position and measured position of each pipe | tube. (a)は表示画面に表示された各管の高さの設計置、実測値、差を示す図、(b)は表示画面に表示された各管の傾斜角度の設計置、実測値、差を示す図。(A) is a figure which shows the design position, measured value, and difference of the height of each pipe | tube displayed on the display screen, (b) is the design position, measured value, and difference of the inclination angle of each pipe | tube displayed on the display screen. FIG. 管設置装置の横断面図。The cross-sectional view of a pipe installation apparatus. 管設置装置の縦断面図。The longitudinal cross-sectional view of a pipe installation apparatus. 掘削装置を前方側から見た斜視図。The perspective view which looked at the excavator from the front side. 掘削装置を前方側から見た斜視図。The perspective view which looked at the excavator from the front side. 管設置装置の前側部分の拡大図。The enlarged view of the front side part of a pipe installation apparatus. 上下揺動駆動手段の動作説明図。Operation | movement explanatory drawing of a vertical swing drive means. 座屈防止部材を備えた推進力伝達棒状体を示す斜視図。The perspective view which shows the thrust transmission rod-shaped body provided with the buckling prevention member.

実施形態
実施形態による、管を地中に設置する際の管の状態監視方法は、後述する管設置装置1を用いて管2を地中に設置する際、即ち、図1に示すように、回転掘削体10により地山10Aを掘削しながら回転掘削体10を推進装置5で後方から押圧することにより回転掘削体10の後続に順次継ぎ足された管2,2…を推進させて地中に設置して行く場合において、地中に設置されるすべての管2,2…に、水平面に対する管2の傾斜角度θを検出するための傾斜検出手段としての傾斜センサX2を取付け、各管2,2…の推進中に各傾斜センサX2,X2…で連続的に計測される実測値に基づいて推進中の各管2,2…の地中での状態を監視することによって、地中を推進中の各管2,2…の地中での実測位置と設計位置とのずれが拡大しないように各管2,2…の設置作業を行えるようにするものである。
Embodiment The pipe state monitoring method when the pipe is installed in the ground according to the embodiment, when installing the pipe 2 in the ground using the pipe installation device 1 described later, that is, as shown in FIG. The excavator 10 pushes the rotary excavator 10 from behind while excavating the natural ground 10A by the rotary excavator 10, thereby propelling the pipes 2, 2. In the case of installation, an inclination sensor X2 as an inclination detecting means for detecting an inclination angle θ of the pipe 2 with respect to a horizontal plane is attached to all the pipes 2, 2. The underground is propelled by monitoring the underground state of each of the pipes 2, 2... Being propelled based on the measured values continuously measured by the respective inclination sensors X2, X2. Displacement between the actual measurement position and the design position in the ground of each tube 2, 2 ... Lest those that allows each tube 2,2 ... installation work of.

図1に示すように、実施形態1による管の状態監視方法を実現するための管設置システムX1は、複数の管2,2…を地中に設置するための管設置装置1と、当該管設置装置1により地中に設置する各管2,2…の平面部に設置された各傾斜センサX2,X2…と、管2の推進量(推進距離)を測定する推進量測定手段としてのストローク計X3と、推進中の各管2,2…の状態を監視する状態監視装置X4とを備える。   As shown in FIG. 1, a pipe installation system X1 for realizing the pipe state monitoring method according to the first embodiment includes a pipe installation apparatus 1 for installing a plurality of pipes 2, 2,. The inclination sensors X2, X2,... Installed on the flat portions of the tubes 2, 2,... Installed in the ground by the installation device 1, and strokes as a propulsion amount measuring means for measuring the propulsion amount (propulsion distance) of the tubes 2. A total X3 and a state monitoring device X4 for monitoring the state of each of the pipes 2, 2.

管設置装置1を用いて地中10に設置される管2は、断面四角形状の管であって、管の中心線(中心軸)(=(管の延長方向と直交する断面の中心点を管の延長方向に沿って連続して繋いだ線))と直交する面で管を切断した場合の断面形状が四角形状の管であって、真っ直ぐに延長する直管(管の中心線が直線である管)、あるいは、円弧を描くように曲がって延長するように形成された曲管(管の中心線が曲線である管)である。   The pipe 2 installed in the underground 10 using the pipe installation device 1 is a pipe having a quadrangular section, and the center line (center axis) of the pipe (= (the center point of the cross section orthogonal to the extension direction of the pipe). A straight tube that has a square cross-section when the tube is cut along a plane orthogonal to the tube extension direction)) and that extends straight (the center line of the tube is a straight line) Or a curved pipe formed so as to bend and extend so as to draw an arc (a pipe whose center line is a curve).

例えば、図2に示すように、直管として、管2の互いに平行に対向する一方の一対の側壁2a,2aが合同な台形に形成され、当該側壁2aの台形の互いに平行な辺縁2s,2sが管2の中心線2Cと平行である、側壁2aが台形状の管2を使用する。当該複数の管2が回転掘削体10の後方に順次連結されて地中に設置されることによって、図3(c)に示すように、地中での進行軌跡2Zが、前の管2の後端開口縁2xと後の管2の前端開口縁2yとの連結部で折れ曲がる線状(湾曲に近似した線状)になる折曲管2Wが地中に設置されることになる。   For example, as shown in FIG. 2, as a straight pipe, a pair of side walls 2a, 2a of the pipe 2 facing each other in parallel is formed into a congruent trapezoid, and the trapezoidal side edges 2s of the side wall 2a are parallel to each other. A pipe 2 having a trapezoidal side wall 2a in which 2s is parallel to the center line 2C of the pipe 2 is used. As the plurality of pipes 2 are sequentially connected to the rear of the rotary excavator 10 and installed in the ground, as shown in FIG. A bent tube 2W that is bent at a connecting portion between the rear end opening edge 2x and the front end opening edge 2y of the rear tube 2 (a line shape approximate to a curve) is installed in the ground.

側壁2aが台形状の管2として、図2,図3(a)に示すように、管2の互いに平行に対向する一方の一対の側壁2a,2aが合同な台形に形成され、当該側壁2aの台形の各脚2t,2tと台形の互いに平行な上底及び下底である辺縁2s,2sとのなす角が直角でない構成のものを用いる。当該管2は、側壁が長方形の直管の両端開口縁をそれぞれ斜めに切断することにより簡単かつ安価に製作できる。   As shown in FIGS. 2 and 3A, the side wall 2a is formed as a trapezoidal tube 2. As shown in FIGS. The trapezoidal legs 2t, 2t and the trapezoidal top and bottom edges 2s, 2s are not perpendicular to each other. The pipe 2 can be manufactured easily and inexpensively by cutting the opening edges at both ends of a straight pipe having a rectangular side wall obliquely.

前の管2の後端開口縁2xと後の管2の前端開口縁2yとの連結部は、前の管2の後端開口縁2xと後の管2の前端開口縁2yとの間を介して管2の内外に水が流通しない状態に連結される。つまり、後述する管設置装置1により管2を地中10に設置する際、前の管2の一対の台形状の側壁2aの他方の脚2tである辺縁で開口する後端開口縁2xと後の管2の一対の台形状の側壁2aの一方の脚2tである辺縁で開口する前端開口縁2yとを溶接で連結していくことで、管2,2…の地中10での進行軌跡2Zが前の管2の後端開口縁2xと後の管2の前端開口縁2yとの連結部で折れ曲がる線状になる。言い換えれば、2つ以上の管2が連結されることで、管2の中心線(中心軸)2Cが連結部で折れ曲がる折曲線を描くように延長する図3(b),図3(c)に示すような折曲管2Wが形成され、当該折曲管2Wが地中に設置されていくことになる。尚、連結部で連結される前の管2の一対の台形状の側壁2aの他方の脚2t及び後の管2の一対の台形状の側壁2aの一方の脚2tの長さは同じである。   The connecting portion between the rear end opening edge 2x of the front tube 2 and the front end opening edge 2y of the rear tube 2 is between the rear end opening edge 2x of the front tube 2 and the front end opening edge 2y of the rear tube 2. Through this, the pipe 2 is connected in a state where water does not flow inside and outside. That is, when the pipe 2 is installed in the ground 10 by the pipe installation device 1 described later, the rear end opening edge 2x that opens at the edge that is the other leg 2t of the pair of trapezoidal side walls 2a of the front pipe 2; By connecting the front end opening edge 2y that opens at the edge that is one leg 2t of the pair of trapezoidal side walls 2a of the rear pipe 2 by welding, the pipe 2, 2,. The travel locus 2Z is a line that bends at the connecting portion between the rear end opening edge 2x of the front tube 2 and the front end opening edge 2y of the rear tube 2. In other words, when two or more pipes 2 are connected, the center line (center axis) 2C of the pipe 2 extends so as to draw a fold curve that bends at the connecting portion (FIGS. 3B and 3C). The bent pipe 2W as shown in FIG. 2 is formed, and the bent pipe 2W is installed in the ground. The length of the other leg 2t of the pair of trapezoidal side walls 2a of the pipe 2 before being connected by the connecting portion and the length of one leg 2t of the pair of trapezoidal side walls 2a of the rear pipe 2 are the same. .

尚、進行軌跡2Zの折れ曲がり角度(折曲管2Wの管の中心線を形成する折曲線の折れ曲がり角度)は、前の管2の後端開口縁2xと後の管2の前端開口縁2yとの連結部における管2の台形状の側壁2aの脚2tと台形の互いに平行な上底及び下底である辺縁2s,2sとのなす角が直角に近付くほど緩やかになり、前記なす角が直角から遠くなるほど急になる。言い換えれば、なす角が直角に近付くほど連結部で折れ曲がる中心線2Cと中心線Cとのなす角度が180度に近くなり、なす角が直角から遠くなるほど連結部で折れ曲がる中心線2Cと中心線Cとのなす角度が90度に近くなる。したがって、管2の予定進行軌跡に応じて管2に台形状の側壁2aの前記なす角αを決めればよい。   It should be noted that the bending angle of the traveling locus 2Z (the bending angle of the bending curve forming the center line of the bent tube 2W) is the rear end opening edge 2x of the front tube 2 and the front end opening edge 2y of the rear tube 2. The angle between the leg 2t of the trapezoidal side wall 2a of the tube 2 and the edges 2s and 2s of the trapezoidal parallel upper and lower bases becomes gentler as it approaches a right angle. The farther from the right angle, the steeper. In other words, as the angle formed becomes closer to a right angle, the angle formed between the center line 2C and the center line C that bends at the connecting portion becomes closer to 180 degrees, and as the formed angle becomes farther from the right angle, the center line 2C and the center line C bent at the connecting portion. The angle formed by is close to 90 degrees. Therefore, the angle α formed by the trapezoidal side wall 2a in the pipe 2 may be determined according to the planned progress trajectory of the pipe 2.

このように、側壁2aが台形状の管2を使用することで、地中において曲がって延長するような折曲管2W(図1参照)を地中に設置することが可能となる。即ち、前の管2の一対の台形状の側壁2aの他方の脚2tである辺縁で開口する後端開口縁2xと後の管2の一対の台形状の側壁2aの一方の脚2tである辺縁で開口する前端開口縁2yとを溶接で連結していくことで、管の中心線が連結部で折れ曲がる折曲線を描くように延長する折曲管2Wを形成できるようになる。   Thus, by using the trapezoidal pipe 2 with the side wall 2a, it becomes possible to install the bent pipe 2W (see FIG. 1) that bends and extends in the ground. That is, the rear end opening edge 2x opening at the edge which is the other leg 2t of the pair of trapezoidal side walls 2a of the front tube 2 and the one leg 2t of the pair of trapezoidal side walls 2a of the rear tube 2 By connecting the front end opening edge 2y that opens at a certain edge by welding, it is possible to form a bent pipe 2W that extends so as to draw a folding line in which the center line of the pipe is bent at the connecting portion.

図1に示すように、傾斜センサX2は、地中に設置するすべての管2,2…、即ち、後述する先頭管2A及び当該先頭管2Aの後方に順次接続されるすべての後続管2B,2B…にそれぞれ取付けられる。
傾斜センサX2は、各管2,2…に設けられた基準となる平面部に取付けられ、管2が地中に設置される際に当該平面部が傾いた場合に、水平面に対する当該平面部の交差角度、即ち、水平面に対する管2の進行方向角度となる管2の傾斜角度θを測定するセンサである。
傾斜センサX2は、例えば、上述した側壁2aが台形状の管2の各側壁2a,2aの上底同士を繋ぐ上板2u(図2参照)の内面である平面部に取付けられる。
当該傾斜センサX2としては、例えば、シリコンオイル中に半円形の2枚の左右の電極の半分が浸かった構成の傾斜センサを用いる。当該傾斜センサでは、センサが傾いた場合に左右の電極がシリコンオイルに浸かる面積が変化することを利用し、この面積の変化を静電容量の変化として取り出すことで、傾斜角度θを計測できるように構成されている。
As shown in FIG. 1, the inclination sensor X2 includes all the pipes 2, 2... Installed in the ground, that is, a head pipe 2A to be described later and all subsequent pipes 2B, which are sequentially connected to the rear of the head pipe 2A. 2B...
The inclination sensor X2 is attached to a reference flat portion provided in each of the tubes 2, 2,..., And when the flat portion is inclined when the tube 2 is installed in the ground, This is a sensor that measures the crossing angle, that is, the inclination angle θ of the tube 2 that is the traveling direction angle of the tube 2 with respect to the horizontal plane.
For example, the inclination sensor X2 is attached to a flat surface portion that is an inner surface of an upper plate 2u (see FIG. 2) that connects the upper bottoms of the side walls 2a, 2a of the trapezoidal tube 2 with the side wall 2a.
As the tilt sensor X2, for example, a tilt sensor having a configuration in which half of two left and right electrodes of a semicircular shape are immersed in silicon oil is used. The tilt sensor can measure the tilt angle θ by taking advantage of the change in the area where the left and right electrodes are immersed in silicon oil when the sensor is tilted and taking out the change in the area as a change in capacitance. It is configured.

図1に示すように、ストローク計X3は、例えば、発進坑300における地中への入口となるエントランス301の手前に位置された管2(先頭管2Aあるいは先頭管2Aの後ろに順次接続される後続管2B,2B…)が後述する推進装置5の推進駆動源としての油圧シリンダ(推進ジャッキ(元押し手段))200A及び後述する推進力伝達手段200を介して発進案内台200Bから地中に押し込まれた際の管2の移動量(変位量)を計測する変位計である。
当該ストローク計X3としては、例えば、ワイヤーの引き出し量で油圧シリンダ200Aのピストンの移動距離を計測するワイヤー式のストローク計を用いる。
例えば、エントランス301の手前に位置された管2をエントランス301を介して地中に侵入させてから管2の後端に次の管2を繋ぐまでの間は、当該エントランス301から地中に侵入させている管2の推進量をストローク計X3の計測範囲内で複数回計測して当該計測された移動量を累計(合計)することによって当該エントランス301から地中に侵入させた管2の推進量を求め、既に地中に設置された複数の管2の推進量の合計は、地中に設置された(管の数)×(1つの管の全長)で求める。即ち、この場合、発進案内台200Bから地中に押し込まれた管2,2…の推進量の合計は、既に地中に設置された(管2の数)×(1つの管2の全長)と、ストローク計X3で計測されたエントランス301から地中に侵入させている途中の管2の推進量とにより求める。このように、管2の地山への入口から管2の地中への推進量をストローク計X3で測定したので、管2の推進量を正確に計測できる。
尚、エントランス301の手前に位置された管2が押圧される毎に油圧シリンダ200Aのピストンの移動量を当該ストローク計X3の計測範囲内で計測し、当該計測された全ての管2,2…の移動量を累計(合計)することで、地中に推進させたエントランス301から先頭管2Aまでの管2の推進量の合計を求めるようにしてもよい。
As shown in FIG. 1, the stroke meter X3 is sequentially connected to, for example, the pipe 2 (the front pipe 2A or the rear of the front pipe 2A) positioned in front of the entrance 301 serving as an entrance to the underground in the start pit 300. The succeeding pipes 2B, 2B...) Enter the ground from the start guide table 200B via a hydraulic cylinder (propulsion jack (protruding jack)) 200A as a propulsion drive source of the propulsion device 5 described later and a propulsive force transmission means 200 described later. It is a displacement meter that measures the amount of movement (displacement) of the tube 2 when pushed.
As the stroke meter X3, for example, a wire type stroke meter that measures the moving distance of the piston of the hydraulic cylinder 200A by the amount of wire drawn is used.
For example, after the pipe 2 positioned in front of the entrance 301 enters the ground through the entrance 301 and before the next pipe 2 is connected to the rear end of the pipe 2, the entrance 301 enters the ground. Propulsion of the pipe 2 that has entered the ground from the entrance 301 by measuring the propulsion amount of the pipe 2 being made a plurality of times within the measurement range of the stroke meter X3 and accumulating (totaling) the measured movement amount The total of the propulsion amounts of the plurality of pipes 2 already installed in the ground is obtained by (number of pipes) installed in the ground × (total length of one pipe). That is, in this case, the total propulsion amount of the pipes 2, 2... Pushed into the ground from the start guide 200B is already installed in the ground (the number of pipes 2) × (the total length of one pipe 2). And the propulsion amount of the pipe 2 in the middle of entering the ground from the entrance 301 measured by the stroke meter X3. Thus, since the propulsion amount from the entrance to the natural ground of the pipe 2 to the underground of the pipe 2 is measured by the stroke meter X3, the propulsion amount of the pipe 2 can be accurately measured.
Each time the pipe 2 positioned in front of the entrance 301 is pressed, the movement amount of the piston of the hydraulic cylinder 200A is measured within the measurement range of the stroke meter X3, and all the measured pipes 2, 2,. The total of the amount of propulsion of the pipe 2 from the entrance 301 propelled underground to the top pipe 2A may be obtained by accumulating (totaling) the amount of movement.

状態監視装置X4は、図外の実測位置算出手段と、設計位置算出手段と、差算出手段と、表示手段とを備えたコンピュータにより構成される。
図1に示すように、当該状態監視装置X4は、監視室X40に設置される。
The state monitoring device X4 is configured by a computer that includes an actual measurement position calculation unit, a design position calculation unit, a difference calculation unit, and a display unit that are not shown.
As shown in FIG. 1, the state monitoring device X4 is installed in a monitoring room X40.

実測位置算出手段、設計位置算出手段、差算出手段は、コンピュータにより実現される。即ち、設計位置算出手段、実測位置算出手段、差算出手段は、プログラムと、プログラムの手順に従って処理を行うコンピュータハードウエアとにより構成される。
また、各傾斜センサX2,X2…、及び、ストローク計X3で測定された測定値は、有線又は無線を介して状態監視装置X4(コンピュータ)に送信される。
The actual measurement position calculation means, the design position calculation means, and the difference calculation means are realized by a computer. That is, the design position calculation means, the actual measurement position calculation means, and the difference calculation means are configured by a program and computer hardware that performs processing according to the program procedure.
Moreover, the measured value measured by each inclination sensor X2, X2 ... and the stroke meter X3 is transmitted to state monitoring apparatus X4 (computer) via a wire or radio | wireless.

実測位置算出手段は、実際に推進中の管2の傾斜センサX2又は複数の各管2,2…の各傾斜センサX2,X2…から所定時間間隔(例えば100ms毎)で送信されてくる傾斜角度θの実測データに基づいて、管2又は複数の各管2,2…の先端における高さ方向の中心位置(以下、「先端中心」という)の変位量Zを、Asinθ=Zにより求める。尚、Aは定数(管2のすべてが地中に入っていない場合はストローク計X3で測定された管2の推進量の測定値(実測データ)、管2のすべてが地中に入った場合は管2の全長(管2の先端中心と管2の後端中心(管2の後端における高さ方向の中心位置)とを繋ぐ直線の長さ))であり、θは傾斜角度の実測データである。
この際、管2又は複数の各管2,2…の先端中心の変位量Z(垂直方向変位量)は、任意に設定した高さ基準Y0(図4参照)に対する実測高さに換算して管理する。尚、高さ基準Y0は、例えば、エントランス301の手前に設置される推進作業前の管2の後端縁における高さ方向の中心位置(管2の後端中心)に設定される。
また、傾斜センサX2は、例えば管2の上板2uの内面である平面部に取付けられているので、管2の上板2uの内面の位置を管2の先端中心に補正するための換算を行っている。即ち、傾斜センサX2が管2の先端中心に取付けられているものとみなして、推進前の管2…の先端中心の位置である変位基準Y01(図4参照)と高さ基準Y0との差を算出している。
実測高さは、エントランス301の手前に位置された推進前の管2の先端中心の位置である変位基準Y01と高さ基準Y0との間の垂直距離(以下、固定量という)+管2又は複数の各管2,2…が一定距離(例えば数cm)推進する毎の管2又は複数の各管2,2…の先端中心の変位量Z(変位基準Y01を基準とした垂直方向変位量)で求まる。
変位量Zは、図4(b),(c),(d)の左から1番目の管2のような、エントランス301の手前に位置された推進前の管2が推進を始めて当該管2の全部が地中に推進するまでの当該管2の先端中心の変位量(以下、変位量Z1という)+図4(c),(d)の左から1番目の管2以外の管2のような、全部が地中に推進した後の管2又は複数の各管2,2…の先端中心の変位量(以下、変位量Z2という)で求まる。
変位量Z1は、管2が一定距離を推進する毎に得られるストローク計X3からの測定値を累計した累計距離をAsinθのAとし、管2が一定距離を推進する毎に得られる傾斜センサX2からの傾斜角度θをAsinθのθとして求められる変位量である。
即ち、実測位置算出手段は、エントランス301の手前に位置された管2が最初に一定距離dだけ推進した時の管2の先端中心の変位量Z1を、ストローク計X3から受信した測定値(一定距離)dと当該測定値dを受信した時に傾斜センサX2から受信した傾斜角度θとに基づいてdsinθで求め、次に管2が一定距離dだけ推進した時の管2の先端中心の変位量Z1を、ストローク計X3から受信した測定値(d×2)と当該測定値(d×2)を受信した時に傾斜センサX2から受信した傾斜角度θとに基づいて(d×2)sinθで求めるというように、変位量Z1を求めるに際して、AsinθのAを、管2が一定距離dを推進する毎にストローク計X3から得られる測定値d×n(nは一定距離dを推進した回数)により求め、管2が一定距離dを推進する毎に傾斜センサX2から得られる傾斜角度θをAsinθのθとして用いることにより算出する。
例えば、一定距離dが5cmであれば、管2が一定距離dを推進する毎の管2の先端中心の変位量Z1は、5sinθ、10sinθ、15sinθ…により求まる。
変位量Z2は、管2が一定距離を推進する毎に得られる傾斜センサX2からの傾斜角度θをAsinθのθとし、管2の全長をAsinθのAとして求められる変位量である。
例えば、図4(d)に示す各管2;2…の先端中心Y1の実測高さデータは、以下のように求める。
左から1番目の管2の先端中心Y1の実測高さは、固定量+左から1番目の管2の先端中心Y1の変位量Z1により求める。
左から2番目の管2の先端中心Y1の当該実測高さは、固定量+左から1番目の管2の先端中心Y1の変位量Z1+左から2番目の管2の先端中心Y1の変位量Z2により求める。
左から3番目の管2の先端中心Y1の当該実測高さは、固定量+左から1番目の管2の先端中心Y1の変位量Z1+左から2番目の管2の先端中心Y1の変位量Z2+左から3番目の管2の先端中心Y1の変位量Z2により求める。
左から4番目の管2の先端中心Y1の当該実測高さは、固定量+左から1番目の管2の先端中心Y1の変位量Z1+左から2番目の管2の先端中心Y1の変位量Z2+左から3番目の管2の先端中心Y1の変位量Z2+左から4番目の管2の先端中心Y1の変位量Z2により求める。
左から5番目の管2の先端中心Y1の当該実測高さは、固定量+左から1番目の管2の先端中心Y1の変位量Z1+左から2番目の管2の先端中心Y1の変位量Z2+左から3番目の管2の先端中心Y1の変位量Z2+左から4番目の管2の先端中心Y1の変位量Z2+左から5番目の管2の先端中心Y1の変位量Z2により求める。
つまり、左から2番目以降のすでに全部が地中に推進した後の管2の先端中心Y1の実測高さは、固定量+管2の全部がまだ地中に推進されていない管2の先端中心Y1の変位量Z1+管2の全部が地中に推進されている管2の先端中心の変位量Z1の累計値で求まる。
尚、例えば、図4に示すように、管2又は複数の各管2,2…が基準Y0よりも下方に推進する場合は、管2又は複数の各管2,2…の先端中心の実際の変位量が「+」の値で算出され、実測高さは、「+」の値となる。また、管2又は複数の各管2,2…が基準Y0よりも上方に推進する場合は、管2又は複数の各管2,2…の先端中心の実際の変位量が「−」の値で算出され、実測高さは、「−」の値となる。
そして、実測位置算出手段は、管2がエントランス301に設置された後、実際に一定距離(例えば数cm)推進する毎(エントランス301から管2を一定距離推進させたことをストローク計X3から受信する毎)に、例えば、図4に示すように、管2又は複数の各管2,2…の先端中心の実測高さに基づいて表示画面310上に管2又は複数の各管2,2…の先端中心Y1を表示するとともに、実線表示の管2のように表示画面310上に管2又は複数の各管2,2…の実測外形を表示する。
つまり、実測位置算出手段は、管2又は複数の各管2,2…が一定距離推進する毎に、表示画面310上に管2又は複数の各管2,2…の先端中心Y1を表示し、管2又は複数の各管2,2…の傾斜角度θの実測データに基づいて、当該先端中心Y1を通過する傾斜角度θ(水平線に対する傾斜角度θ)の傾斜線を描き、管2又は複数の各管2,2…の長さ方向に沿った外形線は、傾斜角度θの傾斜線と平行で管2の高さ寸法を隔てて対向する上下の傾斜線を管2の長さで規定することにより求め、管2又は複数の各管2,2…の高さ方向に沿った外形線は、上下の傾斜線の端部同士を連結することにより求める。
即ち、実測位置算出手段は、管2又は複数の各管2,2…が一定距離推進する毎に、管2又は複数の各管2,2…の実測外形を逐次更新しながら表示する。
The actually measured position calculation means transmits the inclination angle transmitted at a predetermined time interval (for example, every 100 ms) from the inclination sensor X2 of the pipe 2 being actually propelled or the inclination sensors X2, X2. Based on the measured data of θ, the displacement amount Z of the center position in the height direction (hereinafter referred to as “tip center”) at the tip of the tube 2 or each of the plurality of tubes 2, 2. In addition, A is a constant (when all of the pipe 2 is not in the ground, the measured value (actual measurement data) of the propulsion amount of the pipe 2 measured by the stroke meter X3, when all of the pipe 2 is in the ground) Is the total length of the tube 2 (the length of a straight line connecting the tip center of the tube 2 and the center of the rear end of the tube 2 (the center position in the height direction at the rear end of the tube 2)), and θ is the actual measurement of the inclination angle. It is data.
At this time, the displacement amount Z (vertical displacement amount) at the tip center of the tube 2 or each of the plurality of tubes 2, 2... Is converted into an actually measured height with respect to an arbitrarily set height reference Y 0 (see FIG. 4). to manage. The height reference Y0 is set, for example, at the center position in the height direction (center of the rear end of the pipe 2) at the rear end edge of the pipe 2 before the propulsion work installed in front of the entrance 301.
In addition, since the inclination sensor X2 is attached to, for example, a flat surface that is the inner surface of the upper plate 2u of the tube 2, conversion for correcting the position of the inner surface of the upper plate 2u of the tube 2 to the tip center of the tube 2 is performed. Is going. That is, assuming that the tilt sensor X2 is attached to the center of the tip of the tube 2, the difference between the displacement reference Y01 (see FIG. 4) which is the position of the tip center of the tube 2 before propulsion and the height reference Y0. Is calculated.
The actually measured height is the vertical distance (hereinafter referred to as a fixed amount) between the displacement reference Y01 and the height reference Y0 which is the position of the tip center of the tube 2 before propulsion positioned before the entrance 301 + the tube 2 or Displacement amount Z (vertical displacement amount with reference to displacement reference Y01) at the tip center of tube 2 or each tube 2, 2... Each time a plurality of tubes 2, 2. )
The displacement amount Z is the same as that of the first pipe 2 from the left in FIGS. 4B, 4C, and 4D, and the pipe 2 before propulsion located in front of the entrance 301 starts propulsion. The amount of displacement of the center of the tip of the tube 2 (hereinafter referred to as the amount of displacement Z1) until all of the tube 2 is propelled into the ground + the tubes 2 other than the first tube 2 from the left in FIGS. 4 (c) and 4 (d) As described above, the total amount is obtained from the displacement amount (hereinafter referred to as displacement amount Z2) of the tip center of the tube 2 or the plurality of tubes 2, 2... After being propelled into the ground.
As for the displacement amount Z1, the cumulative distance obtained by accumulating the measured values from the stroke meter X3 obtained every time the pipe 2 propels a certain distance is set as A of A sin θ, and the inclination sensor X2 obtained every time the pipe 2 propels a certain distance. Is an amount of displacement obtained as θ of Asin θ.
That is, the actual position calculation means receives the displacement value Z1 at the tip center of the tube 2 when the tube 2 positioned in front of the entrance 301 is first propelled by a certain distance d from the stroke meter X3 (constant value). The distance of the tip 2 of the tube 2 when the tube 2 is propelled by a certain distance d is obtained by dsin θ based on the distance d and the tilt angle θ received from the tilt sensor X2 when the measured value d is received. Z1 is determined by (d × 2) sin θ based on the measured value (d × 2) received from the stroke meter X3 and the tilt angle θ received from the tilt sensor X2 when the measured value (d × 2) is received. As described above, when determining the displacement amount Z1, A of Asin θ is determined by the measured value d × n (n is the number of times of propelling the constant distance d) obtained from the stroke meter X3 every time the tube 2 propels the constant distance d. Asking for tube 2 The inclination angle θ obtained from the tilt sensor X2 each to promote the constant distance d is calculated by using a θ of A sin .theta.
For example, if the constant distance d is 5 cm, the displacement Z1 of the tip center of the pipe 2 every time the pipe 2 propels the constant distance d is obtained by 5 sin θ, 10 sin θ, 15 sin θ,.
The displacement amount Z2 is a displacement amount obtained when the inclination angle θ from the inclination sensor X2 obtained every time the tube 2 propels a certain distance is defined as θ of Asinθ, and the entire length of the tube 2 is determined as A of Asinθ.
For example, the measured height data of the tip center Y1 of each tube 2; 2... Shown in FIG.
The actually measured height of the tip center Y1 of the first tube 2 from the left is obtained by a fixed amount + the displacement Z1 of the tip center Y1 of the first tube 2 from the left.
The measured height of the tip center Y1 of the second tube 2 from the left is the fixed amount + the displacement Z1 of the tip center Y1 of the first tube 2 from the left + the displacement of the tip center Y1 of the second tube 2 from the left. Obtained by Z2.
The measured height of the tip center Y1 of the third tube 2 from the left is the fixed amount + the displacement Z1 of the tip center Y1 of the first tube 2 from the left + the displacement of the tip center Y1 of the second tube 2 from the left. Z2 + is obtained from the displacement Z2 of the tip center Y1 of the third tube 2 from the left.
The measured height of the tip center Y1 of the fourth tube 2 from the left is the fixed amount + the displacement Z1 of the tip center Y1 of the first tube 2 from the left + the displacement of the tip center Y1 of the second tube 2 from the left. Z2 + the displacement amount Z2 of the tip center Y1 of the third tube 2 from the left + the displacement amount Z2 of the tip center Y1 of the fourth tube 2 from the left.
The measured height of the tip center Y1 of the fifth tube 2 from the left is the fixed amount + the displacement Z1 of the tip center Y1 of the first tube 2 from the left + the displacement of the tip center Y1 of the second tube 2 from the left. Z2 + displacement amount Z2 of the tip center Y1 of the third tube 2 from the left + displacement amount Z2 + of the tip center Y1 of the fourth tube 2 from the left + displacement amount Z2 of the tip center Y1 of the fifth tube 2 from the left.
That is, the actually measured height of the tip center Y1 of the pipe 2 after the second and subsequent parts from the left have already been propelled into the ground is the fixed amount + the tip of the pipe 2 where all of the pipes 2 have not yet been propelled into the ground. The total displacement amount Z1 of the center Y1 + the tube 2 is obtained as a cumulative value of the displacement amount Z1 of the center of the tip of the tube 2 propelled into the ground.
For example, as shown in FIG. 4, when the tube 2 or each of the plurality of tubes 2, 2... Propels below the reference Y0, the actual center of the tip of the tube 2 or each of the plurality of tubes 2, 2. Is calculated with a value of “+”, and the actually measured height is a value of “+”. When the tube 2 or each of the plurality of tubes 2, 2... Is propelled above the reference Y0, the actual displacement amount at the tip center of the tube 2 or each of the plurality of tubes 2, 2. The measured height is a value of “−”.
Then, the actual position calculation means receives from the stroke meter X3 that the pipe 2 has been propelled from the entrance 301 by a certain distance (for example, several centimeters) after the pipe 2 is installed at the entrance 301. 4), for example, as shown in FIG. 4, the tube 2 or the plurality of tubes 2, 2 on the display screen 310 based on the measured height of the center of the tip of the tube 2 or the plurality of tubes 2, 2,. .. And the measured outer shape of the tube 2 or each of the plurality of tubes 2, 2... Are displayed on the display screen 310 like the tube 2 indicated by a solid line.
That is, the measured position calculation means displays the tip center Y1 of the tube 2 or the plurality of tubes 2, 2... On the display screen 310 each time the tube 2 or the plurality of tubes 2, 2. Based on the measured data of the inclination angle θ of the tube 2 or each of the plurality of tubes 2, 2..., An inclination line of the inclination angle θ (inclination angle θ with respect to the horizontal line) passing through the tip center Y 1 is drawn. The outer contour line along the length direction of each of the tubes 2, 2... Defines the upper and lower inclined lines that are parallel to the inclined line of the inclination angle θ and are opposed to each other with the height dimension of the tube 2 defined by the length of the tube 2. The contour line along the height direction of the tube 2 or each of the plurality of tubes 2, 2... Is obtained by connecting the ends of the upper and lower inclined lines.
That is, the measured position calculation means displays the measured outline of the tube 2 or each of the plurality of tubes 2, 2.

設計位置算出手段は、管2又は複数の各管2,2…が一定距離(例えば数cm)推進する毎の管2又は複数の各管2,2…の水平面に対する傾斜角度の設計データを算出して蓄積している。そして、管2の先端中心の設計上の変位量は、Asinθ=Zにより求まるる。この場合、Aは定数(管2のすべてが地中に入っていない場合はストローク計X3で測定された管2の推進量の実測データ、管2のすべてが地中に入った場合は管2の全長(管2の先端中心と管2の後端中心(管2の後端における高さ方向の中心位置)とを繋ぐ直線の長さ))であり、θは傾斜角度の設計データである。
この際、管2又は複数の各管2,2…の先端中心の設計上の変位量Z(垂直方向変位量)は、上述した高さ基準Y0に対する設計高さに換算して管理する。
設計高さは、上述した固定量+管2又は複数の各管2,2…が一定距離(例えば数cm)推進する毎の管2又は複数の各管2,2…の先端中心の設計上の変位量Z(上述した変位基準Y01を基準とした垂直方向変位量)で求まる。
即ち、管2又は複数の各管2,2…の先端中心の設計上の変位量Zは、上述した変位量Z1、変位量Z2と同様な求め方で求めることができる。つまり、傾斜角度θの実測データの代わりに傾斜角度θの設計データを用いて上述した算出方法により設計上の変位量Z1、変位量Z2を求めることができる。
尚、設計上の変位量Zは、管2又は複数の各管2,2…が一定距離推進する毎の管2又は複数の各管2,2…の先端中心の設計上の変位量の累計値により求めても良い。
そして、設計位置算出手段は、上述した実測位置算出手段による実測外形の表示方法と同様に、管2がエントランス301に設置された後、実際に一定距離(例えば数cm)推進する毎(エントランス301から管2を一定距離推進させたことをストローク計X3から受信する毎)に、例えば、図4に示すように、管2又は複数の各管2,2…の先端中心の設計高さに基づいて表示画面310上に管2又は複数の各管2,2…の先端中心Y2を表示するとともに、点線表示の管2のように表示画面310上に管2又は複数の各管2,2…の設計外形を表示する。
即ち、設計位置算出手段は、管2又は複数の管2,2…が一定距離推進する毎に、管2又は複数の各管2,2…の設計外形を逐次更新しながら表示する。
The design position calculation means calculates design data of the inclination angle of the tube 2 or each of the plurality of tubes 2, 2... With respect to the horizontal plane every time the tube 2 or the plurality of tubes 2, 2. Have accumulated. And the design displacement amount of the tip center of the tube 2 is obtained by Asin θ = Z. In this case, A is a constant (actual data of the propulsion amount of the pipe 2 measured by the stroke meter X3 when all of the pipe 2 is not in the ground, and pipe 2 when all of the pipe 2 is in the ground. ) (The length of a straight line connecting the tip center of the tube 2 and the center of the rear end of the tube 2 (the center position in the height direction at the rear end of the tube 2)), and θ is design data of the inclination angle. .
At this time, the design displacement amount Z (vertical displacement amount) of the center of the tip of the tube 2 or each of the plurality of tubes 2, 2... Is converted into the design height with respect to the height reference Y0 described above and managed.
The design height is based on the design of the center of the tip of the tube 2 or each of the plurality of tubes 2, 2... Each time the fixed amount + the tube 2 or the plurality of tubes 2, 2. Displacement amount Z (vertical displacement amount with reference to the displacement reference Y01 described above).
That is, the design displacement amount Z at the center of the tip of the tube 2 or each of the plurality of tubes 2, 2... Can be obtained in the same manner as the displacement amount Z1 and displacement amount Z2 described above. That is, the design displacement amount Z1 and displacement amount Z2 can be obtained by the above-described calculation method using the design data of the inclination angle θ instead of the actually measured data of the inclination angle θ.
The design displacement amount Z is the cumulative amount of the design displacement amount at the tip center of the tube 2 or each of the plurality of tubes 2, 2... You may obtain | require by a value.
Then, the design position calculation means, like the method for displaying the measured outer shape by the measured position calculation means described above, after the pipe 2 is installed at the entrance 301, each time it is actually propelled (for example, several centimeters) (entrance 301). Each time it is received from the stroke meter X3 that the tube 2 has been propelled by a certain distance), for example, as shown in FIG. 4, based on the design height of the tip center of the tube 2 or each of the plurality of tubes 2, 2. The tip center Y2 of the tube 2 or each of the plurality of tubes 2, 2... Is displayed on the display screen 310, and the tube 2 or the plurality of tubes 2, 2,. The design outline of is displayed.
That is, the design position calculation means displays the design outline of the tube 2 or each of the plurality of tubes 2, 2... While sequentially updating each time the tube 2 or the plurality of tubes 2, 2.

即ち、管2又は複数の各管2,2…が一定距離推進する毎に、図4に示すように、表示画面310上に同時に、推進中の管2又は複数の各管2,2…の実測高さ(管2又は複数の各管2,2…の実際の先端中心Y1)及び管2の実測外形が表示されるとともに、推進中の管2又は複数の各管2,2…の設計高さ(管2又は複数の各管2,2…の設計上の先端中心Y2)及び管2の設計外形が表示される。
このように、推進作業中の管2又は複数の各管2,2…の実測外形と管2又は複数の各管2,2…の設計外形とを同一の表示画面310上に重ねて同時に表示することで、監視者は、推進作業中の管2又は複数の各管2,2…の設計位置に対する実測位置のずれを視覚的に把握できるようになる。
That is, every time the pipe 2 or each of the plurality of pipes 2, 2... Is propelled by a certain distance, the pipe 2 or the plurality of pipes 2, 2. The measured height (actual tip center Y1 of the tube 2 or each of the plurality of tubes 2, 2...) And the measured outer shape of the tube 2 are displayed, and the design of the tube 2 or the plurality of tubes 2, 2. The height (designed tip center Y2 of the tube 2 or each of the plurality of tubes 2, 2...) And the design outline of the tube 2 are displayed.
As described above, the measured outer shape of the tube 2 or the plurality of tubes 2, 2... And the design outer shape of the tube 2 or the plurality of tubes 2, 2. Thus, the supervisor can visually grasp the deviation of the actually measured position with respect to the design position of the pipe 2 or the plurality of pipes 2, 2.

差算出手段は、推進作業中の管2又は複数の各管2,2…が一定距離(例えば数cm)推進する毎に、管2又は複数の各管2,2…の傾斜角度θの実測データと傾斜角度θの設計データとの差(即ち、傾斜角度θの実測値と設計値との差)、及び、管2又は複数の各管2,2…の実測高さデータ(実測評価値)と設計高さデータ(設計評価値)との差(即ち、基準Y0を基準とした管2又は複数の各管2,2…の先端中心の実測値と設計値との差)を算出する。
そして、表示手段は、図5(a)に示すように、評価値としての管2又は複数の各管2,2…の高さの設計値、実測値、設計値と実測値との差を表示画面310に表示するとともに、図5(b)に示すように、管2又は複数の各管2,2…の傾斜角度θの設計値、実測値、設計値と実測値との差を表示画面310に表示する(尚、図5の○○には実際には数値が表示される)。
このように、表示画面310上に、管2又は複数の各管2,2…の高さの設計値(設計高さ(設計評価値))と実測値(実測高さ(実測評価値))との差、及び、管2又は複数の各管2,2…の傾斜角度θの設計値と実測値との差が数値で表示されることで、監視者は、設計値に対する推進作業中の管2又は複数の各管2,2…の実測値のずれを数量的に把握できるようになる。
また、設計評価値を任意に決めた基準Y0と設計値とで算出される管の設計高さとし、実測評価値を任意に決めた基準Y0と管2又は複数の各管2,2……の傾斜角度の実測値とに基づいて算出される管の実測高さとしたので、地中に推進する管2又は複数の各管2,2…の高さを基準に管2又は複数の各管2,2…の推進状況を把握できるようになった。
尚、図示しないが、表示手段は、実際に推進中の管2又は複数の各管2,2…の各傾斜センサX2,X2…から所定時間間隔(例えば100ms毎)で送信されてくる傾斜角度θのデータ、及び、傾斜角度θのデータに基づいて実測位置算出手段により算出される管2又は複数の各管2,2…の先端中心の変位量Xを、表示画面310上に逐次表示する。これにより、推進中の管2又は複数の各管2,2…の状況をリアルタイムに詳細に監視できるようになる。
The difference calculation means measures the inclination angle θ of the tube 2 or each of the plurality of tubes 2, 2... Each time the tube 2 or the plurality of tubes 2, 2. The difference between the data and the design data of the tilt angle θ (that is, the difference between the measured value of the tilt angle θ and the design value), and the measured height data (measured evaluation value) of the tube 2 or each of the plurality of tubes 2, 2. ) And the design height data (design evaluation value) (that is, the difference between the measured value of the tip center of the tube 2 or each of the plurality of tubes 2, 2. .
Then, as shown in FIG. 5 (a), the display means displays the design value of the height of the tube 2 or the plurality of tubes 2, 2... As the evaluation value, the actual measurement value, and the difference between the design value and the actual measurement value. In addition to the display on the display screen 310, as shown in FIG. 5 (b), the design value, the actual measurement value, and the difference between the design value and the actual measurement value of the inclination angle θ of the tube 2 or each of the tubes 2, 2. It is displayed on the screen 310 (note that a numerical value is actually displayed in XX in FIG. 5).
Thus, on the display screen 310, the design value (design height (design evaluation value)) and the actual measurement value (actual height (actual evaluation value)) of the pipe 2 or each of the plurality of pipes 2, 2,. And the difference between the design value and the actual measurement value of the inclination angle θ of the pipe 2 or each of the plurality of pipes 2, 2... It is possible to quantitatively grasp the deviation of the measured values of the pipe 2 or each of the plurality of pipes 2, 2.
Also, the design height of the pipe calculated from the standard Y0 and the design value arbitrarily determined as the design evaluation value, and the reference Y0 and the pipe 2 or the plurality of pipes 2, 2,. Since the measured height of the pipe is calculated based on the measured value of the inclination angle, the pipe 2 or each of the plurality of pipes 2 is based on the height of the pipe 2 or the plurality of pipes 2, 2. , 2 ... can now be grasped.
Although not shown, the display means transmits an inclination angle transmitted at a predetermined time interval (for example, every 100 ms) from each inclination sensor X2, X2... The displacement amount X of the tip center of the tube 2 or each of the plurality of tubes 2, 2... calculated by the measured position calculation means based on the θ data and the inclination angle θ data is sequentially displayed on the display screen 310. . As a result, the status of the pipe 2 being propelled or each of the plurality of pipes 2, 2... Can be monitored in detail in real time.

実施形態によれば、監視者は、管2又は複数の各管2,2…の推進状況の変化を連続的(リアルタイム)に把握できて、地中を推進中の管2又は複数の各管2,2…の地中での実測位置と設計位置とのずれを視覚的及び数量的に把握できるようになるので、当該ずれが拡大する前に、推進装置5の油圧シリンダ200Aによる推進力を制御したり、後述する上下揺動駆動手段100(図8等参照)を制御して掘削方向を制御すること(図11参照)により、推進中の管2又は複数の各管2,2…の地中での実測位置と設計位置とずれを少なくすることが可能となり、管2又は複数の各管2,2…を設計位置に近い位置に設置できて、精度の高い設置工事を実現できるようになる。
また、推進作業を中断することなく、管2又は複数の各管2,2…の推進作業を効率的に行え、工期を短くできる。
即ち、実施形態における、管を地中に設置する際の管の状態監視方法によれば、推進作業の効率化が図れるとともに推進作業中において管2又は複数の各管2,2…の位置を連続して確認することが可能となる。
According to the embodiment, the supervisor can continuously (real-time) grasp the change in the propulsion status of the pipe 2 or each of the plurality of pipes 2, 2... Since the deviation between the actually measured position and the design position in the ground of 2, 2,... Can be grasped visually and quantitatively, the propulsive force by the hydraulic cylinder 200A of the propulsion device 5 is increased before the deviation increases. By controlling the excavation direction (see FIG. 11) by controlling the vertical swing drive means 100 (see FIG. 8, etc.), which will be described later, (see FIG. 11), It is possible to reduce the deviation between the actual measurement position and the design position in the ground, and the pipe 2 or each of the plurality of pipes 2, 2... Can be installed at a position close to the design position, so that highly accurate installation work can be realized. become.
Further, without interrupting the propulsion work, the propulsion work of the pipe 2 or each of the plurality of pipes 2, 2,... Can be performed efficiently, and the construction period can be shortened.
That is, according to the pipe state monitoring method when the pipe is installed in the ground in the embodiment, the efficiency of the propulsion work can be improved and the position of the pipe 2 or the plurality of pipes 2, 2,. It becomes possible to confirm continuously.

特に、地中に設置するすべての各管2,2…に傾斜センサX2を取付けて、各管2,2…の挙動をリアルタイムに監視するようにしたので、すべての各管2,2…の状況を詳細に監視できるようになる。
即ち、後続管2B,2B…は先頭管2Aの後方に順次接続されるため、基本的には、後続管2B,2B…は先頭管2Aに従って推進するが、後続管2Bを構成する管体が、後述する余堀、管の剛性、地山抵抗などの影響で撓んで曲がり、先頭管2Aだけが設計ラインに従い、後続管2B,2B…が設計ラインからずれることがあった。特に推進距離が長くなると、管2B,2B…が撓んで変形してくる傾向があった。
つまり、管2,2…の軌跡傾向を見るだけなら、傾斜センサX2を先頭管2Aに取付けるだけでもよいが、実際には、後続管2B,2B…の位置が設計位置から大きくずれることがあり、そこで、実施形態1では、地中に設置するすべての管2に傾斜センサX2を取付けることにより、後続管2B,2B…の状況も詳細に監視できるようになり、精度の高い設置工事を実現できるようになった。
In particular, since the inclination sensors X2 are attached to all the pipes 2, 2,... Installed in the ground, the behavior of the pipes 2, 2,. The situation can be monitored in detail.
That is, the succeeding pipes 2B, 2B,... Are sequentially connected to the rear of the leading pipe 2A, so that the succeeding pipes 2B, 2B,. In some cases, only the leading pipe 2A follows the design line, and the succeeding pipes 2B, 2B,... Deviate from the design line. In particular, when the propulsion distance is increased, the pipes 2B, 2B, ... tend to bend and deform.
In other words, if only the trajectory tendency of the tubes 2, 2... Is observed, the inclination sensor X2 may be simply attached to the top tube 2A, but in reality, the positions of the subsequent tubes 2B, 2B. Therefore, in the first embodiment, by attaching the inclination sensor X2 to all the pipes 2 installed in the ground, the situation of the subsequent pipes 2B, 2B... Can be monitored in detail, thereby realizing highly accurate installation work. I can do it now.

尚、傾斜検出手段としての傾斜センサX2は、回転掘削体10に接続される先頭管2Aに取付けるとともに、先頭管2Aの後方に順次接続される後続管2B,2B…のうちの1つ以上に取付ければよい。例えば、地中に設置する予定の先頭管2A及び複数の後続管2B,2B…により構成される管列の少なくとも、先頭、中間、後端の管2にそれぞれ傾斜センサX2を設けるようにしてもよいし、管列の管2に1個置きに傾斜センサX2を設けるようにしてもよい。
また、上記では、管2又は複数の各管2,2…の先端中心の変位量Zを、管2又は複数の各管2,2…が一定距離推進する毎に求めるようにしたが、変位量Zを、一定時間間隔毎に求めるようにしてもよい。つまり、一定時間間隔毎に得られる管2の推進量A(ストローク計X3から得られる測定値)と管2の傾斜角度θ(傾斜センサX2から得られる傾斜角度θ)とに基づいて、Asinθ=Zにより、変位量Zを算出するようにしてもよい。
また、評価値(実測評価値、設計評価値)として、高さデータを用いたが、傾斜角度に基づいて求められるその他のデータを用いてもよい。
In addition, the inclination sensor X2 as the inclination detecting means is attached to the leading pipe 2A connected to the rotary excavator 10, and to one or more of the succeeding pipes 2B, 2B... Sequentially connected to the rear of the leading pipe 2A. Install it. For example, the inclination sensor X2 may be provided on at least the leading, middle, and trailing end pipes 2 of the pipe row composed of the leading pipe 2A and the plurality of succeeding pipes 2B, 2B,. Alternatively, every other tube 2 in the tube row may be provided with an inclination sensor X2.
In the above description, the displacement amount Z at the center of the tip of the tube 2 or each of the plurality of tubes 2, 2... Is obtained every time the tube 2 or each of the plurality of tubes 2, 2. The amount Z may be obtained at regular time intervals. That is, based on the propulsion amount A (measured value obtained from the stroke meter X3) of the pipe 2 obtained at regular time intervals and the inclination angle θ (inclination angle θ obtained from the inclination sensor X2) of the pipe 2, Asinθ = The displacement amount Z may be calculated from Z.
Further, although the height data is used as the evaluation value (measured evaluation value, design evaluation value), other data obtained based on the inclination angle may be used.

また、管2として曲管を使用して、複数の曲管を連結して中心線が円弧を描くように曲がって延長する曲管列を地中に設置することも可能である。尚、当該曲管の曲面に傾斜センサX2を取付けた場合、曲面の接線の向きがわからなくなり、傾斜センサX2で傾斜角度θを測定する際の基準面がわからなくなるおそれがあるため、当該曲管を使用する場合には、各曲管の曲面に傾斜センサX2で傾斜角度θを測定する際の基準面となる平面部を設けて当該平面部に傾斜センサX2を取付けるようにする。   It is also possible to use a curved pipe as the pipe 2 and connect a plurality of curved pipes, and install a curved pipe line that bends and extends so that the center line draws an arc. In addition, when the inclination sensor X2 is attached to the curved surface of the curved pipe, the direction of the tangent to the curved surface may not be known, and the reference plane when the inclination angle θ is measured by the inclination sensor X2 may not be known. Is used, a flat surface portion serving as a reference surface for measuring the inclination angle θ by the inclination sensor X2 is provided on the curved surface of each curved pipe, and the inclination sensor X2 is attached to the flat surface portion.

以下、図6乃至図12に基づいて、地中に管2を設置するための管設置装置1の構成及び動作について説明する。
尚、以下、図6における上側を管設置装置1の先頭あるいは前側、図6における下側を管設置装置1の後側、図6における左右側を管設置装置1の左右側、図6の紙面と直交する方向を管設置装置1の上下側と定義して説明する。即ち、図8の矢印で示すように、管設置装置1の前後、左右、上下を定義して説明する。
Hereinafter, based on FIG. 6 thru | or FIG. 12, the structure and operation | movement of the pipe | tube installation apparatus 1 for installing the pipe | tube 2 in the ground are demonstrated.
In the following, the upper side in FIG. 6 is the front or front side of the pipe installation device 1, the lower side in FIG. 6 is the rear side of the pipe installation device 1, the left and right sides in FIG. A direction orthogonal to the vertical direction is defined as the upper and lower sides of the pipe installation device 1. That is, as shown by the arrows in FIG. 8, the front and rear, the left and right, and the top and bottom of the pipe installation device 1 are defined and described.

まず、管設置装置1の構成について説明する。
図6に示すように、管設置装置1は、管2と、掘削装置3とを備える。
掘削装置3は、掘削機械4と、推進装置5と、水供給排泥装置6と、止水装置7と、検出手段8(図9,図10参照)と、後述する油圧モータや油圧シリンダー等の駆動源を制御する制御装置9とを備える。
First, the configuration of the pipe installation device 1 will be described.
As shown in FIG. 6, the pipe installation device 1 includes a pipe 2 and a drilling device 3.
The excavator 3 includes an excavating machine 4, a propulsion device 5, a water supply / drainage device 6, a water stop device 7, a detection means 8 (see FIGS. 9 and 10), a hydraulic motor and a hydraulic cylinder, which will be described later, and the like. And a control device 9 for controlling the driving source.

掘削装置3により地中に設置される管2は、例えば管2の中心線と直交する断面の形状が長方形で、かつ、上述したような側壁2aが台形状の管2である。管2は、最初に地中に入れる先頭管2A、先頭管2Aの後方に順次連結される複数の後続管2B,2B…である。   The pipe 2 installed in the ground by the excavator 3 is, for example, a pipe 2 having a rectangular cross section orthogonal to the center line of the pipe 2 and having a trapezoidal side wall 2a as described above. The pipe 2 is a first pipe 2A that is first inserted into the ground, and a plurality of subsequent pipes 2B, 2B,... Sequentially connected to the rear of the first pipe 2A.

先頭管2Aの前端(先端)である一端開口2tよりも前側の位置に回転掘削体10が位置され、当該回転掘削体10を回転可能かつ揺動可能に支持する回転掘削体支持部12を備える。
回転掘削体10は、先頭管2Aの地中への推進方向Fと交差する回転中心線Lを回転中心として回転するように構成されている。
回転掘削体10は、先頭管2Aの中心線2cを中心として左右方向及び上下方向に揺動可能に構成されている。
The rotary excavator 10 is positioned at a position in front of the one end opening 2t, which is the front end (tip) of the leading pipe 2A, and includes a rotary excavator support 12 that supports the rotary excavator 10 in a rotatable and swingable manner. .
The rotary excavator 10 is configured to rotate around a rotation center line L that intersects the propulsion direction F of the leading pipe 2A into the ground.
The rotary excavator 10 is configured to be swingable in the left-right direction and the up-down direction about the center line 2c of the leading pipe 2A.

掘削機械4は、回転掘削体10と、回転掘削体10の回転駆動手段11と、回転掘削体支持部12と、回転掘削体10の揺動駆動手段13とを備える。   The excavating machine 4 includes a rotary excavator 10, a rotation drive unit 11 for the rotary excavator 10, a rotary excavator support 12, and a swing drive unit 13 for the rotary excavator 10.

回転掘削体10は、例えば円筒部16と円筒部16の他端を閉塞する底板17とを有した一端開口他端閉塞の円形箱状の回転体18と、回転体18の円筒部16の外周面19に設けられた複数の掘削ビット20,20…とを備えた構成である。   The rotary excavator 10 includes, for example, a circular box-shaped rotary body 18 that is closed at one end and has a cylindrical portion 16 and a bottom plate 17 that closes the other end of the cylindrical portion 16, and an outer periphery of the cylindrical portion 16 of the rotary body 18. It is the structure provided with the some excavation bit 20,20 ... provided in the surface 19. FIG.

回転掘削体10の回転駆動手段11は、例えばモータとモータの回転駆動源とにより構成される。モータは、例えば、流体圧により作動するモータ、あるいは、電気で作動するモータを用いる。
回転掘削体10の回転駆動手段11は、例えば、油圧モータ(以下、油圧モータ21と言う)と油圧モータ21の回転駆動源としての図外の油圧源とで構成される。この場合、油圧源と油圧モータ21とが圧油供給路及び油帰還路を有した耐圧ホース23で繋がれる。
例えば、油圧モータ21のケーシング24がモータマウント25に固定され、油圧源から耐圧ホース23を介して油圧モータ21に供給される圧油によって回転軸26が回転するように構成されている。また、回転掘削体10の回転体18の底板17の内面の円中心と回転軸26の回転中心とが一致するように、回転体18の底板17の内面と油圧モータ21により回転する回転軸26の先端に設けられた連結板28とがねじ等の連結具29により連結される。
即ち、2つの回転掘削体10,10が先頭管2Aの一端開口2tよりも前方に位置され、2つの回転掘削体10,10が2つの回転軸26,26に共通の1つの回転中心線Lを回転中心として回転するように構成される。このような2つの回転掘削体10,10を備えた構成は、ツインヘッダと呼ばれる。
The rotation driving means 11 of the rotary excavation body 10 includes, for example, a motor and a rotation driving source of the motor. As the motor, for example, a motor that operates by fluid pressure or a motor that operates by electricity is used.
The rotary drive unit 11 of the rotary excavator 10 is constituted by, for example, a hydraulic motor (hereinafter referred to as a hydraulic motor 21) and a hydraulic source (not shown) as a rotary drive source of the hydraulic motor 21. In this case, the hydraulic source and the hydraulic motor 21 are connected by a pressure hose 23 having a pressure oil supply path and an oil return path.
For example, the casing 24 of the hydraulic motor 21 is fixed to the motor mount 25, and the rotating shaft 26 is configured to rotate by pressure oil supplied to the hydraulic motor 21 from the hydraulic source via the pressure hose 23. Further, the rotary shaft 26 rotated by the hydraulic motor 21 and the inner surface of the bottom plate 17 of the rotary body 18 so that the circle center of the inner surface of the bottom plate 17 of the rotary body 18 of the rotary excavator 10 and the rotation center of the rotary shaft 26 coincide with each other. Are connected to a connecting plate 28 provided at the tip thereof by a connecting tool 29 such as a screw.
That is, the two rotary excavating bodies 10 and 10 are positioned in front of the one end opening 2t of the leading pipe 2A, and the two rotary excavating bodies 10 and 10 are common to the two rotary shafts 26 and 26, and one rotation center line L Is configured to rotate around the center of rotation. Such a configuration including the two rotary excavators 10, 10 is called a twin header.

回転掘削体支持部12は、先頭管2Aの内面に支持された支持体14と、基端側が支持体14に連結されて先端側が油圧モータ21に連結されたことで回転掘削体10を回転可能に支持する連結支柱部15とを備える。
支持体14は、前面44に連結支柱部15の基端側が連結された支持基板30と、当該支持基板30を支持するとともに、先頭管2Aの内面に設けられた管側支持部32に支持された筒状支持体31とを備える。
尚、管設置装置1の静止状態においては、回転掘削体10が回転掘削体支持部12を介して先頭管2Aに支持された状態であり、回転掘削体10を駆動させて掘削している状態においては、先頭管2Aが回転掘削体10に牽引される状態となる(回転掘削体10による牽引力が、回転掘削体支持部12、管側支持部32を介して先頭管2Aに伝達されることにより、先頭管2Aが牽引される)。本発明においては、これらの状態すべてを「支持」と定義する。
The rotary excavator support section 12 can rotate the rotary excavator 10 by supporting the support 14 supported on the inner surface of the leading pipe 2A, the base end side being connected to the support body 14, and the distal end side being connected to the hydraulic motor 21. And a connecting support column portion 15 to be supported.
The support body 14 is supported by a support substrate 30 in which the base end side of the connection support column 15 is connected to the front surface 44, and the support substrate 30 and a tube side support portion 32 provided on the inner surface of the leading tube 2A. A cylindrical support 31 is provided.
In the stationary state of the pipe installation device 1, the rotary excavator 10 is supported by the top pipe 2A via the rotary excavator support 12 and the rotary excavator 10 is driven for excavation. , The leading pipe 2A is pulled by the rotary excavator 10 (the traction force by the rotary excavator 10 is transmitted to the leading pipe 2A via the rotary excavator support part 12 and the pipe side support part 32). Thus, the top pipe 2A is pulled). In the present invention, all of these states are defined as “support”.

連結支柱部15は、支柱部33と、連結架台34とを備える。
支柱部33は、中空支柱部35と、中空支柱部35を補強する補強部と連結架台34に連結される連結板とを有した補強連結部36とを備える。
中空支柱部35は、主支柱部38と、主支柱部38の先端より左右に分かれて延長する2つの分岐支柱部39,39とを備える。この2つの分岐支柱部39,39は、主支柱部38の先端部より主支柱部38の延長方向と直交する一直線上において互いに離れる方向に延長する。即ち、中空支柱部35は、1つの主支柱部38と2つの分岐支柱部39,39とが組合されたT字状の中空空間を有した構成である。
The connection column part 15 includes a column part 33 and a connection frame 34.
The support column 33 includes a hollow support column 35, a reinforcement connecting portion 36 having a reinforcing portion that reinforces the hollow support column 35 and a connecting plate that is connected to the connecting mount 34.
The hollow strut portion 35 includes a main strut portion 38 and two branch strut portions 39, 39 extending from the tip of the main strut portion 38 to the left and right. The two branch support portions 39, 39 extend from the front end portion of the main support post portion 38 in a direction away from each other on a straight line orthogonal to the extension direction of the main support post portion 38. In other words, the hollow column portion 35 has a T-shaped hollow space in which one main column portion 38 and two branch column portions 39 and 39 are combined.

各分岐支柱部39,39の先端は、それぞれ各回転掘削体10,10の各モータマウント25,25に連結されている。そして、各回転掘削体10,10の各油圧モータ21,21に連結された耐圧ホース23,23が中空支柱部35の内側を介して中空支柱部35の後端開口から外部に延長して図外の油圧源に接続されている。
よって、各耐圧ホース23,23を介して2つの回転掘削体10,10の油圧モータ21,21に圧油が供給されることで2つの回転軸26,26が回転し、2つの回転掘削体10,10が共通の1つの回転中心線Lを回転中心として回転するツインヘッダが構成される。
尚、中空支柱部35の後端開口には、例えば、各油圧モータ21,21に連結された中空支柱部35内の耐圧ホース23,23と油圧源に接続される外部の耐圧ホース23,23とを接続するための接続部23Aが設けられている。また、外部の耐圧ホース23,23は、管2が地中に推進するのに従って長さの長い耐圧ホース23を繋ぎ替えたり、あるいは、耐圧ホース23を順次継ぎ足していくようにすればよい。
The distal ends of the branch struts 39, 39 are connected to the motor mounts 25, 25 of the rotary excavators 10, 10, respectively. The pressure hoses 23, 23 connected to the hydraulic motors 21, 21 of the rotary excavators 10, 10 extend outside from the rear end opening of the hollow column 35 via the inside of the hollow column 35. Connected to an external hydraulic source.
Therefore, when the pressure oil is supplied to the hydraulic motors 21 and 21 of the two rotary excavators 10 and 10 through the respective pressure hoses 23 and 23, the two rotary shafts 26 and 26 rotate, and the two rotary excavators are rotated. A twin header is configured that rotates around a single rotation center line L that is common to 10 and 10.
In addition, at the rear end opening of the hollow support column 35, for example, the pressure-resistant hoses 23 and 23 in the hollow support column 35 connected to the hydraulic motors 21 and 21 and the external pressure-resistant hoses 23 and 23 connected to the hydraulic power source are provided. Are connected to each other. Further, the external pressure-resistant hoses 23, 23 may be replaced with a long-length pressure-resistant hose 23 as the pipe 2 is propelled into the ground, or the pressure-resistant hoses 23 may be sequentially added.

連結架台34は、補強連結部36が連結される位置を支持基板30の前面44から前方に離れた位置に設定して2つの回転掘削体10,10の回転中心線Lを先頭管2Aの一端開口2tよりも前側に位置させるための調整部材である。
連結架台34は、主支柱部38を貫通させる円筒体40と、円筒体40の後端周縁を囲んで円筒体40の中心線と直交する板面を有した後端板41と、円筒体40の前端周縁を囲んで円筒体40の中心線と直交する板面を有した前端板42とを有した構成である。
従って、連結架台34の円筒体40の中心線と支持基板30に形成された主支柱部貫通孔43の中心線とが一致するように連結架台34が配置されて、連結架台34の後端板41の後板面と支持基板30の主支柱部貫通孔周りの前面44とが面接触した状態で当該連結架台34の後端板41が支持基板30の前面44に連結される。
さらに、当該連結架台34の前方側から主支柱部38の後端側を連結架台34の円筒体40の内側に挿入して補強連結部36の連結板と連結架台34の前端板42とが面接触した状態で連結されたことによって、連結架台34の円筒体40の前側開口45が密閉される。
これにより、主支柱部38が支持基板30の前面44に対して直交する方向に延長するように設けられ、2つの油圧モータ21,21の回転軸26,26は、主支柱部38の先端部より主支柱部38の延長方向と直交する一直線上(即ち、分岐支柱部39,39の中心線線上)において互いに離れる方向に延長する。
以上のように、掘削機械4は、回転掘削体10が回転可能なように回転掘削体10が連結支柱部15を介して支持基板30の前面44に連結された構成となっている。
The connecting frame 34 sets the position where the reinforcing connecting portion 36 is connected to a position away from the front surface 44 of the support substrate 30 and sets the rotation center line L of the two rotary excavators 10 and 10 to one end of the leading pipe 2A. It is an adjustment member for positioning in front of the opening 2t.
The connecting gantry 34 includes a cylindrical body 40 that penetrates the main support column 38, a rear end plate 41 that has a plate surface that surrounds the rear end periphery of the cylindrical body 40 and is orthogonal to the center line of the cylindrical body 40, and the cylindrical body 40. And a front end plate 42 having a plate surface that is orthogonal to the center line of the cylindrical body 40 and surrounds the periphery of the front end.
Accordingly, the connection frame 34 is arranged so that the center line of the cylindrical body 40 of the connection frame 34 and the center line of the main support column through hole 43 formed in the support substrate 30 coincide with each other. The rear end plate 41 of the connection base 34 is connected to the front surface 44 of the support substrate 30 in a state where the rear plate surface of the surface 41 and the front surface 44 around the through hole of the support column 30 are in surface contact.
Further, the rear end side of the main support column 38 is inserted into the inside of the cylindrical body 40 of the connection frame 34 from the front side of the connection frame 34, and the connection plate of the reinforcing connection part 36 and the front end plate 42 of the connection frame 34 are faced. By being connected in contact, the front opening 45 of the cylindrical body 40 of the connection base 34 is sealed.
Thereby, the main support column 38 is provided so as to extend in a direction orthogonal to the front surface 44 of the support substrate 30, and the rotary shafts 26, 26 of the two hydraulic motors 21, 21 are arranged at the tip ends of the main support column 38. Further, they extend in a direction away from each other on a straight line orthogonal to the extending direction of the main support column 38 (that is, on the center line of the branch support columns 39, 39).
As described above, the excavating machine 4 has a configuration in which the rotary excavation body 10 is connected to the front surface 44 of the support substrate 30 via the connection support column 15 so that the rotary excavation body 10 can rotate.

回転掘削体10は、回転中心線Lを回転中心として回転する回転体18と、回転体18の円筒部16の外周面19より突出するように設けられた複数の掘削ビット20,20…とを備えるとともに、図7に示すように、回転する際の回転直径寸法46Lが、管2の上下の外面2f,2f間の最短距離寸法(回転中心線Lと平行な管2の一方の一対の外面2f,2f間の最短距離寸法)よりも大きいか、あるいは、管2の上下の内面間の最短距離寸法(回転中心線Lと平行な管2の一方の一対の内面間の最短距離寸法)よりも大きく形成されている。
また、回転掘削体10は、回収可能状態(図7に示す回転掘削体10の状態)において管2内を通過できるように構成されている。
即ち、回転掘削体10が上述の回収可能状態になった時には、管2の上下の内面(管2の一方の一対の内面)と直交する線に沿った方向において最も上方に位置される最上の掘削ビット20の上端(管2の上の内面と同一平面に最も近い位置にある掘削ビット20の上端)と管2の上下の内面と直交する線に沿った方向において最も下方に位置される最下の掘削ビット20の下端(管2の下の内面と同一平面に最も近い位置にある掘削ビット20の下端)との間の長さ46S(回転掘削体の回収可能状態時における上下ビット間最大寸法)が、管2の上下の内面間の最短距離寸法よりも小さくなるように構成されている。
従って、回転掘削体10が先頭管2Aの一端開口2tの前方に位置された状態で回転駆動されることによって複数の掘削ビット20,20…が先頭管2Aの一端開口2tの前方位置の地山10Aを掘削するので、先頭管2Aの前方の地山10Aの上下を余掘、即ち、先頭管2Aの上下幅よりも大きい上下幅の掘削を行うことが可能となり、かつ、回転掘削体10を発進基地に回収する際においては、回転掘削体10を上述した回収可能状態になるように設定することによって、回転掘削体10を管2内に引き戻すことができて回転掘削体10を発進基地に回収することが可能となる。
The rotary excavator 10 includes a rotary body 18 that rotates around the rotation center line L and a plurality of excavation bits 20, 20... Provided so as to protrude from the outer peripheral surface 19 of the cylindrical portion 16 of the rotary body 18. As shown in FIG. 7, the rotation diameter dimension 46L when rotating is the shortest distance dimension between the upper and lower outer surfaces 2f, 2f of the tube 2 (one pair of outer surfaces of the tube 2 parallel to the rotation center line L). Or the shortest distance dimension between the upper and lower inner surfaces of the pipe 2 (the shortest distance dimension between one pair of inner surfaces of the pipe 2 parallel to the rotation center line L). Is also formed large.
The rotary excavator 10 is configured to be able to pass through the pipe 2 in a recoverable state (the state of the rotary excavator 10 shown in FIG. 7).
That is, when the rotary excavator 10 is in the above-described recoverable state, it is the uppermost position located at the uppermost position in the direction along the line perpendicular to the upper and lower inner surfaces (one pair of inner surfaces of the tube 2). The uppermost end of the excavation bit 20 (the upper end of the excavation bit 20 closest to the same plane as the inner surface of the pipe 2) and the lowest position in the direction along the line perpendicular to the upper and lower inner surfaces of the pipe 2 Length 46S between the lower end of the lower excavation bit 20 (the lower end of the excavation bit 20 closest to the same plane as the lower inner surface of the pipe 2) (maximum distance between the upper and lower bits when the rotary excavator can be recovered) Dimension) is configured to be smaller than the shortest distance between the upper and lower inner surfaces of the tube 2.
Accordingly, when the rotary excavator 10 is rotationally driven in a state where the rotary excavator 10 is positioned in front of the one end opening 2t of the top pipe 2A, a plurality of excavation bits 20, 20,. Since 10A is excavated, it is possible to excavate the top and bottom of the natural ground 10A in front of the leading pipe 2A, that is, to excavate the vertical width larger than the vertical width of the leading pipe 2A. When collecting at the departure base, the rotary excavation body 10 can be pulled back into the pipe 2 by setting the rotary excavation body 10 to be in the recoverable state described above, and the rotary excavation body 10 can be used as the departure base. It becomes possible to collect.

図9,図10に示すように、検出手段8は、回転掘削体10が上述した回収可能状態となったこと検出するためのものであり、例えば、被検出体としての磁界発生手段の一例である磁石51と当該磁石51を検出する検出体としての磁気検出手段の一例であるホールIC52とを用いた検出センサを用いる。尚、磁石51は、カバー53で保護されている。
即ち、回転掘削体10が上述した回収可能状態となったときに、ホールIC52と磁石51との間の距離が最小となってホールIC52が磁石51を検出できるように、例えばホールIC52を回転掘削体10を回転可能に支持する回転掘削体支持部12の支柱部33の外面に固定して、磁石51を回転体18の周面上に固定する。
このように構成された検出手段8を備えたことによって、回転掘削体10が回収可能状態となったときに、ホールIC52が磁石51を検出することで、回転掘削体10が回収可能状態となったことを光や音声等で地上に報知することが可能となり、作業者が、地上において回転掘削体10が回収可能状態となったことを知ることができる。即ち、作業者は、回転掘削体10を発進基地に回収する作業を行う前に回転掘削体10をゆっくりと回転させ、ホールIC52が磁石51を検出して回転掘削体10が回収可能状態となったことを図外の報知手段で確認したならば、回転掘削体10の回転を止めることで、回転掘削体10を管2内に入れることができるので、回転掘削体10を管2内経由で発進基地に回収することが可能となる。
即ち、検出手段8を備えたことによって、回転掘削体10が回収可能状態となったことが確実に検出されるので、回転掘削体10を発進基地に回収する際に回転掘削体10が回収可能状態になっているか否かを確認できるようになり、回転掘削体10を発進基地に回収するための回収作業を容易に行えるようになる。
As shown in FIGS. 9 and 10, the detection means 8 is for detecting that the rotary excavation body 10 is in the recoverable state described above, and is, for example, an example of a magnetic field generation means as a detected object. A detection sensor using a certain magnet 51 and a Hall IC 52 which is an example of magnetic detection means as a detection body for detecting the magnet 51 is used. The magnet 51 is protected by a cover 53.
That is, for example, the Hall IC 52 is rotated and excavated so that the Hall IC 52 can detect the magnet 51 by minimizing the distance between the Hall IC 52 and the magnet 51 when the rotating excavator 10 is in the recoverable state described above. The magnet 51 is fixed on the peripheral surface of the rotating body 18 by fixing the body 10 to the outer surface of the column 33 of the rotary excavating body support 12 that rotatably supports the body 10.
By providing the detection means 8 configured in this manner, when the rotary excavation body 10 is in a recoverable state, the Hall IC 52 detects the magnet 51, so that the rotary excavation body 10 is in a recoverable state. This can be notified to the ground by light, voice or the like, and the operator can know that the rotary excavation body 10 is in a recoverable state on the ground. That is, the operator slowly rotates the rotary excavator 10 before performing the operation of recovering the rotary excavator 10 to the starting base, and the Hall IC 52 detects the magnet 51 so that the rotary excavator 10 can be recovered. If it is confirmed by a not-shown notification means, the rotary excavator 10 can be put into the pipe 2 by stopping the rotation of the rotary excavator 10, so that the rotary excavator 10 is routed through the pipe 2. It is possible to collect at the departure base.
That is, since the detection means 8 is provided, it is reliably detected that the rotary excavation body 10 is in a recoverable state, and therefore the rotary excavation body 10 can be recovered when the rotary excavation body 10 is recovered to the starting base. It becomes possible to confirm whether or not the vehicle is in a state, and the recovery work for recovering the rotary excavated body 10 to the departure base can be easily performed.

先頭管2Aは、例えば、前端側管61と、後側管62と、前端側管61と後側管62との間に設けられて筒状支持体31を支持するための支持管63とを備え、後側管62の前端面と支持管63の後端面とが溶接等で連結され、支持管63の前端面と前端側管61の後端面とが溶接等で連結されて構成されている。   The leading pipe 2A includes, for example, a front end side pipe 61, a rear side pipe 62, and a support pipe 63 provided between the front end side pipe 61 and the rear side pipe 62 for supporting the cylindrical support body 31. Provided, the front end surface of the rear tube 62 and the rear end surface of the support tube 63 are connected by welding or the like, and the front end surface of the support tube 63 and the rear end surface of the front end side tube 61 are connected by welding or the like. .

筒状支持体31は、筒状支持体31の筒の中心線が先頭管2Aの中心線2cに沿って延長する状態となるように先頭管2A内の前側に設置される。例えば、筒状支持体31は、断面が長方形状の筒体により形成され、当該筒状支持体31の筒の中心線と先頭管2Aの管の中心線2cとが同一となるように先頭管2A内の前側に設置されて支持管63に支持されている。   The cylindrical support 31 is installed on the front side in the top tube 2A so that the center line of the tube of the cylindrical support 31 extends along the center line 2c of the top tube 2A. For example, the cylindrical support body 31 is formed of a cylindrical body having a rectangular cross section, and the center tube 2c of the top tube 2A is the same as the center line 2c of the top tube 2A. It is installed on the front side in 2A and supported by the support pipe 63.

筒状支持体31の左右の外面65,65には、当該外面65,65より突出する係合凸部としての例えば円柱状突起66,66が形成されているとともに、支持管63の左右の内面には、筒状支持体31の左右の外面65,65より突出する円柱状突起66,66が係合する係合凹部としての凹溝68,68が形成されている。
図10に示すように、支持管63に形成された凹溝68は、円柱状突起66を先頭管2Aの後方側から受け入れる進入路69を有して当該進入路69の前端側が半円形の凹壁70(管側支持部32)となった凹部により形成されている。即ち、当該凹溝68は、円柱状突起66の円の直径とほぼ同じ径(円柱状突起66の円の直径よりも数mm程度大きい径)の路幅を有して円柱状突起66の上下方向の動きを拘束する進入路69を備え、当該進入路69の前端側が円柱状突起66の円周面と接触して円柱状突起66の前方への移動を規制する円柱状突起66の円の直径とほぼ同じ径(円柱状突起66の円の直径よりも数mm程度大きい径)の半円形の凹壁70により形成されている。また、当該円柱状突起66の円の中心は筒状支持体31の左右の外面65,65における上下間の中央に位置され、かつ、凹溝68における半円形の凹壁70の円の中心は支持管63の左右の内面における上下間の中央に位置される。
For example, cylindrical protrusions 66 and 66 are formed on the left and right outer surfaces 65 and 65 of the cylindrical support 31 as engaging projections protruding from the outer surfaces 65 and 65, and the left and right inner surfaces of the support tube 63. Are formed with recesses 68 and 68 as engaging recesses with which cylindrical protrusions 66 and 66 protruding from the left and right outer surfaces 65 and 65 of the cylindrical support 31 are engaged.
As shown in FIG. 10, the concave groove 68 formed in the support pipe 63 has an entrance path 69 for receiving the columnar projection 66 from the rear side of the leading pipe 2A, and the front end side of the entrance path 69 is a semicircular recess. It is formed by the recessed part used as the wall 70 (pipe side support part 32). That is, the concave groove 68 has a road width that is substantially the same as the diameter of the circle of the cylindrical protrusion 66 (a diameter that is a few millimeters larger than the diameter of the circle of the cylindrical protrusion 66). An approach path 69 that restrains the movement of the direction, and the front end side of the approach path 69 is in contact with the circumferential surface of the columnar protrusion 66 to restrict the forward movement of the columnar protrusion 66. It is formed by a semicircular concave wall 70 having substantially the same diameter as the diameter (a diameter that is several millimeters larger than the diameter of the circle of the cylindrical protrusion 66). The center of the circle of the cylindrical protrusion 66 is positioned at the center between the upper and lower sides of the left and right outer surfaces 65, 65 of the cylindrical support 31, and the center of the circle of the semicircular concave wall 70 in the concave groove 68 is It is located at the center between the upper and lower surfaces of the left and right inner surfaces of the support tube 63.

従って、円柱状突起66,66が凹溝68,68に係合し、円柱状突起66,66が凹壁70,70に衝突して筒状支持体31が前側に移動できなくなった初期状態において、筒状支持体31の回転中心を形成する回転支持部71が構成され、筒状支持体31が回転支持部71を回転中心として回転することで、回転掘削体が上下方向に揺動可能に構成されている。
このように、係合凸部が円柱状突起66,66により形成されて、係合凹部が円柱状突起66を進入させる進入路69と円柱状突起66が合致する半円形の凹壁70とを有した凹溝68により形成されているので、円柱状突起66,66を凹溝68,68に係合させて筒状支持体31の回転支持部71を形成する作業が容易となるとともに、回転支持部71を備えたことで筒状支持体31をスムーズに回転させることができる構造となる。また、筒状支持体31を管側支持部32として機能する凹壁70に簡単かつ確実に支持させることが可能となる。
Accordingly, in the initial state where the cylindrical projections 66 and 66 engage with the concave grooves 68 and 68 and the cylindrical projections 66 and 66 collide with the concave walls 70 and 70, the cylindrical support 31 cannot move forward. The rotation support part 71 that forms the center of rotation of the cylindrical support 31 is configured, and the cylindrical support 31 rotates around the rotation support part 71 so that the rotary excavation body can swing vertically. It is configured.
In this way, the engaging convex portion is formed by the cylindrical protrusions 66, 66, and the engaging concave portion includes the entrance path 69 through which the cylindrical protrusion 66 enters and the semicircular concave wall 70 where the cylindrical protrusion 66 matches. Since it is formed by the recessed groove 68, the work of forming the rotation support portion 71 of the cylindrical support 31 by engaging the cylindrical protrusions 66, 66 with the recessed grooves 68, 68 is facilitated and rotated. By providing the support portion 71, the cylindrical support 31 can be smoothly rotated. Further, the cylindrical support 31 can be easily and reliably supported on the concave wall 70 functioning as the tube side support portion 32.

また、図7に示すように、支持管63の前端側内周面には、筒状支持体31を上下方向に揺動可能に支持する支持面72が設けられる。この支持面72は、例えば、支持管63の前端側内周面に形成された環状取付溝73に取付けられた例えばゴム製の環状体74により構成される。
筒状支持体31の外周面の前端側は、前端に向けて縮径する縮径外面に形成された被支持面75となるように構成され、支持面72は、当該被支持面75が接触する面、即ち、前端に向けて縮径するように形成された縮径内面に形成されている。
また、支持面72がゴムにより形成され、かつ、支持面72を形成する縮径内面の前端側の外側は、前端が開口された空洞部76に形成されていて、支持面72を形成する縮径内面の前端側は外側(支持管63の内周面側)に変形しやすい構成となっており、回転掘削体10を上下方向に揺動させやすい構成となっている。尚、筒状支持体31を上下方向に揺動させる際、支持面72の上下の面がガイド面として機能する。
As shown in FIG. 7, a support surface 72 that supports the cylindrical support 31 so as to be swingable in the vertical direction is provided on the inner peripheral surface on the front end side of the support tube 63. The support surface 72 is configured by, for example, an annular body 74 made of, for example, rubber and attached to an annular attachment groove 73 formed on the inner peripheral surface of the front end side of the support tube 63.
The front end side of the outer peripheral surface of the cylindrical support 31 is configured to be a supported surface 75 formed on a reduced diameter outer surface that is reduced in diameter toward the front end, and the support surface 72 is in contact with the supported surface 75. That is, it is formed on a reduced diameter inner surface formed so as to reduce the diameter toward the front end.
In addition, the support surface 72 is formed of rubber, and the outer side of the front end side of the reduced diameter inner surface forming the support surface 72 is formed in a cavity 76 having an open front end, and the contraction surface forming the support surface 72 is formed. The front end side of the inner diameter surface is easily deformed to the outside (the inner peripheral surface side of the support tube 63), and the rotary excavator 10 is easily swung in the vertical direction. When the cylindrical support 31 is swung in the vertical direction, the upper and lower surfaces of the support surface 72 function as guide surfaces.

尚、支持管63に形成された係合凹部としての凹溝68及び環状取付溝73は、支持管63の基準内面80を窪ませることにより形成されている。
図10に示すように、筒状支持体31の左の円柱状突起66の端面と右の円柱状突起66の端面との間の距離である筒状支持体31の左右間の最大長さは、支持管63の左の凹溝68の底面と右の凹溝68の底面との間の距離である支持管63の内側の左右間の最大長さよりも若干短い長さに形成される。
また、筒状支持体31の左右の外面65,65間の長さは、支持管63の左右の基準内面80,80間の長さよりも短い長さに形成されて、支持管63の左の基準内面80と筒状支持体31の左の外面65との間、及び、支持管63の右の基準内面80と筒状支持体31の右の外面65との間には、隙間81Sが形成されるように構成されている(図10参照)。
また、筒状支持体31の上下の外面84,84間の長さは、支持管63の上下の基準内面80,80間の長さよりも短い長さに形成されて、筒状支持体31の上の外面84と支持管63の上の基準内面80との間、及び、筒状支持体31の下の外面84と支持管63の下の基準内面80との間には、隙間85が形成されるように構成されている(図7参照)。
従って、筒状支持体31が前側に移動できなくなった初期状態において、筒状支持体31と支持管63との接触部分は、筒状支持体31の円柱状突起66の円周面と凹溝68の凹壁70との接触部分、及び、筒状支持体31の外周面の前端側の被支持面75と支持管63の支持面72との接触部分だけであり、その他の部分は非接触状態に維持されるので、筒状支持体31が回転支持部71を回転中心として回転可能となっている。
The concave groove 68 and the annular mounting groove 73 as the engaging concave portions formed in the support tube 63 are formed by denting the reference inner surface 80 of the support tube 63.
As shown in FIG. 10, the maximum length between the left and right sides of the cylindrical support 31 that is the distance between the end surface of the left cylindrical projection 66 and the end surface of the right cylindrical projection 66 of the cylindrical support 31 is The length is slightly shorter than the maximum length between the left and right sides of the support tube 63, which is the distance between the bottom surface of the left groove 68 and the bottom surface of the right groove 68 of the support tube 63.
In addition, the length between the left and right outer surfaces 65 of the cylindrical support 31 is shorter than the length between the left and right reference inner surfaces 80 of the support tube 63, and the left of the support tube 63 is left. A gap 81S is formed between the reference inner surface 80 and the left outer surface 65 of the cylindrical support 31, and between the right reference inner surface 80 of the support tube 63 and the right outer surface 65 of the cylindrical support 31. (See FIG. 10).
Further, the length between the upper and lower outer surfaces 84, 84 of the cylindrical support 31 is formed to be shorter than the length between the upper and lower reference inner surfaces 80, 80 of the support tube 63. A gap 85 is formed between the upper outer surface 84 and the reference inner surface 80 above the support tube 63 and between the outer surface 84 below the cylindrical support 31 and the reference inner surface 80 below the support tube 63. (See FIG. 7).
Therefore, in the initial state where the cylindrical support 31 cannot move to the front side, the contact portion between the cylindrical support 31 and the support tube 63 is the circumferential surface of the cylindrical protrusion 66 of the cylindrical support 31 and the concave groove. 68 is only a contact portion with the concave wall 70, and a contact portion between the supported surface 75 on the front end side of the outer peripheral surface of the cylindrical support 31 and the support surface 72 of the support tube 63, and the other portions are non-contact. Since the state is maintained, the cylindrical support body 31 is rotatable around the rotation support portion 71 as a rotation center.

筒状支持体31の外面65,84は平面に形成される。
支持管63の基準内面80は平面に形成される。
筒状支持体31の左右の内面82,82は、筒状支持体31の筒の中心線に沿って中心線から離れる方向に窪むように湾曲する湾曲凹面、又は、支持管63の左右の基準内面80,80と平行な平面に形成される。
The outer surfaces 65 and 84 of the cylindrical support 31 are formed in a plane.
The reference inner surface 80 of the support tube 63 is formed in a plane.
The left and right inner surfaces 82, 82 of the cylindrical support 31 are curved concave surfaces that are curved so as to be recessed in the direction away from the center line along the center line of the cylinder of the cylindrical support 31, or the left and right reference inner surfaces of the support tube 63. It is formed in a plane parallel to 80 and 80.

支持基板30は、外周形状が筒状支持体31の内周形状に合致した筒状支持体31の内周寸法よりも若干小さい四角形状の平板状により形成され、筒状支持体31の内側に揺動可能に支持される。
支持基板30は、先頭管2Aの前後方向に沿った板厚を有し、左右の外面(端面)83,83は、支持基板30の中心線に沿って中心線から離れる方向に突出して湾曲する湾曲凸面、又は、支持管63の左右の基準内面80と平行な平面に形成される。
The support substrate 30 is formed in a rectangular flat plate shape whose outer peripheral shape is slightly smaller than the inner peripheral dimension of the cylindrical support 31 that matches the inner peripheral shape of the cylindrical support 31. It is supported so that it can swing.
The support substrate 30 has a plate thickness along the front-rear direction of the leading tube 2A, and the left and right outer surfaces (end surfaces) 83, 83 project along the center line of the support substrate 30 in a direction away from the center line and curve. The curved convex surface or a plane parallel to the left and right reference inner surfaces 80 of the support tube 63 is formed.

支持基板30の上下の外面67,67における左右間の中央位置には例えば円柱状突起86,86(図7参照)が設けられる。この円柱状突起86,86が筒状支持体31の筒の上下の内面に形成された円孔87,87内に円柱状突起86,86の中心線を回転中心として回転自在となるように嵌め込まれた構成により支持基板30の回転支持部88が形成され、この回転支持部88を回転中心として支持基板30の左右の端部が前後方向に揺動可能に構成される。即ち、支持基板30は、筒状支持体31の互いに向かい合う一対の左右の内面82,82と向かい合う一対の左右の外面83,83が回転支持部88を回転中心として前後方向に揺動可能なように筒状支持体31に取付けられている。
そして、回転掘削体10が、連結支持部15を介して支持基板30に連結されていることにより、支持基板30の左右の外面83,83が前後方向に揺動した場合、回転掘削体10が先頭管2Aの左右の内面と直交する方向、即ち、回転掘削体10が先頭管2Aの中心線2cを中心として左右方向に揺動可能なように構成されている。
For example, cylindrical protrusions 86 and 86 (see FIG. 7) are provided at the center positions between the left and right sides of the upper and lower outer surfaces 67 and 67 of the support substrate 30. The cylindrical projections 86 and 86 are fitted into circular holes 87 and 87 formed on the upper and lower inner surfaces of the cylindrical support 31 so as to be rotatable about the center line of the cylindrical projections 86 and 86 as a rotation center. With this configuration, the rotation support portion 88 of the support substrate 30 is formed, and the left and right ends of the support substrate 30 are configured to be swingable in the front-rear direction with the rotation support portion 88 as a rotation center. That is, the support substrate 30 is configured so that the pair of left and right outer surfaces 83 and 83 facing the pair of left and right inner surfaces 82 and 82 of the cylindrical support 31 can swing in the front-rear direction with the rotation support portion 88 as the rotation center. It is attached to the cylindrical support 31.
When the rotary excavator 10 is connected to the support substrate 30 via the connection support portion 15, the left and right outer surfaces 83, 83 of the support substrate 30 swing in the front-rear direction. The rotary excavator 10 is configured to be swingable in the left-right direction around the center line 2c of the front pipe 2A, that is, in a direction orthogonal to the left and right inner surfaces of the front pipe 2A.

図6,図10に示すように、筒状支持体31の左右の内面82,82が筒状支持体31の筒の中心線に沿って湾曲する湾曲凹面に形成されて、支持基板30の左右の外面83,83が支持基板30の中心線に沿って湾曲する湾曲凸面に形成され、支持基板30が前後方向に移動する際に支持基板30の左右の湾曲凸面と筒状支持体31の左右の湾曲凹面とが摺動するように構成される場合、支持基板30の動きが安定する。   As shown in FIGS. 6 and 10, the left and right inner surfaces 82, 82 of the cylindrical support 31 are formed as curved concave surfaces that are curved along the center line of the cylinder of the cylindrical support 31, so The outer surfaces 83, 83 are formed as curved convex surfaces that curve along the center line of the support substrate 30, and the left and right curved convex surfaces of the support substrate 30 and the left and right sides of the cylindrical support 31 are moved when the support substrate 30 moves in the front-rear direction. When the curved concave surface is configured to slide, the movement of the support substrate 30 is stabilized.

図6に示すように、支持基板30には、支持基板30を前後に貫通する主支柱部貫通孔43、送排水管保持貫通孔90が形成される。
例えば、主支柱部貫通孔43は支持基板30の中央部を貫通するように形成され、送排水管保持貫通孔90は、支持基板30の左右の位置をそれぞれ貫通するように2つ設けられる。送排水管91の先端側が送排水管保持貫通孔90に連結される。
As shown in FIG. 6, the support substrate 30 is formed with a main strut portion through-hole 43 that penetrates the support substrate 30 in the front-rear direction and a water supply / drainage tube holding through-hole 90.
For example, the main support column through-hole 43 is formed so as to penetrate the central portion of the support substrate 30, and the two water supply / drain pipe holding through-holes 90 are provided so as to penetrate the left and right positions of the support substrate 30. The leading end side of the water supply / drainage pipe 91 is connected to the water supply / drainage pipe holding through hole 90.

回転掘削体10の揺動駆動手段13としては、筒状支持体31の回転支持部71を回転中心として筒状支持体31の上部及び下部を前後に揺動させて回転掘削体10を上下方向(先頭管2Aの上下の内面(先頭管2Aの互いに対向する一方の一対の内面)と直交する方向)に揺動させるための上下揺動駆動手段100と、支持基板30の回転支持部88を回転中心として支持基板30の左右の外面83,83を前後に揺動させて回転掘削体10を左右方向(先頭管2Aの左右の内面(先頭管2Aの互いに対向する他方の一対の内面)と直交する方向)に揺動させるための左右揺動駆動手段150とを備える。
即ち、回転掘削体10を回転可能に支持する連結支柱部15の基端側が支持基板30の前面44に連結され、左右揺動駆動手段150によって支持基板30を回転支持部88を回転中心として揺動させることにより、回転掘削体10が回転掘削体10の回転中心線Lと平行な先頭管2Aの上下の内面(先頭管2Aの互いに対向する一方の一対の内面)に沿った方向、即ち、先頭管2Aの左右方向に揺動可能に構成されている。
さらに、支持体14が回転掘削体10の回転中心線Lと平行な先頭管2Aの上下の内面と直交する方向、即ち、先頭管2Aの上下方向に揺動可能に構成され、上下揺動駆動手段100によって支持体14を回転支持部71を回転中心として揺動させることにより、回転掘削体10が回転掘削体10の回転中心線Lと平行な先頭管2Aの上下の内面(先頭管2Aの高さ方向で互いに対向する一方の一対の内面)と直交する方向、即ち、先頭管2Aの上下方向に揺動可能に構成されている。
As the swing drive means 13 of the rotary excavator 10, the rotary excavator 10 is moved up and down by swinging the upper and lower portions of the cylindrical support 31 back and forth around the rotation support portion 71 of the cylindrical support 31. A vertical swing driving means 100 for swinging in the upper and lower inner surfaces of the top tube 2A (a direction perpendicular to the pair of inner surfaces facing each other of the top tube 2A) and the rotation support portion 88 of the support substrate 30 are provided. The left and right outer surfaces 83, 83 of the support substrate 30 are swung back and forth as the center of rotation, and the rotary excavator 10 is moved in the left-right direction (the left and right inner surfaces of the leading pipe 2A (the other pair of inner surfaces facing each other of the leading pipe 2A)) And a left-right swing drive means 150 for swinging in a direction perpendicular to the vertical axis.
That is, the base end side of the connecting support column 15 that rotatably supports the rotary excavator 10 is connected to the front surface 44 of the support substrate 30, and the support substrate 30 is swung around the rotation support portion 88 by the left and right swing drive means 150. By moving the rotary excavator 10, the direction along the upper and lower inner surfaces (one pair of inner surfaces of the front pipe 2A facing each other) of the front pipe 2A parallel to the rotation center line L of the rotary excavator 10, that is, The top tube 2A is configured to be swingable in the left-right direction.
Further, the support 14 is configured to be able to swing in the direction orthogonal to the upper and lower inner surfaces of the leading pipe 2A parallel to the rotation center line L of the rotary excavating body 10, that is, in the vertical direction of the leading pipe 2A, By swinging the support body 14 with the rotation support portion 71 as the rotation center by means 100, the rotary excavation body 10 has upper and lower inner surfaces (of the front pipe 2A) parallel to the rotation center line L of the rotary excavation body 10. It is configured to be swingable in a direction orthogonal to a pair of inner surfaces facing each other in the height direction, that is, in the vertical direction of the leading pipe 2A.

図7、図8、図9に示すように、上下揺動駆動手段100は、回転掘削体10を上下に揺動させるための駆動源となる上下揺動用アクチュエータ101と、アクチュエータ設置部102とを備えて構成される。
上下揺動用アクチュエータ101は、例えば、油圧シリンダ(以下、油圧シリンダ101という)により構成される。
油圧シリンダ101は、支持基板30の後方における左端側及び右端側にそれぞれ1つずつ配置される。
As shown in FIGS. 7, 8, and 9, the vertical swing drive means 100 includes an vertical swing actuator 101 that serves as a drive source for swinging the rotary excavator 10 up and down, and an actuator installation portion 102. It is prepared for.
The vertically swinging actuator 101 is constituted by, for example, a hydraulic cylinder (hereinafter referred to as a hydraulic cylinder 101).
One hydraulic cylinder 101 is disposed on each of the left end side and the right end side behind the support substrate 30.

アクチュエータ設置部102は、前側架台103と、後側架台104とを備えて構成される。
前側架台103及び後側架台104は、支持基板30の後方における左端側及び右端側にそれぞれ1つずつ配置される。
前側架台103は、前端部が筒状支持体31の後端面106に接続されるとともに、後端部には油圧シリンダ101のシリンダ側端部108が固定される。
後側架台104には、油圧シリンダ101のピストンロッド側端部109が固定される。
前側架台103は、筒状支持体31の後端面106に連結される前側縦長部材110と、後側縦長部材111と、前側縦長部材110の上端部と後側縦長部材111の上端部とを繋ぐ上側横長部材112と、前側縦長部材110の下端部と後側縦長部材111の下端部とを繋ぐ下側横長部材113と、後側縦長部材111の上端側から後方に延長するように設けられた上側連結部材114と、後側縦長部材111の下端側から後方に延長するように設けられた下側連結部材115とを備える。
後側架台104は、上下方向に延長して前側架台102の上側連結部材114及び下側連結部材115と連結される前側縦長部116と、前側縦長部116の上端側より前方に延長するように形成された油圧シリンダ固定部117と、前側縦長部116の後側に連続して上下方向に延長するように設けられた後側縦長部118と、後側縦長部118の後端面における上下方向の中間部より後方に延長するように設けられた後側連結部119とを備える。当該後側連結部119の後端には、後続の推進力伝達棒状体202の前端に設けられた前側の連結用フランジ204と連結される後側の連結用フランジ120を備える。
The actuator installation unit 102 includes a front frame 103 and a rear frame 104.
The front gantry 103 and the rear gantry 104 are arranged one by one on the left end side and the right end side behind the support substrate 30, respectively.
The front frame 103 has a front end connected to the rear end face 106 of the cylindrical support 31 and a cylinder side end 108 of the hydraulic cylinder 101 fixed to the rear end.
A piston rod side end 109 of the hydraulic cylinder 101 is fixed to the rear gantry 104.
The front frame 103 connects the front vertical member 110 connected to the rear end surface 106 of the cylindrical support 31, the rear vertical member 111, and the upper end portion of the front vertical member 110 and the upper end portion of the rear vertical member 111. The upper horizontal member 112, the lower horizontal member 113 that connects the lower end of the front vertical member 110 and the lower end of the rear vertical member 111, and the rear vertical member 111 are provided to extend rearward from the upper end side. An upper connecting member 114 and a lower connecting member 115 provided to extend rearward from the lower end side of the rear longitudinal member 111 are provided.
The rear gantry 104 extends in the vertical direction so as to extend forward from the upper longitudinal portion 116 connected to the upper coupling member 114 and the lower coupling member 115 of the front gantry 102 and from the upper end side of the front vertical portion 116. The formed hydraulic cylinder fixing portion 117, the rear vertical portion 118 provided so as to extend in the vertical direction continuously to the rear side of the front vertical portion 116, and the vertical direction on the rear end surface of the rear vertical portion 118 And a rear connecting portion 119 provided to extend rearward from the intermediate portion. A rear connection flange 120 connected to a front connection flange 204 provided at the front end of the subsequent thrust transmission rod 202 is provided at the rear end of the rear connection portion 119.

後側架台104の前側縦長部116の上側には上下方向に延長する上側長孔121が形成されているとともに、後側架台104の前側縦長部116の下側には上下方向に延長する下側長孔122が形成されている。
そして、前側架台103の上側連結部材114の後端側に設けられたピン123が上側長孔121内を移動可能なように当該上側長孔121に連結されるとともに、前側架台103の下側連結部材115の後端側に設けられたピン124が下側長孔122内を移動可能なように当該下側長孔122に連結されている。
An upper elongated hole 121 extending in the vertical direction is formed on the upper side of the front vertical portion 116 of the rear gantry 104, and a lower side extending in the vertical direction on the lower side of the front vertical portion 116 of the rear gantry 104. A long hole 122 is formed.
A pin 123 provided on the rear end side of the upper connecting member 114 of the front gantry 103 is connected to the upper long hole 121 so as to be movable in the upper long hole 121, and the lower connection of the front gantry 103. A pin 124 provided on the rear end side of the member 115 is connected to the lower long hole 122 so as to be movable in the lower long hole 122.

また、油圧シリンダ101のシリンダ側端部108が前側架台103の下側連結部材115に回転支持軸108Aを介して回転可能に取付けられ、油圧シリンダ101のピストンロッド側端部109が後側架台104の油圧シリンダ固定部117に回転支持軸109Aを介して回転可能に取付けられている。   Further, the cylinder side end portion 108 of the hydraulic cylinder 101 is rotatably attached to the lower connecting member 115 of the front frame 103 via the rotation support shaft 108A, and the piston rod side end portion 109 of the hydraulic cylinder 101 is connected to the rear frame 104. The hydraulic cylinder fixing portion 117 is rotatably attached via a rotation support shaft 109A.

上側長孔121及び下側長孔122は、筒状支持体31の上下揺動時における回転中心となる回転支持部71を中心とする円弧に沿って延長するように形成されているので、油圧シリンダ101を作動させることにより、前側架台103の上側連結部材114の後端側に設けられた軸部としてのピン123が上側長孔121内を移動するとともに、前側架台103の下側連結部材115の後端側に設けられた軸部としてのピン124が下側長孔122内を移動し、前側架台103と回転掘削体支持部12と回転掘削体10とが回転支持部71を回転中心として回転して、回転掘削体10が先頭管2Aの上下の内面(先頭管2Aの一方の一対の内面)と直交する方向に揺動可能となる。   Since the upper long hole 121 and the lower long hole 122 are formed so as to extend along an arc centering on the rotation support portion 71 serving as a rotation center when the cylindrical support 31 swings up and down, By operating the cylinder 101, the pin 123 as a shaft portion provided on the rear end side of the upper connecting member 114 of the front frame 103 moves in the upper long hole 121, and the lower connecting member 115 of the front frame 103. A pin 124 as a shaft portion provided on the rear end side moves in the lower elongated hole 122, and the front gantry 103, the rotary excavation body support portion 12, and the rotary excavation body 10 have the rotation support portion 71 as the rotation center. By rotating, the rotary excavator 10 can swing in a direction orthogonal to the upper and lower inner surfaces (one pair of inner surfaces of the leading pipe 2A) of the leading pipe 2A.

以上の構成のアクチュエータ設置部102を備えているので、図11に示すように、回転掘削体10を上下方向に揺動させることが可能となる。
例えば、油圧シリンダ101のピストンロッド125が最大伸長位置と最大収縮位置との間の中間位置に設定された場合に、筒状支持体31が回転していない初期状態(筒状支持体31の基準外面81と支持管63の基準内面80とが平行となる状態)に設定されるように構成されているとする(図11(a)参照)。
そして、回転掘削体10を上方に揺動させたい場合は、図11(b)に示すように、ピストンロッド125を伸長させることによる反力によって、シリンダ126が固定されている前側架台103の下側連結部材115が下方に移動して各ピン123,124が下方に移動するように筒状支持体31が回転支持部71を回転中心として回転することで、筒状支持体31の前端下部の被支持面75がガイド面となる下側の支持面72上をスライドして前方に移動するとともに、筒状支持体31の前端上部の被支持面75がガイド面となる上側の支持面72上をスライドして後方に移動して、回転掘削体10が上方に移動する。
また、回転掘削体10を下方に揺動させたい場合は、図11(c)に示すように、ピストンロッド125を収縮させることによって、シリンダ126が固定されている前側架台103の下側連結部材115が上方に移動して各ピン123,124が上方に移動するように筒状支持体31が回転支持部71を回転中心として回転することで、筒状支持体31の前端上部の被支持面75がガイド面となる上側の支持面72上をスライドして前方に移動するとともに、筒状支持体31の前端下部の被支持面75がガイド面となる下側の支持面72上をスライドして後方に移動して、回転掘削体10が下方に移動する。
Since the actuator installation section 102 having the above configuration is provided, the rotary excavation body 10 can be swung in the vertical direction as shown in FIG.
For example, when the piston rod 125 of the hydraulic cylinder 101 is set to an intermediate position between the maximum extension position and the maximum contraction position, the cylindrical support 31 is not rotated (the reference of the cylindrical support 31). It is assumed that the outer surface 81 and the reference inner surface 80 of the support tube 63 are set in parallel (see FIG. 11A).
When it is desired to swing the rotary excavator 10 upward, as shown in FIG. 11 (b), the reaction force generated by extending the piston rod 125 causes the bottom of the front platform 103 to which the cylinder 126 is fixed. The cylindrical support 31 rotates around the rotation support portion 71 so that the side connecting member 115 moves downward and the pins 123 and 124 move downward. The supported surface 75 slides on the lower support surface 72 that becomes the guide surface and moves forward, and the supported surface 75 at the upper front end of the cylindrical support 31 is on the upper support surface 72 that becomes the guide surface. Is moved rearward, and the rotary excavation body 10 moves upward.
Further, when it is desired to swing the rotary excavator 10 downward, as shown in FIG. 11C, the lower connecting member of the front gantry 103 to which the cylinder 126 is fixed is contracted by contracting the piston rod 125. The cylindrical support 31 rotates about the rotation support portion 71 so that the pins 123 and 124 move upward and the pins 123 and 124 move upward, so that the supported surface of the upper end of the cylindrical support 31 is supported. 75 slides on the upper support surface 72 serving as the guide surface and moves forward, and the supported surface 75 at the lower front end of the cylindrical support 31 slides on the lower support surface 72 serving as the guide surface. Then, the rotary excavator 10 moves downward.

以上のように、油圧シリンダ101からの力を受けて筒状支持体31が回転支持部71を回転中心として回転するとともに、筒状支持体31の被支持面75が先頭管2Aの内面に形成されたガイド面となる支持面72上を移動することによって、回転掘削体10が先頭管2Aの中心線2cを中心として上下方向に揺動可能なように構成されているものである。   As described above, the cylindrical support 31 rotates around the rotation support portion 71 in response to the force from the hydraulic cylinder 101, and the supported surface 75 of the cylindrical support 31 is formed on the inner surface of the leading pipe 2A. The rotary excavator 10 is configured to be able to swing in the vertical direction about the center line 2c of the top pipe 2A by moving on the support surface 72 serving as the guide surface.

また、上下揺動駆動手段100は、分離された前側架台103と後側架台104とを備え、油圧シリンダ101のシリンダ側端部108を回転支持軸108Aを介して前側架台103に回転可能に取付けるとともに、油圧シリンダ101のピストンロッド側端部109を回転支持軸109Aを介して後側架台104に回転可能に取付けた構成とし、油圧シリンダ101のピストンロッド125を伸長及び収縮させた場合に、前側架台103の上側連結部材114に設けられたピン123が上側長孔121内を移動するとともに、下側連結部材115に設けられたピン124が下側長孔122内を移動するように構成されている。
つまり、後側架台104が、後続管2Bの上下の内面(管の互いに対向する一方の一対の内面)と直交する方向に、回転掘削体10の揺動時の回転中心である回転支持部71を中心とする同一の円弧に沿って延長するように形成された複数の長孔である上側長孔121と下側長孔122とを備え、ピン123が上側長孔121内を移動するとともに、ピン124が下側長孔122内を移動するように構成されたので、回転掘削体10を回転支持部71を回転中心としてスムーズに揺動させることができる。
Further, the vertical swing driving means 100 includes a front gantry 103 and a rear gantry 104 which are separated, and a cylinder side end portion 108 of the hydraulic cylinder 101 is rotatably attached to the front gantry 103 via a rotation support shaft 108A. In addition, when the piston rod side end 109 of the hydraulic cylinder 101 is rotatably attached to the rear frame 104 via the rotation support shaft 109A, when the piston rod 125 of the hydraulic cylinder 101 is extended and contracted, the front side A pin 123 provided on the upper connecting member 114 of the gantry 103 moves in the upper long hole 121, and a pin 124 provided in the lower connecting member 115 moves in the lower long hole 122. Yes.
That is, the rotation support part 71 that is the rotation center when the rotary excavator 10 is swung in a direction orthogonal to the upper and lower inner surfaces (one pair of inner surfaces facing each other of the tube) of the subsequent tube 2B. A plurality of long holes 121 and lower long holes 122 formed so as to extend along the same circular arc centered on the pin, and the pin 123 moves in the upper long hole 121. Since the pin 124 is configured to move in the lower elongated hole 122, the rotary excavator 10 can be smoothly swung around the rotation support portion 71 as a rotation center.

即ち、実施形態の管設置装置1では、回転掘削体10が上下方向に揺動した場合に回転掘削体10が地山10Aから受けた力が、ピン123と上側長孔121とによるスライド機構、ピン124と下側長孔122によるスライド機構、及び、揺動用アクチュエータとしての油圧シリンダ101の回転支持軸108A,回転支持軸109Aによる回転支持構造によって、油圧シリンダ101及び後述する後続の推進力伝達棒状体202に加わり難くくなる。つまり、回転掘削体10が上下方向に揺動した場合に地山10Aからの力を、スライド機構によるスライド運動及び回転支持構造による回転運動に変換できて、油圧シリンダ101及び後続の推進力伝達棒状体202の受けるダメージを少なくできるので、油圧シリンダ101及び後続の推進力伝達棒状体202が損傷したり、破壊されるような事態を防止できるようになる。   That is, in the pipe installation device 1 of the embodiment, when the rotary excavator 10 swings in the vertical direction, the force received by the rotary excavator 10 from the natural ground 10A is a slide mechanism by the pin 123 and the upper elongated hole 121, The slide mechanism by the pin 124 and the lower long hole 122, and the rotation support shaft 108A and the rotation support structure by the rotation support shaft 109A of the hydraulic cylinder 101 as a swinging actuator, the hydraulic cylinder 101 and the following propulsive force transmission rod shape to be described later. It becomes difficult to join the body 202. That is, when the rotary excavator 10 swings in the vertical direction, the force from the natural ground 10A can be converted into the slide motion by the slide mechanism and the rotary motion by the rotary support structure, and the hydraulic cylinder 101 and the subsequent propulsive force transmission rod shape. Since the damage received by the body 202 can be reduced, it is possible to prevent a situation in which the hydraulic cylinder 101 and the subsequent propulsive force transmission rod 202 are damaged or destroyed.

即ち、回転掘削体支持部12は、回転掘削体10を回転可能に支持するとともに先頭管2Aの内面(支持面72及び凹溝68)に支持されて回転掘削体10の回転中心線Lと平行な先頭管2Aの上下の内面と直交する方向に回転掘削体10と共に揺動可能となるように構成されており、上下揺動駆動手段100は、当該回転掘削体支持部12を先頭管2Aの上下の内面と直交する方向に揺動させる。
つまり、上下揺動駆動手段100は、回転掘削体支持部12を揺動させるための駆動源となる揺動用アクチュエータとしての油圧シリンダ101と、アクチュエータ設置部102とを備えており、当該アクチュエータ設置部102は、回転掘削体支持部12の後端(筒状支持体31の後端面106)に連結された前側架台103と、後端(後側連結部119の後側の連結用フランジ120)に後述する推進力伝達媒体としての推進力伝達棒状体202の前端(前側連結用フランジ204)が連結される後側架台104とを備えている。
そして、前側架台103は、連結部材としての上側連結部材114及び下側連結部材115と、上側連結部材114に設けられた軸部としてのピン123及び下側連結部材115に設けられた軸部としてのピン124とを備え、後側架台104は、先頭管2Aの上下の内面と直交する方向に延長する連結部としての前側縦長部116と、当該前側縦長部116の延長方向に延長するように形成された上側長孔121及び下側長孔122とを備え、前側架台103の上側連結部材114及び下側連結部材115に設けられたピン123及びピン124が後側架台104の前側縦長部116に形成された上側長孔121及び下側長孔122内を移動可能なように連結されている。
また、油圧シリンダ101は、シリンダ側端部108及びピストンロッド側端部109のうちの一方であるシリンダ側端部108が前側架台103の連結部材として下側連結部材115に回転可能に取付けられ、かつ、シリンダ側端部108及びピストンロッド側端部109のうちの他方であるピストンロッド側端部109が後側架台104の連結部としての油圧シリンダ固定部117に回転可能に取付けられている。
そして、後側架台104の上側長孔121及び下側長孔122が、筒状支持体31の上下揺動時における回転中心となる回転支持部71を中心とする円弧に沿って延長するように形成されている。
That is, the rotary excavation body support portion 12 supports the rotary excavation body 10 in a rotatable manner, and is supported by the inner surface (support surface 72 and concave groove 68) of the leading pipe 2A and parallel to the rotation center line L of the rotary excavation body 10. The vertical excavator 10 is configured to be able to swing with the rotary excavator 10 in a direction orthogonal to the upper and lower inner surfaces of the leading pipe 2A. Swing in a direction perpendicular to the upper and lower inner surfaces.
That is, the vertical swing driving means 100 includes a hydraulic cylinder 101 as a swinging actuator serving as a drive source for swinging the rotary excavation body support unit 12 and an actuator installation unit 102. Reference numeral 102 denotes a front frame 103 connected to the rear end of the rotary excavator support 12 (the rear end face 106 of the cylindrical support 31) and the rear end (the connection flange 120 on the rear side of the rear connection 119). And a rear frame 104 to which a front end (front coupling flange 204) of a propulsive force transmission rod-like body 202 as a propulsive force transmission medium, which will be described later, is coupled.
The front frame 103 includes an upper connecting member 114 and a lower connecting member 115 as connecting members, a pin 123 as a shaft provided on the upper connecting member 114, and a shaft provided on the lower connecting member 115. The rear frame 104 includes a front vertical portion 116 as a connecting portion extending in a direction orthogonal to the upper and lower inner surfaces of the top tube 2A, and extends in the extending direction of the front vertical portion 116. The upper elongated hole 121 and the lower elongated hole 122 are formed, and the pin 123 and the pin 124 provided on the upper coupling member 114 and the lower coupling member 115 of the front gantry 103 are the front longitudinal elongated portion 116 of the rear gantry 104. The upper long hole 121 and the lower long hole 122 are connected to each other so as to be movable.
Further, the hydraulic cylinder 101 is attached to the lower connecting member 115 so that one of the cylinder side end 108 and the piston rod side end 109 is a cylinder side end 108 as a connecting member of the front pedestal 103, In addition, the piston rod side end portion 109 which is the other of the cylinder side end portion 108 and the piston rod side end portion 109 is rotatably attached to a hydraulic cylinder fixing portion 117 as a connecting portion of the rear pedestal 104.
Then, the upper long hole 121 and the lower long hole 122 of the rear pedestal 104 are extended along an arc centering on the rotation support portion 71 that becomes the rotation center when the cylindrical support 31 is vertically swung. Is formed.

以上のように上下揺動駆動手段100が構成され、油圧シリンダ101を作動させることにより、前側架台103の上側連結部材114に設けられた軸部としてのピン123及び下側連結部材115に設けられた軸部としてのピン124が後側架台104の上側長孔121及び下側長孔122内を移動し、前側架台103と回転掘削体支持部12と回転掘削体10とが回転支持部71を回転中心として回転して、回転掘削体10が先頭管2Aの上下の内面と直交する方向に揺動可能となるように構成されるとともに、後述する推進駆動源からの推進力を、推進力伝達媒体としての推進力伝達棒状体202、アクチュエータ設置部102、回転掘削体支持部12を介して回転掘削体10と先頭管2Aとに付与することによって、管2を推進させて地中に設置することが可能となっている。   As described above, the vertical swing driving means 100 is configured, and by operating the hydraulic cylinder 101, the shaft 123 provided on the upper connecting member 114 of the front pedestal 103 and the lower connecting member 115 are provided. The pin 124 as the shaft portion moves in the upper long hole 121 and the lower long hole 122 of the rear gantry 104, and the front gantry 103, the rotary excavation body support portion 12, and the rotary excavation body 10 move the rotation support portion 71. The rotary excavator 10 is configured to be able to swing in a direction orthogonal to the upper and lower inner surfaces of the top pipe 2A by rotating as a center of rotation, and propulsive force from a propulsion drive source described later is transmitted as propulsive force. The pipe 2 is propelled by being applied to the rotary excavator 10 and the top pipe 2A via the propelling force transmission rod 202 as a medium, the actuator installation section 102, and the rotary excavator support section 12. It is possible to be installed in the ground.

図7に示すように、後側架台104の後側縦長部118の後面130と接触して掘削機械4の後方への移動を防止する突起131が先頭管2Aの後端に接続された後続管2Bの左右の内面より突出するように設けられている。
これにより、掘削機械4を上方に向けて推進させる場合に、突起131が後側架台104の後側縦長部118の後面130を支えるので、掘削機械4の下方への移動(落下)を防止できる。
尚、当該突起は、例えば後続管2Bの左右の内面に設けられた図外のねじ孔部に着脱自在となったボルト等により構成され、掘削機械4を先頭管2Aにセットする場合や掘削機械4を下方に向けて推進させる場合等においては、取り外すことができるように構成されている。即ち、当該突起は、掘削機械4を先頭管2Aにセットする場合においては邪魔になり、また、掘削機械4を下方に向けて推進させる場合においては不要となるため、取り外しておく。
As shown in FIG. 7, the succeeding pipe connected to the rear end of the leading pipe 2 </ b> A is a protrusion 131 that contacts the rear surface 130 of the rear longitudinal portion 118 of the rear frame 104 and prevents the excavating machine 4 from moving backward. It is provided so as to protrude from the left and right inner surfaces of 2B.
Accordingly, when the excavating machine 4 is propelled upward, the protrusion 131 supports the rear surface 130 of the rear elongated portion 118 of the rear gantry 104, so that the excavating machine 4 can be prevented from moving downward (falling). .
In addition, the said protrusion is comprised by the volt | bolt etc. which were attached to the screw hole part outside a figure provided in the right-and-left inner surface of the succeeding pipe | tube 2B etc., for example, when setting the excavating machine 4 to the top pipe 2A, or excavating machine In the case of propelling 4 downward, etc., it can be removed. That is, the protrusion is removed because it becomes an obstacle when the excavating machine 4 is set on the leading pipe 2A, and is unnecessary when the excavating machine 4 is pushed downward.

上下揺動駆動手段100を備えていることにより、先頭管2Aの中心線2cを基準として回転掘削体10を上下方向に揺動させることができ、先頭管2Aの前方において先頭管2Aの上下幅間隔よりも広い上下幅間隔で地山10Aを掘削できるので、先頭管2Aをスムーズに推進させることができるようになる。即ち、先頭管2Aの進行に先立って先頭管2Aの前方において先頭管2Aの断面積よりも幅の広い断面積を掘削できるようになり、先頭管2Aの前方での余堀が可能となるので、地山10Aが硬質地盤である場合でも先頭管2Aを地中においてスムーズに推進させることができるようになる。
また、先頭管2Aの中心線2cを基準として回転掘削体10を上方向又は下方向に揺動させることによって、先頭管2Aの推進方向を上下に調整することが可能となる。
また、先頭管2Aの前方の上側だけを重点的に掘削したい場合や、先頭管2Aの前方の下側だけを重点的に掘削したい場合にも対応できるようになる。
By providing the vertical swing driving means 100, the rotary excavator 10 can be swung in the vertical direction with reference to the center line 2c of the leading pipe 2A, and the vertical width of the leading pipe 2A in front of the leading pipe 2A. Since the natural ground 10A can be excavated at a wider vertical interval than the interval, the leading pipe 2A can be smoothly promoted. That is, prior to the advancement of the leading pipe 2A, a cross-sectional area wider than the sectional area of the leading pipe 2A can be excavated in front of the leading pipe 2A, and an extra moat in front of the leading pipe 2A becomes possible. Even if the natural ground 10A is hard ground, the leading pipe 2A can be smoothly propelled in the ground.
Further, the propulsion direction of the leading pipe 2A can be adjusted up and down by swinging the rotary excavator 10 upward or downward with the center line 2c of the leading pipe 2A as a reference.
Further, it is possible to deal with a case where it is desired to excavate only the upper side in front of the front pipe 2A or a case where it is desired to excavate only a lower side in front of the front pipe 2A.

図9に示すように、左右揺動駆動手段150は、回転掘削体10を左右に揺動させるための駆動源となる左右揺動用のアクチュエータ151と、アクチュエータ設置部とを備えて構成される。
左右揺動用のアクチュエータ151は、例えば、油圧シリンダ(以下、油圧シリンダ151という)により構成される。
油圧シリンダ151は、2個設けられ、支持基板30の後方における左端側及び右端側にそれぞれ1つずつ配置される。
図9に示すように、左側の油圧シリンダ151は、ピストンロッド側端部152とアクチュエータ設置部としての支持基板30の後面153における左側の上下中央側とがヒンジのような可動自在な接続手段154により接続され、かつ、シリンダ側端部155とアクチュエータ設置部としての左側の前側架台103の後側縦長部材111の上下中央側とがヒンジのような可動自在な接続手段156により接続されている。
同様に、右側の油圧シリンダ151は、ピストンロッド側端部152とアクチュエータ設置部としての支持基板30の後面153における右側の上下中央側とがヒンジのような可動自在な接続手段154により接続され、かつ、シリンダ側端部155とアクチュエータ設置部としての右側の前側架台103の後側縦長部材111の上下中央側とがヒンジのような可動自在な接続手段156により接続されている。
即ち、油圧シリンダ151は、シリンダ側端部155が管2の左側又は右側に配置され、ピストンロッド側端部152が管2の中央側に配置されて、中心線が管2の左側又は右側から管2の中央側に延長するように、斜めに配置されていることにより、管2の中央側のスペースを広くでき、送排水管91や耐圧ホース23等の取り回しスペースを十分に確保できるようになる。
そして、図6において、左側の油圧シリンダ151のピストンロッド157を伸長させ、かつ、右側の油圧シリンダ151のピストンロッド157を縮退させた場合に、支持基板30の左端部が前側に移動し、支持基板30の右端部が後側に移動するので、回転掘削体10が右側に揺動する。
また、図6において、右側の油圧シリンダ151のピストンロッド157を伸長させ、かつ、左側の油圧シリンダ151のピストンロッド157を縮退させた場合に、支持基板30の右端部が前側に移動し、支持基板30の左端部が後側に移動するので、回転掘削体10が左側に揺動する。
As shown in FIG. 9, the left / right swing drive means 150 includes a left / right swing actuator 151 serving as a drive source for swinging the rotary excavator 10 to the left and right, and an actuator installation portion.
The left / right swinging actuator 151 is constituted by, for example, a hydraulic cylinder (hereinafter referred to as a hydraulic cylinder 151).
Two hydraulic cylinders 151 are provided, one on each of the left end side and the right end side behind the support substrate 30.
As shown in FIG. 9, the left hydraulic cylinder 151 has a piston rod side end 152 and a movable connecting means 154 whose upper and lower central sides on the rear surface 153 of the support substrate 30 as an actuator installation portion are movable like a hinge. And the cylinder side end 155 and the vertical center side of the rear longitudinal member 111 of the left front gantry 103 as the actuator installation portion are connected by a movable connecting means 156 such as a hinge.
Similarly, the right hydraulic cylinder 151 is connected to the piston rod side end 152 and the right upper and lower central side of the rear surface 153 of the support substrate 30 as an actuator installation portion by a movable connecting means 154 such as a hinge. Further, the cylinder side end portion 155 and the vertical center side of the rear longitudinal member 111 on the right front gantry 103 as the actuator installation portion are connected by a movable connecting means 156 such as a hinge.
That is, the hydraulic cylinder 151 has a cylinder side end 155 arranged on the left or right side of the pipe 2, a piston rod side end 152 arranged on the center side of the pipe 2, and a center line from the left or right side of the pipe 2. By being arranged obliquely so as to extend to the center side of the pipe 2, the space on the center side of the pipe 2 can be widened, and a sufficient space for handling the water supply / drain pipe 91, the pressure hose 23, etc. can be secured. Become.
In FIG. 6, when the piston rod 157 of the left hydraulic cylinder 151 is extended and the piston rod 157 of the right hydraulic cylinder 151 is retracted, the left end portion of the support substrate 30 moves to the front side and is supported. Since the right end portion of the substrate 30 moves to the rear side, the rotary excavation body 10 swings to the right side.
Further, in FIG. 6, when the piston rod 157 of the right hydraulic cylinder 151 is extended and the piston rod 157 of the left hydraulic cylinder 151 is retracted, the right end portion of the support substrate 30 moves forward and is supported. Since the left end portion of the substrate 30 moves to the rear side, the rotary excavation body 10 swings to the left side.

即ち、回転掘削体10の回転中心線Lを、先頭管2Aの互いに平行に対向する一方の一対の内面である上下の内面と平行で、かつ、先頭管2Aの推進方向Fと直交する面と直交以外の状態で交差する状態に設定する左右揺動駆動手段150を備えていることにより、先頭管2Aの中心線2cを基準として回転掘削体10を左右方向に揺動させることができ、先頭管2Aの前方において先頭管2Aの左右幅間隔よりも広い左右幅間隔で地山10Aを掘削できるので、先頭管2Aが推進する際に先頭管2Aの一端開口2tが地山10Aの硬質層に衝突する可能性が少なくなり、先頭管2Aをスムーズに推進させることができるようになる。即ち、先頭管2Aの進行に先立って先頭管2Aの前方において先頭管2Aの断面積よりも幅の広い断面積を掘削できるようになり、先頭管2Aの前方での余堀が可能となるので、地山10Aが硬質地盤である場合でも先頭管2Aを地中においてスムーズに推進させることができるようになる。
また、先頭管2Aの中心線2cを基準として回転掘削体10を左方向又は右方向に揺動させることによって、先頭管2Aの推進方向を左右に調整することが可能となる。
また、先頭管2Aの前方の右側だけを重点的に掘削したい場合や、先頭管2Aの前方の左側だけを重点的に掘削したい場合にも対応できるようになる。
That is, the rotation center line L of the rotary excavator 10 is parallel to the upper and lower inner surfaces which are one pair of inner surfaces of the leading pipe 2A facing each other in parallel, and is perpendicular to the propulsion direction F of the leading pipe 2A. By including the left / right swing drive means 150 that is set to cross in a state other than orthogonal, the rotary excavator 10 can be swung in the left / right direction with respect to the center line 2c of the top pipe 2A. Since the natural ground 10A can be excavated at a width width interval wider than the horizontal width interval of the leading pipe 2A in front of the pipe 2A, when the leading pipe 2A is propelled, the one end opening 2t of the leading pipe 2A becomes a hard layer of the natural ground 10A The possibility of collision is reduced, and the front pipe 2A can be smoothly driven. That is, prior to the advancement of the leading pipe 2A, a cross-sectional area wider than the sectional area of the leading pipe 2A can be excavated in front of the leading pipe 2A, and an extra moat in front of the leading pipe 2A becomes possible. Even if the natural ground 10A is hard ground, the leading pipe 2A can be smoothly propelled in the ground.
Further, the propulsion direction of the leading pipe 2A can be adjusted to the left and right by swinging the rotary excavator 10 leftward or rightward with respect to the center line 2c of the leading pipe 2A.
Further, it is possible to cope with a case where only the right side in front of the front pipe 2A is to be excavated with priority and a case where only the left side in front of the front pipe 2A is to be excavated with priority.

地中10への管2の設置作業においては、上述した方法によって先頭管2A及び後続管2B,2B…の設計位置に対するずれを監視しながら作業を行っている。
そして、先頭管2A及び後続管2B,2B…が設定位置からずれていることが確認された場合に、例えば、上下揺動駆動手段100により、回転掘削体10の位置を上下方向に揺動させた後、あるいは、回転掘削体10の位置を上下方向に揺動させながら、作業を続行したり、推進装置5の油圧シリンダ200Aによる推進力を制御したりすることで、設計位置に対する先頭管2A及び後続管2B,2B…の実際位置のずれを修正できるようになる。
In the installation work of the pipe 2 in the underground 10, the work is performed while monitoring the deviation of the top pipe 2A and the subsequent pipes 2B, 2B.
When it is confirmed that the leading pipe 2A and the succeeding pipes 2B, 2B... Are deviated from the set position, for example, the vertical excavation driving means 100 is used to swing the position of the rotary excavator 10 in the vertical direction. After that, or by continuing the work while swinging the position of the rotary excavating body 10 in the vertical direction, or controlling the propulsive force by the hydraulic cylinder 200A of the propulsion device 5, the leading pipe 2A with respect to the design position And the deviation of the actual position of the succeeding tubes 2B, 2B.

止水装置7は、例えば、ゴムなどの伸縮自在な材料により形成された筒状止水部材160の筒の一端開口縁161が先頭管2Aの先端側(一端開口側)の内周面に固定され、筒状止水部材160の筒の他端開口縁162が支持基板30の前面44の外周縁163側に固定されたことで、当該筒状止水部材160が、支持基板30の前方側から支持基板30の後方側への水の移動を阻止するように構成されている。
即ち、止水装置7を備えたことで、支持基板30が左右側に揺動して回転掘削体10が左右方向に揺動した場合、筒状止水部材160が伸縮して、支持基板30と筒状支持体31との間への水の侵入が阻止されるとともに、筒状支持体31が前後方向に揺動して回転掘削体10が上下方向に揺動した場合、筒状支持体31と支持管63との間への水の侵入が阻止されることで、支持基板30の前方側から支持基板30の後方側への水の移動が阻止される。
In the water stop device 7, for example, one end opening edge 161 of the cylinder of the tubular water stop member 160 formed of a stretchable material such as rubber is fixed to the inner peripheral surface on the front end side (one end opening side) of the leading pipe 2 </ b> A. Then, the other end opening edge 162 of the cylinder of the cylindrical water-stopping member 160 is fixed to the outer peripheral edge 163 side of the front surface 44 of the support substrate 30, so that the cylindrical water-stop member 160 is on the front side of the support substrate 30. Is configured to prevent water from moving to the rear side of the support substrate 30.
That is, by providing the water stop device 7, when the support substrate 30 swings left and right and the rotary excavation body 10 swings left and right, the tubular water stop member 160 expands and contracts, and the support substrate 30. When the cylindrical support 31 is swung in the front-rear direction and the rotary excavator 10 is swung in the vertical direction, the intrusion of water between the tube and the tubular support 31 is prevented. By preventing water from entering between 31 and the support tube 63, movement of water from the front side of the support substrate 30 to the rear side of the support substrate 30 is prevented.

図10に示すように、筒状止水部材160の筒の一端開口縁161の固定部165は、支持管63の内周面における環状取付溝73よりも前側の位置から支持管63の中心軸に向かって突出するように設けられた環状固定部166と、一端開口縁161を環状固定部166の前面に押し付ける抑え板168と、止ねじ171とを備え、止ねじ171が抑え板168及び一端開口縁161に形成された貫通孔を貫通して環状固定部166の前面に形成されたねじ孔に締結されることにより構成される。   As shown in FIG. 10, the fixing portion 165 of the one end opening edge 161 of the cylinder of the tubular water blocking member 160 is a central axis of the support pipe 63 from a position in front of the annular mounting groove 73 on the inner peripheral surface of the support pipe 63. An annular fixing portion 166 provided so as to protrude toward the front surface, a holding plate 168 that presses one end opening edge 161 against the front surface of the annular fixing portion 166, and a set screw 171. The set screw 171 includes the holding plate 168 and one end. It is configured by passing through a through hole formed in the opening edge 161 and fastening to a screw hole formed in the front surface of the annular fixing portion 166.

筒状止水部材160の筒の他端開口縁162の固定部175は、支持基板30の前面44における外周縁側に沿って形成された環状固定部176と、他端開口縁162を環状固定部176の前面に押し付ける抑え板178と、止ねじ181とを備え、止ねじ181が抑え板178及び他端開口縁162に形成された貫通孔を貫通して環状固定部176の前面に形成されたねじ孔に締結されることにより構成される。   The fixing portion 175 of the other end opening edge 162 of the cylinder of the cylindrical water blocking member 160 includes an annular fixing portion 176 formed along the outer peripheral edge side of the front surface 44 of the support substrate 30, and the other end opening edge 162 as an annular fixing portion. 176 is provided on the front surface of the annular fixing portion 176 through a through-hole formed in the holding plate 178 and the other end opening edge 162. It is configured by being fastened to the screw hole.

即ち、止水装置7は、回転掘削体10を左右方向に揺動させた際において支持基板30の左右側が前後方向に揺動した場合、あるいは、回転掘削体10を上下方向に揺動させた際において筒状支持体31の上下側が前後方向に揺動した場合、筒状止水部材160が伸縮して、支持基板30の前方側から支持基板30の後方側への水の移動を阻止するように構成されている。   That is, when the rotary excavator 10 is swung in the left-right direction, the water stop device 7 swings the rotary excavator 10 in the up-down direction when the left and right sides of the support substrate 30 swing in the front-rear direction. At this time, when the upper and lower sides of the cylindrical support 31 swing in the front-rear direction, the cylindrical water stop member 160 expands and contracts to prevent water from moving from the front side of the support substrate 30 to the rear side of the support substrate 30. It is configured as follows.

尚、筒状止水部材160は、例えば、筒状支持体の外周形状に対応した外周を有した型をゴムの原液に浸して型の外周面にゴムの薄層を付着させた後に乾燥させるという作業を数回〜十数回繰り返して、型の外周面に薄いゴム層を積層させることで、薄い厚さ(数mm程度の厚さ)のゴム筒を形成する。
このように、筒状止水部材160として、筒状に形成されたゴム筒を用いることで、ゴム筒の伸縮により、筒状支持体31及び支持基板30の揺動動作がスムーズになるとともに止水性能にも優れた止水装置7を形成できる。
また、従来のように、支持基板30の外周面と筒状支持体31の内周面との間、先頭管2Aの内面と筒状支持体31の外周面との間に、止水ゴムなどを設ける必要がなくなり、支持基板30の外周面と筒状支持体31の内周面と摩擦抵抗が軽減されるため、筒状支持体31及び支持基板30の揺動動作がスムーズになる。
尚、筒状止水部材160は、回転掘削体10の揺動によって引っ張られてもちぎれない程度の弾性を有したゴムを用い、かつ、回転掘削体10の揺動によって縮んだ状態において筒状支持体31の内面82と支持基板30の外面83との間に噛み込まれないような弛み(余裕)を持たせた状態に取付ける。
例えば、筒の一端開口縁161側の径が筒の他端開口縁162側の径よりも大径に形成された筒状止水部材160を用いて、小径側である他端開口縁162側を支持基板30の前面44における外周縁側に沿って形成された環状固定部176に固定し、かつ、大径側である一端開口縁161側を環状固定部176よりも大径である支持管63の内周面側の環状固定部166に固定することによって、回転掘削体10の揺動によって引っ張られてもちぎれ難く、かつ、回転掘削体10の揺動によって縮んだ状態において筒状支持体31の内面82と支持基板30の外面83との間に噛み込まれない構成の止水部を構成することが可能となる。
即ち、筒状止水部材160の小径側である他端開口縁162側を支持体14に固定し、かつ、筒状止水部材160の大径側である一端開口縁161側を先頭管2Aの内周面に固定することによって、回転掘削体10の揺動によって引っ張られてもちぎれ難く、かつ、回転掘削体10の揺動によって縮んだ状態において弛みすぎない構成の止水部を構成することが可能となる。
The cylindrical water-stop member 160 is dried after, for example, immersing a mold having an outer periphery corresponding to the outer peripheral shape of the cylindrical support in a rubber stock solution to adhere a thin layer of rubber to the outer peripheral surface of the mold. The above operation is repeated several times to several tens of times, and a thin rubber layer is laminated on the outer peripheral surface of the mold to form a thin rubber cylinder (thickness of about several mm).
Thus, by using a rubber cylinder formed in a cylindrical shape as the cylindrical water-stopping member 160, the elastic movement of the cylindrical support 31 and the support substrate 30 is smoothed and stopped by the expansion and contraction of the rubber cylinder. The water stop device 7 excellent in water performance can be formed.
Further, as in the prior art, a waterproof rubber or the like is provided between the outer peripheral surface of the support substrate 30 and the inner peripheral surface of the cylindrical support 31 and between the inner surface of the top tube 2A and the outer peripheral surface of the cylindrical support 31. Since the frictional resistance between the outer peripheral surface of the support substrate 30 and the inner peripheral surface of the cylindrical support 31 is reduced, the swinging operation of the cylindrical support 31 and the support substrate 30 becomes smooth.
The tubular water blocking member 160 is made of rubber having an elasticity that is not broken even when pulled by the swinging of the rotary excavating body 10, and is tubular when contracted by the swinging of the rotary excavating body 10. It is attached in a state where there is a slack (margin) so as not to be caught between the inner surface 82 of the support 31 and the outer surface 83 of the support substrate 30.
For example, the other end opening edge 162 side, which is the smaller diameter side, is formed by using the cylindrical water-stop member 160 formed so that the diameter on the one end opening edge 161 side of the cylinder is larger than the diameter on the other end opening edge 162 side of the cylinder. Is fixed to the annular fixing portion 176 formed along the outer peripheral edge side of the front surface 44 of the support substrate 30, and the one end opening edge 161 side, which is the larger diameter side, is larger in diameter than the annular fixing portion 176. The cylindrical support 31 is fixed to the annular fixing portion 166 on the inner peripheral surface side of the cylindrical excavator 10 in a state where it is not easily broken even when pulled by the swing of the rotary excavator 10 and is contracted by the swing of the rotary excavator 10. It is possible to configure a water stop portion that is configured so as not to be caught between the inner surface 82 and the outer surface 83 of the support substrate 30.
That is, the other end opening edge 162 side which is the small diameter side of the cylindrical water blocking member 160 is fixed to the support body 14, and the one end opening edge 161 side which is the large diameter side of the cylindrical water stopping member 160 is the leading pipe 2A. By fixing to the inner peripheral surface of the rotary excavator 10, a water-stop portion is configured that is difficult to tear even when pulled by the swing of the rotary excavator 10 and that does not loosen too much when the rotary excavator 10 is contracted by the swing of the rotary excavator 10. It becomes possible.

当該止水装置7を備えていることで、支持基板30の状態に拘わらず、支持基板30の前面44側に取り込まれた掘削ズリを含む泥水が支持基板30の外周面と筒状支持体31の内周面との間を経由して支持基板30後方に移動することを防止できるとともに、支持基板30の前面44側に取り込まれた掘削ズリを含む泥水が筒状支持体31の外周面と先頭管2Aの内周面との間を経由して支持基板30後方に移動することを防止できる。   By providing the water stop device 7, regardless of the state of the support substrate 30, the muddy water including the excavation gap taken into the front surface 44 side of the support substrate 30 is in contact with the outer peripheral surface of the support substrate 30 and the cylindrical support 31. It is possible to prevent the rearward movement of the support substrate 30 via the inner peripheral surface of the support substrate 30 and the mud containing the excavation slip taken in the front surface 44 side of the support substrate 30 and the outer peripheral surface of the cylindrical support 31. It is possible to prevent movement to the rear of the support substrate 30 via the space between the inner peripheral surface of the leading pipe 2A.

また、筒状止水部材160の筒の他端開口縁164側が支持基板30の前面44の外周縁163側に固定されたので、支持基板30の前面44の前側に掘削ズリを多く取り込めるようになり、排泥効率を向上できる。   In addition, since the other end opening edge 164 side of the cylindrical water blocking member 160 is fixed to the outer peripheral edge 163 side of the front surface 44 of the support substrate 30, a large amount of excavation gap can be taken in front of the front surface 44 of the support substrate 30. Therefore, the efficiency of drainage can be improved.

図6に示すように、推進装置5は、図外の推進駆動源と、推進駆動源による推進力を筒状支持体31に伝達する推進力伝達手段200と、筒状支持体31に伝達された推進力を先頭管2Aに伝達する推進力受け部としての管側支持部32を備える。
即ち、推進駆動源による推進力を推進力伝達手段200を介して筒状支持体31に伝達するとともに回転掘削体10を回転させることにより、回転掘削体10が前方に推進し、かつ、筒状支持体31に伝達された推進力が推進力受け部を介して先頭管2Aに伝達されて先頭管2Aが前方に推進する。
As shown in FIG. 6, the propulsion device 5 is transmitted to the cylindrical support 31, the propulsion drive source (not shown), the propulsive force transmission means 200 that transmits the propulsive force generated by the propulsion drive source to the cylindrical support 31. The tube side support portion 32 is provided as a propulsion force receiving portion that transmits the propulsive force to the leading tube 2A.
That is, by transmitting the propulsive force from the propulsion drive source to the cylindrical support 31 via the propulsive force transmitting means 200 and rotating the rotary excavator 10, the rotary excavator 10 is propelled forward and the cylindrical The propulsive force transmitted to the support 31 is transmitted to the leading pipe 2A through the propelling force receiving portion, and the leading pipe 2A propels forward.

推進駆動源は、例えば、アクチュエータとしての油圧シリンダ(推進ジャッキ)200A(図1参照)により構成される。
推進力受け部としての管側支持部32は、筒状支持体31の左右の外面に設けられた円柱状突起66を受ける凹溝68の凹壁70により構成される。
The propulsion drive source includes, for example, a hydraulic cylinder (propulsion jack) 200A (see FIG. 1) as an actuator.
The tube-side support portion 32 as a propulsive force receiving portion is configured by a concave wall 70 of a concave groove 68 that receives a columnar protrusion 66 provided on the left and right outer surfaces of the cylindrical support 31.

推進力伝達手段200は、推進力伝達構成部201と、推進力伝達棒状体202と、座屈防止部材203とを備える。
推進力伝達構成部201は、例えば、上述したアクチュエータ設置部102により構成される。
推進力伝達棒状体202は、例えば、H形鋼の両端に連結用フランジ204,204を備えた構成である。
The propulsive force transmission means 200 includes a propulsive force transmission component 201, a propulsive force transmission rod 202, and a buckling prevention member 203.
The propulsive force transmission configuration unit 201 is configured by the actuator installation unit 102 described above, for example.
The propulsive force transmission rod-like body 202 has a configuration in which, for example, connecting flanges 204 and 204 are provided at both ends of an H-shaped steel.

図12に示すように、座屈防止部材203は、推進力伝達棒状体202の座屈を防止する部材であって、左右方向(後続管2Bの左右の内面(後続管2Bの互いに対向する他方の一対の内面)と直交又は交差する方向)に延長するように設けられて左右の推進力伝達棒状体202,202同士を連結する左右連結棒状体205と、左の推進力伝達棒状体202の内側において左の推進力伝達棒状体202と接触して上下方向(後続管2Bの上下の内面(後続管2Bの互いに対向する一方の一対の内面)と直交又は交差する方向)に延長するように設けられて左右連結棒状体205の左端側に連結された左側縦長部206と、右の推進力伝達棒状体202の内側において右の推進力伝達棒状体202と接触して上下方向に延長するように設けられて左右連結棒状体205の右端側に連結された右側縦長部207と、左側縦長部206の上端部と右側縦長部207の上端部とを連結する上側左右連結棒状体208と、左側縦長部206の下端部と右側縦長部207の下端部とを連結する下側左右連結棒状体209と、左右連結棒状体205の左右の両端に設けられて発進基地への回収時における左右連結棒状体205と後続管2Bの左右の内面との干渉を低減する左右の干渉低減部材210,210と、左側縦長部206及び右側縦長部207の上下の両端側に設けられて発進基地への回収時における左側縦長部206、右側縦長部207、上側左右連結棒状体208、下側左右連結棒状体209と後続管2Bの上下の内面との干渉を低減する上下の干渉低減部材211,211とを備える。尚、座屈防止部材203を構成する各部材は、例えば、形鋼により形成される。
当該座屈防止部材203を備えていることにより、アクチュエータ設置部102の後端に連結されることで回転掘削体支持部12に連結された左右の推進力伝達棒状体202,202に推進駆動源としての油圧シリンダからの推進力が加わった場合において、座屈防止部材203、又は、後続管2Bの内面に接触した座屈防止部材203が、左右の推進力伝達棒状体202,202を座屈させようとする力に抵抗することによって、左右の推進力伝達棒状体202,202の座屈を防止できるようになり、油圧シリンダにより付与された推進力を推進力伝達構成部201(アクチュエータ設置部102)を介して回転掘削体10と先頭管2Aとに確実に伝達できるようになる。
As shown in FIG. 12, the buckling prevention member 203 is a member that prevents buckling of the propulsive force transmission rod-like body 202, and is formed in the left-right direction (the left and right inner surfaces of the subsequent pipe 2B Left and right connecting rod-like bodies 205, which are provided to extend in a direction orthogonal to or intersecting with a pair of inner surfaces) of the left and right propelling force transmitting rod-like bodies 202, 202, and a left propelling force transmitting rod-like body 202. It is in contact with the left propulsive force transmission rod 202 on the inner side and extends in the vertical direction (a direction perpendicular to or intersecting with the upper and lower inner surfaces of the subsequent tube 2B (one pair of inner surfaces facing each other of the subsequent tube 2B)). A left elongated portion 206 that is provided and connected to the left end side of the left and right connecting rods 205 and the right propulsive force transmitting rod 202 in contact with the right propelling rods 202 to extend vertically. Established in The right vertical portion 207 connected to the right end of the left and right connecting rod 205, the upper left and right connecting rod 208 connecting the upper end of the left vertical portion 206 and the upper end of the right vertical portion 207, and the left vertical portion 206. Lower left and right connecting rod-like bodies 209 that connect the lower end portion of the right-side vertically elongated portion 207, and left and right connecting rod-like bodies 205 provided at the left and right ends of the left and right connecting rod-like bodies 205 at the time of recovery to the starting base, Left and right interference reducing members 210 and 210 for reducing interference with the left and right inner surfaces of the succeeding pipe 2B, and the left and right longitudinal portions 206 and the right and left longitudinal portions 207 are provided at both upper and lower ends, and left longitudinally when recovered to the departure base. Part 206, right vertically long part 207, upper left and right connecting rod-like body 208, lower left and right connecting rod-like body 209 and upper and lower interference reducing members 211 and 211 for reducing interference between the upper and lower inner surfaces of the succeeding pipe 2B. That. In addition, each member which comprises the buckling prevention member 203 is formed, for example with a shape steel.
By providing the buckling prevention member 203, the right and left propulsive force transmission rod-like bodies 202, 202 connected to the rotary excavation body support portion 12 by being connected to the rear end of the actuator installation portion 102 are propulsion drive sources. When the thrust from the hydraulic cylinder is applied, the buckling prevention member 203 or the buckling prevention member 203 in contact with the inner surface of the succeeding pipe 2B buckles the left and right thrust transmission rods 202, 202. By resisting the force to be caused, buckling of the left and right propulsive force transmission rods 202, 202 can be prevented, and the propulsive force applied by the hydraulic cylinder is transmitted to the propulsive force transmission component 201 (actuator installation unit). 102) can be reliably transmitted to the rotary excavator 10 and the top pipe 2A.

また、左右の干渉低減部材210,210及び上下の干渉低減部材211,211は、湾曲状に形成された外面212を備え、この湾曲状の外面212が後続管2Bの内面と対面するように設けられる。当該左右の干渉低減部材210,210及び上下の干渉低減部材211,211は、例えば図62に示すように鋼板の両端側を同方向に折り曲げた湾曲状に形成され、この湾曲状の外面212が後続管2Bの内面と対面するように配置される。したがって、当該湾曲状の外面212と後続管2Bの内面とを接触させることによって、推進力伝達棒状体202を発進基地に回収する回収時の摩擦抵抗を軽減できるようになり、推進力伝達棒状体202を発進基地に戻す回収作業を容易に行えるようになる。   The left and right interference reduction members 210 and 210 and the upper and lower interference reduction members 211 and 211 include an outer surface 212 formed in a curved shape, and the curved outer surface 212 is provided so as to face the inner surface of the subsequent pipe 2B. It is done. The left and right interference reducing members 210 and 210 and the upper and lower interference reducing members 211 and 211 are formed in a curved shape in which both end sides of the steel plate are bent in the same direction as shown in FIG. 62, for example. It arrange | positions so that the inner surface of the succeeding pipe | tube 2B may be opposed. Therefore, by bringing the curved outer surface 212 into contact with the inner surface of the succeeding pipe 2B, it becomes possible to reduce the frictional resistance at the time of recovery for recovering the propulsive force transmitting rod 202 to the starting base, and the propulsive force transmitting rod The collection work for returning 202 to the departure base can be easily performed.

水供給排泥装置6は、2つの送排水管91,91と、図外の貯水タンクと、貯水タンクの水を送排水管に供給する図外の送水用のポンプと、図外の排泥タンクと、送排水管を介して排泥を吸引して排泥タンクに排出する図外の排泥水用のポンプとを備える。
即ち、一方の送排水管91と送水用のポンプとを繋いで送水用のポンプを駆動して一方の送排水管91に水を供給することで支持基板30の前方空間を加圧し、他方の送排水管91と排泥水用のポンプとを繋いで排泥水用のポンプを駆動して支持基板30の前方空間内の泥水を排泥タンクに排出する。
また、他方の送排水管91と送水用のポンプとを繋いで送水用のポンプを駆動して他方の送排水管91に水を供給することで支持基板30の前方空間を加圧し、一方の送排水管91と排泥水用のポンプとを繋いで排泥水用のポンプを駆動して支持基板30の前方空間内の泥水を排泥タンクに排出する。
即ち、一方の送排水管91を水供給管として使用したり排泥水管として使用し、また、他方の送排水管91を排泥水管として使用したり水供給管として使用する。つまり、2つの送排水管91,91を、適宜、水供給管として使用したり排泥水管として使用するというように切り替えて使用することにより、支持基板30の前方空間における泥水の偏在を防止して、支持基板30や筒状支持体31の揺動時の動き、及び、支持基板30や筒状支持体31の推進時の動きが阻害されないようにしている。
The water supply / drainage device 6 includes two water supply / drainage pipes 91, 91, a water storage tank (not shown), a water supply pump (not shown) for supplying water from the water storage tank to the water supply / drainage pipe, and a water discharge mud (not shown). A tank and an unillustrated pump for drained mud water that sucks the discharged mud through a water supply / drain pipe and discharges it into the mud tank.
That is, by connecting one of the water supply / drainage pipes 91 and the water supply pump to drive the water supply pump and supplying water to one of the water supply / drainage pipes 91, the front space of the support substrate 30 is pressurized, The muddy water in the front space of the support substrate 30 is discharged to the muddy tank by connecting the water supply / drain pipe 91 and the muddy water pump to drive the muddy water pump.
Further, by connecting the other water supply / drain pipe 91 and the water supply pump to drive the water supply pump to supply water to the other water supply / drain pipe 91, the front space of the support substrate 30 is pressurized, The muddy water in the front space of the support substrate 30 is discharged to the muddy tank by connecting the water supply / drain pipe 91 and the muddy water pump to drive the muddy water pump.
That is, one of the water supply / drainage pipes 91 is used as a water supply pipe or as a mud drainage pipe, and the other water supply / drainage pipe 91 is used as a drainage mud water pipe or as a water supply pipe. That is, by using the two water supply / drain pipes 91 and 91 as appropriate as a water supply pipe or a drainage mud pipe, it is possible to prevent uneven distribution of muddy water in the front space of the support substrate 30. Thus, the movement of the support substrate 30 and the cylindrical support 31 during swinging and the movement of the support substrate 30 and the cylindrical support 31 during propulsion are not hindered.

次に管設置装置1により管2を地中に設置する方法について説明する。
まず、掘削機械4を先頭管2Aにセットする。例えば、筒状支持体31と支持基板30と連結架台34とが組み付けられた組立体を先頭管2Aの後端開口から挿入して、筒状支持体31の左右の円柱状突起66,66を支持管63の左右の凹溝68,68内に挿入することにより、先頭管2Aにセットする。
尚、支持基板30の左右の湾曲凸面が筒状支持体31の左右の湾曲凹面と摺動するように構成される場合、筒状支持体31は、例えば別々の左側板と右側板と上板と下板とが溶接等で連結されて構成される。即ち、支持基板30の上下の円形状突起86,86を筒状支持体31の上板と下板とに形成された円孔87,87内に挿入した状態で、筒状支持体31の左側板の湾曲凹面を支持基板30の左の湾曲凸面に当てた状態で筒状支持体31の左側板の上端と上板とを溶接等で連結するとともに筒状支持体31の左側板の下端と下板とを溶接等で連結する。同様に、筒状支持体31の右側板の湾曲凹面を支持基板30の右の湾曲凸面に当てた状態で筒状支持体31の右側板の上端と上板とを溶接等で連結するとともに筒状支持体31の右側板の下端と下板とを溶接等で連結する。以上により、筒状支持体31の内側に支持基板30が組み付けられた組立体が形成される。
Next, a method for installing the pipe 2 in the ground by the pipe installation device 1 will be described.
First, the excavating machine 4 is set on the top pipe 2A. For example, an assembly in which the cylindrical support 31, the support substrate 30, and the connection base 34 are assembled is inserted from the rear end opening of the top tube 2 </ b> A, and the left and right cylindrical protrusions 66, 66 of the cylindrical support 31 are inserted. By inserting it into the left and right concave grooves 68, 68 of the support pipe 63, it is set in the leading pipe 2A.
Note that when the left and right curved convex surfaces of the support substrate 30 are configured to slide with the left and right curved concave surfaces of the cylindrical support 31, the cylindrical support 31 includes, for example, separate left side plates, right side plates, and upper plates. And the lower plate are connected by welding or the like. That is, the upper and lower circular protrusions 86, 86 of the support substrate 30 are inserted into the circular holes 87, 87 formed in the upper plate and the lower plate of the cylindrical support 31, and the left side of the cylindrical support 31. The upper end of the left side plate of the cylindrical support 31 and the upper plate are connected by welding or the like while the curved concave surface of the plate is in contact with the left curved convex surface of the support substrate 30, and the lower end of the left side plate of the cylindrical support 31 is connected. Connect the lower plate by welding. Similarly, the upper end of the right side plate and the upper plate of the cylindrical support 31 are connected by welding or the like while the curved concave surface of the right side plate of the cylindrical support 31 is in contact with the right curved convex surface of the support substrate 30. The lower end of the right side plate of the cylindrical support 31 and the lower plate are connected by welding or the like. Thus, an assembly in which the support substrate 30 is assembled inside the cylindrical support 31 is formed.

筒状支持体31と支持基板30と連結架台34との組立体が先頭管2Aにセットされた後、回転掘削体10の支柱部33を連結架台34に連結することで回転掘削体10を支持基板30の前面に連結して、中空支柱部35の後端開口に設けられた接続部23Aに外部の耐圧ホース23を接続する。さらに、筒状止水部材160の一端開口縁161を先頭管2Aの先端側(一端開口2t側)の内周面に固定するとともに、筒状止水部材160の他端開口縁162を支持基板30の前面44の外周縁163側に固定して、止水装置7を構成する。また、油圧シリンダ101及び油圧シリンダ151が設置されたアクチュエータ設置部102を筒状支持体31の後端面106に連結するとともに、油圧シリンダ151のピストンロッド側端部152を支持基板30の後面153に接続手段154を介して連結し、また、送排水管91を支持基板30の送排水管保持貫通孔90に連結する。そして、耐圧ホース23を油圧源に接続し、送排水管91をポンプに接続する。
以上により、先頭管2Aの発進準備が完了する。
After the assembly of the cylindrical support 31, the support substrate 30, and the connection frame 34 is set on the top pipe 2 </ b> A, the column unit 33 of the rotary excavation body 10 is connected to the connection frame 34 to support the rotary excavation body 10. The external pressure-resistant hose 23 is connected to the connection portion 23 </ b> A provided at the rear end opening of the hollow support portion 35, connected to the front surface of the substrate 30. Further, the one end opening edge 161 of the cylindrical water-stopping member 160 is fixed to the inner peripheral surface on the distal end side (one end opening 2t side) of the leading pipe 2A, and the other end opening edge 162 of the cylindrical water-stopping member 160 is fixed to the support substrate. The water stop device 7 is configured by being fixed to the outer peripheral edge 163 side of the front surface 44 of 30. Further, the actuator installation portion 102 in which the hydraulic cylinder 101 and the hydraulic cylinder 151 are installed is connected to the rear end surface 106 of the cylindrical support 31, and the piston rod side end portion 152 of the hydraulic cylinder 151 is connected to the rear surface 153 of the support substrate 30. It connects via the connection means 154, and connects the water supply / drainage pipe 91 to the water supply / drainage pipe holding through hole 90 of the support substrate 30. Then, the pressure hose 23 is connected to a hydraulic pressure source, and the water supply / drain pipe 91 is connected to the pump.
Thus, the start preparation for the leading pipe 2A is completed.

尚、掘削装置3全体を組み立ててから掘削装置3の筒状支持体31の左右の円柱状突起66,66を支持管63の左右の凹溝68,68内に挿入することにより、掘削装置3を先頭管2Aにセットするようにしてもよい。   The excavator 3 is assembled by inserting the left and right cylindrical protrusions 66 and 66 of the cylindrical support 31 of the excavator 3 into the left and right concave grooves 68 and 68 of the support pipe 63 after the entire excavator 3 is assembled. May be set in the leading pipe 2A.

次に、アクチュエータ設置部102の後端に位置する左右の連結用フランジ120,120をそれぞれ推進駆動源としての油圧シリンダ200A,200Aで押圧するとともに、回転掘削体10を回転させることにより、回転掘削体10及び先頭管2Aを発進基地から地中に推進させる。即ち、回転掘削体10の回転により地山10Aが掘削されるとともに、アクチュエータ設置部102が押圧されることにより、油圧シリンダ200Aでの押圧による推進力が、アクチュエータ設置部102(推進力伝達構成部201)、筒状支持体31、円柱状突起66、凹壁70(管側支持部32)を介して先頭管2Aに伝達されるとともに、アクチュエータ設置部102、筒状支持体31、支持基板連結架台34、回転掘削体10の支柱部33を介して回転掘削体10に伝達されるので、先頭管2Aが地中に進行する。   Next, the right and left connecting flanges 120 and 120 positioned at the rear end of the actuator installation portion 102 are pressed by hydraulic cylinders 200A and 200A as propulsion drive sources, respectively, and the rotary excavator 10 is rotated, thereby rotating excavation. The body 10 and the top pipe 2A are propelled from the starting base into the ground. That is, the natural ground 10A is excavated by the rotation of the rotary excavator 10, and the actuator installation portion 102 is pressed, so that the propulsive force generated by the pressure in the hydraulic cylinder 200A is changed to the actuator installation portion 102 (propulsion transmission component). 201), the cylindrical support body 31, the cylindrical protrusion 66, and the concave wall 70 (tube side support portion 32) are transmitted to the leading pipe 2A, and the actuator installation portion 102, the cylindrical support body 31, and the support substrate are connected. Since it is transmitted to the rotary excavation body 10 via the gantry 34 and the column 33 of the rotary excavation body 10, the leading pipe 2A advances into the ground.

そして、先頭管2Aが完全に地中に進行する前に発進基地内において先頭管2Aの後端に後続管2Bを接続する。
また、アクチュエータ設置部102の後端に位置する左右の連結用フランジ120,120が後続管2Bの後端開口よりも後方に突出している間に、当該左右の連結用フランジにそれぞれ推進力伝達棒状体202を連結する。そして、各推進力伝達棒状体202の後端に位置する左右の連結用フランジ204,204を各油圧シリンダ200A,200Aで押圧することで先頭管2A及び後続管2Bをさらに進行させる。そして、後続管2Bが完全に地中に進行する前に発進基地内において後続管2Bの後端にさらに後続の後続管2Bを接続する。
Then, before the leading pipe 2A travels completely into the ground, the trailing pipe 2B is connected to the rear end of the leading pipe 2A in the departure base.
Further, while the left and right connecting flanges 120, 120 located at the rear end of the actuator installation portion 102 protrude rearward from the rear end opening of the succeeding pipe 2B, the right and left connecting flanges are respectively provided with propulsive force transmission rods. The body 202 is connected. The leading pipe 2A and the succeeding pipe 2B are further advanced by pressing the left and right connecting flanges 204, 204 positioned at the rear end of each propulsive force transmission rod-like body 202 with the hydraulic cylinders 200A, 200A. Then, before the subsequent pipe 2B travels completely into the ground, the subsequent subsequent pipe 2B is further connected to the rear end of the subsequent pipe 2B in the departure base.

以後、各推進力伝達棒状体202の後端に位置する左右の連結用フランジ204,2401が後続管2Bの後端開口よりも後方に突出している間に、当該左右の連結用フランジ204,204にそれぞれ推進力伝達棒状体202を連結し、最後方の推進力伝達棒状体202を押圧して先頭管2A及び後続管2Bをさらに進行させ、かつ、最後方の後続管2Bが完全に地中に進行する前に発進基地内において最後方の後続管2Bの後端にさらに後続の後続管2Bを接続するという作業を繰り返すことにより、先頭管2A及び先頭管2Aに後続する複数の後続管2Bからなる例えば支保工等として機能させる管体を地中に設置することができる。   Thereafter, while the left and right connecting flanges 204 and 2401 positioned at the rear end of each propulsive force transmission rod-like body 202 protrude rearward from the rear end opening of the succeeding pipe 2B, the left and right connecting flanges 204 and 204 are connected. Are connected to the propulsive force transmission rod-like body 202, the rearmost propulsive force transmission rod-like body 202 is pressed to further advance the leading pipe 2A and the succeeding pipe 2B, and the rearmost succeeding pipe 2B is completely underground. 2, by repeating the operation of connecting the succeeding subsequent pipe 2B to the rear end of the rearmost succeeding pipe 2B in the departure base, the leading pipe 2A and the plurality of succeeding pipes 2B following the leading pipe 2A are repeated. For example, a pipe body that functions as a support work or the like can be installed in the ground.

管設置作業が終了した後は、発進基地に掘削機械4等を引き戻して回収する。この際、回転掘削体10の回収作業を行う前に回転掘削体10をゆっくりと回転させて回転掘削体10が回収可能状態となったことを検出手段8で検出することができるので、掘削機械4等の回収作業を早く正確に行うことが可能となる。
尚、回転掘削体10が図外の到達基地に到達した場合には、当該到達基地内において筒状止水部材160を切断した後に掘削機械4等を発進基地に引き戻して回収する。また、回転掘削体10が図外の到達基地に到達しない状態で掘削機械4等を地中から発進基地に引き戻して回収する場合には、掘削機械4等を引き戻す際に筒状止水部材160を引っ張ることで破断させて(引きちぎって)回収する。
After the pipe installation work is completed, the excavating machine 4 and the like are pulled back to the starting base and collected. At this time, since the rotary excavator 10 is slowly rotated before the recovery operation of the rotary excavator 10 is performed, the detection means 8 can detect that the rotary excavator 10 is in a recoverable state. 4 and the like can be collected quickly and accurately.
In addition, when the rotary excavation body 10 reaches | attains the arrival base outside a figure, after cut | disconnecting the cylindrical water stop member 160 in the said arrival base, the excavation machine 4 etc. are pulled back to a start base, and are collect | recovered. Further, when the excavating machine 4 and the like are pulled back from the ground to the starting base and collected in a state where the rotary excavator 10 does not reach the arrival base (not shown), the tubular water blocking member 160 is used when the excavating machine 4 and the like are pulled back. It is made to break by pulling (removing) and collecting.

上記では、先頭管2Aの内周面に設けられた環状固定部166の前面を先頭管2Aの内周面と見做してこの環状固定部166の前面に筒状止水部材160の一端開口縁161を固定した例を示したが、環状固定部166を設けずに筒状止水部材160の一端開口縁161を先頭管2Aの内周面に直接固定してもよい。   In the above description, assuming that the front surface of the annular fixing portion 166 provided on the inner peripheral surface of the leading pipe 2A is regarded as the inner peripheral surface of the leading tube 2A, one end opening of the tubular water blocking member 160 is formed on the front surface of the annular fixing portion 166. Although the example in which the edge 161 is fixed is shown, the one end opening edge 161 of the tubular water blocking member 160 may be directly fixed to the inner peripheral surface of the leading pipe 2A without providing the annular fixing portion 166.

尚、座屈防止部材は、上下方向に延長するように設けられて左の推進力伝達棒状体と連結された左側縦長部と、上下方向に延長するように設けられて右の推進力伝達棒状体と連結された右側縦長部と、左側縦長部と右側縦長部とを連結する左右連結棒状体、又は、左の推進力伝達棒状体と右の推進力伝達棒状体とを連結する左右連結棒状体とを備えた構成としてもよい。
即ち、図12に示した左側縦長部206が左の推進力伝達棒状体202に連結されるとともに、右側縦長部207が左の推進力伝達棒状体202に連結され、かつ、当該左側縦長部206と右側縦長部207とを連結する左右連結棒状体、あるいは、当該左右の推進力伝達棒状体202,202同士を連結する左右連結棒状体を有した座屈防止部材を備えた構成としてもよい。
当該座屈防止部材を備えた場合でも、推進駆動源からの推進力が左右の推進力伝達棒状体202,202に加わった場合において推進力伝達棒状体202の座屈を防止できるようになり、推進駆動源により付与された推進力を回転掘削体10と先頭管2Aとに確実に伝達できるようになる。
In addition, the buckling prevention member is provided so as to extend in the vertical direction and is connected to the left propulsive force transmission rod-like body, and the left longitudinally extending portion is provided so as to extend in the vertical direction so that the right propulsive force transmission rod is provided. Right and left connecting rods that connect the right vertical part connected to the body, and the left and right vertical parts and the right vertical part, or the left and right connecting rods that connect the left propulsion transmission rod and the right propulsion transmission rod It is good also as a structure provided with the body.
That is, the left vertical portion 206 shown in FIG. 12 is connected to the left propulsive force transmission rod 202, the right vertical portion 207 is connected to the left propulsion rod 202, and the left vertical portion 206 is connected. It is good also as a structure provided with the buckling prevention member which has the right-and-left connecting rod-shaped body which connects the right-side vertically long part 207, or the left-right connecting rod-shaped body which connects the said right and left propulsive force transmission rod-shaped bodies 202,202.
Even when the buckling prevention member is provided, buckling of the propulsive force transmission rod 202 can be prevented when the propulsive force from the propulsion drive source is applied to the right and left propulsion rods 202, 202. The propulsive force applied by the propulsion drive source can be reliably transmitted to the rotary excavation body 10 and the top pipe 2A.

また、干渉低減部材は、左の推進力伝達棒状体よりも管の左内面側に向けて突出するように設けられて発進基地への回収時における左の推進力伝達棒状体と管の左内面との干渉を低減する左の干渉低減部材と、右の推進力伝達棒状体よりも管の右内面側に向けて突出するように設けられて発進基地への回収時における右の推進力伝達棒状体と管の右内面との干渉を低減する右の干渉低減部材とを備えた構成としてもよい。
即ち、図12に示した左の干渉低減部材210を、左の推進力伝達棒状体202より後続管2Bの左内面側に向けて突出するように左の推進力伝達棒状体202、又は、左側縦長部206に設けるとともに、図12に示した右の干渉低減部材210を、右の推進力伝達棒状体202より後続管2Bの右内面側に向けて突出するように右の推進力伝達棒状体202、又は、右側縦長部207に設けた構成としてもよい。
当該干渉低減部材を備えた場合でも、推進力伝達棒状体202を発進基地に回収する回収時の摩擦抵抗を軽減できるようになり、推進力伝達棒状体202を発進基地に戻す回収作業を容易に行えるようになる。
Further, the interference reducing member is provided so as to protrude toward the left inner surface side of the pipe from the left propulsive force transmission rod-like body, and the left propulsive force transmission rod-like body and the left inner surface of the pipe at the time of recovery to the starting base The left interference reduction member that reduces interference with the right propulsion force transmission rod, and the right propulsion force transmission rod shape that protrudes toward the right inner surface of the tube than the right propulsion force transmission rod It is good also as a structure provided with the right interference reduction member which reduces interference with a body and the right inner surface of a pipe | tube.
That is, the left thrust reducing member 210 shown in FIG. 12 protrudes from the left thrust transmitting rod 202 toward the left inner surface of the succeeding tube 2B, or the left thrust transmitting rod 202 or the left The right propulsive force transmission rod-shaped body is provided on the vertically long portion 206 and protrudes from the right propulsive force transmission rod-shaped body 202 toward the right inner surface side of the succeeding pipe 2B. It is good also as a structure provided in 202 or the right longitudinally long part 207.
Even when the interference reducing member is provided, it is possible to reduce the frictional resistance at the time of recovery when the propulsive force transmission rod-shaped body 202 is recovered to the starting base, and the recovery work for returning the propulsive force transmitting rod-shaped body 202 to the starting base is facilitated. You can do it.

また、実施形態では、回転掘削体10が回収可能状態となったこと検出するための検出手段8として、磁石51とホールIC52とを用いた検出センサを例示したが、光電式、レーザー式、その他の方式の検出手段を用いてもよい。   In the embodiment, the detection sensor 8 using the magnet 51 and the Hall IC 52 is exemplified as the detection means 8 for detecting that the rotary excavation body 10 is in a recoverable state. The detection means of the method may be used.

また、実施形態では、軸部としてのピン123及びピン124と、上側長孔121及び下側長孔122とを備えて、ピン123及びピン124が上側長孔121及び下側長孔122内を移動可能なように連結された構成、即ち、ピンと長孔とが連結された連結部を2つ備えた構成のものを例示したが、ピンと長孔とが連結された連結部は1つ以上であればよい。   In the embodiment, the shaft 123 includes the pin 123 and the pin 124, and the upper long hole 121 and the lower long hole 122. The pin 123 and the pin 124 pass through the upper long hole 121 and the lower long hole 122. The structure connected so as to be movable, that is, the structure having two connecting parts in which the pin and the long hole are connected is exemplified, but the connecting part in which the pin and the long hole are connected is one or more. I just need it.

尚、座屈防止部材203は、後続の推進力伝達棒状体202を繋げる毎に当該推進力伝達棒状体202に座屈防止部材203を1つ設けるようにしてもよいが、後続の推進力伝達棒状体202を複数本繋げる毎に座屈防止部材203を1つ設けるようにしてもよい。例えば、後続の推進力伝達棒状体202を2本繋げる毎に座屈防止部材203を1つ設けるようにしてもよい。
また、推進力伝達棒状体202の剛性を向上させることができれば、座屈防止部材203の形状、材質等は特に限定されない。
また、推進力伝達媒体は、棒状体でなくともよい。
The buckling prevention member 203 may be provided with one buckling prevention member 203 on the propulsive force transmission rod 202 each time the subsequent propulsion force transmission rod 202 is connected. One buckling prevention member 203 may be provided every time a plurality of rod-like bodies 202 are connected. For example, one buckling prevention member 203 may be provided each time two subsequent propulsive force transmission rod-like bodies 202 are connected.
In addition, the shape, material, and the like of the buckling prevention member 203 are not particularly limited as long as the rigidity of the propulsive force transmission rod 202 can be improved.
Further, the propulsive force transmission medium may not be a rod-shaped body.

尚、回転掘削体10を1つ又は3つ以上備えた掘削機械4を用いてもよい。   In addition, you may use the excavation machine 4 provided with the rotary excavation body 10 or 3 or more.

また、管2は、断面形状が四角形状のものであればよい。尚、本発明でいう断面形状が四角形状とは、断面長方形、断面正方形、断面台形などの四角形状を指し、四角の角部が面取りされた形状のものも含む。   Moreover, the pipe | tube 2 should just be a thing with a square cross-sectional shape. In addition, the cross-sectional shape referred to in the present invention is a quadrangular shape such as a cross-sectional rectangle, a cross-sectional square, and a cross-sectional trapezoid, and includes a shape in which square corners are chamfered.

また、先頭管2Aの左右側を上下方向に向けて推進させてもよい。
また、支持基板30を上下方向に揺動させる構成とし、筒状支持体31を左右方向に揺動させる構成の管設置装置としてもよい。
Further, the left and right sides of the leading pipe 2A may be propelled in the vertical direction.
Moreover, it is good also as a pipe | tube installation apparatus of the structure which makes the support substrate 30 rock | fluctuate in an up-down direction, and rocks the cylindrical support body 31 in the left-right direction.

1 管設置装置、2 管、2A 先頭管(管)、2B 後続管(管)、5 推進装置、
10 回転掘削体、10A 地山、14 支持体、15 連結支柱部、
100 上下揺動駆動手段(揺動駆動手段)、310 表示画面、L 回転中心線、
X2 傾斜センサ(傾斜検出手段)、X3 ストローク計。
1 pipe installation device, 2 pipes, 2A leading pipe (pipe), 2B following pipe (pipe), 5 propulsion device,
10 rotating excavated body, 10A ground, 14 support body, 15 connecting strut part,
100 vertical swing drive means (swing drive means), 310 display screen, L rotation center line,
X2 tilt sensor (tilt detection means), X3 stroke meter.

Claims (7)

回転掘削体により地山を掘削しながら回転掘削体を推進装置で後方から押圧することにより回転掘削体の後続に順次継ぎ足された管を推進させて地中に設置する管設置装置を用いて管を地中に設置する際の管の状態監視方法であって、
回転掘削体に接続される先頭管に管の傾斜角度を検出するための傾斜検出手段を取付けるとともに、先頭管の後方に順次接続される後続管のうちの1つ以上の後続管に管の傾斜角度を検出するための傾斜検出手段を取付け、
管の推進中において各傾斜検出手段で連続的に計測される実測値に基づいて推進中の管の地中での状態を監視することを特徴とする管を地中に設置する際の管の状態監視方法。
While using the rotary excavator to push the rotary excavator from behind with the propulsion unit while excavating natural ground, the pipes that are sequentially added to the back of the rotary excavator are propelled and installed in the ground using a pipe installation device. A pipe condition monitoring method when installing the
Inclination detecting means for detecting the inclination angle of the pipe is attached to the leading pipe connected to the rotary excavator, and the inclination of the pipe is attached to one or more of the succeeding pipes sequentially connected behind the leading pipe. A tilt detection means for detecting the angle is attached,
The condition of the pipe being installed in the ground is characterized by monitoring the underground state of the pipe being promoted based on the actual measurement values continuously measured by each inclination detection means during the promotion of the pipe. Status monitoring method.
先頭管の後方に順次接続されるすべての後続管にそれぞれ管の傾斜角度を検出する傾斜検出手段を取付けたことを特徴とする請求項1に記載の管を地中に設置する際の管の状態監視方法。   An inclination detecting means for detecting the inclination angle of each pipe is attached to all the succeeding pipes sequentially connected to the rear of the leading pipe. Status monitoring method. 地中に設置する予定の先頭管及び後続管の設計位置と、管の地山への入口から管の地中への推進量と傾斜検出手段で計測された傾斜角度の実測値とに基づいて算出される推進中の先頭管及び後続管の実測位置と、を同一の表示画面上に同時に表示することを特徴とする請求項1又は請求項2に記載の管を地中に設置する際の管の状態監視方法。   Based on the design positions of the first and subsequent pipes to be installed in the ground, the amount of propulsion from the entrance to the ground of the pipe into the ground of the pipe, and the measured value of the inclination angle measured by the inclination detection means The calculated actual positions of the leading pipe and the subsequent pipe being propelled are simultaneously displayed on the same display screen, when the pipe according to claim 1 or 2 is installed in the ground. Pipe condition monitoring method. 管の地山への入口から管の地中への推進量をストローク計で測定したことを特徴とする請求項3に記載の管を地中に設置する際の管の状態監視方法。   The method for monitoring the state of a pipe when the pipe is installed in the ground according to claim 3, wherein the amount of propulsion from the entrance to the natural ground of the pipe to the underground of the pipe is measured with a stroke meter. 地中に設置する予定の先頭管及び後続管が一定距離推進する毎の傾斜角度の設計値に基づく設計評価値を求めるとともに、推進作業中の先頭管及び後続管が一定距離推進する毎に傾斜検出手段から得られる先頭管及び後続管の傾斜角度の実測値に基づく実測評価値を求め、
先頭管及び後続管の設計評価値と実測評価値との差を求めて表示画面上に表示することを特徴とする請求項1乃至請求項3のいずれか一項に記載の管を地中に設置する際の管の状態監視方法。
Obtain the design evaluation value based on the design value of the inclination angle every time the leading pipe and the succeeding pipe to be installed in the ground are propelled for a certain distance, and incline every time the leading pipe and the succeeding pipe being propelled propel a certain distance. Obtain a measured evaluation value based on the measured values of the inclination angle of the leading pipe and the succeeding pipe obtained from the detection means,
The pipe according to any one of claims 1 to 3, wherein the difference between the design evaluation value and the actual measurement evaluation value of the leading pipe and the subsequent pipe is obtained and displayed on the display screen. How to monitor the condition of pipes when installing.
設計評価値が任意に決めた基準と設計値とで算出される管の設計高さであり、実測評価値が任意に決めた基準と管の傾斜角度の実測値とに基づいて算出される管の実測高さであることを特徴とする請求項5に記載の管を地中に設置する際の管の状態監視方法。   The design height of the pipe is calculated based on the standard and design value determined arbitrarily by the design evaluation value, and the pipe is calculated based on the standard determined by the measured evaluation value and the actual measured value of the inclination angle of the pipe. The method for monitoring the state of a pipe when the pipe according to claim 5 is installed in the ground. 管設置装置は、断面四角形の先頭管と、先頭管の一端開口よりも前側に位置されて先頭管の推進方向と交差する回転中心線を回転中心として回転する回転掘削体と、先頭管の内面に支持された支持体と、基端側が支持体に連結されるとともに回転掘削体を回転可能に支持する連結支柱部と、回転掘削体を先頭管の高さ方向で互いに対向する一方の一対の内面と直交する方向に揺動可能に駆動する揺動駆動手段と、推進力を支持体を介して先頭管及び回転掘削体に付与する推進装置と、を備えた構成であることを特徴とする請求項1乃至請求項6のいずれか一項に記載の管を地中に設置する際の管の状態監視方法。   The pipe installation device includes a front pipe having a rectangular cross section, a rotary excavator that rotates on a rotation center line that is positioned in front of one end opening of the front pipe and intersects the propulsion direction of the front pipe, and an inner surface of the front pipe A support body supported on the base, a connecting strut portion whose base end side is connected to the support body and rotatably supports the rotary excavation body, and one pair of the rotary excavation body facing each other in the height direction of the top pipe It is characterized by comprising a swing drive means for driving so as to be swingable in a direction orthogonal to the inner surface, and a propulsion device for applying a propulsive force to the leading pipe and the rotary excavator through the support. The pipe | tube state monitoring method at the time of installing the pipe | tube as described in any one of Claim 1 thru | or 6 in the ground.
JP2016150486A 2016-07-29 2016-07-29 How to monitor the condition of the pipe when installing it underground Active JP6723862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150486A JP6723862B2 (en) 2016-07-29 2016-07-29 How to monitor the condition of the pipe when installing it underground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150486A JP6723862B2 (en) 2016-07-29 2016-07-29 How to monitor the condition of the pipe when installing it underground

Publications (2)

Publication Number Publication Date
JP2018017698A true JP2018017698A (en) 2018-02-01
JP6723862B2 JP6723862B2 (en) 2020-07-15

Family

ID=61075823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150486A Active JP6723862B2 (en) 2016-07-29 2016-07-29 How to monitor the condition of the pipe when installing it underground

Country Status (1)

Country Link
JP (1) JP6723862B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109827006A (en) * 2019-01-22 2019-05-31 广东水电二局股份有限公司 A kind of construction method of non-horizontal push pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109827006A (en) * 2019-01-22 2019-05-31 广东水电二局股份有限公司 A kind of construction method of non-horizontal push pipe

Also Published As

Publication number Publication date
JP6723862B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP4878990B2 (en) Excavator and excavator using the same
US4042046A (en) Directional control mechanism for underground driven pipes and conduits
JP2018017698A (en) Method for monitoring pipe state in installing pipe underground
JP6516661B2 (en) Pipe installation device
JP6546519B2 (en) Pipe and pipe installation method
JP2017101438A (en) Pipe installation device
JP4986819B2 (en) Excavator for tunnel expansion
JP6546516B2 (en) Pipe installation device
JP6546518B2 (en) Pipe installation device
JP6465707B2 (en) Pipe installation device
CN101787719B (en) Waste disposal device of an engine machine
KR102649134B1 (en) Semi-Shield Propel Method for Construction of Underground Structures and Bit-controlled Propel apparatus
JP6430864B2 (en) Pipe installation method, pipe installation apparatus and pipe propulsion direction adjusting apparatus
JP2008014738A (en) Angle measuring device used for position measurement of excavator, and jacking method of excavator
JP6482711B1 (en) Centering / joining method of fluid pipe buried in ground and centering / joining apparatus used therefor
JP6438809B2 (en) Pipe installation device
JP6438811B2 (en) Pipe installation device
JP6243609B2 (en) Tunnel construction method
JP4940014B2 (en) Excavator
JP6438808B2 (en) Pipe installation device
JP4925948B2 (en) Tunnel expansion excavator and tunnel construction method
JP4409491B2 (en) Tunnel excavation method by tunnel excavator
JP4145751B2 (en) Main pusher
JP5463049B2 (en) Synthetic pipe bending equipment
JP2016172992A (en) Pipe installation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200624

R150 Certificate of patent or registration of utility model

Ref document number: 6723862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350