JP2018017471A - Coolant circulation system - Google Patents

Coolant circulation system Download PDF

Info

Publication number
JP2018017471A
JP2018017471A JP2016148949A JP2016148949A JP2018017471A JP 2018017471 A JP2018017471 A JP 2018017471A JP 2016148949 A JP2016148949 A JP 2016148949A JP 2016148949 A JP2016148949 A JP 2016148949A JP 2018017471 A JP2018017471 A JP 2018017471A
Authority
JP
Japan
Prior art keywords
cooling water
circulation path
side circulation
chiller
connection pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016148949A
Other languages
Japanese (ja)
Other versions
JP6809021B2 (en
Inventor
正輔 永田
Shosuke Nagata
正輔 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Original Assignee
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp filed Critical Toyota Boshoku Corp
Priority to JP2016148949A priority Critical patent/JP6809021B2/en
Priority to CN201780031508.XA priority patent/CN109154483B/en
Priority to US16/317,426 priority patent/US20190301819A1/en
Priority to PCT/JP2017/026724 priority patent/WO2018021255A1/en
Publication of JP2018017471A publication Critical patent/JP2018017471A/en
Application granted granted Critical
Publication of JP6809021B2 publication Critical patent/JP6809021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/01Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using means for separating solid materials from heat-exchange fluids, e.g. filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/26Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device
    • B05B7/28Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device in which one liquid or other fluent material is fed or drawn through an orifice into a stream of a carrying fluid
    • B05B7/30Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device in which one liquid or other fluent material is fed or drawn through an orifice into a stream of a carrying fluid the first liquid or other fluent material being fed by gravity, or sucked into the carrying fluid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/04Other direct-contact heat-exchange apparatus the heat-exchange media both being liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/003Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus specially adapted for cooling towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C2001/006Systems comprising cooling towers, e.g. for recooling a cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/20Safety or protection arrangements; Arrangements for preventing malfunction for preventing development of microorganisms

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coolant circulation system which can easily drain a coolant in a chiller side circulation path and has a simple structure.SOLUTION: A coolant circulation system 1 includes: a cooling tower side circulation path 2 which circulates a coolant between a cooling tower 5 and a chiller 6; and a chiller side circulation path 3 which circulates the coolant between the chiller 6 and a cooling target part 7. The cooling tower side circulation path 2 and the chiller side circulation path 3 are connected by a first connection pipe 31 for introducing a coolant which circulates in the chiller side circulation path into the cooling tower side circulation path.SELECTED DRAWING: Figure 1

Description

本発明は、冷却水循環システムに関し、更に詳しくは、冷却塔側循環経路とチラー機側循環経路とを備える冷却水循環システムに関する。   The present invention relates to a cooling water circulation system, and more particularly to a cooling water circulation system including a cooling tower side circulation path and a chiller side circulation path.

従来の冷却水循環システムとして、冷却塔とチラー機との間で冷却水を循環させる冷却塔側循環経路(「一次循環経路」とも称する。)と、チラー機と冷却対象部との間で冷却水を循環させるチラー機側循環経路(「二次循環経路」とも称する。)と、を備えるものが一般に知られている(例えば、特許文献1参照)。   As a conventional cooling water circulation system, cooling water is circulated between a cooling tower side circulation path (also referred to as “primary circulation path”) for circulating cooling water between the cooling tower and the chiller machine, and between the chiller machine and the cooling target portion. A chiller-side circulation path (also referred to as “secondary circulation path”) that circulates the chiller is generally known (see, for example, Patent Document 1).

上記従来の冷却水循環システムでは、冷却塔側循環経路とチラー機側循環経路とは独立しており、各循環経路を冷却水が別々に循環している。そして、業者による防腐剤、殺菌剤等の投与は、通常、冷却塔側循環経路を主に管理メンテナンスが行われており、チラー機のタンクに接続される温度調整器、金型冷却孔、その他の冷却装置等では殆ど行われていない。そのため、製品に直結している冷却配管などの腐食(錆)、シリカ混じりの硬質スケール等が配管内部に付着して、冷却不足が発生して製品品質のばらつき、生産性低下、設備コスト増大など、様々な障害を引き起こしてしまう。   In the conventional cooling water circulation system, the cooling tower side circulation path and the chiller machine side circulation path are independent, and the cooling water circulates through each circulation path separately. And the administration of preservatives, bactericides, etc. by the contractor is usually managed and maintained mainly on the cooling tower side circulation path, temperature regulator connected to the tank of the chiller machine, mold cooling hole, etc. This is rarely performed in the cooling device or the like. Therefore, corrosion (rust) of cooling pipes directly connected to the product, hard scale mixed with silica, etc., adhere to the inside of the pipe, resulting in insufficient cooling, product quality variation, productivity reduction, equipment cost increase, etc. Cause various obstacles.

そこで、例えば、図8に示されるように、チラー機106のタンク106a内の冷却水を入れ換える冷却水入換装置100が提案されている。この冷却水入換装置100では、チラー機106の近傍に排水タンク104を設置し、チラー機106のタンク106aと排水タンク104とを排水バルブ105aを備える配管105で接続するとともに、排水タンク104内に、送水ポンプ107aを備える排水配管107の一端側を接続している。そして、冷却水の排水を行うタイミングで、排水バルブ105aを手動で開けて排水した後、排水バルブ105aを手動で閉める構成となっている。   Therefore, for example, as shown in FIG. 8, a cooling water replacement device 100 that replaces the cooling water in the tank 106 a of the chiller machine 106 has been proposed. In this cooling water replacement apparatus 100, a drain tank 104 is installed in the vicinity of the chiller machine 106, the tank 106a of the chiller machine 106 and the drain tank 104 are connected by a pipe 105 provided with a drain valve 105a, and the inside of the drain tank 104 Further, one end side of the drainage pipe 107 provided with the water pump 107a is connected. The drain valve 105a is manually opened and drained at the timing of draining the cooling water, and then the drain valve 105a is manually closed.

特開2005−21979号公報Japanese Patent Laid-Open No. 2005-21979

しかし、上記従来の冷却水入換装置100では、チラー機106のタンク106a内の冷却水を手動で排水しているので、いつのまにか排水作業が忘れ去られてしまう。また、排水を行うタイミングが長いため、チラー機のタンク内の冷却水の水質が悪化して、タンク内が錆泥状態になってしまう。そのため、排水を行ったときに、フロートバルブの作動部に固形物の錆、スケールなどが付着したり、噛み込み等したりして詰まり傷害が発生して、作動不良となってタンク内から冷却水が溢れてしまうといった問題が懸念される。さらに、チラー機の近傍に排水タンク等の排水設備を設置する必要があり、複雑な構造となってしまう。   However, in the conventional cooling water replacement device 100, since the cooling water in the tank 106a of the chiller machine 106 is manually drained, the draining operation is forgotten soon. Moreover, since the timing which drains is long, the water quality of the cooling water in the tank of a chiller machine deteriorates, and the inside of a tank will be in a rust mud state. For this reason, when draining, solid rust, scale, etc. may adhere to the float valve's operating part, or it may become clogged, resulting in malfunction and cooling from inside the tank. There is concern about the problem of overflowing water. Furthermore, it is necessary to install a drainage facility such as a drainage tank in the vicinity of the chiller machine, resulting in a complicated structure.

本発明は、上記現状に鑑みてなされたものであり、チラー機側循環経路の冷却水を容易に排水することができる簡易な構造の冷却水循環システムを提供することを目的とする。   This invention is made | formed in view of the said present condition, and it aims at providing the cooling water circulation system of the simple structure which can drain | emit easily the cooling water of a chiller machine side circulation path.

上記問題を解決するために、請求項1に記載の発明は、冷却塔とチラー機との間で冷却水を循環させる冷却塔側循環経路と、前記チラー機と冷却対象部との間で冷却水を循環させるチラー機側循環経路と、を備える冷却水循環システムであって、前記冷却塔側循環経路と前記チラー機側循環経路とは、前記チラー機側循環経路を循環する冷却水を前記冷却塔側循環経路に導入するための第1接続管で接続されていることを要旨とする。
請求項2に記載の発明は、請求項1に記載の発明において、前記第1接続管の一端側には、前記冷却塔側循環経路を構成する配管内に配置される差圧噴射器が設けられており、前記差圧噴射器は、前記配管内を流れる冷却水に対して、該冷却水よりも低圧で前記第1接続管を流れる冷却水を導入可能であることを要旨とする。
請求項3に記載の発明は、請求項2に記載の発明において、前記差圧噴射器は、前記第1接続管の一端側に連結され且つ軸心が前記配管内の冷却水の流れ方向に沿うように配置される小径ノズルと、軸心が前記小径ノズルの軸心と一致し且つ吐出口が前記小径ノズルの吐出口よりも前記配管内の冷却水の流れ方向の下流側に位置するように配置される大径ノズルと、前記配管内を流れる冷却水を前記大径ノズル内に取り入れて前記小径ノズルの吐出口の前方に負圧を生じさせる取入口と、を備えることを要旨とする。
請求項4に記載の発明は、請求項3に記載の発明において、前記大径ノズルは、前記小径ノズルの外周面を覆うように配置されており、前記取入口は、前記大径ノズルの前記小径ノズルの外周面を覆う部分に形成されていることを要旨とする。
請求項5に記載の発明は、請求項4に記載の発明において、前記取入口は、前記大径ノズルの軸心回りの円周方向に沿って複数形成されているとともに、前記大径ノズルの軸心回りの円周方向に沿って短軸となる楕円形に形成されていることを要旨とする。
請求項6に記載の発明は、請求項1乃至5のいずれか一項に記載の発明において、前記チラー機側循環経路の送り経路には、循環する冷却水に含まれる不純物を除去する水中不純物分離装置が設けられており、前記水中不純物分離装置には、分離された不純物とともに冷却水を排水する排水口が設けられており、前記第1接続管は、前記排水口と前記冷却塔側循環経路の返し経路とを接続していることを要旨とする。
請求項7に記載の発明は、請求項1乃至6のいずれか一項に記載の発明において、前記第1接続管には、制御部の開閉制御により前記第1接続管を開閉する電動バルブが備えられていることを要旨とする。
請求項8に記載の発明は、請求項1乃至7のいずれか一項に記載の発明において、前記第1接続管には、ワッシャーラバー式の定流量弁が備えられていることを要旨とする。
請求項9に記載の発明は、請求項1乃至8のいずれか一項に記載の発明において、前記冷却塔側循環経路と前記チラー機側循環経路とは、前記冷却塔側循環経路を循環する冷却水を前記チラー機側循環経路に導入するための第2接続管で接続されていることを要旨とする。
請求項10に記載の発明は、請求項9に記載の発明において、前記第2接続管は、前記冷却塔側循環経路の送り経路と前記チラー機に設けられたタンクとを接続していることを要旨とする。
請求項11に記載の発明は、請求項10に記載の発明において、前記第2接続管の一端側には、前記タンクの水面の上下変動に伴って前記第2接続管を開閉するフロート弁が設けられていることを要旨とする。
In order to solve the above problem, the invention according to claim 1 is a cooling tower side circulation path for circulating cooling water between the cooling tower and the chiller machine, and cooling between the chiller machine and the cooling target part. A cooling water circulation system comprising a chiller side circulation path for circulating water, wherein the cooling tower side circulation path and the chiller side circulation path cool the cooling water circulating through the chiller side circulation path. The gist is that they are connected by a first connecting pipe for introduction into the tower-side circulation path.
According to a second aspect of the present invention, in the first aspect of the present invention, a differential pressure injector disposed in a pipe constituting the cooling tower side circulation path is provided on one end side of the first connection pipe. The differential pressure injector is capable of introducing cooling water flowing through the first connection pipe at a lower pressure than the cooling water with respect to the cooling water flowing through the pipe.
According to a third aspect of the present invention, in the second aspect of the present invention, the differential pressure injector is connected to one end side of the first connecting pipe, and an axial center thereof is in a flow direction of the cooling water in the pipe. The small-diameter nozzle arranged along the axis, and the axis coincides with the axis of the small-diameter nozzle, and the discharge port is positioned downstream of the discharge port of the small-diameter nozzle in the flow direction of the cooling water in the pipe. A large-diameter nozzle disposed in the pipe, and an intake port that introduces cooling water flowing through the pipe into the large-diameter nozzle and generates a negative pressure in front of the discharge port of the small-diameter nozzle. .
The invention according to claim 4 is the invention according to claim 3, wherein the large-diameter nozzle is arranged so as to cover an outer peripheral surface of the small-diameter nozzle, and the intake port is the one of the large-diameter nozzle. The gist is that it is formed in a portion covering the outer peripheral surface of the small-diameter nozzle.
According to a fifth aspect of the present invention, in the invention of the fourth aspect, a plurality of the inlets are formed along a circumferential direction around the axis of the large diameter nozzle, and the large diameter nozzle The gist is that it is formed in an elliptical shape having a minor axis along the circumferential direction around the axis.
A sixth aspect of the present invention is the invention according to any one of the first to fifth aspects of the present invention, wherein the feed path of the chiller machine side circulation path has an underwater impurity for removing impurities contained in the circulating cooling water. A separator is provided, and the underwater impurity separator is provided with a drain outlet for draining cooling water together with the separated impurities, and the first connection pipe is connected to the drain outlet and the cooling tower side circulation. The gist is that the return path of the path is connected.
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the first connection pipe is provided with an electric valve that opens and closes the first connection pipe by opening / closing control of a control unit. The gist is that it is provided.
The gist of the invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the first connecting pipe is provided with a washer rubber type constant flow valve. .
The invention according to claim 9 is the invention according to any one of claims 1 to 8, wherein the cooling tower side circulation path and the chiller side circulation path circulate through the cooling tower side circulation path. The gist is that the cooling water is connected by a second connecting pipe for introducing the cooling water into the chiller side circulation path.
The invention according to claim 10 is the invention according to claim 9, wherein the second connection pipe connects a feed path of the cooling tower side circulation path and a tank provided in the chiller machine. Is the gist.
According to an eleventh aspect of the present invention, in the tenth aspect of the present invention, a float valve that opens and closes the second connection pipe in accordance with vertical fluctuation of the water surface of the tank is provided at one end of the second connection pipe. The gist is that it is provided.

本発明の冷却水循環システムによると、冷却塔側循環経路とチラー機側循環経路とは、チラー機側循環経路を循環する冷却水を冷却塔側循環経路に導入するための第1接続管で接続されている。これにより、第1接続管を介してチラー機側循環経路を循環する冷却水が冷却塔側循環経路に導入される。そして、業者による防腐剤、殺菌剤等の投与は、通常、冷却塔側循環経路を主に管理メンテナンスが行われているので、冷却塔側循環経路に導入された冷却水は水質改善されることとなる。さらに、従来のようにチラー機の近傍に排水タンク等の排水設備を設置する必要がなく、簡易な構造とすることができる。
また、前記第1接続管の一端側に、差圧噴射器が設けられており、前記差圧噴射器が、前記配管内を流れる冷却水に対して、該冷却水よりも低圧で前記第1接続管を流れる冷却水を導入可能である場合は、チラー機側循環経路を流れる冷却水が冷却塔側循環経路を流れる冷却水よりも低圧であっても、差圧噴射器によりチラー機側循環経路を流れる冷却水が冷却塔側循環経路に導入される。
また、前記差圧噴射器が、小径ノズルと、大径ノズルと、取入口と、を備える場合は、配管内を流れる冷却水を取入口から大径ノズル内に取り入れることで、小径ノズルの吐出口の前方に負圧が生じる。この負圧による吸引力によって、第1接続管を流れる冷却水よりも速い流速で小径ノズルの吐出口から冷却水が引き出され、取入口から取入れられた冷却水と小径ノズルの吐出口から引き出された冷却水とが合わせされて大径ノズルの吐出口から配管内に噴射される。よって、簡易な構造の差圧噴射器によりチラー機側循環経路を流れる冷却水が冷却塔側循環経路に導入される。
また、前記大径ノズルが、前記小径ノズルの外周面を覆うように配置されており、前記取入口が、前記大径ノズルの前記小径ノズルの外周面を覆う部分に形成されている場合は、取入口から冷却水が大径ノズル内に効果的に取り入れられて小径ノズルの吐出口の前方により大きな負圧が生じる。よって、差圧噴射器の噴射力がより高められる。
また、前記取入口が、前記大径ノズルの軸心回りの円周方向に沿って複数形成されているとともに、前記大径ノズルの軸心回りの円周方向に沿って短軸となる楕円形に形成されている場合は、取入口から冷却水が大径ノズル内により効果的に取り入れられる。よって、差圧噴射器の噴射力がより高められる。
また、前記チラー機側循環経路の送り経路に、水中不純物分離装置が設けられており、前記水中不純物分離装置に、排水口が設けられており、前記第1接続管が、前記排水口と前記冷却塔側循環経路の返し経路とを接続している場合は、第1接続管を介して、水中不純物分離装置で分離された不純物とともに冷却水が冷却塔側循環経路の返し経路に導入される。
また、前記第1接続管に、制御部の開閉制御により前記第1接続管を開閉する電動バルブが備えられている場合は、制御部のタイマ機能等によりチラー機側循環経路を流れる冷却水の排水を自動化できる。
また、前記第1接続管に、ワッシャーラバー式の定流量弁が備えられている場合は、冷却水の排水時に固形不純物が定流量弁を通過しても目詰りが防止される。
また、前記冷却塔側循環経路と前記チラー機側循環経路とが、第2接続管で接続されている場合は、第2接続管を介して冷却塔側循環経路を循環する冷却水がチラー機側循環経路に導入される。よって、チラー機側循環経路で汚染された冷却水と冷却塔側循環経路で水質改善された冷却水とを容易に入れ換えることができる。その結果、冷却水の入れ換えを実施しない場合に比べて、製品に直結している冷却配管などの腐食(錆)やシリカ混じりの硬質スケール等が配管内部に付着することが抑制されるため、冷却効率の低下が防止され、品質安定につながる。
また、前記第2接続管が、前記冷却塔側循環経路の送り経路と前記チラー機に設けられたタンクとを接続している場合は、第2接続管を介して、冷却塔側循環経路を循環する冷却水がチラー機のタンクに導入される。
さらに、前記第2接続管の一端側に、フロート弁が設けられている場合は、フロート弁によりタンクの水面の上下変動に伴って第2接続管が自動的に開閉される。
According to the cooling water circulation system of the present invention, the cooling tower side circulation path and the chiller side circulation path are connected by the first connection pipe for introducing the cooling water circulating through the chiller side circulation path into the cooling tower side circulation path. Has been. Thereby, the cooling water which circulates through the chiller side circulation path via the first connection pipe is introduced into the cooling tower side circulation path. In addition, the administration of preservatives, disinfectants, etc. by a contractor is usually managed and maintained mainly in the cooling tower side circulation route, so that the quality of the cooling water introduced into the cooling tower side circulation route is improved. It becomes. Furthermore, it is not necessary to install a drainage facility such as a drainage tank in the vicinity of the chiller as in the conventional case, and a simple structure can be achieved.
Further, a differential pressure injector is provided on one end side of the first connection pipe, and the differential pressure injector is lower in pressure than the cooling water with respect to the cooling water flowing in the pipe. When cooling water flowing through the connecting pipe can be introduced, even if the cooling water flowing through the chiller side circulation path is at a lower pressure than the cooling water flowing through the cooling tower side circulation path, the chiller side circulation is performed by the differential pressure injector. The cooling water flowing through the path is introduced into the cooling tower side circulation path.
Further, when the differential pressure injector includes a small diameter nozzle, a large diameter nozzle, and an intake port, the cooling water flowing in the pipe is taken into the large diameter nozzle from the intake port, thereby discharging the small diameter nozzle. Negative pressure is generated in front of the outlet. Due to the suction force due to the negative pressure, the cooling water is drawn from the discharge port of the small-diameter nozzle at a faster flow rate than the cooling water flowing through the first connection pipe, and is drawn from the discharge port of the small-diameter nozzle and the cooling water taken in from the intake port. The combined cooling water is injected from the discharge port of the large-diameter nozzle into the pipe. Therefore, the cooling water flowing through the chiller side circulation path is introduced into the cooling tower side circulation path by the differential pressure injector having a simple structure.
Further, when the large-diameter nozzle is disposed so as to cover the outer peripheral surface of the small-diameter nozzle, and the intake port is formed in a portion covering the outer peripheral surface of the small-diameter nozzle of the large-diameter nozzle, Cooling water is effectively taken into the large-diameter nozzle from the intake port, and a large negative pressure is generated in front of the discharge port of the small-diameter nozzle. Therefore, the injection force of the differential pressure injector is further increased.
Further, the intake port is formed in a plurality along the circumferential direction around the axis of the large-diameter nozzle, and has an elliptical shape that becomes a short axis along the circumferential direction around the axis of the large-diameter nozzle. In this case, the cooling water is more effectively taken into the large-diameter nozzle from the intake port. Therefore, the injection force of the differential pressure injector is further increased.
Further, an underwater impurity separation device is provided in the feed path of the chiller machine side circulation route, a drain port is provided in the underwater impurity separation device, and the first connection pipe is connected to the drain port and the When the return path of the cooling tower side circulation path is connected, the cooling water is introduced into the return path of the cooling tower side circulation path together with the impurities separated by the underwater impurity separation device via the first connection pipe. .
Further, when the first connection pipe is provided with an electric valve that opens and closes the first connection pipe by opening / closing control of the control section, the cooling water flowing through the chiller side circulation path by the timer function of the control section, etc. Drainage can be automated.
Further, when the first connecting pipe is provided with a washer rubber type constant flow valve, clogging is prevented even if solid impurities pass through the constant flow valve when draining the cooling water.
Further, when the cooling tower side circulation path and the chiller side circulation path are connected by a second connection pipe, the cooling water circulating through the cooling tower side circulation path through the second connection pipe is chiller machine. Introduced into the side circulation path. Therefore, the cooling water contaminated by the chiller side circulation path and the cooling water whose water quality is improved by the cooling tower side circulation path can be easily replaced. As a result, compared to the case where cooling water is not replaced, corrosion (rust) such as cooling pipes directly connected to the product and hard scale mixed with silica are suppressed from adhering to the inside of the pipe. Reduction in efficiency is prevented, leading to stable quality.
Further, when the second connection pipe connects the feed path of the cooling tower side circulation path and the tank provided in the chiller machine, the cooling tower side circulation path is connected via the second connection pipe. Circulating cooling water is introduced into the tank of the chiller machine.
Further, when a float valve is provided on one end side of the second connection pipe, the second connection pipe is automatically opened and closed by the float valve as the water level of the tank fluctuates up and down.

本発明について、本発明による典型的な実施形態の非限定的な例を挙げ、言及された複数の図面を参照しつつ以下の詳細な記述にて更に説明するが、同様の参照符号は図面のいくつかの図を通して同様の部品を示す。
実施例に係る冷却水循環システムの全体概略図である。 図1の要部拡大図である。 実施例に係る第1接続管を説明するための説明図である。 実施例に係る差圧噴射器を説明するための説明図である。 上記差圧噴射器の縦断面図である。 実施例に係る水中不純物分離装置の一部を断面とした側面図である。 他の形態に係る冷却水循環システムを説明するための説明図である。 従来の冷却水入換装置を説明するための説明図である。
The present invention will be further described in the following detailed description with reference to the drawings referred to, with reference to non-limiting examples of exemplary embodiments according to the present invention. Similar parts are shown throughout the several figures.
1 is an overall schematic diagram of a cooling water circulation system according to an embodiment. It is a principal part enlarged view of FIG. It is explanatory drawing for demonstrating the 1st connection pipe which concerns on an Example. It is explanatory drawing for demonstrating the differential pressure | voltage injector which concerns on an Example. It is a longitudinal cross-sectional view of the differential pressure injector. It is the side view which made a part of underwater impurity separation device concerning an example a section. It is explanatory drawing for demonstrating the cooling water circulation system which concerns on another form. It is explanatory drawing for demonstrating the conventional cooling water exchange apparatus.

ここで示される事項は例示的なものおよび本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。   The items shown here are exemplary and illustrative of the embodiments of the present invention, and are the most effective and easy-to-understand explanations of the principles and conceptual features of the present invention. It is stated for the purpose of providing what seems to be. In this respect, it is not intended to illustrate the structural details of the present invention beyond what is necessary for a fundamental understanding of the present invention. It will be clear to those skilled in the art how it is actually implemented.

<冷却水循環システム>
本実施形態に係る冷却水循環システムは、冷却塔(5)とチラー機(6)との間で冷却水を循環させる冷却塔側循環経路(2)と、チラー機(6)と冷却対象部(7)との間で冷却水を循環させるチラー機側循環経路(3)と、を備える冷却水循環システム(1)であって、冷却塔側循環経路(2)とチラー機側循環経路(3)とは、チラー機側循環経路を循環する冷却水を冷却塔側循環経路に導入するための第1接続管(31)で接続されている(例えば、図1及び図2等参照)。
<Cooling water circulation system>
The cooling water circulation system according to this embodiment includes a cooling tower side circulation path (2) for circulating cooling water between the cooling tower (5) and the chiller machine (6), a chiller machine (6), and a cooling target part ( A chiller side circulation path (3) for circulating the cooling water between the cooling tower side circulation path (2) and the chiller side circulation path (3). Are connected by a first connection pipe (31) for introducing cooling water circulating in the chiller side circulation path into the cooling tower side circulation path (see, for example, FIGS. 1 and 2).

なお、上記第1接続管(31)による冷却水の導入量、導入時期等は特に問わない。チラー機で設定してある循環水温度に影響を与えないとの観点から、上記冷却水の導入量としては、チラー機側循環経路(3)を循環する冷却水の循環水量の0.1〜5%(好ましくは0.1〜3%、特に0.1〜2%)であることが好ましい。   The amount of cooling water introduced by the first connecting pipe (31), the introduction timing, etc. are not particularly limited. From the viewpoint of not affecting the circulating water temperature set in the chiller machine, the introduction amount of the cooling water is 0.1 to 0.1 of the circulating water quantity of the cooling water circulating in the chiller machine side circulation path (3). It is preferably 5% (preferably 0.1 to 3%, particularly 0.1 to 2%).

本実施形態に係る冷却水循環システムとしては、例えば、上記第1接続管(31)の一端側には、冷却塔側循環経路(2)を構成する配管(60)内に配置される差圧噴射器(36)が設けられており、差圧噴射器は、配管(60)内を流れる冷却水に対して、該冷却水よりも低圧で第1接続管(31)を流れる冷却水を導入可能である形態(例えば、図4等参照)を挙げることができる。この場合、例えば、上記差圧噴射器(36)は、配管(60)内を流れる冷却水に対して、該冷却水よりも小流量で第1接続管(31)を流れる冷却水を導入可能であることができる。   As the cooling water circulation system according to the present embodiment, for example, differential pressure injection arranged in the pipe (60) constituting the cooling tower side circulation path (2) on one end side of the first connection pipe (31). The differential pressure injector can introduce cooling water flowing through the first connection pipe (31) at a lower pressure than the cooling water with respect to the cooling water flowing through the pipe (60). (For example, see FIG. 4 etc.). In this case, for example, the differential pressure injector (36) can introduce cooling water flowing through the first connection pipe (31) with a smaller flow rate than the cooling water flowing through the pipe (60). Can be.

上述の形態の場合、例えば、上記差圧噴射器(36)は、第1接続管(31)の一端側に連結され且つ軸心が配管(60)内の冷却水の流れ方向に沿うように配置される小径ノズル(52)と、軸心が小径ノズルの軸心と一致し且つ吐出口が小径ノズルの吐出口よりも配管(60)内の冷却水の流れ方向の下流側に位置するように配置される大径ノズル(53)と、配管(60)内を流れる冷却水を大径ノズル(53)内に取り入れて小径ノズル(52)の吐出口の前方に負圧を生じさせる取入口(54)と、を備えることができる(例えば、図4及び図5等参照)。   In the case of the above-mentioned form, for example, the differential pressure injector (36) is connected to one end side of the first connection pipe (31) and the axis is along the flow direction of the cooling water in the pipe (60). The small-diameter nozzle (52) to be arranged has an axial center aligned with the axial center of the small-diameter nozzle, and the discharge port is located downstream of the discharge port of the small-diameter nozzle in the flow direction of the cooling water in the pipe (60). A large-diameter nozzle (53) disposed in the pipe, and an intake port that introduces cooling water flowing in the pipe (60) into the large-diameter nozzle (53) and generates a negative pressure in front of the discharge port of the small-diameter nozzle (52). (54) can be provided (see, for example, FIGS. 4 and 5).

上述の形態の場合、例えば、上記大径ノズル(53)は、小径ノズル(52)の外周面を覆うように配置されており、取入口(54)は、大径ノズルの小径ノズルの外周面を覆う部分に形成されていることができる(例えば、図4及び図5等参照)。さらに、例えば、上記取入口(54)は、大径ノズル(53)の軸心回りの円周方向に沿って複数形成されているとともに、大径ノズルの軸心回りの円周方向に沿って短軸となる楕円形に形成されていることができる。   In the case of the above-mentioned form, for example, the large-diameter nozzle (53) is disposed so as to cover the outer peripheral surface of the small-diameter nozzle (52), and the intake port (54) is the outer peripheral surface of the small-diameter nozzle of the large-diameter nozzle. (See, for example, FIGS. 4 and 5). Furthermore, for example, the intake port (54) is formed in plural along the circumferential direction around the axis of the large diameter nozzle (53), and along the circumferential direction around the axis of the large diameter nozzle (53). It can be formed in an elliptical shape with a short axis.

本実施形態に係る冷却水循環システムとしては、例えば、上記チラー機側循環経路(3)の送り経路(3a)には、循環する冷却水に含まれる不純物を除去する水中不純物分離装置(17)が設けられており、水中不純物分離装置(17)には、分離された不純物とともに冷却水を排水する排水口(17a)が設けられており、第1接続管(31)は、排水口(17a)と冷却塔側循環経路(2)の返し経路(2b)とを接続している形態(例えば、図2等参照)を挙げることができる。   As the cooling water circulation system according to the present embodiment, for example, an underwater impurity separation device (17) for removing impurities contained in the circulating cooling water is provided in the feed path (3a) of the chiller side circulation path (3). The underwater impurity separation device (17) is provided with a drain port (17a) for draining the cooling water together with the separated impurities, and the first connection pipe (31) is connected to the drain port (17a). And a return path (2b) of the cooling tower side circulation path (2) (see, for example, FIG. 2).

本実施形態に係る冷却水循環システムとしては、例えば、上記第1接続管(31)には、制御部(32)の開閉制御により第1接続管を開閉する電動バルブ(33)が備えられている形態(例えば、図3等参照)を挙げることができる。さらに、例えば、上記第1接続管(31)には、ワッシャーラバー式の定流量弁(34)が備えられている形態(例えば、図3等参照)を挙げることができる。   As the cooling water circulation system according to the present embodiment, for example, the first connection pipe (31) includes an electric valve (33) that opens and closes the first connection pipe by opening / closing control of the control unit (32). A form (for example, see FIG. 3 etc.) can be mentioned. Further, for example, the first connecting pipe (31) may be provided with a washer rubber type constant flow valve (34) (see, for example, FIG. 3).

本実施形態に係る冷却水循環システムとしては、例えば、上記冷却塔側循環経路(2)とチラー機側循環経路(3)とは、冷却塔側循環経路を循環する冷却水をチラー機側循環経路に導入するための第2接続管(38)で接続されている形態(例えば、図2等参照)を挙げることができる。   As the cooling water circulation system according to the present embodiment, for example, the cooling tower side circulation path (2) and the chiller side circulation path (3) include cooling water circulating through the cooling tower side circulation path as a chiller side circulation path. The form (for example, refer FIG. 2 etc.) connected by the 2nd connection pipe | tube (38) for introduce | transducing into can be mentioned.

上述の形態の場合、例えば、上記第2接続管(38)は、冷却塔側循環経路(2)の送り経路(2a)とチラー機(6)に設けられたタンク(6a)とを接続していることができる(例えば、図2等参照)。この場合、例えば、上記第2接続管(38)の一端側には、タンク(6a)の水面の上下変動に伴って第2接続管を開閉するフロート弁(39)が設けられていることができる。   In the case of the above-described embodiment, for example, the second connection pipe (38) connects the feed path (2a) of the cooling tower side circulation path (2) and the tank (6a) provided in the chiller machine (6). (See, for example, FIG. 2). In this case, for example, a float valve (39) that opens and closes the second connection pipe as the water level of the tank (6a) fluctuates up and down is provided on one end side of the second connection pipe (38). it can.

なお、上記実施形態で記載した各構成の括弧内の符号は、後述する実施例に記載の具体的構成との対応関係を示すものである。   In addition, the code | symbol in the parenthesis of each structure described in the said embodiment shows the correspondence with the specific structure as described in the Example mentioned later.

以下、図面を用いて実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to the drawings.

(1)冷却水循環システムの構成
本実施例に係る冷却水循環システム1は、図1に示すように、冷却塔5とチラー機6との間で冷却水を循環させる冷却塔側循環経路2(「一次循環経路」とも称する。)と、チラー機6と冷却対象部7との間で冷却水を循環させるチラー機側循環経路3(「二次循環経路」とも称する。)と、を備えている。なお、上記冷却対象部7としては、例えば、射出成形装置、プレス加工装置、溶接装置、加熱装置、トリム装置などを挙げることができる。
(1) Configuration of Cooling Water Circulation System As shown in FIG. 1, the cooling water circulation system 1 according to the present embodiment is a cooling tower side circulation path 2 (“” that circulates cooling water between the cooling tower 5 and the chiller machine 6. And a chiller side circulation path 3 (also referred to as a “secondary circulation path”) that circulates cooling water between the chiller machine 6 and the cooling target portion 7. . In addition, as the said cooling object part 7, an injection molding apparatus, a press processing apparatus, a welding apparatus, a heating apparatus, a trim apparatus etc. can be mentioned, for example.

上記冷却塔5は、チラー機6から送られる温度上昇した冷却水を溜めて散水する散水槽5aと、散水槽5aから散水された冷却水を空気により冷却する充填材5bと、外気を吸気口から取り込んで充填材5bの内部を通過させる送風機5cと、充填材5bで冷却されて落下してきた冷却水を溜める水槽5dと、を備えている。この水槽5d内には、水槽5d内の冷却水中にマイクロバブルを発生させるマイクロバブル発生装置40Bを構成する多孔質セラミック製の直管41Bと、水槽5dの底部に沈殿するスライム等の沈殿物を除去するための噴射器9と、が備えられている。さらに、冷却塔5の吸気口及び散水槽5aを覆うように多機能ネット10が張設されている。この多機能ネット10により、冷却塔5では、藻、スライム、レジオネラ菌等の発生が防止されるとともに、冷却効率が向上される。   The cooling tower 5 includes a sprinkling tank 5a for collecting and sprinkling the cooling water whose temperature has risen sent from the chiller machine 6, a filler 5b for cooling the water sprinkled from the sprinkling tank 5a with air, and the outside air to the intake port. And a water tank 5d for collecting cooling water that has been cooled and dropped by the filler 5b. In this water tank 5d, a porous ceramic straight pipe 41B that constitutes a microbubble generator 40B that generates microbubbles in the cooling water in the water tank 5d, and a deposit such as slime that precipitates at the bottom of the water tank 5d. And an injector 9 for removal. Furthermore, the multifunctional net 10 is stretched so as to cover the air inlet of the cooling tower 5 and the water sprinkling tank 5a. The multifunctional net 10 prevents the generation of algae, slime, Legionella, and the like in the cooling tower 5 and improves the cooling efficiency.

上記チラー機6は、冷却対象部7から送られる温度上昇した冷却水を溜めるタンク6aと、タンク6a内の冷却水を冷却するための熱交換器6bと、を備えている。このタンク6a内には、タンク6a内の冷却水中にマイクロバブルを発生させるマイクロバブル発生装置40Cを構成する多孔質セラミック製の直管41Cが備えられている。   The chiller machine 6 includes a tank 6a for collecting cooling water whose temperature has risen sent from the object to be cooled 7, and a heat exchanger 6b for cooling the cooling water in the tank 6a. In the tank 6a, a straight pipe 41C made of a porous ceramic constituting a microbubble generator 40C for generating microbubbles in the cooling water in the tank 6a is provided.

上記冷却塔側循環経路2は、一端側が冷却塔5の水槽5dに接続され且つ他端側がチラー機6の熱交換器6bに接続される送り経路2aと、一端側がチラー機6の熱交換器6bに接続され且つ他端側が冷却塔5の散水槽5aに接続される返し経路2bと、を備えている。この送り経路2aには、冷却塔5の水槽5d内の冷却水をチラー機6の熱交換器6bに向かって圧送する圧送ポンプ12が備えられている。また、送り経路2aの圧送ポンプ12の上流側には、一端側が噴射器9に接続された導入管13の他端側が接続されている。この導入管13には、冷却塔5の水槽5d内の冷却水を噴射器9に向かって圧送する圧送ポンプ14が備えられている。そして、圧送ポンプ14で圧送された冷却水が噴射器9から噴射されることで、水槽5d内の底部に沈殿する沈殿物が除去される。   The cooling tower side circulation path 2 has one end side connected to the water tank 5d of the cooling tower 5 and the other end side connected to the heat exchanger 6b of the chiller machine 6, and one end side heat exchanger of the chiller machine 6. And a return path 2b connected to the watering tank 5a of the cooling tower 5 at the other end. The feed path 2 a is provided with a pressure feed pump 12 that pumps the coolant in the water tank 5 d of the cooling tower 5 toward the heat exchanger 6 b of the chiller 6. Further, the other end side of the introduction pipe 13 whose one end side is connected to the injector 9 is connected to the upstream side of the pressure feed pump 12 in the feed path 2a. The introduction pipe 13 is provided with a pumping pump 14 that pumps the cooling water in the water tank 5 d of the cooling tower 5 toward the injector 9. And the sediment which precipitates in the bottom part in the water tank 5d is removed because the cooling water pumped by the pumping pump 14 is injected from the injector 9.

上記導入管13には、無機物等からなる水処理剤を収容したバスケットフィルタ16と、冷却水中に含まれる不純物を除去する水中不純物分離装置17と、冷却水をトルマリン粒状物に接触させてトルマリン処理水とするトルマリン処理装置18と、が備えられている。この水中不純物分離装置17の排水口17aには、開閉弁22で開閉されるドレン用配管21が接続されている。この開閉弁22は、冷却水の電気伝導率を検出するセンサ23からの検出値に応じて制御部24により開閉制御される。そして、ドレン用配管21が開放されることで、水中不純物分離装置17の排水口17aから不純物とともに冷却水が排水される。また、導入管13には、バイパス経路25が設けられており、バイパス経路25には、冷却水を磁気で処理する磁気式水処理装置19が備えられている。   The introduction pipe 13 has a basket filter 16 containing a water treatment agent made of an inorganic substance, an underwater impurity separation device 17 for removing impurities contained in the cooling water, and a tourmaline treatment by bringing the cooling water into contact with the tourmaline particulate matter. And a tourmaline treatment device 18 for water. A drain pipe 21 that is opened and closed by an on-off valve 22 is connected to the drain port 17 a of the underwater impurity separation device 17. The on-off valve 22 is controlled to open and close by a control unit 24 in accordance with a detection value from a sensor 23 that detects the electrical conductivity of cooling water. Then, by opening the drain pipe 21, cooling water is drained together with impurities from the drain port 17 a of the underwater impurity separation device 17. The introduction pipe 13 is provided with a bypass path 25, and the bypass path 25 is provided with a magnetic water treatment device 19 that magnetically processes the cooling water.

なお、本実施例では、導入管13に備えられる水中不純物分離装置17を例示したが、これに限定されず、例えば、図1中に仮想線で示すように、導入管13に代えて又は加えて、冷却塔循環経路2の返し経路2b(又は送り経路2a)に備えられる水中不純物分離装置17としてもよい。さらに、本実施例では、導入管13に備えられるトルマリン処理装置18を例示したが、これに限定されず、例えば、図1中に仮想線で示すように、導入管13に代えて又は加えて、冷却塔側循環経路2の送り経路2a(又は返し経路2b)に備えられるトルマリン処理装置18としてもよい。さらに、チラー機側循環経路3の後述する返し経路3b(又は送り経路3a)に備えられるトルマリン処理装置18としてもよい。   In the present embodiment, the underwater impurity separation device 17 provided in the introduction pipe 13 is exemplified, but the present invention is not limited to this. For example, as shown by a virtual line in FIG. Thus, the underwater impurity separation device 17 provided in the return path 2b (or the feed path 2a) of the cooling tower circulation path 2 may be used. Furthermore, in the present embodiment, the tourmaline processing apparatus 18 provided in the introduction pipe 13 is illustrated, but the present invention is not limited to this. For example, as shown by a virtual line in FIG. The tourmaline processing device 18 provided in the feed path 2a (or the return path 2b) of the cooling tower side circulation path 2 may be used. Furthermore, it is good also as the tourmaline processing apparatus 18 with which the return path | route 3b (or feed path | route 3a) mentioned later of the chiller machine side circulation path | route 3 is equipped.

上記チラー機側循環経路3は、一端側がチラー機6のタンク6aに接続され且つ他端側が冷却対象部7に接続される送り経路3aと、一端側が冷却対象部7に接続され且つ他端側がチラー機6のタンク6aに接続される返し経路3bと、を備えている。この送り経路3aには、チラー機6のタンク6a内の冷却水を冷却対象部7に向かって圧送する圧送ポンプ26が備えられている。また、送り経路3aの圧送ポンプ26の下流側には、バイパス経路27が設けられている。このバイパス経路27には、冷却水中に含まれる不純物を除去する水中不純物分離装置17と、冷却水中にマイクロバブルを発生させるマイクロバブル発生装置40Aと、が備えられている。このマイクロバブル発生装置40Aは、多孔質セラミック製の直管41Aと、トルマリン粒状物を収容した収容体53と、を備えている。よって、マイクロバブル発生装置40Aは、冷却水中にマイクロバブルを発生させる機能の他に、冷却水をトルマリン粒状物に接触させてトルマリン処理水とする機能も有している。   The chiller side circulation path 3 has one end side connected to the tank 6a of the chiller machine 6 and the other end side connected to the cooling target part 7, and one end side connected to the cooling target part 7 and the other end side. And a return path 3b connected to the tank 6a of the chiller machine 6. The feed path 3 a is provided with a pressure feed pump 26 that pumps the coolant in the tank 6 a of the chiller machine 6 toward the cooling target portion 7. Further, a bypass path 27 is provided on the downstream side of the pressure feed pump 26 in the feed path 3a. The bypass path 27 includes an underwater impurity separator 17 that removes impurities contained in the cooling water, and a microbubble generator 40A that generates microbubbles in the cooling water. The microbubble generator 40A includes a straight tube 41A made of a porous ceramic and a container 53 that contains tourmaline particulate matter. Therefore, the microbubble generator 40A has a function of making the tourmaline treated water by bringing the coolant into contact with the tourmaline particulate matter in addition to the function of generating the microbubbles in the coolant.

上記水中不純物分離装置17は、図6に示すように、流入口70a及び流出口70bを有するハウジング70を備えている。このハウジング70内には、内部空間を上部濾過室S1と下部沈殿室S2とに上下に仕切るように邪魔板71が設けられている。この上部濾過室S1内には、複数の濾材72が収容されている。また、ハウジング70の底部には下部沈殿室S2に連なる排水口17aが設けられている。   As shown in FIG. 6, the underwater impurity separation device 17 includes a housing 70 having an inlet 70a and an outlet 70b. A baffle plate 71 is provided in the housing 70 so as to divide the internal space into an upper filtration chamber S1 and a lower sedimentation chamber S2. A plurality of filter media 72 are accommodated in the upper filtration chamber S1. Further, a drain port 17a connected to the lower sedimentation chamber S2 is provided at the bottom of the housing 70.

上記冷却塔側循環経路2とチラー機側循環経路3とは、図2に示すように、チラー機側循環経路3を循環する冷却水を冷却塔側循環経路2に導入するための第1接続管31で接続されている。この第1接続管31は、水中不純物分離装置17の排水口17aと冷却塔側循環経路2の返し経路2bとを接続している。   The cooling tower side circulation path 2 and the chiller side circulation path 3 are, as shown in FIG. 2, a first connection for introducing the cooling water circulating through the chiller side circulation path 3 into the cooling tower side circulation path 2. They are connected by a pipe 31. The first connection pipe 31 connects the drain port 17 a of the underwater impurity separation device 17 and the return path 2 b of the cooling tower side circulation path 2.

上記第1接続管31には、制御部32の開閉制御により第1接続管31を開閉する電動バルブ33が備えられている。この制御部32は、タイマ機能を備え、このタイマ機能により、冷却水の水質状態や温度設定状態等に応じて、排水時間帯や入換え排水量を任意に設定することができる。また、第1接続管31には、ワッシャーラバー式の定流量弁34が備えられている。さらに、第1接続管31には、図3に示すように、ボールバルブ43、塩ビY形ストレーナ44、フィルタ45、サイトグラス46、チューブフィッティング47、透明テフロン(登録商標)チューブ48、チャッキバルブ49、及びボールバルブ50が備えられている。   The first connection pipe 31 is provided with an electric valve 33 that opens and closes the first connection pipe 31 by opening / closing control of the control unit 32. The control unit 32 has a timer function, and the timer function can arbitrarily set the drainage time zone and the replacement drainage amount according to the water quality state, the temperature setting state, and the like of the cooling water. The first connection pipe 31 is provided with a washer rubber type constant flow valve 34. Further, as shown in FIG. 3, the first connection pipe 31 includes a ball valve 43, a PVC Y-strainer 44, a filter 45, a sight glass 46, a tube fitting 47, a transparent Teflon (registered trademark) tube 48, and a check valve 49. And a ball valve 50 are provided.

なお、上記ボールバルブ43は、取水側のサイズは大きくした方が取水量が確保できるので口径25Aを採用した。また、塩ビY形ストレーナ44は、固形物が進入したときの機器破損防止用に設けられており、目詰まり状態を目視確認できるような透明材料より形成されている。また、フィルタ45は、通常品としてのメッシュ40で目詰まりを起こし易いので、排水機器へ影響のでない20メッシュを採用した。また、電動バルブ33は、ダイヤフラムタイプで噛み込み等のトラブルがあるので、ボールバルブタイプを採用した。さらに、サイトグラス46は、排水が行われているか、透明ガラスと水車を目視確認が容易であるとともに、流量確認が容易である。また、ワッシャー式定流量弁34は、固形不純物が進入した場合を想定して、目詰まりが起こり難い。また、チューブフィッティング47は、メンテナンス性を良くするために採用した。また、透明テフロン(登録商標)チューブ48は、温水に強く、耐候性、水質の汚れ状態を目視確認できる。また、チャッキバルブ49は、装置停止中に逆流作用が発生するため、逆流防止精度が高いリフト式を採用した。また、ボールバルブ50は、排水口径が小さいほど排水が円滑であるので15Aサイズを採用した。   Note that the ball valve 43 has a diameter of 25A because the water intake can be ensured by increasing the size of the water intake side. Further, the PVC Y-strainer 44 is provided for preventing equipment damage when a solid material enters, and is made of a transparent material that can visually check a clogged state. Moreover, since the filter 45 is likely to be clogged with the mesh 40 as a normal product, a 20 mesh that does not affect the drainage equipment is adopted. The electric valve 33 is a diaphragm type and has a problem such as biting, so a ball valve type is adopted. Further, the sight glass 46 is easy to visually check whether drainage is performed or whether the transparent glass and the water wheel are visible. Further, the washer-type constant flow valve 34 is unlikely to be clogged assuming that solid impurities have entered. In addition, the tube fitting 47 is employed to improve maintenance. In addition, the transparent Teflon (registered trademark) tube 48 is resistant to warm water, and can visually check the weather resistance and the quality of water. Further, the check valve 49 employs a lift type with high backflow prevention accuracy because a backflow action occurs while the apparatus is stopped. Further, the ball valve 50 has a 15A size because the smaller the drain diameter, the smoother the drainage.

上記第1接続管31の一端側には、図4に示すように、冷却塔側循環経路2を構成する配管60(例えば、内径;70.3mm、縦断面積;3879.5mm2)内に配置される差圧噴射器36が設けられている。この差圧噴射器36は、配管60内を流れる冷却水に対して、該冷却水よりも低圧且つ小流量で第1接続管31を流れる冷却水を導入可能とされている。   As shown in FIG. 4, one end side of the first connection pipe 31 is disposed in a pipe 60 (for example, an inner diameter; 70.3 mm, a longitudinal cross-sectional area; 3879.5 mm2) constituting the cooling tower side circulation path 2. A differential pressure injector 36 is provided. The differential pressure injector 36 can introduce cooling water flowing through the first connection pipe 31 at a lower pressure and a smaller flow rate than the cooling water flowing in the pipe 60.

上記差圧噴射器36は、第1接続管31の一端側に連結され且つ軸心が配管60内の冷却水の流れ方向に沿うように配置される小径ノズル52と、軸心が小径ノズル52の軸心と一致し且つ吐出口53aが小径ノズル52の吐出口52aよりも配管60内の冷却水の流れ方向の下流側に位置するように配置される大径ノズル54と、配管60内を流れる冷却水を大径ノズル53内に取り入れて小径ノズル52の吐出口52aの前方に負圧を生じさせる取入口54と、を備えている(図5参照)。この小径ノズル52は、ノズル孔が吐出口52a(例えば、内径;5mm)に向かって縮径している。また、大径ノズル53は、ノズル孔が吐出口53aに向かって拡径している。さらに、大径ノズル53の吐出口53aの開口面積は、小径ノズル52の吐出口52aの開口面積よりも大きい。   The differential pressure injector 36 is connected to one end side of the first connection pipe 31 and has a small diameter nozzle 52 arranged so that the axis is along the flow direction of the cooling water in the pipe 60, and the axis is the small diameter nozzle 52. A large-diameter nozzle 54 disposed so that the discharge port 53a is positioned downstream of the discharge port 52a of the small-diameter nozzle 52 in the flow direction of the cooling water, and the inside of the pipe 60. An intake 54 is provided that introduces flowing cooling water into the large-diameter nozzle 53 and generates a negative pressure in front of the discharge port 52a of the small-diameter nozzle 52 (see FIG. 5). The small-diameter nozzle 52 has a nozzle hole whose diameter is reduced toward the discharge port 52a (for example, an inner diameter; 5 mm). The large-diameter nozzle 53 has a nozzle hole whose diameter increases toward the discharge port 53a. Further, the opening area of the discharge port 53 a of the large diameter nozzle 53 is larger than the opening area of the discharge port 52 a of the small diameter nozzle 52.

上記大径ノズル53は、小径ノズル52の外周面を覆うように配置されている。また、取入口54は、大径ノズル53の小径ノズル52の外周面を覆う部分(具体的に、大径ノズル53において吐出口53aと軸方向に反対側の後端部)に形成されている。また、取入口54は、大径ノズル53の軸心回りの円周方向に沿って複数(例えば、6個)形成されている。さらに、各取入口54は、大径ノズル53の軸心回りの円周方向に沿って短軸となる楕円形(例えば、楕円面積;75.39mm2)に形成されている。   The large diameter nozzle 53 is disposed so as to cover the outer peripheral surface of the small diameter nozzle 52. The intake port 54 is formed at a portion of the large diameter nozzle 53 that covers the outer peripheral surface of the small diameter nozzle 52 (specifically, the rear end portion of the large diameter nozzle 53 opposite to the discharge port 53a in the axial direction). . Further, a plurality (for example, six) of the intake ports 54 are formed along the circumferential direction around the axis of the large-diameter nozzle 53. Furthermore, each intake 54 is formed in an elliptical shape (for example, an elliptical area; 75.39 mm 2) that is a short axis along the circumferential direction around the axis of the large-diameter nozzle 53.

上記冷却塔側循環経路2とチラー機側循環経路3とは、図2に示すように、冷却塔側循環経路2を循環する冷却水をチラー機側循環経路3に導入するための第2接続管38で接続されている。この第2接続管38は、冷却塔側循環経路2の送り経路2aとチラー機6のタンク6aとを接続している。また、第2接続管38の一端側には、タンク6aの水面の上下変動に伴って第2接続管を開閉するフロート弁39が設けられている。   The cooling tower side circulation path 2 and the chiller side circulation path 3 are, as shown in FIG. 2, a second connection for introducing cooling water circulating through the cooling tower side circulation path 2 into the chiller side circulation path 3. They are connected by a pipe 38. The second connection pipe 38 connects the feed path 2 a of the cooling tower side circulation path 2 and the tank 6 a of the chiller machine 6. Further, a float valve 39 that opens and closes the second connection pipe in accordance with the vertical fluctuation of the water surface of the tank 6a is provided on one end side of the second connection pipe 38.

(2)冷却水循環システムの作用
次に、上記構成の冷却水循環システム1の作用について説明する。冷却塔側循環経路2を循環する冷却水は、図1に示すように、導入管13を流れる際に、バスケットフィルタ16、水中不純物分離装置17、トルマリン処理装置18、及び磁気式水処理装置19の作用により水質改善されるとともに、冷却塔5の水槽5d内に貯留される際に、マイクロバブル発生装置40Bの作用により水質改善されて、防錆及び防スケールに優れるとともに洗浄機能を有する冷却水とされる。一方、チラー機側循環経路3を循環する冷却水は、水中不純物分離器17及びトルマリン処理機能付きマイクロバブル発生装置40Aの作用により水質改善されるとともに、チラー機6のタンク6a内に貯留される際に、マイクロバブル発生装置40Cの作用により水質改善されて、防錆及び防スケールに優れるとともに洗浄機能を有する冷却水とされる。
(2) Action of Cooling Water Circulation System Next, the action of the cooling water circulation system 1 having the above configuration will be described. As shown in FIG. 1, the cooling water circulating through the cooling tower side circulation path 2 flows through the introduction pipe 13 when the basket filter 16, the underwater impurity separation device 17, the tourmaline treatment device 18, and the magnetic water treatment device 19. The water quality is improved by the action of the above, and when stored in the water tank 5d of the cooling tower 5, the water quality is improved by the action of the microbubble generator 40B, and the cooling water has excellent rust prevention and scale prevention and has a washing function. It is said. On the other hand, the cooling water circulating through the chiller side circulation path 3 is improved in water quality by the action of the underwater impurity separator 17 and the microbubble generator with tourmaline treatment function 40A, and is stored in the tank 6a of the chiller machine 6. At this time, the water quality is improved by the action of the microbubble generator 40C, and the cooling water has excellent rust prevention and scale prevention and has a cleaning function.

そして、水質改善された冷却水が各循環経路2、3を循環することで、冷却水の水質低下に起因する、金型冷却孔、冷却配管、熱交換器等でのスケールの付着・堆積・流路閉塞/腐食・錆・水漏れ/スライム・藻の発生等が抑制される。その結果、成形品の品質安定化(金型を一定の温度に維持できる;冷却不足でのシルバー不良が発生し難い)、節電、省エネ(熱交換器の熱交換率の向上により消費電力を大幅に削減;節電、節水によるCO2排出量削減;熱交換器の高圧異常トラブルの低減)、設備管理コストの大幅削減(設備にかかる電気料金を削減;薬品洗浄費用を削減;清掃メンテナンス費用の削減)等の様々なメリットが得られる。   The cooling water with improved water quality circulates in the circulation paths 2 and 3, thereby causing the scale to adhere to / deposit on mold cooling holes, cooling pipes, heat exchangers, etc. Flow path blockage / corrosion / rust / water leakage / slime / algae generation is suppressed. As a result, the quality of the molded product is stabilized (the mold can be maintained at a constant temperature; silver failure due to insufficient cooling is unlikely to occur), power saving, and energy saving (improves the heat exchange rate of the heat exchanger, greatly increasing power consumption) Reduced CO2 emissions due to power saving and water saving; reduced high-pressure troubles in heat exchangers), drastically reduced facility management costs (reduced electricity costs for facilities; reduced chemical cleaning costs; reduced cleaning maintenance costs) Various merits such as are obtained.

さらに、上記冷却水循環システム1では、制御部32のタイマ機能により電動バルブ33が開放されると、第1接続管31を介して水中不純物分離装置17の排水口17aから不純物とともに冷却水が冷却塔側循環経路2の返し経路2bに導入される。このとき、差圧噴射器36により、冷却塔側循環経路2を構成する配管60内を流れる冷却水(例えば、水圧:0.4MPa、流量:120L/min)に対して、該冷却水よりも低圧且つ小流量で第1接続管31を流れる冷却水(例えば、水圧:0.3MPa、流量:1.8L/min)が導入される。一方、チラー機6のタンク6aの水面の下降に伴ってフロート弁39が作動されると、第2接続管38を介して冷却塔側循環経路2の送り経路2aを流れる冷却水がタンク6aに導入される。すなわち、チラー機側循環経路3で汚染された冷却水と冷却塔側循環経路2で水質改善された冷却水とが入れ換えられる。   Further, in the cooling water circulation system 1, when the electric valve 33 is opened by the timer function of the control unit 32, the cooling water together with the impurities from the drain 17 a of the underwater impurity separation device 17 is supplied to the cooling tower via the first connection pipe 31. It is introduced into the return path 2 b of the side circulation path 2. At this time, with respect to the cooling water (for example, water pressure: 0.4 MPa, flow rate: 120 L / min) flowing in the pipe 60 constituting the cooling tower side circulation path 2 by the differential pressure injector 36, the cooling water is more than the cooling water. Cooling water (for example, water pressure: 0.3 MPa, flow rate: 1.8 L / min) flowing through the first connection pipe 31 at a low pressure and a small flow rate is introduced. On the other hand, when the float valve 39 is actuated as the water level of the tank 6a of the chiller machine 6 is lowered, the cooling water flowing through the feed path 2a of the cooling tower side circulation path 2 via the second connection pipe 38 is transferred to the tank 6a. be introduced. That is, the cooling water contaminated by the chiller side circulation path 3 and the cooling water whose water quality is improved by the cooling tower side circulation path 2 are exchanged.

なお、上記水中不純物分離装置17から排出される排水量は、チラー機側循環経路3のチラー機6の冷却効率に支障がないように、チラー機側循環水量の2%以内で定流量弁34からチャッキバルブ49を通過して、冷却塔側循環経路2の返し経路2bに導入されることが好ましい。ただし、チラー機6の使用によって熱交換器6b内の循環水量は異なるので、仕様にあった排水流量を換算して定流量弁34を選定する必要がある。   The amount of waste water discharged from the underwater impurity separation device 17 is within 2% of the chiller side circulating water amount from the constant flow valve 34 so that the cooling efficiency of the chiller unit 6 in the chiller side circulating path 3 is not affected. It is preferably introduced into the return path 2b of the cooling tower side circulation path 2 through the check valve 49. However, since the amount of circulating water in the heat exchanger 6b differs depending on the use of the chiller unit 6, it is necessary to select the constant flow valve 34 by converting the drainage flow rate that meets the specifications.

ここで、上記差圧噴射器36の作用について説明する。図4に示すように、第1接続管31において、定流量弁34で制御された水量1.8L/minの排水は、チューブ56(内径;5mm)内で水量1.8L/minのまま流速2.5m/secに加速され、小径ノズル52内で水量1.8L/minのまま流速2.5m/secを維持する。一方、配管60内を流れる総量120L/minの冷却水のうちの一部(水量;10L/min)が取入口54から大径ノズル53内に取り入れられることで、小径ノズル52の吐出口52aの前方に負圧が発生する。この負圧の吸引力(取入口54がない場合に比べて5倍の吸引力)によって、小径ノズル52内を流れる排水は、水量1.8L/minのまま流速2.5m/secを維持して吐出口52aから引き出される。この引き出された水量1.8L/minの排水が取入口54から取り入れられた水量10L/minの冷却水と合流し、総量11.8L/minとなって大径ノズル53内で流速2.5m/secと加速され、大径ノズル53の吐出口53aから配管60内へ放出(噴射)される。この大径ノズル53aから配管60内に放出された総量11.8L/minの冷却水は、差圧噴射器36の外側を流れる水量110L/minの冷却水と合流し、総量121.8L/minで且つ流速0.522m/secとなって冷却塔5の上部散水槽5aへ送られる(図1参照)。   Here, the operation of the differential pressure injector 36 will be described. As shown in FIG. 4, in the first connection pipe 31, the drainage of the water amount 1.8 L / min controlled by the constant flow valve 34 is flowed at the flow rate of 1.8 L / min in the tube 56 (inner diameter: 5 mm). It is accelerated to 2.5 m / sec, and the flow rate of 2.5 m / sec is maintained in the small diameter nozzle 52 with the amount of water being 1.8 L / min. On the other hand, a part (water amount; 10 L / min) of the total amount of 120 L / min of cooling water flowing in the pipe 60 is taken into the large-diameter nozzle 53 from the intake port 54, so that the discharge port 52 a of the small-diameter nozzle 52 is discharged. Negative pressure is generated in the front. Due to this negative suction force (suction force five times that in the case where there is no intake port 54), the waste water flowing through the small diameter nozzle 52 maintains a flow rate of 2.5 m / sec with a water volume of 1.8 L / min. Then, it is pulled out from the discharge port 52a. The drained water with a flow rate of 1.8 L / min is combined with the cooling water with a flow rate of 10 L / min taken from the intake 54, resulting in a total amount of 11.8 L / min and a flow rate of 2.5 m in the large-diameter nozzle 53. / Sec and is discharged (injected) from the discharge port 53a of the large-diameter nozzle 53 into the pipe 60. The total amount of 11.8 L / min of cooling water discharged from the large-diameter nozzle 53 a into the pipe 60 is merged with 110 L / min of cooling water flowing outside the differential pressure injector 36, resulting in a total amount of 121.8 L / min. And a flow rate of 0.522 m / sec is sent to the upper watering tank 5a of the cooling tower 5 (see FIG. 1).

(3)実施例の効果
本実施例の冷却水循環システム1によると、冷却塔側循環経路2とチラー機側循環経路3とは、チラー機側循環経路3を循環する冷却水を冷却塔側循環経路2に導入するための第1接続管31で接続されている。これにより、第1接続管31を介してチラー機側循環経路3を循環する冷却水が冷却塔側循環経路2に導入される。そして、業者による防腐剤、殺菌剤等の投与は、通常、冷却塔側循環経路2を主に管理メンテナンスが行われているので、冷却塔側循環経路2に導入された冷却水は水質改善されることとなる。さらに、従来のようにチラー機6の近傍に排水タンク等の排水設備を設置する必要がなく、簡易な構造とすることができる。
(3) Effects of the embodiment According to the cooling water circulation system 1 of the present embodiment, the cooling tower side circulation path 2 and the chiller side circulation path 3 circulate the cooling water circulating through the chiller side circulation path 3 in the cooling tower side circulation. The first connection pipe 31 for introduction into the path 2 is connected. Thereby, the cooling water circulating through the chiller side circulation path 3 is introduced into the cooling tower side circulation path 2 via the first connection pipe 31. The administration of preservatives, bactericides, etc. by the contractor is usually performed mainly for maintenance of the cooling tower side circulation path 2, so that the quality of the cooling water introduced into the cooling tower side circulation path 2 is improved. The Rukoto. Furthermore, it is not necessary to install a drainage facility such as a drainage tank in the vicinity of the chiller machine 6 as in the prior art, and a simple structure can be achieved.

また、本実施例では、第1接続管31の一端側には、差圧噴射器36が設けられており、差圧噴射器36は、配管60内を流れる冷却水に対して、該冷却水よりも低圧で第1接続管31を流れる冷却水を導入可能である。これにより、チラー機側循環経路3を流れる冷却水が冷却塔側循環経路2を流れる冷却水よりも低圧であっても、差圧噴射器36によりチラー機側循環経路3を流れる冷却水が冷却塔側循環経路2に導入される。   In the present embodiment, a differential pressure injector 36 is provided on one end side of the first connection pipe 31, and the differential pressure injector 36 is provided for the cooling water flowing in the pipe 60. It is possible to introduce cooling water flowing through the first connection pipe 31 at a lower pressure. Thereby, even if the cooling water flowing through the chiller side circulation path 3 is at a lower pressure than the cooling water flowing through the cooling tower side circulation path 2, the cooling water flowing through the chiller side circulation path 3 is cooled by the differential pressure injector 36. It is introduced into the tower side circulation path 2.

また、本実施例では、差圧噴射器36は、小径ノズル52と、大径ノズル53と、取入口54と、を備える。これにより、配管60内を流れる冷却水を取入口54から大径ノズル53内に取り入れることで、小径ノズル52の吐出口52aの前方に負圧が生じる。この負圧による吸引力によって、第1接続管31を流れる冷却水よりも速い流速(例えば、第1接続管31を流れる冷却水の流速の約4倍の流速)で小径ノズル52の吐出口52aから冷却水が引き出され、取入口54から取入れられた冷却水と小径ノズル52の吐出口52aから引き出された冷却水とが合わせされて大径ノズル63の吐出口53aから配管60内に噴射される。よって、簡易な構造の差圧噴射器36によりチラー機側循環経路3を流れる冷却水が冷却塔側循環経路2に導入される。   In the present embodiment, the differential pressure injector 36 includes a small diameter nozzle 52, a large diameter nozzle 53, and an intake 54. As a result, the cooling water flowing in the pipe 60 is taken into the large diameter nozzle 53 from the inlet 54, thereby generating a negative pressure in front of the discharge port 52 a of the small diameter nozzle 52. Due to the suction force due to the negative pressure, the discharge port 52a of the small-diameter nozzle 52 has a faster flow rate than the cooling water flowing through the first connection pipe 31 (for example, a flow rate about four times the flow rate of the cooling water flowing through the first connection pipe 31). The cooling water is drawn out from the inlet 54, and the cooling water taken in from the inlet 54 and the cooling water drawn out from the outlet 52 a of the small diameter nozzle 52 are combined and injected into the pipe 60 from the outlet 53 a of the large diameter nozzle 63. The Therefore, the cooling water flowing through the chiller side circulation path 3 is introduced into the cooling tower side circulation path 2 by the differential pressure injector 36 having a simple structure.

また、本実施例では、大径ノズル53は、小径ノズル52の外周面を覆うように配置されており、取入口54は、大径ノズル53の小径ノズル52の外周面を覆う部分に形成されている。これにより、取入口54から冷却水が大径ノズル53内に効果的に取り入れられて小径ノズル52の吐出口の前方により大きな負圧が生じる。よって、差圧噴射器36の噴射力がより高められる。   In this embodiment, the large-diameter nozzle 53 is disposed so as to cover the outer peripheral surface of the small-diameter nozzle 52, and the intake 54 is formed in a portion of the large-diameter nozzle 53 that covers the outer peripheral surface of the small-diameter nozzle 52. ing. Thereby, the cooling water is effectively taken into the large-diameter nozzle 53 from the intake port 54, and a large negative pressure is generated in front of the discharge port of the small-diameter nozzle 52. Therefore, the injection force of the differential pressure injector 36 is further increased.

また、本実施例では、取入口54は、大径ノズル53の軸心回りの円周方向に沿って複数形成されているとともに、大径ノズル53の軸心回りの円周方向に沿って短軸となる楕円形に形成されている。これにより、取入口54から冷却水が大径ノズル53内により効果的に取り入れられる。よって、差圧噴射器36の噴射力がより高められる。   In this embodiment, a plurality of intake ports 54 are formed along the circumferential direction around the axis of the large-diameter nozzle 53 and short along the circumferential direction around the axis of the large-diameter nozzle 53. It is formed in an elliptical shape as an axis. Thereby, the cooling water is more effectively taken into the large-diameter nozzle 53 from the intake port 54. Therefore, the injection force of the differential pressure injector 36 is further increased.

また、本実施例では、チラー機側循環経路3の送り経路3aには、水中不純物分離装置17が設けられており、水中不純物分離装置17には、排水口17aが設けられており、第1接続管31は、排水口17aと冷却塔側循環経路2の返し経路2bとを接続している。これにより、第1接続管31を介して、水中不純物分離装置17で分離された不純物とともに冷却水が冷却塔側循環経路2の返し経路2bに導入される。   In this embodiment, the feed path 3a of the chiller machine side circulation path 3 is provided with an underwater impurity separation device 17, and the underwater impurity separation device 17 is provided with a drain port 17a. The connection pipe 31 connects the drain port 17a and the return path 2b of the cooling tower side circulation path 2. Thereby, the cooling water is introduced into the return path 2 b of the cooling tower side circulation path 2 together with the impurities separated by the underwater impurity separation device 17 through the first connection pipe 31.

また、本実施例では、第1接続管31には、制御部32の開閉制御により第1接続管31を開閉する電動バルブ33が備えられている。これにより、制御部32のタイマ機能等によりチラー機側循環経路3を流れる冷却水の排水を自動化できる。   In the present embodiment, the first connection pipe 31 is provided with an electric valve 33 that opens and closes the first connection pipe 31 by opening / closing control of the control unit 32. Thereby, drainage of the cooling water flowing through the chiller side circulation path 3 can be automated by the timer function of the control unit 32 or the like.

また、本実施例では、第1接続管31には、ワッシャーラバー式の定流量弁34が備えられている。これにより、冷却水の排水時に固形不純物が定流量弁34を通過しても目詰りが防止される。   In the present embodiment, the first connection pipe 31 is provided with a washer rubber type constant flow valve 34. This prevents clogging even if solid impurities pass through the constant flow valve 34 during cooling water drainage.

また、本実施例では、冷却塔側循環経路2とチラー機側循環経路3とは、第2接続管38で接続されている。これにより、第2接続管38を介して冷却塔側循環経路2を循環する冷却水がチラー機側循環経路3に導入される。よって、チラー機側循環経路3で汚染された冷却水と冷却塔側循環経路2で水質改善された冷却水とを容易に入れ換えることができる。その結果、冷却水の入れ換えを実施しない場合に比べて、製品に直結している冷却配管などの腐食(錆)やシリカ混じりの硬質スケール等が配管内部に付着することが抑制されるため、冷却効率の低下が防止され、品質安定につながる。   In the present embodiment, the cooling tower side circulation path 2 and the chiller side circulation path 3 are connected by a second connection pipe 38. Thereby, the cooling water circulating through the cooling tower side circulation path 2 is introduced into the chiller side circulation path 3 via the second connection pipe 38. Therefore, the cooling water contaminated in the chiller side circulation path 3 and the cooling water whose water quality is improved in the cooling tower side circulation path 2 can be easily replaced. As a result, compared to the case where cooling water is not replaced, corrosion (rust) such as cooling pipes directly connected to the product and hard scale mixed with silica are suppressed from adhering to the inside of the pipe. Reduction in efficiency is prevented, leading to stable quality.

また、本実施例では、第2接続管38は、冷却塔側循環経路2の送り経路2aとチラー機6に設けられたタンク6aとを接続している。これにより、第2接続管38を介して、冷却塔側循環経路2を循環する冷却水がチラー機6のタンク6aに導入される。   In the present embodiment, the second connection pipe 38 connects the feed path 2 a of the cooling tower side circulation path 2 and the tank 6 a provided in the chiller machine 6. Thereby, the cooling water circulating through the cooling tower side circulation path 2 is introduced into the tank 6 a of the chiller machine 6 through the second connection pipe 38.

さらに、本実施例では、第2接続管38の一端側には、フロート弁39が設けられている。これにより、フロート弁39によりタンク6aの水面の上下変動に伴って第2接続管38が自動的に開閉される。   Furthermore, in this embodiment, a float valve 39 is provided on one end side of the second connection pipe 38. As a result, the second connecting pipe 38 is automatically opened and closed by the float valve 39 as the water level of the tank 6a fluctuates up and down.

尚、本発明においては、上記実施例に限られず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。すなわち、上記実施例では、第1接続管31の一端側に、配管60内に配置される差圧噴射器36を設ける形態を例示したが、これに限定されず、冷却塔側循環経路2の循環圧に対してチラー機側循環経路3の循環圧が高い又は同等である場合には、例えば、図7に示すように、第1接続管31の一端側に差圧噴射器36を設けることなく、第1接続管36の一端側を配管60の外周側に直接的に接続するようにしてもよい。   In the present invention, the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention depending on the purpose and application. That is, in the said Example, although the form which provides the differential pressure | voltage injector 36 arrange | positioned in the piping 60 in the one end side of the 1st connection pipe 31 was illustrated, it is not limited to this, The cooling tower side circulation path 2 of When the circulation pressure of the chiller side circulation path 3 is higher than or equal to the circulation pressure, for example, as shown in FIG. 7, a differential pressure injector 36 is provided on one end side of the first connection pipe 31. Instead, one end side of the first connection pipe 36 may be directly connected to the outer peripheral side of the pipe 60.

また、上記実施例では、チラー機側循環経路3で汚染された冷却水と冷却塔側循環経路2で水質改善された冷却水とを入れ換える冷却水循環システム1を例示したが、これに限定されず、例えば、チラー機側循環経路3で汚染された冷却水を冷却塔側循環経路2に導入する一方、チラー機側循環経路3には、冷却塔側循環経路2の冷却水とは別に用意された冷却水を導入する冷却水循環システムとしてもよい。   Moreover, in the said Example, although the cooling water circulation system 1 which replaces the cooling water contaminated by the chiller side circulation path 3 and the cooling water improved in water quality by the cooling tower side circulation path 2 was illustrated, it is not limited to this. For example, while the cooling water contaminated by the chiller side circulation path 3 is introduced into the cooling tower side circulation path 2, the chiller side circulation path 3 is prepared separately from the cooling water of the cooling tower side circulation path 2. Alternatively, a cooling water circulation system for introducing cooling water may be used.

また、上記実施例では、水中不純物分離装置17の排水口17aと冷却塔側循環経路2とを接続する第1接続管31を例示したが、これに限定されず、例えば、チラー機側循環経路3(送り経路3a又は返し経路3b)と冷却塔側循環経路2(送り経路2a又は返し経路2b)とを直接的に接続する第1接続管としてもよい。   Moreover, in the said Example, although the 1st connection pipe 31 which connects the drain port 17a of the underwater impurity separation apparatus 17 and the cooling tower side circulation path 2 was illustrated, it is not limited to this, For example, a chiller side circulation path 3 (feed path 3a or return path 3b) and the cooling tower side circulation path 2 (feed path 2a or return path 2b) may be used as a first connection pipe.

さらに、上記実施例では、冷却塔側循環経路2とチラー機6のタンク6aとを接続する第2接続管38を例示したが、これに限定されず、例えば、冷却塔側循環経路2(送り経路2a又は返し経路2b)とチラー機側循環経路3(送り経路3a又は返し経路3b)とを直接的に接続する第2接続管としてもよい。   Furthermore, in the said Example, although the 2nd connection pipe 38 which connects the cooling tower side circulation path 2 and the tank 6a of the chiller machine 6 was illustrated, it is not limited to this, For example, the cooling tower side circulation path 2 (feeding) The path 2a or the return path 2b) and the chiller side circulation path 3 (the feed path 3a or the return path 3b) may be directly connected as a second connection pipe.

前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述および図示において使用された文言は、限定的な文言ではなく説明的および例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲または精神から逸脱することなく、添付の特許請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料および実施例を参照したが、本発明をここにおける開示事項に限定することを意図するものではなく、むしろ、本発明は添付の特許請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。   The foregoing examples are for illustrative purposes only and are not to be construed as limiting the invention. Although the invention has been described with reference to exemplary embodiments, it is to be understood that the language used in the description and illustration of the invention is illustrative and exemplary rather than limiting. As detailed herein, changes may be made in its form within the scope of the appended claims without departing from the scope or spirit of the invention. Although specific structures, materials and examples have been referred to in the detailed description of the invention herein, it is not intended to limit the invention to the disclosure herein, but rather, the invention is claimed. It covers all functionally equivalent structures, methods and uses within the scope.

本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形または変更が可能である。   The present invention is not limited to the embodiments described in detail above, and various modifications or changes can be made within the scope of the claims of the present invention.

本発明は、チラー機側循環経路を循環する冷却水を排水する技術として広く利用される。特に、チラー機側循環経路の汚染された冷却水と冷却塔側循環経路の水質改善された冷却水とを入れ換える技術として好適に利用される。   The present invention is widely used as a technique for draining cooling water that circulates in the chiller side circulation path. In particular, it is suitably used as a technique for exchanging the contaminated cooling water in the chiller side circulation path and the cooling water with improved water quality in the cooling tower side circulation path.

1;冷却水循環システム、2;冷却塔側循環経路、3;チラー機側循環経路、5;冷却塔、6;チラー機、6a;タンク、7;冷却対象部、17;水中不純物分離装置、17a;排水口、31;第1接続管、32;制御部、33;電動バルブ、34;定流量弁、36;差圧噴射器、38;第2接続管、39;フロート弁、52;小径ノズル、53;大径ノズル、54;取入口、60;配管。   DESCRIPTION OF SYMBOLS 1; Cooling water circulation system, 2; Cooling tower side circulation path, 3; Chiller machine side circulation path, 5; Cooling tower, 6; Chiller machine, 6a; Tank, 7: Cooling target part, 17: Underwater impurity separation device, 17a Drain port 31; first connection pipe 32; control unit 33; electric valve 34; constant flow valve 36; differential pressure injector 38; second connection pipe 39; float valve 52; small diameter nozzle 53; Large nozzle, 54; Inlet, 60; Piping.

Claims (11)

冷却塔とチラー機との間で冷却水を循環させる冷却塔側循環経路と、前記チラー機と冷却対象部との間で冷却水を循環させるチラー機側循環経路と、を備える冷却水循環システムであって、
前記冷却塔側循環経路と前記チラー機側循環経路とは、前記チラー機側循環経路を循環する冷却水を前記冷却塔側循環経路に導入するための第1接続管で接続されていることを特徴とする冷却水循環システム。
A cooling water circulation system comprising: a cooling tower side circulation path for circulating cooling water between a cooling tower and a chiller machine; and a chiller machine side circulation path for circulating cooling water between the chiller machine and a cooling target part. There,
The cooling tower side circulation path and the chiller side circulation path are connected by a first connection pipe for introducing cooling water circulating through the chiller side circulation path into the cooling tower side circulation path. Features a cooling water circulation system.
前記第1接続管の一端側には、前記冷却塔側循環経路を構成する配管内に配置される差圧噴射器が設けられており、
前記差圧噴射器は、前記配管内を流れる冷却水に対して、該冷却水よりも低圧で前記第1接続管を流れる冷却水を導入可能である請求項1記載の冷却水循環システム。
On one end side of the first connection pipe, a differential pressure injector disposed in a pipe constituting the cooling tower side circulation path is provided,
2. The cooling water circulation system according to claim 1, wherein the differential pressure injector can introduce cooling water flowing through the first connection pipe at a lower pressure than the cooling water with respect to the cooling water flowing through the pipe.
前記差圧噴射器は、前記第1接続管の一端側に連結され且つ軸心が前記配管内の冷却水の流れ方向に沿うように配置される小径ノズルと、軸心が前記小径ノズルの軸心と一致し且つ吐出口が前記小径ノズルの吐出口よりも前記配管内の冷却水の流れ方向の下流側に位置するように配置される大径ノズルと、前記配管内を流れる冷却水を前記大径ノズル内に取り入れて前記小径ノズルの吐出口の前方に負圧を生じさせる取入口と、を備える請求項2記載の冷却水循環システム。   The differential pressure injector includes a small-diameter nozzle that is connected to one end of the first connection pipe and that has an axial center along the flow direction of the cooling water in the pipe, and the axial center of the small-diameter nozzle. A large-diameter nozzle disposed so as to coincide with the center and a discharge port located downstream of the discharge port of the small-diameter nozzle in the flow direction of the cooling water in the pipe, and the cooling water flowing in the pipe The cooling water circulation system according to claim 2, further comprising: an intake port that takes in the large-diameter nozzle and generates a negative pressure in front of the discharge port of the small-diameter nozzle. 前記大径ノズルは、前記小径ノズルの外周面を覆うように配置されており、
前記取入口は、前記大径ノズルの前記小径ノズルの外周面を覆う部分に形成されている請求項3記載の冷却水循環システム。
The large-diameter nozzle is disposed so as to cover the outer peripheral surface of the small-diameter nozzle,
The cooling water circulation system according to claim 3, wherein the intake port is formed in a portion of the large diameter nozzle that covers an outer peripheral surface of the small diameter nozzle.
前記取入口は、前記大径ノズルの軸心回りの円周方向に沿って複数形成されているとともに、前記大径ノズルの軸心回りの円周方向に沿って短軸となる楕円形に形成されている請求項4記載の冷却水循環システム。   A plurality of the intake ports are formed along the circumferential direction around the axis of the large-diameter nozzle, and are formed in an elliptical shape that becomes a short axis along the circumferential direction around the axis of the large-diameter nozzle. The cooling water circulation system according to claim 4. 前記チラー機側循環経路の送り経路には、循環する冷却水に含まれる不純物を除去する水中不純物分離装置が設けられており、
前記水中不純物分離装置には、分離された不純物とともに冷却水を排水する排水口が設けられており、
前記第1接続管は、前記排水口と前記冷却塔側循環経路の返し経路とを接続している請求項1乃至5のいずれか一項に記載の冷却水循環システム。
The feed path of the chiller machine side circulation path is provided with an underwater impurity separation device for removing impurities contained in the circulating cooling water,
The underwater impurity separation device is provided with a drain outlet for draining the cooling water together with the separated impurities,
The cooling water circulation system according to any one of claims 1 to 5, wherein the first connection pipe connects the drain port and a return path of the cooling tower side circulation path.
前記第1接続管には、制御部の開閉制御により前記第1接続管を開閉する電動バルブが備えられている請求項1乃至6のいずれか一項に記載の冷却水循環システム。   The cooling water circulation system according to any one of claims 1 to 6, wherein the first connection pipe includes an electric valve that opens and closes the first connection pipe by opening and closing control of a control unit. 前記第1接続管には、ワッシャーラバー式の定流量弁が備えられている請求項1乃至7のいずれか一項に記載の冷却水循環システム。   The cooling water circulation system according to any one of claims 1 to 7, wherein the first connection pipe is provided with a washer rubber type constant flow valve. 前記冷却塔側循環経路と前記チラー機側循環経路とは、前記冷却塔側循環経路を循環する冷却水を前記チラー機側循環経路に導入するための第2接続管で接続されている請求項1乃至8のいずれか一項に記載の冷却水循環システム。   The cooling tower side circulation path and the chiller side circulation path are connected by a second connection pipe for introducing cooling water circulating through the cooling tower side circulation path into the chiller side circulation path. The cooling water circulation system according to any one of 1 to 8. 前記第2接続管は、前記冷却塔側循環経路の送り経路と前記チラー機に設けられたタンクとを接続している請求項9記載の冷却水循環システム。   The cooling water circulation system according to claim 9, wherein the second connection pipe connects a feed path of the cooling tower side circulation path and a tank provided in the chiller machine. 前記第2接続管の一端側には、前記タンクの水面の上下変動に伴って前記第2接続管を開閉するフロート弁が設けられている請求項10記載の冷却水循環システム。   The cooling water circulation system according to claim 10, wherein a float valve that opens and closes the second connection pipe as the water level of the tank fluctuates is provided on one end side of the second connection pipe.
JP2016148949A 2016-07-28 2016-07-28 Cooling water circulation system Active JP6809021B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016148949A JP6809021B2 (en) 2016-07-28 2016-07-28 Cooling water circulation system
CN201780031508.XA CN109154483B (en) 2016-07-28 2017-07-24 Cooling water circulation system
US16/317,426 US20190301819A1 (en) 2016-07-28 2017-07-24 Cooling-water circulation system
PCT/JP2017/026724 WO2018021255A1 (en) 2016-07-28 2017-07-24 Cooling-water circulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016148949A JP6809021B2 (en) 2016-07-28 2016-07-28 Cooling water circulation system

Publications (2)

Publication Number Publication Date
JP2018017471A true JP2018017471A (en) 2018-02-01
JP6809021B2 JP6809021B2 (en) 2021-01-06

Family

ID=61017578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016148949A Active JP6809021B2 (en) 2016-07-28 2016-07-28 Cooling water circulation system

Country Status (4)

Country Link
US (1) US20190301819A1 (en)
JP (1) JP6809021B2 (en)
CN (1) CN109154483B (en)
WO (1) WO2018021255A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102059959B1 (en) * 2019-09-09 2019-12-27 주식회사 한하산업 Sludge drying apparatus with a circulating heat exchange structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018187570A1 (en) * 2017-04-07 2018-10-11 Carrier Corporation Modular waterside economizer for air-cooled chillers
CN109664480B (en) * 2019-01-15 2021-04-20 宁夏神州轮胎有限公司 Tire semi-finished product low-temperature cooling circulation system
CN112368528B (en) * 2019-06-07 2022-11-01 开利公司 Modular water side economizer integrated with air cooling chiller

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271675A (en) * 1990-03-20 1991-12-03 Kuken Kogyo Kk Cold water manufacturing device
WO2008009296A1 (en) * 2006-07-16 2008-01-24 Montaser Mohamed Zamzam Free cooling scheme for process cooling and air conditioning applications
JP2011024792A (en) * 2009-07-27 2011-02-10 Hochiki Corp Flowing water detector
JP2014105929A (en) * 2012-11-28 2014-06-09 Akuatekku:Kk Auxiliary cooling device for condenser
JP2015200424A (en) * 2014-04-04 2015-11-12 オリオン機械株式会社 Cooling fluid supply device
JP6753192B2 (en) * 2016-07-28 2020-09-09 トヨタ紡織株式会社 Sediment removal device and cooling water circulation system equipped with it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5604129B2 (en) * 2010-02-09 2014-10-08 アクアス株式会社 Cooling tower chemical injection device
CN105004198A (en) * 2015-07-16 2015-10-28 西安石油大学 Water type circulating water-air cooling system and method
CN204918180U (en) * 2015-07-31 2015-12-30 芜湖真空科技有限公司 Recirculating cooling water system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271675A (en) * 1990-03-20 1991-12-03 Kuken Kogyo Kk Cold water manufacturing device
WO2008009296A1 (en) * 2006-07-16 2008-01-24 Montaser Mohamed Zamzam Free cooling scheme for process cooling and air conditioning applications
JP2011024792A (en) * 2009-07-27 2011-02-10 Hochiki Corp Flowing water detector
JP2014105929A (en) * 2012-11-28 2014-06-09 Akuatekku:Kk Auxiliary cooling device for condenser
JP2015200424A (en) * 2014-04-04 2015-11-12 オリオン機械株式会社 Cooling fluid supply device
JP6753192B2 (en) * 2016-07-28 2020-09-09 トヨタ紡織株式会社 Sediment removal device and cooling water circulation system equipped with it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102059959B1 (en) * 2019-09-09 2019-12-27 주식회사 한하산업 Sludge drying apparatus with a circulating heat exchange structure

Also Published As

Publication number Publication date
JP6809021B2 (en) 2021-01-06
WO2018021255A1 (en) 2018-02-01
CN109154483B (en) 2020-04-21
CN109154483A (en) 2019-01-04
US20190301819A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
WO2018021255A1 (en) Cooling-water circulation system
JP6759811B2 (en) Micro bubble generator and cooling water circulation system equipped with it
WO2018021256A1 (en) Precipitate removing apparatus and cooling water circulation system provided with same
JP6099068B2 (en) Multi-point concentrated ball discharge system for rubber ball cleaning in condenser
CN105165705A (en) Efficient oxygen increasing tank
CN109186317A (en) A kind of condenser cleaning equipment
CN201713404U (en) Recirculated cooling water treatment device
JP6661966B2 (en) Underwater impurity separator and cooling water circulation system including the same
CN211864402U (en) Be applicable to circuit board air purification device
WO2018211942A1 (en) Water activator and cooling water circulation system equipped with same
CN207002440U (en) A kind of new hydrogen-rich water dispenser
CN206521304U (en) A kind of floating slag collecting device for sewage treatment
CN205683674U (en) The preposition protection device of MVR of the novel evacuated sucking filtration of industrial waste water slag removal
CN214060091U (en) Environment-friendly circulating water filter-pressing pollution treatment facility
CN210358431U (en) Cleaning system for cleaning machine
CN211786796U (en) Circulating water system of polypropylene SPG device
CN211782867U (en) Closed circulation cooling tower with water quality filtering structure
CN204097150U (en) For the circulation reflux device of oil-containing oil emulsion
CN206359383U (en) A kind of landscape water body biochemical filtering device
CN213357204U (en) High-efficient type sewage treatment device
CN213273930U (en) Cement plant waste heat power generation overflow water treatment equipment and cement plant production system
CN216745708U (en) Online cleaning device of chilled water system
CN211198649U (en) Papermaking pulping middle section effluent treatment plant
CN215249617U (en) Acid-base wastewater integrated treatment equipment
CN210216584U (en) Water tank for vacuum pump

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R151 Written notification of patent or utility model registration

Ref document number: 6809021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151