JP2018017203A - Rankine cycle system of vehicle and control method of Rankine cycle system of vehicle - Google Patents

Rankine cycle system of vehicle and control method of Rankine cycle system of vehicle Download PDF

Info

Publication number
JP2018017203A
JP2018017203A JP2016149407A JP2016149407A JP2018017203A JP 2018017203 A JP2018017203 A JP 2018017203A JP 2016149407 A JP2016149407 A JP 2016149407A JP 2016149407 A JP2016149407 A JP 2016149407A JP 2018017203 A JP2018017203 A JP 2018017203A
Authority
JP
Japan
Prior art keywords
expander
working fluid
internal combustion
combustion engine
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016149407A
Other languages
Japanese (ja)
Other versions
JP6772631B2 (en
Inventor
阿部 誠
Makoto Abe
阿部  誠
太志 筒井
Futoshi Tsutsui
太志 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016149407A priority Critical patent/JP6772631B2/en
Publication of JP2018017203A publication Critical patent/JP2018017203A/en
Application granted granted Critical
Publication of JP6772631B2 publication Critical patent/JP6772631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Rankine cycle system of a vehicle capable of improving a utilization efficiency of waste heat energy recovered from exhaust gas of an internal combustion engine, and a control method of the Rankine cycle system of a vehicle.SOLUTION: A Rankine cycle system of a vehicle includes a first flow passage switching device 40 in a flow passage for working fluid WF between an evaporator 12 and an expander 13, and a second flow passage switching device 41 in a flow passage for working fluid WF between the expander 13 and a condenser 14. The Rankine cycle system is configured to, when driving force of the expander 13 is used to increase braking force of an internal combustion engine 20, control the first flow passage switching device 40 and the second flow passage switching device 41 to inflow the working fluid WF from a second inflow outlet 13b of the expander 13 and outflow the working fluid from a first inflow outlet 13a, thereby performing control to rotate the expander 13 in a reverse direction to a rotation direction of the internal combustion engine 20.SELECTED DRAWING: Figure 3

Description

本発明は、車両のランキンサイクルシステム及び車両のランキンサイクルシステムの制御方法に関する。   The present invention relates to a vehicle Rankine cycle system and a control method for a vehicle Rankine cycle system.

車両には、ディーゼルエンジン等の内燃機関の排気ガスの熱エネルギー(排熱エネルギー)の一部を回収して、この回収した排熱エネルギーによりエンジンに接続されるタービン等の膨張器を駆動させて、この膨張器の駆動力をエンジンのアシストに使用するランキンサイクルシステムが備えられることがある。   The vehicle collects a part of the heat energy (exhaust heat energy) of the exhaust gas of the internal combustion engine such as a diesel engine, and drives the expander such as a turbine connected to the engine by the recovered exhaust heat energy. In some cases, a Rankine cycle system that uses the driving force of the expander to assist the engine may be provided.

この一例として、液体の作動流体を圧送するポンプと、その作動流体を液体から高温の気体に加熱する加熱器と、その気体のエネルギーを車両用の回転動力に変換する膨張器と、気体の作動流体を冷却して液体に戻す復水器とを有する通常運転用の回路を備えた車両用蒸気エンジンが提案されている(例えば、特許文献1参照)。   As an example of this, a pump that pumps a liquid working fluid, a heater that heats the working fluid from a liquid to a high-temperature gas, an expander that converts the energy of the gas into rotational power for a vehicle, and gas operation There has been proposed a vehicular steam engine including a circuit for normal operation having a condenser that cools fluid back to liquid (see, for example, Patent Document 1).

特開2011−89452号公報JP 2011-89452 A

ところで、従来の車両のランキンサイクルシステムでは、エンジンをアシストする必要がない場合には、作動流体を膨張器に通過させずに、膨張器をバイパスする通路に通過させて、膨張器を作動させないようにしていた。   By the way, in the Rankine cycle system of the conventional vehicle, when it is not necessary to assist the engine, the working fluid is not passed through the inflator but is passed through the passage that bypasses the inflator so that the inflator is not operated. I was doing.

このように、エンジンをアシストする必要がない場合にも、ランキンサイクルシステムにより回収した排熱エネルギーを有効活用するシステムや、このシステムを用いた制御方法等については、未だ良案が提案されていない。   As described above, even when it is not necessary to assist the engine, no good plan has been proposed for a system for effectively utilizing the exhaust heat energy recovered by the Rankine cycle system or a control method using this system. .

本発明の目的は、内燃機関の排気ガスより回収した排熱エネルギーの活用効率を向上させることができる車両のランキンサイクルシステム及び車両のランキンサイクルシステムの制御方法を提供することにある。   An object of the present invention is to provide a vehicle Rankine cycle system and a vehicle Rankine cycle system control method capable of improving the utilization efficiency of exhaust heat energy recovered from exhaust gas of an internal combustion engine.

上記の目的を達成するための本発明の車両のランキンサイクルシステムは、内燃機関の排熱により作動流体を液体から気体に加熱蒸発させる蒸発器と、前記内燃機関に接続されて、前記蒸発器で加熱蒸発した作動流体により駆動される膨張器と、該膨張器を通過した作動流体を気体から液体に冷却凝縮させる凝縮器と、制御装置と、で構成される車両のランキンサイクルシステムにおいて、前記膨張器における作動流体が流れる方向を正逆に切り替える切替機構を備えていると共に、前記制御装置が、前記内燃機関をアシストする場合は、前記切替機構により作動流体が前記膨張器を流れる方向を正方向にして前記膨張器を正回転させて前記内燃機関をアシストし、前記内燃機関の制動力を増大する場合は、前記切替機構により作動流体が前記膨張器を流れる方向を逆方向にして前記膨張器を逆回転させて前記内燃機関の制動力を増大する制御を行うように構成されている。   In order to achieve the above object, a Rankine cycle system for a vehicle according to the present invention includes an evaporator that heats and evaporates a working fluid from a liquid to a gas by exhaust heat of the internal combustion engine, and an evaporator connected to the internal combustion engine. In the Rankine cycle system for a vehicle, comprising: an expander driven by a heated and evaporated working fluid; a condenser that cools and condenses the working fluid that has passed through the expander from gas to liquid; and a control device. And a switching mechanism for switching the direction in which the working fluid flows in the reversal device in the forward and reverse directions, and when the control device assists the internal combustion engine, the switching mechanism causes the working fluid to flow in the expander in the forward direction. In the case where the internal combustion engine is assisted by rotating the expander forward and the braking force of the internal combustion engine is increased, the working fluid is moved forward by the switching mechanism. The direction of flow of the inflator in the opposite direction to reverse the rotation of said expander and is configured to perform control to increase the braking force of the internal combustion engine.

また、上記の目的を達成するための本発明の車両のランキンサイクルシステムの制御方法は、内燃機関の排熱により作動流体を液体から気体に加熱蒸発させる蒸発器と、前記内燃機関に接続されて、前記蒸発器で加熱蒸発した作動流体により駆動される膨張器と、該膨張器を通過した作動流体を気体から液体に冷却凝縮させる凝縮器と、前記膨張器における作動流体が流れる方向を正逆に切り替える切替機構と、で構成される車両のランキンサイクルシステムの制御方法において、前記内燃機関をアシストする場合は、前記切替機構により作動流体が前記膨張器を流れる方向を正方向にして前記膨張器を正回転させて前記内燃機関をアシストし、前記内燃機関の制動力を増大する場合は、前記切替機構により作動流体が前記膨張器を流れる方向を逆方向にして前記膨張器を逆回転させて前記内燃機関の制動力を増大する制御を行うことを特徴とする方法である。   In addition, the vehicle Rankine cycle system control method of the present invention for achieving the above object includes an evaporator that heats and evaporates a working fluid from a liquid to a gas by exhaust heat of the internal combustion engine, and the internal combustion engine. An expander driven by the working fluid heated and evaporated by the evaporator, a condenser for cooling and condensing the working fluid that has passed through the expander from a gas to a liquid, and a direction in which the working fluid flows in the expander When the internal combustion engine is assisted in the vehicle Rankine cycle system control method configured to switch to the switching mechanism, the expander sets the direction in which the working fluid flows through the expander as the positive direction by the switching mechanism. When the internal combustion engine is assisted by rotating it forward to increase the braking force of the internal combustion engine, the switching mechanism causes the working fluid to flow through the expander. Which is a reversed direction by the reverse rotation of said expander and wherein the performing control to increase the braking force of the internal combustion engine.

本発明の車両のランキンサイクルシステム及び車両のランキンサイクルシステムの制御方法によれば、膨張器の動力を内燃機関のアシストに使用できるだけでなく、作動流体が膨張器を流れる方向を逆方向にして、膨張器の回転方向を内燃機関のアシスト時の回転方向と逆方向に切り替えることで、膨張器の動力を内燃機関の制動力の増大にも使用することができる。   According to the vehicle Rankine cycle system and the vehicle Rankine cycle system control method of the present invention, not only can the power of the expander be used for assisting the internal combustion engine, but also the direction in which the working fluid flows through the expander is reversed. By switching the rotation direction of the expander to the direction opposite to the rotation direction when assisting the internal combustion engine, the power of the expander can be used to increase the braking force of the internal combustion engine.

その結果、内燃機関の排気ガスより回収した排熱エネルギーの活用効率を向上させることができる。   As a result, the utilization efficiency of the exhaust heat energy recovered from the exhaust gas of the internal combustion engine can be improved.

本発明の車両のランキンサイクルシステムの構成で、作動流体が正流路を通過するときを示す図である。It is a figure which shows when a working fluid passes a normal flow path by the structure of the Rankine cycle system of the vehicle of this invention. 本発明の車両のランキンサイクルシステムの構成で、作動流体が逆流路を通過するときを示す図である。It is a figure which shows when a working fluid passes a reverse flow path by the structure of the Rankine cycle system of the vehicle of this invention. 本発明の車両のランキンサイクルシステムの制御フローを示す図である。It is a figure which shows the control flow of the Rankine cycle system of the vehicle of this invention. 従来技術の車両のランキンサイクルシステムの構成を示す図である。It is a figure which shows the structure of the Rankine-cycle system of the vehicle of a prior art.

以下、本発明に係る実施形態の車両のランキンサイクルシステム及び車両のランキンサイクルシステムの制御方法について、図面を参照しながら説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a vehicle Rankine cycle system and a vehicle Rankine cycle system control method according to embodiments of the present invention will be described with reference to the drawings.

図1に示すように、本発明の車両のランキンサイクルシステム1は、ポンプ11と、ボイラー(蒸発器)12と、タービン(膨張器)13と、凝縮器14とを備えて構成されるシステムである。   As shown in FIG. 1, a Rankine cycle system 1 for a vehicle according to the present invention is a system including a pump 11, a boiler (evaporator) 12, a turbine (expander) 13, and a condenser 14. is there.

ポンプ11は、液体状態の作動流体WF(例えば、水)をボイラー12に圧送する装置である。ボイラー12は、ポンプ11より圧送された作動流体WFをエンジン(内燃機関)20の排気ガスGと熱交換させることで、排気ガスGの熱エネルギー(排熱エネルギー)により作動流体WFを液体から気体に加熱蒸発させる装置である。タービン13は、ボイラー12で加熱蒸発した気体状態の作動流体WFにより駆動される装置で、この装置に接続されるエンジン20にこの作動流体WFによる駆動力を供給する装置である。凝縮器14は、タービン13を通過した作動流体WFをエンジン冷却水等の冷却媒体Wと熱交換させることで、作動流体WFを気体から液体に冷却凝縮させて、液体状態の作動流体WFをポンプ11に送出する装置である。   The pump 11 is a device that pumps a working fluid WF (for example, water) in a liquid state to the boiler 12. The boiler 12 exchanges heat between the working fluid WF pumped from the pump 11 and the exhaust gas G of the engine (internal combustion engine) 20, so that the working fluid WF is gasified from the liquid by the heat energy (exhaust heat energy) of the exhaust gas G. It is a device that heats and evaporates. The turbine 13 is a device that is driven by a working fluid WF in a gas state that is heated and evaporated by the boiler 12, and is a device that supplies driving force by the working fluid WF to the engine 20 connected to the device. The condenser 14 heat-exchanges the working fluid WF that has passed through the turbine 13 with a cooling medium W such as engine cooling water, thereby cooling and condensing the working fluid WF from gas to liquid, and pumping the working fluid WF in a liquid state 11 is a device for sending out the data.

すなわち、このランキンサイクルシステム1は、ポンプ11より圧送された液体状態の作動流体WFをボイラー12で排気ガスGの熱エネルギーを利用して気体に加熱蒸発させた後、この気体状態の作動流体WFによりタービン13に駆動力を発生させて、この駆動力によりエンジン20をアシストするとともに、タービン13を通過した作動流体WFを凝縮器14で冷却媒体Wにより冷却凝縮させて液体状態の作動流体WFをポンプ11に送出するシステムである。   That is, this Rankine cycle system 1 heats and evaporates the liquid working fluid WF pumped from the pump 11 into a gas by using the thermal energy of the exhaust gas G in the boiler 12, and then the gaseous working fluid WF. The driving force is generated in the turbine 13 by this, and the engine 20 is assisted by this driving force, and the working fluid WF that has passed through the turbine 13 is cooled and condensed by the cooling medium W by the condenser 14 to obtain the liquid working fluid WF. This is a system for delivering to the pump 11.

より端的に言えば、ランキンサイクルシステム1は、エンジン20の排気ガスGの熱エネルギーの一部を回収して、この回収したエネルギーにより駆動されるタービン13の駆動力によりエンジン20をアシストするシステムである。   More simply, the Rankine cycle system 1 is a system that recovers a part of the thermal energy of the exhaust gas G of the engine 20 and assists the engine 20 by the driving force of the turbine 13 driven by the recovered energy. is there.

なお、本実施形態では、膨張器13としてタービンを用いているが、気体の膨張力を利用して駆動力を発生させる装置であれば、タービン以外の装置(例えば、ピストン)でもよい。また、ボイラー12で熱交換する作動流体WFと排気ガスGの温度差は、使用状況にもよるが、50℃〜150℃程度である。   In the present embodiment, a turbine is used as the expander 13, but a device (for example, a piston) other than the turbine may be used as long as the device generates a driving force by using a gas expansion force. Further, the temperature difference between the working fluid WF and the exhaust gas G that exchange heat with the boiler 12 is about 50 ° C. to 150 ° C., although it depends on the use situation.

また、本発明のランキンサイクルシステム1を制御する制御装置30を備える。この制御装置30は、エンジン20の運転状態等に応じて、ポンプ11による作動流体WFの圧送量等を制御する装置である。   Moreover, the control apparatus 30 which controls the Rankine cycle system 1 of this invention is provided. The control device 30 is a device that controls the pumping amount of the working fluid WF by the pump 11 in accordance with the operating state of the engine 20 and the like.

ところで、図4に示す従来技術の車両のランキンサイクルシステム1Xでは、さらに、ボイラー12とタービン13の間の作動流体WFの流路からバイパスバルブ51を介して分岐して、タービン13と凝縮器14の間の作動流体WFの流路に合流するバイパス通路50を備えていた。そして、エンジン20をアシストする必要がある場合には、制御装置30によりバイパスバルブ51を制御して、作動流体WFがボイラー12からタービン13に流れるようにし、エンジン20をアシストする必要がない場合には、制御装置30によりバイパスバルブ51を制御して、作動流体WFをタービン13に通過させずに、バイパス通路50に通過させて、タービン13を駆動させないようにしていた。   By the way, in the Rankine cycle system 1X of the prior art vehicle shown in FIG. 4, the turbine 13 and the condenser 14 are further branched from the flow path of the working fluid WF between the boiler 12 and the turbine 13 via the bypass valve 51. The bypass passage 50 that joins the flow path of the working fluid WF between them is provided. When the engine 20 needs to be assisted, the control device 30 controls the bypass valve 51 so that the working fluid WF flows from the boiler 12 to the turbine 13, and there is no need to assist the engine 20. The control device 30 controls the bypass valve 51 so that the working fluid WF does not pass through the turbine 13 but passes through the bypass passage 50 so that the turbine 13 is not driven.

これに対し、本発明の車両のランキンサイクルシステム1は、エンジン20のアシストが不要の場合にも、ランキンサイクルシステム1により回収した排熱エネルギーを有効活用することができ、エンジン20の排気ガスGより回収した排熱エネルギーの活用効率を向上させることができるシステムである。   On the other hand, the Rankine cycle system 1 for a vehicle according to the present invention can effectively utilize the exhaust heat energy recovered by the Rankine cycle system 1 even when the assist of the engine 20 is not required. It is a system that can improve the utilization efficiency of the recovered exhaust heat energy.

より詳細には、本発明の車両のランキンサイクルシステム1では、図1に示すように、ボイラー12とタービン13の間の作動流体WFの流路に、流路を切り替える(スイッチィングする)第1電磁切替弁(第1流路切替装置)40を、タービン13と凝縮器14の間の作動流体WFの流路に第2電磁切替弁(第2流路切替装置)41を備える。また、タービン13に作動流体WFが流入出する流入出口として、第1流入出口13aと第2流入出口13bを備えて、第1流入出口13aを作動流体WFの流入口とするときは第2流入出口13bを作動流体WFの流出口に、第2流入出口13bを作動流体WFの流入口とするときは第1流入出口13aを作動流体WFの流出口として構成する。これらの第1電磁切替弁40、第2電磁切替弁41、タービン13の第1流入出口13a及び第2流入出口13bにより、タービン13における作動流体WFが流れる方向を正逆に切り替える切替機構を構成する。   More specifically, in the Rankine cycle system 1 for a vehicle according to the present invention, as shown in FIG. 1, the flow path is switched (switched) to the flow path of the working fluid WF between the boiler 12 and the turbine 13. An electromagnetic switching valve (first flow path switching device) 40 is provided with a second electromagnetic switching valve (second flow path switching device) 41 in the flow path of the working fluid WF between the turbine 13 and the condenser 14. Further, when the working fluid WF flows into and out of the turbine 13, the first inflow port 13 a and the second inflow port 13 b are provided, and when the first inflow port 13 a is used as the inflow port of the working fluid WF, the second inflow port When the outlet 13b is an outlet for the working fluid WF and the second inlet / outlet 13b is an inlet for the working fluid WF, the first inlet 13a is configured as an outlet for the working fluid WF. The first electromagnetic switching valve 40, the second electromagnetic switching valve 41, the first inlet / outlet port 13a and the second inlet / outlet port 13b of the turbine 13 constitute a switching mechanism that switches the direction in which the working fluid WF flows in the turbine 13 between forward and reverse. To do.

そして、図1に示すように、制御装置30により、ボイラー12とタービン13が第1電磁切替弁40の第1位置40aを介して接続されており、かつ、タービン13と凝縮器14が第2電磁切替弁41の第1位置41aで接続されているときには、第1電磁切替弁40を通過した作動流体WFがタービン13の第1流入出口13aより流入し、第2流入出口13bより流出して、エンジン20の回転方向と同じ方向にタービン13を回転させた(タービン13をエンジン20に対して正トルクが発生するように作動させた)後、第2電磁切替弁41を通過するようにする。このときの第1電磁切替弁40と第2電磁切替弁41の間の作動流体WFの流路を正流路OF(図1の太線部)と称す。   As shown in FIG. 1, the boiler 12 and the turbine 13 are connected to each other via the first position 40 a of the first electromagnetic switching valve 40 by the control device 30, and the turbine 13 and the condenser 14 are connected to the second position. When the electromagnetic switching valve 41 is connected at the first position 41a, the working fluid WF that has passed through the first electromagnetic switching valve 40 flows in from the first inlet 13a of the turbine 13 and flows out of the second inlet 13b. The turbine 13 is rotated in the same direction as the rotation direction of the engine 20 (the turbine 13 is operated so as to generate a positive torque with respect to the engine 20) and then passed through the second electromagnetic switching valve 41. . The flow path of the working fluid WF between the first electromagnetic switching valve 40 and the second electromagnetic switching valve 41 at this time is referred to as a normal flow path OF (thick line portion in FIG. 1).

一方、図2に示すように、制御装置30により、ボイラー12とタービン13が第1電磁切替弁40の第2位置40bを介して接続されており、かつ、タービン13と凝縮器14が第2電磁切替弁41の第2位置41bで接続されているときには、第1電磁切替弁40を通過した作動流体WFがタービン13の第2流入出口13bより流入し、第1流入出口13aより流出して、エンジン20の回転方向と逆方向にタービン13を回転させた(タービン13をエンジン20に対して逆トルクが発生するように作動させた)後、第2電磁切替弁41を通過するようにする。このときの第1電磁切替弁40と第2電磁切替弁41の間の作動流体WFの流路を逆流路RF(図2の太線部)と称す。   On the other hand, as shown in FIG. 2, the boiler 12 and the turbine 13 are connected via the second position 40 b of the first electromagnetic switching valve 40 by the control device 30, and the turbine 13 and the condenser 14 are connected to the second position. When connected at the second position 41b of the electromagnetic switching valve 41, the working fluid WF that has passed through the first electromagnetic switching valve 40 flows in from the second inlet / outlet 13b of the turbine 13 and flows out of the first inlet / outlet 13a. The turbine 13 is rotated in the direction opposite to the rotation direction of the engine 20 (the turbine 13 is operated so as to generate a reverse torque with respect to the engine 20), and then the second electromagnetic switching valve 41 is passed. . The flow path of the working fluid WF between the first electromagnetic switching valve 40 and the second electromagnetic switching valve 41 at this time is referred to as a reverse flow path RF (thick line portion in FIG. 2).

これらの正流路OFと逆流路RFは、制御装置30により、作動流体WF用の流路との第1電磁切替弁40及び第2電磁切替弁41の接続位置を切り替えることで切り替わる。   The normal flow path OF and the reverse flow path RF are switched by the control device 30 by switching the connection positions of the first electromagnetic switching valve 40 and the second electromagnetic switching valve 41 with the flow path for the working fluid WF.

そして、制御装置30が、タービン13の動力をエンジン20のアシストに使用する場合は、第1電磁切替弁40及び第2電磁切替弁41を制御して、第1電磁切替弁40と第2電磁切替弁41の間の作動流体WF用の流路を正流路OFに切り替えて、作動流体WFをタービン13の第1流入出口13aより流入し、第2流入出口13bより流出して、エンジン20の回転方向と同じ方向にタービン13を回転させる制御を行う。すなわち、タービン13の回転動力によりエンジン20をアシストする制御を行う。   When the control device 30 uses the power of the turbine 13 to assist the engine 20, the first electromagnetic switching valve 40 and the second electromagnetic switching valve 40 are controlled by controlling the first electromagnetic switching valve 40 and the second electromagnetic switching valve 41. The flow path for the working fluid WF between the switching valves 41 is switched to the normal flow path OF, and the working fluid WF flows in from the first inlet / outlet 13a of the turbine 13 and flows out of the second inlet / outlet 13b. The turbine 13 is controlled to rotate in the same direction as the rotation direction. That is, control for assisting the engine 20 by the rotational power of the turbine 13 is performed.

本発明では、さらに、制御装置30が、タービン13の動力をエンジン20の制動力の増大に使用する場合は、第1電磁切替弁40及び第2電磁切替弁41を制御して、第1電磁切替弁40と第2電磁切替弁41の間の作動流体WF用の流路を逆流路RFに切り替えて、作動流体WFをタービン13の第2流入出口13bより流入し、第1流入出口13aより流出して、エンジン20の回転方向と逆方向にタービン13を回転させる制御を行う。すなわち、タービン13の回転動力により、タービン13とは逆方向に回転するエンジン20の回転を阻害して、エンジン20の制動力を増大させる制御を行う。   In the present invention, when the control device 30 further uses the power of the turbine 13 to increase the braking force of the engine 20, the first electromagnetic switching valve 40 and the second electromagnetic switching valve 41 are controlled to control the first electromagnetic switching valve 40. The flow path for the working fluid WF between the switching valve 40 and the second electromagnetic switching valve 41 is switched to the reverse flow path RF, and the working fluid WF flows in from the second inlet / outlet 13b of the turbine 13 and from the first inlet / outlet 13a. Control is performed to flow out and rotate the turbine 13 in the direction opposite to the rotation direction of the engine 20. That is, the rotational power of the turbine 13 is used to inhibit the rotation of the engine 20 that rotates in the opposite direction to the turbine 13 and to increase the braking force of the engine 20.

以上をまとめると、本発明では、制御装置30が、エンジン20をアシストする場合は、切替機構により作動流体WFがタービン13を流れる方向を正方向(正流路OF)にしてタービン13を正回転させてエンジン20をアシストし、エンジン20の制動力を増大する場合は、切替機構により作動流体WFがタービン13を流れる方向を逆方向(逆流路RF)にしてタービン13を逆回転させてエンジン20の制動力を増大する制御を行う。   In summary, according to the present invention, when the control device 30 assists the engine 20, the direction in which the working fluid WF flows through the turbine 13 by the switching mechanism is set to the forward direction (forward flow path OF), and the turbine 13 is rotated forward. When the engine 20 is assisted and the braking force of the engine 20 is increased, the direction in which the working fluid WF flows through the turbine 13 is reversed (reverse flow path RF) by the switching mechanism, and the turbine 13 is rotated in the reverse direction. Control is performed to increase the braking force.

この構成によれば、タービン13の動力をエンジン20のアシストに使用できるだけでなく、タービン13に作動流体WFが流入出する作動流体WFの流入出口(13b、13a)をエンジン20のアシスト時の流入出口(13a、13b)と逆に切り替えて、タービン13の回転方向をエンジン20のアシスト時の回転方向と逆方向に切り替えることで、タービン13の動力をエンジン20の制動力の増大(エンジンブレーキの増大)にも使用することができる。   According to this configuration, not only the power of the turbine 13 can be used for assisting the engine 20, but also the inflow / outflow ports (13b, 13a) of the working fluid WF into and out of the turbine 13 when the engine 20 assists. By switching to the opposite direction to the outlets (13a, 13b) and switching the rotation direction of the turbine 13 to the opposite direction to the rotation direction at the time of assisting the engine 20, the power of the turbine 13 is increased (the braking force of the engine brake). Can also be used.

その結果、エンジン20の排気ガスGより回収した排熱エネルギーの活用効率を向上させることができる。   As a result, the utilization efficiency of the exhaust heat energy recovered from the exhaust gas G of the engine 20 can be improved.

また、上記の車両のランキンサイクルシステム1において、車両が減速走行中である場合を、タービン13の動力をエンジン20の制動力の増大に使用する場合とし、車両が加速走行中または定速走行中である場合を、タービン13の動力をエンジン20のアシストに使用する場合とする。すなわち、車両が減速走行中であるときには、タービン13の動力によりエンジン20の制動力を増大させる一方、減速走行中以外のときには、常にタービン13の動力によりエンジン20をアシストする。   In the Rankine cycle system 1 for a vehicle described above, the case where the vehicle is traveling at a reduced speed is the case where the power of the turbine 13 is used to increase the braking force of the engine 20, and the vehicle is traveling at an accelerated speed or at a constant speed. Is the case where the power of the turbine 13 is used for assisting the engine 20. That is, when the vehicle is traveling at a reduced speed, the braking force of the engine 20 is increased by the power of the turbine 13, while the engine 20 is always assisted by the power of the turbine 13 when the vehicle is not traveling at a reduced speed.

この構成によれば、車両が減速走行中であるときには、タービン13によるエンジン20の制動力の増大分だけ、フットブレーキによる制動力を低減させることができる。その結果、フットブレーキの使用頻度を低減させることができ、フットブレーキの耐久性を向上させることができる。   According to this configuration, when the vehicle is traveling at a reduced speed, the braking force by the foot brake can be reduced by the increase in the braking force of the engine 20 by the turbine 13. As a result, the usage frequency of the foot brake can be reduced, and the durability of the foot brake can be improved.

また、車両が減速走行中以外のときには、タービン13によるエンジン20のアシスト分だけ、エンジン20の出力を低減させることができる。その結果、エンジン20の燃料噴射量を低減させることができ、エンジン20の燃費を向上させることができる。   Further, when the vehicle is not traveling at a reduced speed, the output of the engine 20 can be reduced by the amount of assist of the engine 20 by the turbine 13. As a result, the fuel injection amount of the engine 20 can be reduced, and the fuel consumption of the engine 20 can be improved.

なお、図示しないが、図1の構成に、さらに、図4に示すようなバイパス通路50及びバイパスバルブ51を備えて、エンジン20の排気通路(図示しない)に備えたPM捕集用の微粒子捕集装置(図示しない)の強制PM再生制御時等で、排気ガスGが過剰に高温化して、排気ガスGとボイラー12で熱交換する作動流体WFも過剰に高温化するときに、制御装置30によりバイパスバルブ51を制御して、作動流体WFがタービン13を通過せずにバイパス通路50を通過するようにしてもよい。   Although not shown, the configuration shown in FIG. 1 is further provided with a bypass passage 50 and a bypass valve 51 as shown in FIG. 4, and particulate collection for PM collection provided in the exhaust passage (not shown) of the engine 20 is provided. When the exhaust gas G is excessively heated and the working fluid WF exchanging heat between the exhaust gas G and the boiler 12 is excessively heated, for example, during forced PM regeneration control of a collector (not shown), the control device 30 By controlling the bypass valve 51, the working fluid WF may pass through the bypass passage 50 without passing through the turbine 13.

このようにすることで、タービン13に作動流体WFの過剰な熱エネルギーが流入しないので、タービン13の耐久性を向上させることができる。   By doing in this way, since the excessive thermal energy of the working fluid WF does not flow into the turbine 13, the durability of the turbine 13 can be improved.

なお、排気ガスG及び作動流体WFが過剰に高温化したか否かの判定は、例えば、排気通路または作動流体用の流路に温度センサー(図示しない)を備えて、この温度センサーの検出値が設定閾値(実験等により設定される最適値)以上となったか否かにより行う。   The determination as to whether or not the exhaust gas G and the working fluid WF are excessively heated includes, for example, a temperature sensor (not shown) provided in the exhaust passage or the working fluid flow path, and a detection value of the temperature sensor. This is performed depending on whether or not becomes equal to or greater than a set threshold value (optimal value set by experiment etc.).

次に、本発明の車両のランキンサイクルシステムの制御方法について、図3に示す制御フローを基に説明する。図3の制御フローは、エンジン20の運転中に予め設定した制御時間を経過する度に上級の制御フローより呼ばれてスタートする制御フローとして示している。   Next, a control method of the vehicle Rankine cycle system of the present invention will be described based on the control flow shown in FIG. The control flow of FIG. 3 is shown as a control flow that is called from the advanced control flow and starts whenever a preset control time elapses during operation of the engine 20.

図3の制御フローがスタートすると、ステップS10にて、車両が減速走行中であるのか否かを判定する。この判定は、例えば、車両に備えた車速センサ(図示しない)の検出値の単位時間当たりの変動量の正負に応じて行う。ステップS10にて、車両が減速走行中である場合(YES)には、ステップS20に進み、ステップS20にて、第1電磁切替弁40及び第2電磁切替弁41を制御して、第1電磁切替弁40と第2電磁切替弁41の間の作動流体WF用の流路を逆流路RFに切り替えて、作動流体WFをタービン13の第2流入出口13bより流入し、第1流入出口13aより流出して、エンジン20の回転方向と逆方向にタービン13を回転させて、タービン13の回転動力によりエンジン20の回転を阻害して、エンジン20の制動力を増大させる制御を行う。ステップS20の制御を実施後、リターンに進んで、本制御フローを終了する。   When the control flow of FIG. 3 starts, it is determined in step S10 whether or not the vehicle is traveling at a reduced speed. This determination is performed, for example, according to whether the amount of change per unit time of the detected value of a vehicle speed sensor (not shown) provided in the vehicle is positive or negative. In step S10, when the vehicle is traveling at a reduced speed (YES), the process proceeds to step S20. In step S20, the first electromagnetic switching valve 40 and the second electromagnetic switching valve 41 are controlled, and the first electromagnetic switching is performed. The flow path for the working fluid WF between the switching valve 40 and the second electromagnetic switching valve 41 is switched to the reverse flow path RF, and the working fluid WF flows in from the second inlet / outlet 13b of the turbine 13 and from the first inlet / outlet 13a. The engine 13 flows out, rotates the turbine 13 in the direction opposite to the rotation direction of the engine 20, and inhibits the rotation of the engine 20 by the rotational power of the turbine 13 to increase the braking force of the engine 20. After executing the control in step S20, the process proceeds to return, and this control flow ends.

一方、ステップS10にて、車両が減速走行中ではない場合(NO)には、ステップS30に進み、ステップS30にて、第1電磁切替弁40及び第2電磁切替弁41を制御して、第1電磁切替弁40と第2電磁切替弁41の間の作動流体WF用の流路を正流路OFに切り替えて、作動流体WFをタービン13の第1流入出口13aより流入し、第2流入出口13bより流出して、エンジン20の回転方向と同じ方向にタービン13を回転させて、タービン13の回転動力によりエンジン20をアシストする制御を行う。ステップS30の制御を実施後、リターンに進んで、本制御フローを終了する。   On the other hand, when the vehicle is not decelerating at step S10 (NO), the process proceeds to step S30. At step S30, the first electromagnetic switching valve 40 and the second electromagnetic switching valve 41 are controlled, and the first electromagnetic switching valve 41 is controlled. The flow path for the working fluid WF between the first electromagnetic switching valve 40 and the second electromagnetic switching valve 41 is switched to the normal flow path OF, and the working fluid WF flows in from the first inlet / outlet 13a of the turbine 13 and flows into the second inlet. Control that assists the engine 20 with the rotational power of the turbine 13 is performed by flowing out of the outlet 13b and rotating the turbine 13 in the same direction as the rotational direction of the engine 20. After executing the control in step S30, the process proceeds to return, and this control flow ends.

以上より、本発明の車両のランキンサイクルシステム1を基にした、本発明の車両のランキンサイクルシステムの制御方法は、エンジン20の排熱により作動流体WFを液体から気体に加熱蒸発させる蒸発器12と、エンジン20に接続されて、蒸発器12で加熱蒸発した作動流体WFにより駆動される膨張器13と、この膨張器13を通過した作動流体WFを気体から液体に冷却凝縮させる凝縮器14と、膨張器13における作動流体WFが流れる方向を正逆に切り替える切替機構と、で構成される車両のランキンサイクルシステムの制御方法において、エンジン20をアシストする場合は、切替機構により作動流体WFが膨張器13を流れる方向を正方向にして膨張器13を正回転させてエンジン20をアシストし、エンジン20の制動力を増大する場合は、切替機構により作動流体WFが膨張器13を流れる方向を逆方向にして膨張器13を逆回転させてエンジン20の制動力を増大する制御を行うことを特徴とする方法となる。   From the above, the vehicle Rankine cycle system control method of the present invention based on the vehicle Rankine cycle system 1 of the present invention is an evaporator 12 that heats and evaporates the working fluid WF from liquid to gas by exhaust heat of the engine 20. And an expander 13 connected to the engine 20 and driven by the working fluid WF heated and evaporated by the evaporator 12, and a condenser 14 for cooling and condensing the working fluid WF that has passed through the expander 13 from gas to liquid. In the vehicle Rankine cycle system control method configured to switch the flow direction of the working fluid WF in the expander 13 between forward and reverse, when the engine 20 is assisted, the working fluid WF is expanded by the switching mechanism. The engine 20 is assisted by rotating the expander 13 forward with the direction of flow through the expander 13 in the positive direction, and braking of the engine 20 A method of increasing the braking force of the engine 20 by reversely rotating the expander 13 with the switching mechanism flowing in the reverse direction of the working fluid WF by the switching mechanism. Become.

本発明の車両のランキンサイクルシステム1及び車両のランキンサイクルシステムの制御方法によれば、エンジン20の排気ガスGより回収した排熱エネルギーの活用効率を向上させることができる。   According to the vehicle Rankine cycle system 1 and the vehicle Rankine cycle system control method of the present invention, the utilization efficiency of exhaust heat energy recovered from the exhaust gas G of the engine 20 can be improved.

なお、図1、図2、図4では、エンジン20とボイラー12を直接接続しているが、実際には、エンジン20より排気ガス浄化処理装置(図示しない)等を介して大気に通じる排気通路(排気管)より分岐して、ボイラー12に接続している。   1, 2, and 4, the engine 20 and the boiler 12 are directly connected, but actually, an exhaust passage that leads from the engine 20 to the atmosphere via an exhaust gas purification processing device (not shown) or the like. It branches from the (exhaust pipe) and is connected to the boiler 12.

1、1X 車両のランキンサイクルシステム
12 ボイラー(蒸発器)
13 タービン(膨張器)
13a 第1流入出口
13b 第2流入出口
14 凝縮器
20 エンジン(内燃機関)
30 制御装置
40 第1電磁切替弁(第1流路切替装置)
41 第2電磁切替弁(第2流路切替装置)
G 排気ガス
WF 作動流体
1, 1X Rankine cycle system for vehicles 12 Boiler (evaporator)
13 Turbine (expander)
13a 1st inlet / outlet 13b 2nd inlet / outlet 14 Condenser 20 Engine (internal combustion engine)
30 Control device 40 First electromagnetic switching valve (first flow path switching device)
41 Second electromagnetic switching valve (second flow path switching device)
G Exhaust gas WF Working fluid

Claims (4)

内燃機関の排熱により作動流体を液体から気体に加熱蒸発させる蒸発器と、前記内燃機関に接続されて、前記蒸発器で加熱蒸発した作動流体により駆動される膨張器と、該膨張器を通過した作動流体を気体から液体に冷却凝縮させる凝縮器と、制御装置と、で構成される車両のランキンサイクルシステムにおいて、
前記膨張器における作動流体が流れる方向を正逆に切り替える切替機構を備えていると共に、
前記制御装置が、前記内燃機関をアシストする場合は、前記切替機構により作動流体が前記膨張器を流れる方向を正方向にして前記膨張器を正回転させて前記内燃機関をアシストし、前記内燃機関の制動力を増大する場合は、前記切替機構により作動流体が前記膨張器を流れる方向を逆方向にして前記膨張器を逆回転させて前記内燃機関の制動力を増大する制御を行うように構成されている車両のランキンサイクルシステム。
An evaporator that heats and evaporates the working fluid from a liquid to a gas by exhaust heat of the internal combustion engine, an expander that is connected to the internal combustion engine and is driven by the working fluid heated and evaporated by the evaporator, and passes through the expander In a Rankine cycle system for a vehicle configured by a condenser that cools and condenses the working fluid from gas to liquid, and a control device,
A switching mechanism for switching the direction in which the working fluid flows in the expander to forward and reverse, and
When the control device assists the internal combustion engine, the switching mechanism assists the internal combustion engine by rotating the expander forward by setting the direction in which the working fluid flows through the expander to be a positive direction. When the braking force of the internal combustion engine is increased, the switching mechanism performs control to increase the braking force of the internal combustion engine by reversely rotating the expander with the direction in which the working fluid flows through the expander reversed. The Rankine cycle system of the vehicle that has been.
前記切替機構が、前記蒸発器と前記膨張器の間の作動流体の流路に第1流路切替装置を、前記膨張器と前記凝縮器の間の作動流体の流路に第2流路切替装置を備え、前記膨張器に作動流体が流入出する第1流入出口と第2流入出口を備えるとともに、
前記制御装置が、
前記膨張器の動力を前記内燃機関のアシストに使用する場合は、前記第1流路切替装置及び前記第2流路切替装置を制御して、作動流体を前記膨張器の第1流入出口より流入し、前記膨張器の第2流入出口より流出して、前記内燃機関の回転方向と同じ方向に前記膨張器を回転させる制御を行い、
前記膨張器の動力を前記内燃機関の制動力の増大に使用する場合は、前記第1流路切替装置及び前記第2流路切替装置を制御して、作動流体を前記膨張器の前記第2流入出口より流入し、前記第1流入出口より流出して、前記内燃機関の回転方向と逆方向に前記膨張器を回転させる制御を行うように構成されている請求項1に記載の車両のランキンサイクルシステム。
The switching mechanism switches the first flow path switching device to the working fluid flow path between the evaporator and the expander, and switches the second flow path to the working fluid flow path between the expander and the condenser. A first inflow outlet and a second inflow outlet through which the working fluid flows in and out of the expander,
The control device is
When the power of the expander is used for assisting the internal combustion engine, the first fluid path switching device and the second fluid path switching device are controlled so that the working fluid flows in from the first inlet / outlet of the expander. And outflowing from the second inlet / outlet of the expander, and performing control to rotate the expander in the same direction as the rotation direction of the internal combustion engine,
When the power of the expander is used to increase the braking force of the internal combustion engine, the first flow path switching device and the second flow path switching device are controlled to supply the working fluid to the second of the expander. 2. The vehicle Rankine according to claim 1, wherein control is performed to control the rotation of the expander in a direction opposite to a rotation direction of the internal combustion engine, flowing in from an inflow / outflow port and flowing out of the first inflow / outflow port. Cycle system.
前記車両が減速走行中である場合を、前記膨張器の動力を前記内燃機関の制動力の増大に使用する場合とし、前記車両が加速走行中または定速走行中である場合を、前記膨張器の動力を前記内燃機関のアシストに使用する場合とする請求項1または2に記載の車両のランキンサイクルシステム。   When the vehicle is traveling at a reduced speed, the power of the expander is used for increasing the braking force of the internal combustion engine, and when the vehicle is traveling at an accelerated speed or at a constant speed, the expander is used. The Rankine cycle system for a vehicle according to claim 1 or 2, wherein the motive power is used for assisting the internal combustion engine. 内燃機関の排熱により作動流体を液体から気体に加熱蒸発させる蒸発器と、前記内燃機関に接続されて、前記蒸発器で加熱蒸発した作動流体により駆動される膨張器と、該膨張器を通過した作動流体を気体から液体に冷却凝縮させる凝縮器と、前記膨張器における作動流体が流れる方向を正逆に切り替える切替機構と、で構成される車両のランキンサイクルシステムの制御方法において、
前記内燃機関をアシストする場合は、前記切替機構により作動流体が前記膨張器を流れる方向を正方向にして前記膨張器を正回転させて前記内燃機関をアシストし、
前記内燃機関の制動力を増大する場合は、前記切替機構により作動流体が前記膨張器を流れる方向を逆方向にして前記膨張器を逆回転させて前記内燃機関の制動力を増大する制御を行うことを特徴とする車両のランキンサイクルシステムの制御方法。
An evaporator that heats and evaporates the working fluid from a liquid to a gas by exhaust heat of the internal combustion engine, an expander that is connected to the internal combustion engine and is driven by the working fluid heated and evaporated by the evaporator, and passes through the expander In a method for controlling a Rankine cycle system for a vehicle, comprising: a condenser that cools and condenses the working fluid from gas to liquid; and a switching mechanism that switches a direction in which the working fluid flows in the expander forward and backward.
When assisting the internal combustion engine, the switching mechanism assists the internal combustion engine by rotating the expander forward with the direction in which the working fluid flows through the expander as a positive direction,
When increasing the braking force of the internal combustion engine, the switching mechanism performs control to increase the braking force of the internal combustion engine by rotating the expander in the reverse direction with the working fluid flowing through the expander in the reverse direction. A control method for a Rankine cycle system for a vehicle.
JP2016149407A 2016-07-29 2016-07-29 Vehicle Rankine Cycle System and Vehicle Rankine Cycle System Control Method Active JP6772631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016149407A JP6772631B2 (en) 2016-07-29 2016-07-29 Vehicle Rankine Cycle System and Vehicle Rankine Cycle System Control Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016149407A JP6772631B2 (en) 2016-07-29 2016-07-29 Vehicle Rankine Cycle System and Vehicle Rankine Cycle System Control Method

Publications (2)

Publication Number Publication Date
JP2018017203A true JP2018017203A (en) 2018-02-01
JP6772631B2 JP6772631B2 (en) 2020-10-21

Family

ID=61081397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016149407A Active JP6772631B2 (en) 2016-07-29 2016-07-29 Vehicle Rankine Cycle System and Vehicle Rankine Cycle System Control Method

Country Status (1)

Country Link
JP (1) JP6772631B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111570089A (en) * 2019-02-19 2020-08-25 上海必修福企业管理有限公司 Tail heat power generation device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111570089A (en) * 2019-02-19 2020-08-25 上海必修福企业管理有限公司 Tail heat power generation device and method

Also Published As

Publication number Publication date
JP6772631B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
US8567193B2 (en) Waste heat recovering device
JP5551508B2 (en) Control device for working fluid circulating in closed circuit operating according to Rankine cycle and method of using the same
JP4089619B2 (en) Rankine cycle system
JP5163620B2 (en) Waste heat regeneration system
JP6377645B2 (en) Method and apparatus for heating an expander of a waste heat recovery device
JP5008441B2 (en) Waste heat utilization device for internal combustion engine
JP5338730B2 (en) Waste heat regeneration system
JP2011102577A (en) Waste heat regeneration system
JP4089539B2 (en) Rankine cycle
US10662822B2 (en) Heat cycle system
JP2008231980A (en) Waste heat utilization device for internal combustion engine
WO2013046853A1 (en) Waste heat regeneration system
JP2014231739A (en) Waste heat regeneration system
JP2013113192A (en) Waste heat regeneration system
JP7057323B2 (en) Thermal cycle system
JP2013231377A (en) Waste heat regeneration system
JP4140543B2 (en) Waste heat utilization equipment
JP6772631B2 (en) Vehicle Rankine Cycle System and Vehicle Rankine Cycle System Control Method
JP2007085195A (en) Waste heat regeneration system
JP6495608B2 (en) Waste heat recovery device
JP6761380B2 (en) Thermal energy recovery system and ships equipped with it
WO2016002425A1 (en) Waste heat regeneration system
JP2015059425A (en) Waste heat recovery device for internal combustion engine
JP2011149373A (en) Waste heat recovery device
JP6222014B2 (en) Deceleration regeneration control device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6772631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150