JP2018016799A - Sealing resin composition for moisture blocking - Google Patents

Sealing resin composition for moisture blocking Download PDF

Info

Publication number
JP2018016799A
JP2018016799A JP2017144495A JP2017144495A JP2018016799A JP 2018016799 A JP2018016799 A JP 2018016799A JP 2017144495 A JP2017144495 A JP 2017144495A JP 2017144495 A JP2017144495 A JP 2017144495A JP 2018016799 A JP2018016799 A JP 2018016799A
Authority
JP
Japan
Prior art keywords
moisture
resin composition
sealing resin
curing agent
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017144495A
Other languages
Japanese (ja)
Other versions
JP6935258B2 (en
Inventor
ジュンヨン イ
Jun Young Lee
ジュンヨン イ
ヨンスン ブ
Yong Soon Boo
ヨンスン ブ
ソンヒ キム
Sunghee Kim
ソンヒ キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sungkyunkwan Univ Found For Corporate Collaboration
Kaneka Corp
Sungkyunkwan University Foundation for Corporate Collaboration
Original Assignee
Sungkyunkwan Univ Found For Corporate Collaboration
Kaneka Corp
Sungkyunkwan University Foundation for Corporate Collaboration
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sungkyunkwan Univ Found For Corporate Collaboration, Kaneka Corp, Sungkyunkwan University Foundation for Corporate Collaboration filed Critical Sungkyunkwan Univ Found For Corporate Collaboration
Publication of JP2018016799A publication Critical patent/JP2018016799A/en
Application granted granted Critical
Publication of JP6935258B2 publication Critical patent/JP6935258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/34Epoxy compounds containing three or more epoxy groups obtained by epoxidation of an unsaturated polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electroluminescent Light Sources (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealing resin composition which contains two or more epoxy resins, two or more curing agents and a moisture-absorbing agent; a sealing resin composition which sufficiently prevents permeation of moisture; a sealing resin composition which can be used for sealing a flexible device; and a method for preventing lowering of a function of an electric/electronic element and improving stability by using a new sealing resin composition as a thin film sealing material of an electric/electronic element.SOLUTION: A sealing resin composition for moisture blocking contains two or more epoxy resins and two or more curing agents and a moisture-absorbing agent, where the sealing resin composition can be stably bent while lowering moisture permeability, and can be suitably used as a sealing material which prevents lowering of a function of an electric/electronic element and can improve stability.SELECTED DRAWING: Figure 1

Description

本発明は水分遮断用封止樹脂組成物に関するものであり、更に具体的には2種類以上のエポキシ樹脂、2種類以上の硬化剤、及び吸湿剤を含む有機EL用水分遮断封止樹脂組成物に関するものである。   The present invention relates to a moisture blocking sealing resin composition, and more specifically, a moisture blocking sealing resin composition for organic EL containing two or more types of epoxy resins, two or more types of curing agents, and a hygroscopic agent. It is about.

最近、電気・電子素子分野で湿気等の素子劣化の原因となる要因を遮断できる封止樹脂組成物に対する需要及び関心が高まっている。   Recently, there has been an increasing demand and interest in a sealing resin composition capable of blocking factors that cause device deterioration such as moisture in the electric / electronic device field.

封止樹脂組成物は、有機発光素子(Organic Light Emitting Diode、OLED)や有機太陽電池(Organic Photovoltaic、OPV)のような有機素子が水分に脆弱な有機物で構成されているため、素子の寿命を延ばすために絶対に必要である。従来の封止樹脂組成物は、柔軟性が十分高くなく、フレキシブル装置には用いることができない問題がある。   Since the sealing resin composition is composed of an organic element such as an organic light emitting diode (OLED) or an organic solar cell (Organic Photovoltaic, OPV) that is vulnerable to moisture, the lifetime of the element is increased. Absolutely necessary to prolong. Conventional sealing resin compositions have a problem that they are not sufficiently high in flexibility and cannot be used for flexible devices.

国際公開第2013/125235号International Publication No. 2013/125235 特開2015−15250号公報Japanese Patent Laid-Open No. 2015-15250

本発明は、上記のような従来技術の問題を解決するためのものであり、本発明の目的は、2種類以上のエポキシ樹脂、2種類以上の硬化剤、及び吸湿剤を含む封止樹脂組成物を提供することである。   The present invention is for solving the problems of the prior art as described above, and an object of the present invention is a sealing resin composition containing two or more types of epoxy resins, two or more types of curing agents, and a hygroscopic agent. Is to provide things.

本発明の他の目的は、水分の通過を十分防ぐ封止樹脂組成物を提供することである。   Another object of the present invention is to provide a sealing resin composition that sufficiently prevents the passage of moisture.

本発明のもう1つの目的は、フレキシブル装置の封止に用いることができる封止樹脂組成物を提供することである。   Another object of the present invention is to provide a sealing resin composition that can be used for sealing a flexible device.

本発明のもう1つの目的は、新規の封止樹脂組成物を電気・電子素子の薄膜封止材料として用いることにより、電気・電子素子の機能低下を防止して安定性を高めることができる方法を提供することである。   Another object of the present invention is to use a novel encapsulating resin composition as a thin film encapsulating material for an electric / electronic device, thereby preventing the functional deterioration of the electric / electronic device and increasing the stability. Is to provide.

本発明による封止樹脂組成物は、エポキシ樹脂、硬化剤、及び吸湿剤を含み、上記エポキシ樹脂は、多官能性ビスフェノール(Multifunctional Bisphenol)Aタイプエポキシ樹脂と、ブタジエンアクリロニトリル改質(Butadiene Acrylonitrile Modified)エポキシ樹脂を含み、上記硬化剤は二官能性硬化剤と多官能性硬化剤を含む。   The encapsulating resin composition according to the present invention includes an epoxy resin, a curing agent, and a hygroscopic agent, and the epoxy resin includes a multifunctional bisphenol A type epoxy resin and a butadiene acrylonitrile modified (butadiene acrylonitrile modified). An epoxy resin is included, and the curing agent includes a bifunctional curing agent and a multifunctional curing agent.

本発明による電気・電子素子封止材料は上述した封止樹脂組成物を含む。   The electrical / electronic device sealing material according to the present invention includes the above-described sealing resin composition.

本発明による封止樹脂組成物は、水分透過率が非常に低く、柔軟度が高く、フレキシブル装置の封止に用いることができる。   The sealing resin composition according to the present invention has a very low moisture permeability and high flexibility, and can be used for sealing flexible devices.

また、本発明による封止樹脂組成物は、フレキシブルOLED等の電気・電子素子において水分の浸透を防止して、電気・電子素子の機能低下を防止し、安定性を高めることができるため、封止材として適切に用いられ得る。   In addition, the sealing resin composition according to the present invention can prevent moisture from penetrating in an electric / electronic element such as a flexible OLED, prevent deterioration of the function of the electric / electronic element, and improve stability. It can be used appropriately as a stopper.

図1は、本発明の一実施形態による封止樹脂組成物の製造順序図である。FIG. 1 is a manufacturing sequence diagram of a sealing resin composition according to an embodiment of the present invention. 図2は、本発明の一実施形態による封止樹脂組成物の水分透過深さを測定するための試料の模式図である。FIG. 2 is a schematic view of a sample for measuring the moisture permeation depth of the sealing resin composition according to one embodiment of the present invention. 図3(a)及び3(b)は、本発明の一実施形態による封止樹脂組成物の時間による水分透過深さを測定した結果である。3 (a) and 3 (b) show the results of measuring the moisture permeation depth with time of the sealing resin composition according to one embodiment of the present invention. 図4(a)乃至4(d)は、製造後に144時間が経過した比較例1乃至4を撮影した写真である。FIGS. 4A to 4D are photographs taken of Comparative Examples 1 to 4 in which 144 hours have elapsed after manufacturing. 図5(a)乃至5(c)は、それぞれ実施例1の製作直後、26時間経過後及び90時間経過後を撮影した写真であり、図5(d)乃至5(f)は、それぞれ比較例3の製作直後、26時間経過後及び90時間経過後を撮影した写真である。5 (a) to 5 (c) are photographs taken immediately after the production of Example 1, after 26 hours and after 90 hours, respectively, and FIGS. 5 (d) to 5 (f) are respectively compared. 4 is a photograph taken immediately after production of Example 3, after 26 hours and after 90 hours. 図6(a)と6(b)は、それぞれ実施例2の封止樹脂組成物の表面を製造した直後と100回の曲げ(bending)後に撮影した走査型電子顕微鏡(Scanning Electron Microscope)写真であり、図6(c)と6(d)は、それぞれ実施例3の封止樹脂組成物の表面を製造した直後と100回の曲げ後に撮影した電子顕微鏡写真である。6 (a) and 6 (b) are scanning electron microscope photographs taken immediately after manufacturing the surface of the sealing resin composition of Example 2 and after 100 times of bending, respectively. 6 (c) and 6 (d) are electron micrographs taken immediately after manufacturing the surface of the sealing resin composition of Example 3 and after bending 100 times, respectively.

以下では、本明細書に添付する図面を参照して本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings attached to the present specification.

図1は、本発明の一実施形態による封止樹脂組成物の製造順序に関するものである。   FIG. 1 relates to a manufacturing sequence of a sealing resin composition according to an embodiment of the present invention.

本実施形態による製造工程(100)は、エポキシ樹脂と硬化剤とに含まれ得る水分と気泡を除去する脱泡及び脱湿段階(110)、脱泡処理されたエポキシ樹脂、硬化剤、及び吸湿剤を混合する段階(120)、混合物を基板にコーティングする段階(130)及びコーティングされた混合物を硬化させる段階(140)を含む。   The manufacturing process (100) according to the present embodiment includes a defoaming and dehumidifying step (110) that removes moisture and bubbles that may be contained in the epoxy resin and the curing agent, a defoamed epoxy resin, a curing agent, and moisture absorption. Mixing the agent (120), coating the mixture onto a substrate (130), and curing the coated mixture (140).

エポキシ樹脂と硬化剤を脱泡及び脱湿する段階(110)では、液体状態のエポキシ樹脂と硬化剤がそれぞれ異なる容器内に含まれ、真空オーブンで所定時間以上加熱される。このような脱泡及び脱湿によって、樹脂内及び硬化剤内の水分と気泡が除去され得る。該脱泡及び脱湿は、好ましくは、30℃〜50℃の温度で30分〜1時間の間に行われ得るが、本発明はこれに限定されず、エポキシ樹脂の種類及び硬化剤の種類に応じて該温度と時間は変更され得る。   In the step (110) of defoaming and dehumidifying the epoxy resin and the curing agent, the liquid epoxy resin and the curing agent are contained in different containers and heated in a vacuum oven for a predetermined time or more. By such defoaming and dehumidification, moisture and bubbles in the resin and the curing agent can be removed. The defoaming and dehumidification may be preferably performed at a temperature of 30 ° C. to 50 ° C. for 30 minutes to 1 hour, but the present invention is not limited thereto, and the type of epoxy resin and the type of curing agent Depending on the temperature and time can be varied.

<エポキシ樹脂>
本実施形態によるエポキシ樹脂は、所定の比率で混合された2種類以上の樹脂混合物であり、架橋密度が高くて水分浸透の遮断効果が高い樹脂と、硬化時の柔軟度が高い樹脂との混合物が含まれる。樹脂の架橋密度が高いほど該樹脂を用いた封止樹脂組成物の水分透過率は低くなるのに対し、柔軟度が低くなり得る。従って、本発明による封止樹脂組成物は、架橋密度が高い樹脂と柔軟度を高めることができる樹脂を混合して共に用いることにより、封止樹脂組成物の水分透過率も低くしながら柔軟度も全て向上させることができる。架橋密度が高い樹脂の例としては、多官能性ビスフェノール(Multifunctional Bisphenol)Aタイプエポキシ樹脂があり、柔軟度が高い樹脂の例としては、ブタジエンアクリロニトリル改質(Butadiene Acrylonitrile Modified)エポキシ樹脂があるが、本発明はこれに限定されない。
<Epoxy resin>
The epoxy resin according to the present embodiment is a mixture of two or more kinds of resins mixed at a predetermined ratio, and is a mixture of a resin having a high crosslinking density and a high moisture penetration blocking effect and a resin having a high degree of flexibility during curing. Is included. The higher the crosslink density of the resin, the lower the water permeability of the encapsulating resin composition using the resin, but the lower the flexibility. Accordingly, the encapsulating resin composition according to the present invention can be used by mixing a resin having a high crosslinking density and a resin capable of increasing the flexibility, together with reducing the moisture permeability of the encapsulating resin composition. Can all be improved. An example of a resin having a high crosslinking density is a multifunctional bisphenol A type epoxy resin, and an example of a resin having a high degree of flexibility is a butadiene acrylonitrile modified epoxy resin, The present invention is not limited to this.

多官能性ビスフェノール(Multifunctional Bisphenol)Aタイプエポキシ樹脂として、例えば、次のような化学式1を有するKR−177製品(Kukdo Chemical Co.,Ltd.)がある。
As a multifunctional bisphenol A type epoxy resin, for example, there is a KR-177 product (Kukdo Chemical Co., Ltd.) having the following chemical formula 1.

ブタジエンアクリロニトリル改質(Butadiene Acrylonitrile Modified)エポキシ樹脂として、例えば、多官能性エポキシと次の化学式2で表されるCTBN(Carboxyl Terminated Butadiene Acrylonitrile)との化合物であるKR−207製品(Kukdo Chemical Co.,Ltd.)がある。CTBN内のブタジエンセグメントによって硬化後に高い柔軟性を有することができる。
As a butadiene acrylonitrile modified epoxy resin, for example, a multifunctional epoxy and a compound of CTBN (Carboxyl Terminated Butadiene Acrylonitrile) represented by the following chemical formula 2 KRm-207 Cr-207 product KRm-207 Co. Ltd.). The butadiene segment in CTBN can have high flexibility after curing.

本発明の一実施形態による多官能性ビスフェノールAタイプエポキシ樹脂とブタジエンアクリロニトリル改質エポキシ樹脂との重量比は0.2:0.8〜0.8:0.2であってもよく、好ましくは0.4:0.6〜0.6:0.4であってもよく、更に好ましくは0.5:0.5であってもよい。   The weight ratio of the multifunctional bisphenol A type epoxy resin to the butadiene acrylonitrile modified epoxy resin according to an embodiment of the present invention may be 0.2: 0.8 to 0.8: 0.2, preferably 0.4: 0.6-0.6: 0.4 may be sufficient, More preferably, it may be 0.5: 0.5.

本発明の他の実施形態によるエポキシ樹脂は、グリシジルアミン(Glycidyl amine)樹脂、ノボラック(novolac)型樹脂、O−クレーゾル(O−Cresol)ノボラックエポキシ樹脂、フェノールノボラック(Phenol Novolac)エポキシ樹脂、DOW TACTIX 742、KDT−4400(Kukdo Chemical Co.,Ltd.)、EPONTM Resin 1031樹脂のうちの2個以上を含み得る。 Epoxy resins according to other embodiments of the present invention include glycidylamine resin, novolac type resin, O-Cresol novolac epoxy resin, phenol novolac epoxy resin, DOW TACTIX. 742, KDT-4400 (Kukdo Chemical Co., Ltd.), EPON Resin 1031 resin may be included.

<硬化剤>
本発明の一実施形態による硬化剤は、所定の比率で混合された2種類以上の硬化剤の混合物であり、多官能性硬化剤と二官能性硬化剤との混合物が用いられ得る。多官能性硬化剤の例としては、次の化学式3のような構造を有するアミン系列のKH−8006製品(Kukdo Chemical Co.,Ltd.)があり、二官能性硬化剤の例としては、次の化学式4のような構造を有するアミド系列のG−640製品(Kukdo Chemical Co.,Ltd.)があるが、本発明はこれに限定されない。
<Curing agent>
The curing agent according to an embodiment of the present invention is a mixture of two or more kinds of curing agents mixed at a predetermined ratio, and a mixture of a polyfunctional curing agent and a bifunctional curing agent may be used. As an example of the polyfunctional curing agent, there is an amine series KH-8006 product (Kukdo Chemical Co., Ltd.) having the structure of the following chemical formula 3. As an example of the bifunctional curing agent, The amide series G-640 product (Kukdo Chemical Co., Ltd.) having a structure of the following chemical formula 4 is included, but the present invention is not limited thereto.

多官能性硬化剤のうちの1つであるKH−8006製品では、硬化時にエポキシ樹脂のエチレンオキシド環と結合するNH基を二官能性硬化剤であるG−640製品より多く含んでおり、架橋密度をより高めることができるので、水分透過率を下げることができる。二官能性硬化剤であるG−640製品は、他の膜との接着力を高めることができるようにする。従って、本発明による封止樹脂組成物では、二官能性硬化剤と多官能性硬化剤を混合していずれも用いることが好ましい。 The KH-8006 product, one of the multifunctional curing agents, contains more NH 2 groups that bind to the ethylene oxide ring of the epoxy resin during curing than the G-640 product, which is a bifunctional curing agent. Since the density can be further increased, the moisture permeability can be decreased. The G-640 product, which is a bifunctional curing agent, allows for increased adhesion with other films. Therefore, in the sealing resin composition according to the present invention, it is preferable to use a mixture of a bifunctional curing agent and a polyfunctional curing agent.

本発明の他の実施形態の硬化剤は、DETA(Diethylenetriamine)、TETA(Triethylenetetramine)、TEPA(Tetraethylenepentamine)、AEP(Aminoethylpiperazine)、DDM(Diaminodiphenylmethane)、DDS(Diaminodiphenylsulfone)、HMD(Hexamethylenediamine)、MPMD(methylpentamethylenediamine)、TMD(Trimethyl hexamethylene diamine)、DMAPA(Dimethylaminopropylamine)、DEAPA(Diethylaminopropylamine)、IPD(Isophoronediamine)、DACH(Diaminocyclohexane)、PACM(paraaminocyclohexyl methane)、MPD(Mefa−phenylene diamine)、MDA(Methylenedianiline)、DDS(Diaminodiphenylsulfone)、OTDA(Ortho Toluenediamine)のうちの2個以上を含み得る。   Curing agent of another embodiment of the present invention, DETA (Diethylenetriamine), TETA (Triethylenetetramine), TEPA (Tetraethylenepentamine), AEP (Aminoethylpiperazine), DDM (Diaminodiphenylmethane), DDS (Diaminodiphenylsulfone), HMD (Hexamethylenediamine), MPMD (methylpentamethylenediamine ), TMD (Trimethyl hexylene diamine), DMAPA (Dimethylaminopropylene), DEAPA (Diethylaminopropylene) ine), IPD (Isophorodiamine), DACH (Diaminocyclohexylene), PACM (paraaminocyclylene minethane), MPD (Mefa-phenyleneDine), MDA (Methylenediene), MDA (Methylenediene) obtain.

エポキシ樹脂全体と硬化剤全体との当量比は1:0.3〜1:1.5であってもよく、好ましくは1:0.8〜1:1.2であってもよい。エポキシ樹脂全体に対する硬化剤全体の当量比が1を超えれば、硬化速度が速くなり得、当量比が高過ぎなければ、封止樹脂組成物内の硬化剤は、残らずに反応し得る。硬化剤全体においてアミン系列の硬化剤とアミド系列の硬化剤との重量比は0.1:0.9〜0.9:0.1であってもよく、好ましくは0.2:0.8〜0.8:0.2であってもよい。   The equivalent ratio of the entire epoxy resin and the entire curing agent may be 1: 0.3 to 1: 1.5, preferably 1: 0.8 to 1: 1.2. If the equivalent ratio of the entire curing agent to the entire epoxy resin exceeds 1, the curing rate can be increased, and if the equivalent ratio is not too high, the curing agent in the sealing resin composition can react completely. The weight ratio of the amine series curing agent to the amide series curing agent in the entire curing agent may be 0.1: 0.9 to 0.9: 0.1, preferably 0.2: 0.8. -0.8: 0.2 may be sufficient.

次に、水分と気泡が除去されたエポキシ樹脂及び硬化剤を吸湿剤と混合させる段階(120)は、エポキシ樹脂、硬化剤及び吸湿剤を共に混合してもよく、これら材料のうちの一部をまず混合した後、残った材料を追加で混合してもよい。例えば、エポキシ樹脂と吸湿剤を20分〜40分間、高粘度用ミキサ(例えば、日本Thinky社のミキサ)で混合した後に、20分〜40分間、気泡除去のためのデフォーミング(defoaming)処理をし、硬化剤を追加して、再び、混合とデフォーミング処理をすることができる。   Next, the step (120) of mixing the epoxy resin from which moisture and bubbles have been removed and the curing agent with the moisture absorbent may mix the epoxy resin, the curing agent, and the moisture absorbent together, and a part of these materials. May be mixed first and then the remaining material may be additionally mixed. For example, after mixing an epoxy resin and a hygroscopic agent for 20 minutes to 40 minutes with a high-viscosity mixer (for example, a mixer manufactured by Japan Thinky), a deforming process for removing bubbles is performed for 20 minutes to 40 minutes. Then, a curing agent can be added, and mixing and deformation can be performed again.

本発明による吸湿剤としては、CaO、MgO、ゼオライト(Zeolite)、P、LiO、NaO、KO等が用いられ得るが、これに限定されるわけではない。吸湿剤の量はエポキシ樹脂と硬化剤の重量和に対して25〜45重量%であってもよい。吸湿剤の量が該範囲内であれば、水分浸透防止効果が低くなりにくく、他の層との接着力が低くなりにくい。 Examples of the moisture absorbent according to the present invention include, but are not limited to, CaO, MgO, zeolite, P 2 O 5 , LiO, Na 2 O, K 2 O and the like. The amount of the hygroscopic agent may be 25 to 45% by weight based on the total weight of the epoxy resin and the curing agent. If the amount of the hygroscopic agent is within the above range, the moisture penetration preventing effect is hardly lowered, and the adhesive force with other layers is hardly lowered.

次のコーティング段階(130)では、エポキシ樹脂、硬化剤及び吸湿剤の混合物を基板にコーティングする。コーディング方法は、スピンコーティング、バー(bar)コーティング、ドロップ(drop)コーティング又はディップ(dip)コーティング方法を用いることができるが、本発明はこれに限定されるわけではない。混合物がコーティングされる基板の材質は、プラスチック、ガラス、石英等であってもよく、基板には混合物のコーティング前に金属膜及び/又は絶縁体膜が予め形成されていてもよい。混合物のコーティング後には、その上部を他の基板、例えば、ガラス基板で覆ってもよい。   In the next coating step (130), the substrate is coated with a mixture of epoxy resin, curing agent and hygroscopic agent. The coding method may be spin coating, bar coating, drop coating, or dip coating, but the present invention is not limited thereto. The material of the substrate on which the mixture is coated may be plastic, glass, quartz or the like, and a metal film and / or an insulator film may be formed on the substrate in advance before coating the mixture. After coating the mixture, the upper part may be covered with another substrate, for example, a glass substrate.

その後、硬化段階(140)では、基板上にコーティングされたエポキシ樹脂、硬化剤及び吸湿剤の混合物を硬化させて封止樹脂組成物を形成する。本発明による硬化段階では、好ましくは熱硬化が用いられ得るが、光硬化等の他の方法が用いられることもでき、本発明は特定の硬化方式に限定されない。本発明による熱硬化段階では、基板にコーティングされたエポキシ樹脂、硬化剤及び吸湿剤の混合物について、好ましくは40℃〜150℃、より好ましくは80℃〜100℃の温度で硬化を行うことができ、硬化時間は1時間〜24時間とすることができる。硬化条件は、材料の種類等に応じて変わり得る。また、熱硬化は、異なる温度と時間で種々の段階にわたって行われ得るが、初期段階で低温で硬化する場合には、初期段階で高温で硬化する場合に比べて気泡発生を減らして不良発生率を低下させ得る。   Thereafter, in the curing step (140), the mixture of the epoxy resin coated on the substrate, the curing agent, and the hygroscopic agent is cured to form a sealing resin composition. In the curing step according to the present invention, heat curing can be preferably used, but other methods such as photocuring can also be used, and the present invention is not limited to a specific curing method. In the thermosetting step according to the present invention, the epoxy resin coated on the substrate, the curing agent and the moisture absorbent can be cured at a temperature of preferably 40 ° C to 150 ° C, more preferably 80 ° C to 100 ° C. The curing time can be 1 hour to 24 hours. Curing conditions can vary depending on the type of material and the like. In addition, thermosetting can be performed at various temperatures and times over various stages. However, when curing at a low temperature in the initial stage, bubble generation is reduced by reducing bubble generation compared to curing at a high temperature at the initial stage. Can be reduced.

このような本発明の一実施形態によって製造された封止樹脂組成物では、エポキシ樹脂内に架橋密度が高い材料だけでなく、柔軟度を高めることができる材料が含まれており、硬化剤内に他の膜との接着性を向上させることができる材料が含まれており、水分浸透を防止しながらも、フレキシブルで、更に他の膜との接着性が高い封止樹脂組成物が提供され得る。   In such a sealing resin composition manufactured according to an embodiment of the present invention, the epoxy resin contains not only a material having a high crosslinking density but also a material capable of increasing the flexibility, Includes a material that can improve adhesion to other films, and provides a sealing resin composition that is flexible and has high adhesion to other films while preventing moisture penetration. obtain.

図2は、本発明の一実施形態による封止樹脂組成物の水分浸透防止効果を測定するための試料(200)の断面である。試料(200)は、下部基板(210)と上部基板(240)との間に、封止樹脂組成物(220)が所定の厚さのカルシウム(Ca)層(230)を覆うように形成される。空気中の水分が試料(200)内の封止樹脂組成物(220)を浸透すれば、カルシウム層(230)が水分と反応してカルシウム層(230)の色が変わり、このような色相変化から試料に対する水分浸透深さを測定して封止樹脂組成物(220)の水分浸透防止の程度を測定することができる。   FIG. 2 is a cross-section of a sample (200) for measuring the moisture penetration preventing effect of the sealing resin composition according to one embodiment of the present invention. The sample (200) is formed between the lower substrate (210) and the upper substrate (240) so that the sealing resin composition (220) covers the calcium (Ca) layer (230) having a predetermined thickness. The If moisture in the air permeates the sealing resin composition (220) in the sample (200), the calcium layer (230) reacts with moisture to change the color of the calcium layer (230), and such a hue change The moisture penetration depth of the sealing resin composition (220) can be measured by measuring the moisture penetration depth with respect to the sample.

以下では、実施例及び比較例を通じて本発明を更に具体的に説明する。しかし、次の実施例及び比較例は、本発明に対する理解を促進するために例示の目的としてのみ提供されたものであるだけで、本発明の範疇及び範囲がここに限定されないことを明らかにしておく。次の実施例と比較例の試料はいずれも70℃〜100℃の温度で1時間と120℃の温度で1時間の2段階の熱硬化過程を経た。実施例と比較例では、吸湿剤としてシグマアルドリッチ(Sigma−Aldrich,Inc.)のCaOナノパウダ製品を用いた。実施例1乃至3と比較例1乃至8は、水分浸透防止効果の測定のためのものであり、図2に示された構造を有するが、一辺が3cmである正方形のガラス基板上に真空の熱蒸着で形成された厚さ250nm、一辺2cmである正方形のCa層を封止樹脂組成物でコーティングした後、その上に一辺が3cmである正方形のガラス基板で覆って製作されたものである。柔軟度の測定のための実施例4乃至8は、エポキシ樹脂、硬化剤及び吸湿剤の混合物を厚さ150μmであるポリエチレンナフタレート(poly(ethylene naphthalate)(PEN))フィルム上にコーティング後、硬化して作られる。実施例及び比較例の封止樹脂組成物の厚さは80μm〜150μmである。   Hereinafter, the present invention will be described more specifically through examples and comparative examples. However, the following examples and comparative examples are provided for illustrative purposes only to facilitate understanding of the present invention, and it is clarified that the scope and scope of the present invention are not limited thereto. deep. The samples of the following examples and comparative examples were each subjected to a two-stage thermosetting process of 1 hour at a temperature of 70 ° C. to 100 ° C. and 1 hour at a temperature of 120 ° C. In Examples and Comparative Examples, a Sigma-Aldrich, Inc. CaO nanopowder product was used as a hygroscopic agent. Examples 1 to 3 and Comparative Examples 1 to 8 are for measuring the moisture penetration preventing effect, and have the structure shown in FIG. 2, but a vacuum is formed on a square glass substrate having a side of 3 cm. A square Ca layer having a thickness of 250 nm and a side of 2 cm formed by thermal evaporation was coated with a sealing resin composition and then covered with a square glass substrate having a side of 3 cm. . Examples 4 to 8 for the measurement of softness were obtained by coating a mixture of an epoxy resin, a curing agent and a hygroscopic agent on a polyethylene naphthalate (PEN) film having a thickness of 150 μm, followed by curing. Made. The thickness of the sealing resin composition of an Example and a comparative example is 80 micrometers-150 micrometers.

<実施例>
実施例1は、KR−177製品及びKR−207製品を、それぞれ、0.5g及び0.5gで混合したエポキシ樹脂を用いて、該エポキシ樹脂に対する硬化剤の当量比は1:1とし、硬化剤であるKH−8006製品とG−640製品の重量比を0.4:0.6とし、エポキシ樹脂と硬化剤の重量和に対して30重量%の吸湿剤を含む封止樹脂組成物を含む試料である。
<Example>
Example 1 uses an epoxy resin prepared by mixing KR-177 product and KR-207 product at 0.5 g and 0.5 g, respectively, and the equivalent ratio of the curing agent to the epoxy resin is set to 1: 1. A sealing resin composition comprising a KH-8006 product and a G-640 product as a weight ratio of 0.4: 0.6, and containing 30% by weight of a hygroscopic agent with respect to the total weight of the epoxy resin and the curing agent. It is a sample containing.

実施例2は、硬化剤であるKH−8006製品とG−640製品の重量比を0.6:0.4とすること以外は、実施例1と同一の方法で製造された試料である。   Example 2 is a sample manufactured by the same method as Example 1 except that the weight ratio of KH-8006 product and G-640 product, which is a curing agent, is 0.6: 0.4.

実施例3は、硬化剤であるKH−8006製品とG−640製品の重量比を0.8:0.2とすること以外は、実施例1と同一の方法で製造された試料である。   Example 3 is a sample manufactured by the same method as Example 1 except that the weight ratio of KH-8006 product and G-640 product, which is a curing agent, is 0.8: 0.2.

実施例1乃至3は、水分浸透遮断特性を測定するための試料であり、2枚のガラス基板の間に位置する。   Examples 1 to 3 are samples for measuring moisture permeation blocking characteristics, and are located between two glass substrates.

実施例4は、KR−177製品及びKR−207製品を、それぞれ、0.2g及び0.8gで混合したエポキシ樹脂を用いて、該エポキシ樹脂に対する硬化剤の当量比は1:1とし、硬化剤であるKH−8006製品とG−640製品の重量比を0.8:0.2とし、エポキシ樹脂と硬化剤の重量和に対して30重量%の吸湿剤を含む封止樹脂組成物を含む試料である。   Example 4 uses an epoxy resin in which KR-177 product and KR-207 product are mixed at 0.2 g and 0.8 g, respectively, and the equivalent ratio of the curing agent to the epoxy resin is 1: 1. A sealing resin composition comprising a KH-8006 product and a G-640 product as a weight ratio of 0.8: 0.2, and containing 30% by weight of a hygroscopic agent with respect to the total weight of the epoxy resin and the curing agent. It is a sample containing.

実施例5は、実施例4のエポキシ樹脂に代えて、KR−177製品及びKR−207製品を、それぞれ、0.4g及び0.6gで混合したエポキシ樹脂を用いること以外は、実施例4と同一の方法で製造された試料である。   Example 5 is the same as Example 4 except that instead of the epoxy resin of Example 4, an epoxy resin obtained by mixing KR-177 product and KR-207 product at 0.4 g and 0.6 g, respectively, is used. It is a sample manufactured by the same method.

実施例6は、実施例4のエポキシ樹脂に代えて、KR−177製品及びKR−207製品を、それぞれ、0.5g及び0.5gで混合したエポキシ樹脂を用いること以外は、実施例4と同一の方法で製造された試料である。   Example 6 is the same as Example 4 except that instead of the epoxy resin of Example 4, an epoxy resin obtained by mixing KR-177 product and KR-207 product at 0.5 g and 0.5 g, respectively, is used. It is a sample manufactured by the same method.

実施例7は、実施例4のエポキシ樹脂に代えて、KR−177製品及びKR−207製品をそれぞれ0.6g及び0.4gで混合したエポキシ樹脂を用いること以外は、実施例4と同一の方法で製造された試料である。   Example 7 is the same as Example 4 except that instead of the epoxy resin of Example 4, an epoxy resin obtained by mixing KR-177 product and KR-207 product at 0.6 g and 0.4 g, respectively, is used. It is the sample manufactured by the method.

実施例8は、実施例4のエポキシ樹脂に代えて、KR−177製品及びKR−207製品をそれぞれ0.8g及び0.2gで混合したエポキシ樹脂を用いること以外は、実施例4と同一の方法で製造された試料である。   Example 8 is the same as Example 4 except that instead of the epoxy resin of Example 4, an epoxy resin obtained by mixing KR-177 product and KR-207 product at 0.8 g and 0.2 g, respectively, is used. It is the sample manufactured by the method.

実施例4乃至8は、封止材の柔軟特性を測定するための試料であり、プラスチックフィルム上にコーティングした。   Examples 4 to 8 are samples for measuring the softness properties of the sealing material, and were coated on a plastic film.

<比較例>
比較例1は、KR−177製品からなるエポキシ樹脂1gを用いて、該エポキシ樹脂に対する硬化剤の当量比は1:1とし、硬化剤であるKH−8006製品とG−640製品の重量比を0.2:0.8とし、エポキシ樹脂と硬化剤の重量和に対して50重量%の吸湿剤を含む封止樹脂組成物を含む試料である。
<Comparative example>
In Comparative Example 1, 1 g of epoxy resin made of KR-177 product was used, the equivalent ratio of the curing agent to the epoxy resin was 1: 1, and the weight ratio of KH-8006 product and G-640 product as the curing agent was The sample includes a sealing resin composition that is 0.2: 0.8 and includes 50% by weight of a hygroscopic agent with respect to the total weight of the epoxy resin and the curing agent.

比較例2は、硬化剤であるKH−8006製品とG−640製品の重量比を0.3:0.7とすること以外は、比較例1と同一の方法で製造された試料である。   Comparative Example 2 is a sample manufactured by the same method as Comparative Example 1 except that the weight ratio of KH-8006 product and G-640 product, which is a curing agent, is 0.3: 0.7.

比較例3は、硬化剤であるKH−8006製品とG−640製品の重量比を0.4:0.6とすること以外は、比較例1と同一の方法で製造された試料である。   Comparative Example 3 is a sample manufactured by the same method as Comparative Example 1 except that the weight ratio of KH-8006 product and G-640 product, which is a curing agent, is 0.4: 0.6.

比較例4は、硬化剤であるKH−8006製品とG−640製品の重量比を0.5:0.5とすること以外は、比較例1と同一の方法で製造された試料である。   Comparative Example 4 is a sample manufactured by the same method as Comparative Example 1 except that the weight ratio of KH-8006 product and G-640 product, which is a curing agent, is 0.5: 0.5.

比較例5は、KR−177製品からなるエポキシ樹脂1gを用いて、該エポキシ樹脂に対する硬化剤の当量は1:1とし、硬化剤としてKH−8006製品を用いて、エポキシ樹脂と硬化剤の重量和に対して10重量%の吸湿剤を含む封止樹脂組成物を含む試料である。   Comparative Example 5 uses 1 g of an epoxy resin made of KR-177 product, the equivalent of the curing agent to the epoxy resin is 1: 1, and the weight of the epoxy resin and the curing agent is KH-8006 product as the curing agent. It is a sample containing the sealing resin composition containing 10 weight% of hygroscopic agents with respect to the sum.

比較例6は、吸湿剤の量がエポキシ樹脂と硬化剤の重量和に対して30重量%であること以外は、比較例5と同一の方法で製造された試料である。   Comparative Example 6 is a sample manufactured by the same method as Comparative Example 5 except that the amount of the hygroscopic agent is 30% by weight with respect to the total weight of the epoxy resin and the curing agent.

比較例7は、吸湿剤の量がエポキシ樹脂と硬化剤の重量和に対して50重量%であること以外は、比較例5と同一の方法で製造された試料である。   Comparative Example 7 is a sample manufactured by the same method as Comparative Example 5 except that the amount of the hygroscopic agent is 50% by weight with respect to the total weight of the epoxy resin and the curing agent.

比較例8は、吸湿剤の量がエポキシ樹脂と硬化剤の重量和に対して70重量%であること以外は、比較例5と同一の方法で製造された試料である。   Comparative Example 8 is a sample manufactured by the same method as Comparative Example 5 except that the amount of the hygroscopic agent is 70% by weight with respect to the total weight of the epoxy resin and the curing agent.

<実施例と比較例の対比>
本発明の実施例によって製造された封止組成物の効果を測定する方法とその測定結果を次に具体的に説明する。
<Contrast of Example and Comparative Example>
The method for measuring the effect of the sealing composition produced according to the example of the present invention and the measurement result will be specifically described below.

<試験例1:水分浸透防止の評価>
以下の結果は、実施例及び比較例の試料を85℃の温度、85%相対湿度の雰囲気下において、時間による試料内のカルシウム層のサイズ変化及び吸湿剤の色相変化を観察して水分浸透の防止の程度を測定したものである。
<Test Example 1: Evaluation of moisture penetration prevention>
The following results indicate that the samples of Examples and Comparative Examples were subjected to moisture penetration by observing changes in the size of the calcium layer in the sample and the hue of the hygroscopic agent over time in an atmosphere of 85 ° C. and 85% relative humidity. It is a measure of the degree of prevention.

図3(a)は、実施例1乃至3で吸湿剤の時間による色相変化を観察して測定した水分浸透長さの変化に関するグラフである。該グラフから分かるように、製造した後、144時間経過後の実施例1乃至3において、それぞれ、試料側面から1.7mm、1.2mm及び0.7mmの水分浸透が測定され、これから、硬化剤内において多官能性硬化剤の比率が高いほど水分浸透防止機能に優れることが確認される。特に、図3(b)に示された通り、実施例3の場合には、1000時間経過後にも水分が3.3mmのみ浸透して非常に優れた特性を示した。   FIG. 3A is a graph relating to a change in moisture penetration length measured by observing a change in hue with time of the hygroscopic agent in Examples 1 to 3. As can be seen from the graph, in Examples 1 to 3 after 144 hours had elapsed after the production, water penetration of 1.7 mm, 1.2 mm and 0.7 mm was measured from the side of the sample, respectively. It is confirmed that the higher the ratio of the polyfunctional curing agent is, the better the water penetration preventing function is. In particular, as shown in FIG. 3B, in the case of Example 3, only 3.3 mm of water penetrated even after 1000 hours and showed very excellent characteristics.

図4は、85℃の温度、85%相対湿度の雰囲気下で144時間経過時の比較例1乃至4を撮影した写真である。比較例1乃至4のうち、多官能性硬化剤の比率が最も高い比較例4で吸湿剤の色相変化が最も小さく、水分透過率が最も低いが、接触力に問題があり得るため、他の膜との積層における使用が制限的であり得る。   FIG. 4 is a photograph of Comparative Examples 1 to 4 taken after 144 hours in an atmosphere of 85 ° C. and 85% relative humidity. Among Comparative Examples 1 to 4, the ratio of the polyfunctional curing agent is the highest in Comparative Example 4, and the change in the hue of the hygroscopic agent is the smallest and the moisture permeability is the lowest, but there may be a problem in the contact force. Use in lamination with membranes can be restrictive.

図5は、実施例1と比較例3の時間経過によるカルシウム層の変化を撮影した写真であり、図5(a)乃至5(c)は、それぞれ実施例1の試料製作直後、26時間経過後及び90時間経過後を撮影したものであり、図5(d)乃至5(f)は、それぞれ比較例3の試料製作直後、26時間経過後及び90時間経過後を撮影したものである。試料製作直後には、実施例1と比較例3のカルシウム層及び吸湿剤のサイズ及び色相の変化はないが、90時間経過後には、実施例1がカルシウム層の変化はなく、吸湿剤の色相変化が更に小さく、比較例3に比べて吸湿水分浸透防止効果に更に優れることが確認される。   FIG. 5 is a photograph of the changes in the calcium layer over time in Example 1 and Comparative Example 3, and FIGS. 5 (a) to 5 (c) are 26 hours after the sample preparation in Example 1, respectively. FIGS. 5 (d) to 5 (f) are taken immediately after the sample preparation of Comparative Example 3, after 26 hours and after 90 hours, respectively. Immediately after the preparation of the sample, there was no change in the size and hue of the calcium layer and the hygroscopic agent in Example 1 and Comparative Example 3, but after 90 hours, Example 1 had no change in the calcium layer, and the hue of the hygroscopic agent. It is confirmed that the change is further smaller and the moisture absorption moisture penetration preventing effect is further improved as compared with Comparative Example 3.

次に、比較例5乃至8は、試料内の吸湿剤であるCaOの重量比を異ならせたものであり、試料製作から100時間後に測定した水分浸透長さから、CaOの量が多いほど水分浸透防止効果が大きくなることを表1から確認することができる。しかし、CaOの量があまりにも多く含まれた試料の場合、接着力が落ちて基板が剥離する問題が生じ得る。   Next, Comparative Examples 5 to 8 are samples in which the weight ratio of CaO, which is a hygroscopic agent, in the sample is varied. From the moisture penetration length measured 100 hours after the sample was manufactured, the moisture content increases as the amount of CaO increases. It can be confirmed from Table 1 that the penetration preventing effect is increased. However, in the case of a sample in which the amount of CaO is excessively large, there may be a problem that the adhesive force is reduced and the substrate is peeled off.

従って、水分浸透防止効果及び接着力等をいずれも考慮すると、封止樹脂組成物内のCaOはエポキシ樹脂と硬化剤の重量和に対する重量比が25重量%以上、45重量%以下であることが好ましく、封止樹脂組成物内のエポキシ樹脂及び硬化剤の数や種類が変わってもCaOの量の好ましい範囲は実質的に同一である。   Therefore, considering both the moisture penetration preventing effect and the adhesive strength, the weight ratio of CaO in the sealing resin composition to the sum of the weight of the epoxy resin and the curing agent is 25% by weight or more and 45% by weight or less. Preferably, the preferred range of the amount of CaO is substantially the same even if the number and type of epoxy resins and curing agents in the sealing resin composition are changed.

従って、本発明の一実施形態による封止樹脂組成物内のCaOは、エポキシ樹脂と硬化剤の重量和に対する重量比が10重量%以上50重量%以下であることが好ましい。   Therefore, the CaO in the sealing resin composition according to one embodiment of the present invention preferably has a weight ratio of 10 wt% or more and 50 wt% or less with respect to the total weight of the epoxy resin and the curing agent.

<試験例2:試料の柔軟度の評価>
試料の柔軟度は、柔軟持続テスタ機(Flexural Endurance Taster)(IPC社のCK−700FET製品)を用いて、曲げる前の長さ2cm、曲げた後の長さ1cmの条件で試料の曲率半径を測定して評価する。
<Test Example 2: Evaluation of sample flexibility>
The flexibility of the sample is determined by using the Flexurance Endurance Tester (IPC's CK-700FET product) to determine the radius of curvature of the sample under the conditions of a length of 2 cm before bending and a length of 1 cm after bending. Measure and evaluate.

表2は、実施例4乃至8の曲率半径を測定した結果である。該結果から、エポキシ樹脂内でKR−207製品の比率が大きくなるほど曲率の半径が小さくなり、柔軟度が向上することが分かる。   Table 2 shows the results of measuring the radii of curvature of Examples 4 to 8. From the results, it can be seen that as the ratio of the KR-207 product in the epoxy resin increases, the radius of curvature decreases and the flexibility increases.

図6は、実施例2又は3の封止樹脂組成物の表面を撮影した走査型電子顕微鏡(Scanning Electron Microscope)写真であり、図6(a)及び(b)は、それぞれ、実施例2の試料を100回曲げ(bending)の前及び後に撮影した走査型電子顕微鏡写真であり、図6(c)及び(d)は、それぞれ、実施例3の試料を100回曲げの前及び後に撮影した走査型電子顕微鏡写真である。これらの写真から、実施例2及び3は多数の曲げにもかかわらず、膜にクラック(crack)等の損傷がほぼ発生しないことが確認される。   6 is a scanning electron microscope photograph in which the surface of the sealing resin composition of Example 2 or 3 is photographed. FIGS. 6 (a) and 6 (b) are those of Example 2, respectively. 6 is scanning electron micrographs taken before and after bending the sample 100 times, and FIGS. 6C and 6D are taken before and after bending the sample of Example 3 100 times, respectively. It is a scanning electron micrograph. From these photographs, it is confirmed that Examples 2 and 3 hardly cause damage such as cracks in the film despite a large number of bendings.

100:試料製造工程
200:試料
210、240:基板
220:封止樹脂組成物
230:Ca層
100: Sample manufacturing process 200: Sample 210, 240: Substrate 220: Sealing resin composition 230: Ca layer

Claims (14)

水分遮断用封止樹脂組成物であって、
エポキシ樹脂、硬化剤及び吸湿剤を含み、
上記エポキシ樹脂は、多官能性ビスフェノール(Multifunctional Bisphenol)Aタイプエポキシ樹脂と、ブタジエンアクリロニトリル改質(Butadiene Acrylonitrile Modified)エポキシ樹脂を含み、
上記硬化剤は、二官能性硬化剤と多官能性硬化剤を含む、水分遮断用封止樹脂組成物。
A sealing resin composition for blocking moisture,
Including epoxy resin, curing agent and hygroscopic agent,
The epoxy resin includes a multifunctional bisphenol A type epoxy resin and a butadiene acrylonitrile modified epoxy resin,
The said hardening | curing agent is the sealing resin composition for moisture shielding containing a bifunctional hardening | curing agent and a polyfunctional hardening | curing agent.
上記二官能性硬化剤は、アミド硬化剤を含む、請求項1に記載の水分遮断用封止樹脂組成物。   The moisture-blocking sealing resin composition according to claim 1, wherein the bifunctional curing agent includes an amide curing agent. 上記多官能性硬化剤は、アミン硬化剤を含む、請求項1又は2に記載の水分遮断用封止樹脂組成物。   The moisture-blocking sealing resin composition according to claim 1, wherein the polyfunctional curing agent includes an amine curing agent. 上記二官能性硬化剤と上記多官能性硬化剤の重量比は1:9乃至9:1以下である、請求項1乃至3のいずれか1項に記載の水分遮断用封止樹脂組成物。   The sealing resin composition for moisture blocking according to any one of claims 1 to 3, wherein a weight ratio of the bifunctional curing agent and the polyfunctional curing agent is 1: 9 to 9: 1. 上記ブタジエンアクリロニトリル改質(Butadiene Acrylonitrile Modified)エポキシ樹脂は、上記エポキシ樹脂全体の10重量%以上、90重量%以下である、請求項1乃至4のいずれか1項に記載の水分遮断用封止樹脂組成物。   5. The moisture-blocking sealing resin according to claim 1, wherein the butadiene acrylonitrile-modified epoxy resin is 10% by weight or more and 90% by weight or less of the whole epoxy resin. Composition. 上記ブタジエンアクリロニトリル改質(Butadiene Acrylonitrile Modified)エポキシ樹脂は、上記エポキシ樹脂全体の40重量%以上、60重量%以下である、請求項1乃至5のいずれか1項に記載の水分遮断用封止樹脂組成物。   The water-blocking sealing resin according to any one of claims 1 to 5, wherein the butadiene acrylonitrile modified epoxy resin is 40 wt% or more and 60 wt% or less of the entire epoxy resin. Composition. 上記吸湿剤は、CaO、MgO、ゼオライト(Zeolite)、P、LiO、NaO、KOのうちの少なくとも1つを含む、請求項1乃至6のいずれか1項に記載の水分遮断用封止樹脂組成物。 The moisture absorbent, CaO, MgO, zeolite (Zeolite), P 2 O 5 , LiO, including at least one of Na 2 O, K 2 O, according to any one of claims 1 to 6 Sealing resin composition for moisture barrier. 上記エポキシ樹脂と上記硬化剤の重量和に対する上記吸湿剤の重量比が25重量%以上、45重量%以下である、請求項1乃至7のいずれか1項に記載の水分遮断用封止樹脂組成物。   The moisture-blocking sealing resin composition according to any one of claims 1 to 7, wherein a weight ratio of the hygroscopic agent to a sum of weights of the epoxy resin and the curing agent is 25% by weight or more and 45% by weight or less. object. 上記エポキシ樹脂に対する上記硬化剤内アミノ基の当量比は0.8〜1.2である、請求項1乃至8のいずれか1項に記載の水分遮断用封止樹脂組成物。   The sealing resin composition for moisture blocking according to any one of claims 1 to 8, wherein an equivalent ratio of the amino group in the curing agent to the epoxy resin is 0.8 to 1.2. 請求項1乃至9のいずれか1項に記載の水分遮断用封止樹脂組成物を含む電気・電子封止材料。   An electrical / electronic sealing material comprising the moisture-blocking sealing resin composition according to claim 1. 請求項1乃至9のいずれか1項に記載の水分遮断用封止樹脂組成物を含む電子機器。   An electronic device comprising the sealing resin composition for blocking moisture according to any one of claims 1 to 9. 請求項1乃至9のいずれか1項に記載の水分遮断用封止樹脂組成物を含む電気・電子素子。   An electric / electronic device comprising the moisture blocking sealing resin composition according to claim 1. 請求項1乃至9のいずれか1項に記載の水分遮断用封止樹脂組成物を含む有機電界発光素子。   The organic electroluminescent element containing the sealing resin composition for water | blocking a water | moisture content of any one of Claims 1 thru | or 9. 請求項1乃至9のいずれか1項に記載の水分遮断用封止樹脂組成物を含むフレキシブル電子装置。   A flexible electronic device comprising the sealing resin composition for blocking moisture according to any one of claims 1 to 9.
JP2017144495A 2016-07-29 2017-07-26 Moisture blocking sealing resin composition Active JP6935258B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0097196 2016-07-29
KR1020160097196A KR20180013443A (en) 2016-07-29 2016-07-29 Sealing resin composite for moisture blocking

Publications (2)

Publication Number Publication Date
JP2018016799A true JP2018016799A (en) 2018-02-01
JP6935258B2 JP6935258B2 (en) 2021-09-15

Family

ID=61075193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017144495A Active JP6935258B2 (en) 2016-07-29 2017-07-26 Moisture blocking sealing resin composition

Country Status (2)

Country Link
JP (1) JP6935258B2 (en)
KR (1) KR20180013443A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240020887A (en) * 2022-08-09 2024-02-16 주식회사 케이씨씨 Epoxy coating composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339914A (en) * 1986-08-04 1988-02-20 Sunstar Giken Kk Epoxy resin composition
JPH024886A (en) * 1988-02-19 1990-01-09 Texaco Dev Corp Amideamine and oxamideamine co-curing agent in epoxy thermosetting adhesive
JP2010132732A (en) * 2008-12-02 2010-06-17 Aisin Chem Co Ltd Epoxy-based adhesive
JP2014500586A (en) * 2010-11-02 2014-01-09 エルジー・ケム・リミテッド Adhesive film and organic electronic device sealing method using the same
JP2016524295A (en) * 2013-06-19 2016-08-12 エルジー・ケム・リミテッド Encapsulant film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339914A (en) * 1986-08-04 1988-02-20 Sunstar Giken Kk Epoxy resin composition
JPH024886A (en) * 1988-02-19 1990-01-09 Texaco Dev Corp Amideamine and oxamideamine co-curing agent in epoxy thermosetting adhesive
JP2010132732A (en) * 2008-12-02 2010-06-17 Aisin Chem Co Ltd Epoxy-based adhesive
JP2014500586A (en) * 2010-11-02 2014-01-09 エルジー・ケム・リミテッド Adhesive film and organic electronic device sealing method using the same
JP2016524295A (en) * 2013-06-19 2016-08-12 エルジー・ケム・リミテッド Encapsulant film

Also Published As

Publication number Publication date
KR20180013443A (en) 2018-02-07
JP6935258B2 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
DE60301389T2 (en) IMPROVED INTERFACE ADHESIVE
US9449856B2 (en) Encapsulant with base for use in semiconductor encapsulation, semiconductor apparatus, and method for manufacturing semiconductor apparatus
US20120172495A1 (en) Underfill for high density interconnect flip chips
JP4775374B2 (en) Liquid resin composition for electronic components and electronic component device
CN109749361B (en) Packaging material and film
US10177059B2 (en) Method for manufacturing semiconductor apparatus using a base-attached encapsulant
JP5270092B2 (en) Epoxy resin composition and article
KR20150031235A (en) Curable resin composition, resin composition, resin sheet formed by using said curable resin composition and resin composition, and hardener for said curable resin composition and resin composition
TWI681985B (en) Thermosetting resin composition for semiconductor sealing
US20170098551A1 (en) Base-attached encapsulant for semiconductor encapsulation, method for manufacturing base-attached encapsulant for semiconductor encapsulation, and method for manufacturing semiconductor apparatus
JP6935258B2 (en) Moisture blocking sealing resin composition
JP6237906B2 (en) Resin sheet for electronic parts, resin sheet for electronic parts with protective film, semiconductor device, and method for manufacturing the same
TW201936689A (en) Resin composition and cured product of same, adhesive for electronic component, semiconductor device, and electronic component
KR102073457B1 (en) Water trapping agent and preparation process thereof, desiccant composition, sealing structure, and organic el device
JP2017043649A (en) Resin composition, resin film, circuit board and semiconductor device
JP2015179769A (en) Sealant with substrate for semiconductor encapsulation, semiconductor apparatus, and manufacturing method of semiconductor apparatus
TW201235403A (en) Encapsulating resin composition for preapplication, semiconductor chip, and semiconductor device
US10385203B2 (en) Heat-curable resin composition for semiconductor encapsulation
KR101834376B1 (en) Epoxy resin-based adhesives with high impact resistance comrising complex silane material
CN106605271B (en) Electrically conductive composition
TW201704411A (en) Electrically conductive composition
CN111808497B (en) Heat-dissipating coating composition and method for producing heat-dissipating coating film
EP3093852B1 (en) Use of an electrically conductive composition
KR102179472B1 (en) Composition for epoxy molding, and epoxy molding film comprising the same
US20220153987A1 (en) Curable compositions, articles therefrom, and methods of making and using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210825

R150 Certificate of patent or registration of utility model

Ref document number: 6935258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250