JP2018015708A - Exhaust gas purification catalyst and exhaust gas purification apparatus using the same - Google Patents

Exhaust gas purification catalyst and exhaust gas purification apparatus using the same Download PDF

Info

Publication number
JP2018015708A
JP2018015708A JP2016147957A JP2016147957A JP2018015708A JP 2018015708 A JP2018015708 A JP 2018015708A JP 2016147957 A JP2016147957 A JP 2016147957A JP 2016147957 A JP2016147957 A JP 2016147957A JP 2018015708 A JP2018015708 A JP 2018015708A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
gas purification
amount
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016147957A
Other languages
Japanese (ja)
Other versions
JP6674858B2 (en
Inventor
恵理 高橋
Eri Takahashi
恵理 高橋
金枝 雅人
Masahito Kanae
雅人 金枝
猿渡 匡行
Masayuki Saruwatari
匡行 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016147957A priority Critical patent/JP6674858B2/en
Publication of JP2018015708A publication Critical patent/JP2018015708A/en
Application granted granted Critical
Publication of JP6674858B2 publication Critical patent/JP6674858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas purification catalyst exhibiting high NOpurification performance and an apparatus thereof.SOLUTION: There is provided an exhaust gas purification catalyst which comprises a carrier containing AlO, a first catalyst provided on the carrier and a second catalyst provided on the carrier, wherein in an internal-combustion engine exhaust gas purification catalyst in which the first catalyst contains at least Ga as a first catalyst element and the second catalyst contains any one of Rh, Ce and Ti as a second catalyst element, the amount of the second catalyst element is 0.05 to 0.23 wt.% relative to the AlO.SELECTED DRAWING: Figure 3

Description

本発明は、理論空燃比よりも燃料が希薄なリーンバーン状態で運転される内燃機関において、リーンバーン排ガスに含まれるNOを浄化するのに好適な新規な排ガス浄化触媒とその装置及び排ガス浄化方法に関する。 The present invention relates to a novel exhaust gas purification catalyst suitable for purifying NO x contained in lean burn exhaust gas, an apparatus therefor, and exhaust gas purification in an internal combustion engine that is operated in a lean burn state where the fuel is leaner than the stoichiometric air-fuel ratio. Regarding the method.

近年、空燃比を燃料希薄とするリーンバーンエンジンが注目されている。ここで空燃比とはガス中の空気と燃料の比を表す。リーンバーンエンジンの排ガスは、理論空燃比(ストイキ)用エンジンの排ガス浄化に従来使用されてきた三元触媒ではNOを浄化することが難しい。このため、リーンバーンエンジン用の排ガス浄化触媒が検討されている。 In recent years, a lean burn engine in which the air-fuel ratio is a lean fuel has attracted attention. Here, the air-fuel ratio represents the ratio of air to fuel in the gas. Exhaust gas of lean-burn engine, it is difficult to purify NO x in the three-way catalyst which has been conventionally used in purification of exhaust gas the stoichiometric air-fuel ratio (stoichiometric) for the engine. For this reason, exhaust gas purification catalysts for lean burn engines have been studied.

リーンバーンエンジン用の排ガス浄化触媒として、金属酸化物担体にRhを担持した触媒が酸素過剰雰囲気下でもNO浄化性能を有することが知られている。 As an exhaust gas purification catalyst for lean burn engines, it is known that a catalyst in which Rh is supported on a metal oxide carrier has NO x purification performance even in an oxygen-excess atmosphere.

特許文献1では、Rh、Al、Zrを含む触媒に更にGaを加えることで触媒性能を改善している。   In patent document 1, the catalyst performance is improved by adding Ga to the catalyst containing Rh, Al, and Zr.

特許文献2には、Pt、Rh、Pdのうちの少なくとも1種とGa及びAl、CeO、ZrOのうちの少なくとも1種を含む触媒が記載されている。 Patent Document 2 describes a catalyst containing at least one of Pt, Rh, and Pd and at least one of Ga 2 O 3, Al 2 O 3 , CeO 2 , and ZrO 2 .

また、リーンバーンエンジン用排ガス浄化触媒では、Rhに限らず貴金属が含有されており、資源節約、コスト低減の面から、NO浄化性能を保ったまま、貴金属使用量を削減する事が要求されている。 Also, in the exhaust gas purifying catalyst for lean-burn engine, the noble metal are contained not only the Rh, resource savings, in terms of cost reduction, while maintaining the NO x purification performance, it is required to reduce the use of precious metals ing.

特開平11−138000JP-A-11-138000 特開平6−269668JP-A-6-269668

特許文献1及び特許文献2では、炭化水素を還元剤としてNOを浄化しているが、炭化水素の燃焼反応が優先的に進行し、NO浄化率が低下している恐れがある。 In Patent Document 1 and Patent Document 2, NO x is purified using hydrocarbon as a reducing agent, but the combustion reaction of hydrocarbon proceeds preferentially, and the NO x purification rate may be reduced.

本発明の目的は、酸素過剰雰囲気下で使用する触媒について、NO浄化性能を向上させることである。 An object of the present invention is to improve NO x purification performance for a catalyst used in an oxygen-excess atmosphere.

上記目的を達成するために、本発明は、Alを含む担体と、前記担体に設けられた第一の触媒と、前記担体に設けられた第二の触媒とを有し、前記第一の触媒は、第一の触媒元素として少なくともGaを含み、前記第二の触媒は、第二の触媒元素として少なくともRh、Ce、Tiのいずれかを含む内燃機関排ガス浄化触媒において、前記Alに対する前記第二の触媒元素の量は、0.05〜0.23重量%の範囲である内燃機関排ガス浄化触媒を用いることを特徴としている。 To achieve the above object, the present invention comprises a support containing Al 2 O 3 , a first catalyst provided on the support, and a second catalyst provided on the support, one catalyst comprises at least Ga as the first catalytic element, the second catalyst is at least Rh, Ce, in an internal combustion engine exhaust gas purifying catalyst comprising any of Ti as a second catalytic element, wherein the Al 2 The amount of the second catalytic element with respect to O 3 is characterized by using an internal combustion engine exhaust gas purification catalyst in the range of 0.05 to 0.23% by weight.

本発明によれば、酸素過剰雰囲気下においても有害物質、特に窒素酸化物を高効率で浄化することができる。   According to the present invention, harmful substances, particularly nitrogen oxides can be purified with high efficiency even in an oxygen-excess atmosphere.

エンジンの排ガス浄化システムの一例を表した図である。It is a figure showing an example of the exhaust gas purification system of an engine. 触媒表面上での担体と触媒活性成分の状態を表した図である。It is a figure showing the state of the support | carrier and catalyst active component on the catalyst surface. Rh量と触媒の活性との関係を示したグラフである。4 is a graph showing the relationship between the amount of Rh and the activity of a catalyst.

図1は、エンジンの排ガス浄化システムの一例である。   FIG. 1 is an example of an exhaust gas purification system for an engine.

排ガス浄化システムは、エンジン1と、エンジン1の下流に設けられた排ガス浄化機構2を有する。排ガス浄化機構2は、排ガス3が通過する通路を有し、この通路は例えばハニカム構造等が用いられる。   The exhaust gas purification system includes an engine 1 and an exhaust gas purification mechanism 2 provided downstream of the engine 1. The exhaust gas purification mechanism 2 has a passage through which the exhaust gas 3 passes. For example, a honeycomb structure or the like is used for the passage.

通路には、排ガス3を浄化する触媒が設けられている。触媒としては、理論空燃比(ストイキ)用エンジンの排ガス浄化には三元触媒が用いられ、理論空燃比よりも希薄な空燃比(14.7以上)で運転を行うリーンバーンエンジンの排ガス浄化にはリーンバーンエンジン用の排ガス浄化触媒が用いられる。リーンバーンエンジン用排ガス浄化触媒には、Rhを始めとした貴金属が含有されており、例えば、排ガス中のNOを浄化するNO浄化触媒を用いることができる。 A catalyst for purifying the exhaust gas 3 is provided in the passage. As a catalyst, a three-way catalyst is used for exhaust gas purification of a stoichiometric engine, and for exhaust gas purification of a lean burn engine that operates at an air / fuel ratio (14.7 or more) that is leaner than the theoretical air / fuel ratio. The exhaust gas purification catalyst for lean burn engine is used. The lean burn engine exhaust gas purification catalyst contains precious metals such as Rh, and for example, an NO x purification catalyst that purifies NO x in the exhaust gas can be used.

図2はNO浄化触媒の構造を示す概念図である。 FIG. 2 is a conceptual diagram showing the structure of the NO x purification catalyst.

NO浄化触媒は、ハニカム構造の基材7にAlを含んだ担体4をコートし、担体4に少なくともGaを含む第一の触媒5及び少なくともRh、Ce、Tiのいずれかを含む第二の触媒6を担持したものを用いることができる。 The NO x purification catalyst coats a support 4 containing Al 2 O 3 on a substrate 7 having a honeycomb structure, and the support 4 contains at least one of a first catalyst 5 containing Ga and at least one of Rh, Ce, and Ti. What carried the 2nd catalyst 6 can be used.

NO浄化触媒によるNO浄化反応は次のメカニズムで進行すると考えている。まず、第一の触媒5にNOが吸着し、第二の触媒6に還元剤である炭化水素が吸着する。NOは式(1)のようにOによってNOに酸化されてから式(2)のように炭化水素と反応し、N、CO、HOとして脱離する。 It is considered that the NO x purification reaction by the NO x purification catalyst proceeds by the following mechanism. First, NO is adsorbed on the first catalyst 5, and hydrocarbon as a reducing agent is adsorbed on the second catalyst 6. NO reacts with hydrocarbons as in Equation (2) is oxidized to NO 2 by O 2 as in Equation (1), eliminated as N 2, CO 2, H 2 O.

しかし、リーン状態では排ガス中にOが多量に含まれるため、式(3)のようにOによる炭化水素の酸化(燃焼反応)も同時に進行する。また、炭化水素によるNOの浄化や燃焼反応が不十分な場合、式(4)及び(5)の反応が進行し、COへの転化や未反応の炭化水素が排出されると考えられ、NOが充分に浄化されない場合がある。 However, since a large amount of O 2 is contained in the exhaust gas in the lean state, the oxidation (combustion reaction) of hydrocarbons by O 2 proceeds simultaneously as shown in Equation (3). Further, when NO x purification and combustion reaction by hydrocarbons is insufficient, it is considered that the reactions of formulas (4) and (5) proceed, and conversion to CO and unreacted hydrocarbons are discharged. NO x may not be sufficiently purified.

(1)NO+O → NO …式(1)
(2)NO+炭化水素 → N+CO+HO …式(2)
(3)炭化水素+O → CO+HO …式(3)
(4)炭化水素+O → CO+CO+HO …式(4)
(5)炭化水素 → 未反応炭化水素 …式(5)
したがって、第二の触媒元素量は、担体4に含まれるAlに対して0.05〜0.23重量%の範囲にあることが好ましい。(ここで重量%とは、各成分のg換算での含有比率を表したものであり、例えばA成分に対してB成分の担持量が0.5重量%ということは、A成分の絶対量の多少に関わらず、g換算でAが1に対しBが0.5の割合で担持されていることを意味する。)
第二の触媒元素量が0.05重量%よりも少ない場合、式(2)が反応しにくく、NOが充分に浄化されない。第二の触媒元素量が0.23重量%よりも多い場合、式(3)が式(2)より優先的に進行してしまい、NOが充分に浄化されない可能性がある。第二の触媒元素量が0.05〜0.23重量%の範囲であることで、式(3)によって炭化水素が消費される前に式(2)によってNOを浄化できると考えられNOの浄化率を高くすることができる。
(1) NO + O 2 → NO 2 Formula (1)
(2) NO 2 + hydrocarbon → N 2 + CO 2 + H 2 O Formula (2)
(3) Hydrocarbon + O 2 → CO 2 + H 2 O Formula (3)
(4) Hydrocarbon + O 2 → CO + CO 2 + H 2 O Formula (4)
(5) Hydrocarbon → Unreacted hydrocarbon (5)
Therefore, the amount of the second catalytic element is preferably in the range of 0.05 to 0.23% by weight with respect to Al 2 O 3 contained in the support 4. (Here, “wt%” represents the content ratio of each component in terms of g. For example, the loading amount of the B component with respect to the A component is 0.5 wt%.) This means that A is 1 and B is supported at a ratio of 0.5 regardless of the amount of A.)
When the amount of the second catalytic element is less than 0.05% by weight, the formula (2) hardly reacts and NO x is not sufficiently purified. When the amount of the second catalytic element is larger than 0.23% by weight, the formula (3) proceeds with priority over the formula (2), and NO x may not be sufficiently purified. It is considered that when the amount of the second catalytic element is in the range of 0.05 to 0.23% by weight, NO x can be purified by the formula (2) before the hydrocarbon is consumed by the formula (3). The purification rate of x can be increased.

また、NO浄化触媒の一部でも第二の触媒元素量が担体4に含まれるAlに対して0.05〜0.23重量%となる部分が存在すると、上記効果を効率的に発現させることができる。例えば触媒の形態例として、次の[1]、[2]の場合が考えられる。[1]基材7の上に第二の触媒6を含まない層として板状もしくは粒状のAlがあり、更にその上に第二の触媒6を含む担体4が存在する。[2]第二の触媒6を含まない粒状Alの表面上に第二の触媒6を含む担体4が存在する。[1]、[2]のいずれの場合においても、第二の触媒6を含む担体4に含有されているAlに対し、第二の触媒元素量が0.05〜0.23重量%となる部分が存在することが好ましい。 In addition, if even a part of the NO x purification catalyst has a portion in which the amount of the second catalytic element is 0.05 to 0.23% by weight with respect to Al 2 O 3 contained in the support 4, the above effect is efficiently achieved. Can be expressed. For example, the following cases [1] and [2] are conceivable as examples of the form of the catalyst. [1] There is a plate-like or granular Al 2 O 3 as a layer not containing the second catalyst 6 on the substrate 7, and the carrier 4 containing the second catalyst 6 is further present thereon. [2] The support 4 containing the second catalyst 6 is present on the surface of the granular Al 2 O 3 not containing the second catalyst 6. In any case of [1] and [2], the amount of the second catalyst element is 0.05 to 0.23 weight with respect to Al 2 O 3 contained in the support 4 including the second catalyst 6. It is preferable that the part which becomes% exists.

更に、炭化水素浄化率の向上やCOへの転化抑制の観点からは、第二の触媒元素量は、Alに対して、0.16〜0.23重量%であることが好ましい。第二の触媒元素量が0.16重量%よりも少ないと式(4)及び(5)が進行し、炭化水素のCOへの転化量や未反応炭化水素の排出量が増える可能性がある。一方、第二の触媒元素量が0.16〜0.23重量%の範囲では、式(2)でNOと反応した炭化水素の残りが式(3)によって浄化されると考えられる。また、炭化水素除去触媒やCO除去触媒を本発明の触媒の前段もしくは後段に設けることにより、炭化水素浄化率を向上させ、COへの転化を抑制することができる。
第一の触媒と、第二の触媒は、Alを含む担体と接触していることが好ましく、Alを含む担体の表面に第一の触媒と、第二の触媒が設けられた状態が好ましい。
Furthermore, from the viewpoint of improving the hydrocarbon purification rate and suppressing the conversion to CO, the amount of the second catalytic element is preferably 0.16 to 0.23% by weight with respect to Al 2 O 3 . If the amount of the second catalytic element is less than 0.16% by weight, the formulas (4) and (5) proceed, and there is a possibility that the conversion amount of hydrocarbons into CO and the discharge amount of unreacted hydrocarbons increase. . On the other hand, when the amount of the second catalytic element is in the range of 0.16 to 0.23% by weight, it is considered that the remaining hydrocarbon that has reacted with NO x in the formula (2) is purified by the formula (3). Further, by providing a hydrocarbon removal catalyst or a CO removal catalyst in the preceding stage or the subsequent stage of the catalyst of the present invention, the hydrocarbon purification rate can be improved and the conversion to CO can be suppressed.
A first catalyst, the second catalyst is preferably in contact with the carrier containing Al 2 O 3, a first catalyst, the second catalyst is provided on the surface of the carrier comprises Al 2 O 3 The state obtained is preferable.

第二の触媒元素としては、Rh、Ce、Tiの他に、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Ru、Pd、Ag、Ce、W、Ir、Au等の金属を用いることができる。一方、Ptを用いるとNOがNOに転化する可能性があり、実質的なNO浄化率が低下する場合がある。 As the second catalytic element, in addition to Rh, Ce and Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ru, Pd, Ag, Ce, W, Ir, Au Such metals can be used. On the other hand, when Pt is used, NO x may be converted to N 2 O, and the substantial NO x purification rate may decrease.

第一の触媒元素と第二の触媒元素の量の比は、第一の触媒元素/第二の触媒元素を6以上25以下にするとNO浄化性能にとって好ましい。第一の触媒元素/第二の触媒元素が25より多いと第一の触媒元素が第二の触媒元素を被覆しやすくなるため第二の触媒元素が有効に働かない可能性がある。6より少ないと第一の触媒元素量の低減により活性が低下する可能性がある。 The ratio of the amount of the first catalyst element and second catalyst element is preferred for the NO x purification performance when the first catalytic element / the second catalyst element to 6 to 25. If there are more than 25 first catalyst elements / second catalyst elements, the first catalyst elements are likely to cover the second catalyst elements, and the second catalyst elements may not work effectively. If it is less than 6, the activity may decrease due to a reduction in the amount of the first catalytic element.

触媒活性成分としては、第一の触媒元素、第二の触媒元素に加えて更に他の遷移金属を添加することもできる。他の遷移金属としては、特にFe、Co、Ni、Pd、Ag、Au等が好適である。これらの金属はNOのNOへの酸化や炭化水素の吸着を促進するため、NO浄化性能を向上することができる。 As the catalytic active component, in addition to the first catalytic element and the second catalytic element, other transition metals can be further added. As other transition metals, Fe, Co, Ni, Pd, Ag, Au, etc. are particularly suitable. Since these metals promote the oxidation of NO to NO 2 and the adsorption of hydrocarbons, the NO x purification performance can be improved.

担体4は触媒活性成分の分散性を高める役割をするものと考えられる。担体4は基材7上に担持しても良く、その場合1Lの基材7に対し担体4の担持量を30g以上400g以下とするとNO浄化性能にとって好ましい。担体4の担持量が30gより少ないと担体4の効果は不十分となり、400gより多いと担体4自体の比表面積が低下するため好ましくない。 The carrier 4 is considered to play a role of enhancing the dispersibility of the catalytically active component. Carrier 4 may be supported on the base 7, preferably for the NO x purification performance when the supporting amount of a carrier 4 relative to the substrate 7 of the case 1L and 30g or 400g or less. If the loading amount of the carrier 4 is less than 30 g, the effect of the carrier 4 is insufficient, and if it is more than 400 g, the specific surface area of the carrier 4 itself decreases, which is not preferable.

担体4はAlを含むが、Alの比表面積を100〜300m/gとするとNO浄化性能にとって好ましい。この場合、第二の触媒元素量は、Alの比表面積に対して1.7×10−6〜2.3×10−5g/mの範囲であることが好ましい。また、Alの粒径を1〜25μmとするとNO浄化性能にとって好ましい。 The support 4 contains Al 2 O 3, and the specific surface area of Al 2 O 3 is preferably 100 to 300 m 2 / g for NO x purification performance. In this case, the amount of the second catalytic element is preferably in the range of 1.7 × 10 −6 to 2.3 × 10 −5 g / m 2 with respect to the specific surface area of Al 2 O 3 . Also preferred for the NO x purification performance When 1~25μm the particle size of Al 2 O 3.

担体4としては、Alが最も好ましいが、他にTiO、SiO、SiO−Al、ZrO、MgO、CoO、NiO、CuO等の金属酸化物や複合酸化物等を用いることもできる。Alが最も好ましい理由としては、Gaを含む第一の触媒5を担持することでGa−O−Alを形成し、これが触媒活性点となるためと考えている。また、上記の担体4にβ−ゼオライト、モルデナイト、フェリエライト、Y型ゼオライト等のゼオライトを添加して用いることができる。 The support 4 is most preferably Al 2 O 3, but other metal oxides or composite oxides such as TiO 2 , SiO 2 , SiO 2 —Al 2 O 3 , ZrO 2 , MgO, CoO, NiO, CuO, etc. Can also be used. The reason why Al 2 O 3 is most preferable is that Ga—O—Al is formed by supporting the first catalyst 5 containing Ga, and this becomes a catalyst active point. In addition, zeolite such as β-zeolite, mordenite, ferrierite, and Y-type zeolite can be added to the carrier 4 and used.

NO浄化触媒は、ハニカム構造等の基材7に担持以外にコ−ティングして用いることもできる。基材7はコ−ジェライトが最適であるが、金属製のものを用いても良好な結果を得ることができる。 The NO x purification catalyst can be used after being coated on a substrate 7 having a honeycomb structure or the like in addition to being supported. The base material 7 is optimally cordierite, but good results can be obtained even if a metal material is used.

NO浄化触媒の形状は、用途に応じ各種の形状で適用できる。コージェライト、ステンレス等の各種材料からなるハニカム構造体に各種成分を担持した触媒粉末をコーティングして得られるハニカム形状を始めとし、ペレット状、板状、粒状、粉末状等として適用できる。 The shape of the NO x purification catalyst can be applied in various shapes depending on the application. The present invention can be applied to pellets, plates, granules, powders, etc., including honeycombs obtained by coating catalyst powder carrying various components on honeycomb structures made of various materials such as cordierite and stainless steel.

NO浄化触媒の調製方法は、含浸法、混練法、共沈法、ゾルゲル法、イオン交換法、蒸着法等の物理的調製方法や化学反応を利用した調製方法等いずれも適用可能である。排ガス浄化触媒の出発原料としては、硝酸化合物、酢酸化合物、錯体化合物、水酸化物、炭酸化合物、有機化合物などの種々の化合物や金属及び金属酸化物を用いることができる。 As a method for preparing the NO x purification catalyst, any of a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, and a vapor deposition method and a preparation method utilizing a chemical reaction can be applied. As the starting material for the exhaust gas purification catalyst, various compounds such as nitric acid compounds, acetic acid compounds, complex compounds, hydroxides, carbonate compounds, organic compounds, metals, and metal oxides can be used.

NO浄化触媒に流入する排ガス3の炭化水素濃度は100ppm以上、好ましくは500ppm以上とするとNO浄化性能が高まる。炭化水素濃度が100ppmより少ないと式(2)の反応が十分に進行しない可能性がある。 When the hydrocarbon concentration of the exhaust gas 3 flowing into the NO x purification catalyst is 100 ppm or more, preferably 500 ppm or more, the NO x purification performance is enhanced. If the hydrocarbon concentration is less than 100 ppm, the reaction of formula (2) may not proceed sufficiently.

以下、具体的な例で本発明を説明するが、本発明はこれらの実施例により制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated with a specific example, this invention is not restrict | limited by these Examples.

実施例触媒1〜3、比較例触媒1〜4では450℃でのNO浄化率を測定した。これら結果を表1に示す。 In the example catalysts 1 to 3 and the comparative example catalysts 1 to 4, the NO x purification rate at 450 ° C. was measured. These results are shown in Table 1.

(実施例1)
Al粉末及びAlの前駆体からなり硝酸酸性に調整したスラリーをコージェライト製ハニカム(400セル/inc)にコーティングした後、乾燥焼成して、ハニカムの見掛けの容積1リットルあたり170gのAlをコーティングしたAlコートハニカムを得た。該Alコートハニカムに含浸成分として硝酸Ga溶液及び硝酸Rh溶液を含浸した後、120℃で乾燥、続いて600℃で1時間焼成した。
Example 1
A cordierite honeycomb (400 cells / inc 2 ) coated with a slurry made of Al 2 O 3 powder and Al 2 O 3 precursor and adjusted to nitric acid acidity was dried and fired, and the apparent volume of the honeycomb was 1 liter. An Al 2 O 3 coated honeycomb coated with 170 g of Al 2 O 3 was obtained. The Al 2 O 3 coated honeycomb was impregnated with Ga nitrate solution and Rh nitrate solution as impregnation components, dried at 120 ° C., and then fired at 600 ° C. for 1 hour.

以上により、ハニカム1Lに対してAlが170g、及びAlに対して元素換算でGa1.3重量%、Rh0.076重量%を含有する実施例触媒1を得た。 Thus, Example Catalyst 1 containing 170 g of Al 2 O 3 with respect to 1 L of honeycomb and 1.3 wt% Ga and 0.076 wt% Rh in terms of element with respect to Al 2 O 3 was obtained.

得られた触媒に対して、次の条件で排ガス浄化性能試験を行った。容量6ccのハニカム触媒を石英ガラス製反応管中に固定した。この反応管を電気炉中に導入し、反応管に導入されるガス温度が450℃となるように加熱制御した。反応管には、自動車のエンジンがリーンバーン運転を行っているときの排ガスを想定したモデルガスを、空間速度30000h−1で導入した。モデルガスの組成は、NO:150ppm、C:750ppm、O:10%、HO:2.8%、N:残差とした。この時、NO浄化率、C浄化率、CO転化率を次式により算出した。 The obtained catalyst was subjected to an exhaust gas purification performance test under the following conditions. A honeycomb catalyst having a capacity of 6 cc was fixed in a reaction tube made of quartz glass. This reaction tube was introduced into an electric furnace, and the heating was controlled so that the temperature of the gas introduced into the reaction tube was 450 ° C. In the reaction tube, model gas was introduced at a space velocity of 30000 h −1 assuming exhaust gas when the automobile engine is performing lean burn operation. The composition of the model gas was NO x : 150 ppm, C 3 H 6 : 750 ppm, O 2 : 10%, H 2 O: 2.8%, N 2 : residual. At this time, the NO x purification rate, the C 3 H 6 purification rate, and the CO conversion rate were calculated by the following equations.

NO浄化率(%)=(触媒に流入したNO量−触媒から流出したNO量)
÷触媒に流入したNO量×100 …式(6)
浄化率(%)=(触媒に流入したC量−触媒から流出したC量)
÷触媒に流入したC量×100 …式(7)
CO転化率(%)=触媒から流出したCO量÷(触媒に流入したC量×3)
×100 …式(8)
The NO x purification rate (%) = (NO x amount flowing into the catalyst - NO x amount flowing out from the catalyst)
÷ NO x amount flowing into the catalyst × 100 ... Formula (6)
C 3 H 6 purification ratio (%) = (amount C 3 H 6 flowing into the catalyst - C 3 H 6 amount flowing out from the catalyst)
÷ C 3 H 6 amount flowing into the catalyst × 100 (7)
CO conversion rate (%) = CO amount flowing out from the catalyst / (C 3 H 6 amount flowing into the catalyst × 3)
× 100 ... Formula (8)

(実施例2)
硝酸Ga溶液及び硝酸Rh溶液の添加量を変更した以外は、実施例1と同様の操作により、Alに対して元素換算でGa2.6重量%、Rh0.15重量%を含有する実施例触媒2を得た。得られた触媒に対して、実施例1と同様の方法で排ガス浄化性能試験を行った。
(Example 2)
Except for changing the addition amount of the Ga nitrate solution and the Rh nitrate solution, the same operation as in Example 1 was carried out, and the element containing Ga 2.6% by weight and Rh 0.15% by weight with respect to Al 2 O 3 was obtained. Example catalyst 2 was obtained. The obtained catalyst was subjected to an exhaust gas purification performance test in the same manner as in Example 1.

(実施例3)
硝酸Ga溶液及び硝酸Rh溶液の添加量を変更した以外は、実施例1と同様の操作により、Alに対して元素換算でGa3.9重量%、Rh0.23重量%を含有する実施例触媒3を得た。得られた触媒に対して、実施例1と同様の方法で排ガス浄化性能試験を行った。
(Example 3)
Except changing the addition amount of the Ga nitrate solution and the Rh nitrate solution, the same operations as in Example 1 were carried out, and contained 3.9 wt% Ga and 0.23 wt% Rh in terms of elements with respect to Al 2 O 3 . Example catalyst 3 was obtained. The obtained catalyst was subjected to an exhaust gas purification performance test in the same manner as in Example 1.

(比較例1)
硝酸Ga溶液の添加量を変更し、硝酸Rh溶液を用いなかった以外は、実施例1と同様の操作により、Alに対して元素換算でGa10重量%を含有する比較例触媒1を得た。得られた触媒に対して、実施例1と同様の方法で排ガス浄化性能試験を行った。
(Comparative Example 1)
Comparative Example Catalyst 1 containing 10% by weight of Ga in terms of element with respect to Al 2 O 3 was performed in the same manner as in Example 1 except that the addition amount of the Ga nitrate solution was changed and no Rh nitrate solution was used. Obtained. The obtained catalyst was subjected to an exhaust gas purification performance test in the same manner as in Example 1.

(比較例2)
硝酸Ga溶液及び硝酸Rh溶液の添加量を変更した以外は、実施例1と同様の操作により、Alに対して元素換算でGa0.64重量%、Rh0.038重量%を含有する比較例触媒2を得た。得られた触媒に対して、実施例1と同様の方法で排ガス浄化性能試験を行った。
(Comparative Example 2)
A comparison containing 0.64 wt% Ga and 0.038 wt% Rh in terms of element with respect to Al 2 O 3 by the same operation as in Example 1 except that the addition amounts of the Ga nitrate solution and the Rh nitrate solution were changed. Example catalyst 2 was obtained. The obtained catalyst was subjected to an exhaust gas purification performance test in the same manner as in Example 1.

(比較例3)
硝酸Ga溶液及び硝酸Rh溶液の添加量を変更した以外は、実施例1と同様の操作により、Alに対して元素換算でGa5.1重量%、Rh0.30量%を含有する比較例触媒3を得た。得られた触媒に対して、実施例1と同様の方法で排ガス浄化性能試験を行った。
(Comparative Example 3)
Comparison containing Ga 5.1 wt% and Rh 0.30 wt% in terms of elements with respect to Al 2 O 3 by the same operation as in Example 1 except that the addition amounts of Ga nitrate solution and Rh nitrate solution were changed. Example catalyst 3 was obtained. The obtained catalyst was subjected to an exhaust gas purification performance test in the same manner as in Example 1.

(比較例4)
硝酸Ga溶液及び硝酸Rh溶液の添加量を変更した以外は、実施例1と同様の操作により、Alに対して元素換算でGa10重量%、Rh0.61重量%を含有する比較例触媒4を得た。得られた触媒に対して、実施例1と同様の方法で排ガス浄化性能試験を行った。
(Comparative Example 4)
A comparative example catalyst containing 10 wt% Ga and 0.61 wt% Rh in terms of element with respect to Al 2 O 3 by the same operation as in Example 1 except that the addition amounts of the Ga nitrate solution and the Rh nitrate solution were changed. 4 was obtained. The obtained catalyst was subjected to an exhaust gas purification performance test in the same manner as in Example 1.

(試験結果)
実施例触媒1〜3及び比較例触媒1〜4のNO浄化率の結果を表1及び図3に示す。実施例触媒1〜3に関しては、Rh使用量が多い比較例触媒3、4よりも活性が高い。一方、Rh使用量を実施例触媒1〜3よりも更に低減した比較例触媒1、2では活性が低下する。以上の結果より、Rh量が0.05〜0.23重量%の実施例触媒1〜3では、少ないRh使用量で高いNO浄化性能を示すことが分かる。この理由としては、Rh使用量を低減することでOによるCの酸化(燃焼反応)が抑制され、CがNOの還元剤として有効に働いたためと考えられる。
(Test results)
The results of the NO x purification rates of Example Catalysts 1 to 3 and Comparative Example Catalysts 1 to 4 are shown in Table 1 and FIG. About Example catalyst 1-3, activity is higher than the comparative example catalysts 3 and 4 with much Rh usage-amount. On the other hand, in the comparative example catalysts 1 and 2 in which the amount of Rh used is further reduced as compared with the example catalysts 1 to 3, the activity is lowered. From the above results, it can be seen that Example Catalysts 1 to 3 having an Rh amount of 0.05 to 0.23% by weight show high NO x purification performance with a small amount of Rh used. The reason for this is thought to be that by reducing the amount of Rh used, the oxidation (combustion reaction) of C 3 H 6 by O 2 was suppressed, and C 3 H 6 worked effectively as a reducing agent for NO x .

Figure 2018015708
Figure 2018015708

実施例触媒1〜3及び比較例触媒1〜4のC浄化率の結果を表2に示す。表2から、Rh量を0.16〜0.23重量%とすると、NO浄化性能を向上させるだけではなく、C浄化率を向上させることも分かる。 Table 2 shows the results of C 3 H 6 purification rates of Example Catalysts 1 to 3 and Comparative Example Catalysts 1 to 4. From Table 2, it can be seen that when the Rh amount is 0.16 to 0.23% by weight, not only the NO x purification performance is improved but also the C 3 H 6 purification rate is improved.

Figure 2018015708
Figure 2018015708

実施例触媒1〜3及び比較例触媒1〜4のCO転化率の結果を表3に示す。表3から、Rh量を0.16〜0.23重量%とすると、NO浄化性能を向上させるだけではなく、COへの転化を抑制することもできることが分かる。 Table 3 shows the results of the CO conversion rates of Example Catalysts 1 to 3 and Comparative Example Catalysts 1 to 4. From Table 3, when the Rh amount is from 0.16 to 0.23 wt%, not only improves the the NO x purification performance, it is understood that it is also possible to suppress the conversion to CO.

Figure 2018015708
Figure 2018015708

1 エンジン
2 排ガス浄化機構
3 排ガス
4 担体
5 第一の触媒
6 第二の触媒
7 基材
1 Engine 2 Exhaust gas purification mechanism 3 Exhaust gas 4 Carrier 5 First catalyst 6 Second catalyst 7 Base material

Claims (5)

Alを含む担体と、前記担体に設けられた第一の触媒と、前記担体に設けられた第二の触媒とを有し、前記第一の触媒は、第一の触媒元素として少なくともGaを含み、前記第二の触媒は、第二の触媒元素として少なくともRh、Ce、Tiのいずれかを含む内燃機関排ガス浄化触媒において、前記Alに対する前記第二の触媒は、0.05〜0.23重量%の範囲である内燃機関排ガス浄化触媒。 A support containing Al 2 O 3 , a first catalyst provided on the support, and a second catalyst provided on the support, wherein the first catalyst is at least as a first catalyst element In the internal combustion engine exhaust gas purification catalyst that contains Ga, and the second catalyst contains at least one of Rh, Ce, and Ti as the second catalyst element, the second catalyst for the Al 2 O 3 is 0.8. An internal combustion engine exhaust gas purification catalyst in the range of 05 to 0.23 wt%. 請求項1において、前記第一の触媒元素と前記第二の触媒元素の量の比(第一の触媒元素/第二の触媒元素)は6〜25の範囲である内燃機関排ガス浄化触媒。   The internal combustion engine exhaust gas purification catalyst according to claim 1, wherein a ratio of the amount of the first catalyst element to the amount of the second catalyst element (first catalyst element / second catalyst element) is in the range of 6-25. 請求項2において、前記Alに対する前記第二の触媒元素の量は、0.16〜0.23重量%である内燃機関排ガス浄化触媒。 The internal combustion engine exhaust gas purification catalyst according to claim 2, wherein an amount of the second catalytic element with respect to the Al 2 O 3 is 0.16 to 0.23% by weight. 請求項3において、前記内燃機関排ガス浄化触媒は、前記担体に設けられた第三の触媒を有し、前記第三の触媒は、第三の触媒元素として少なくともFe、Co、Ni、Pd、Ag、Auのいずれかを含む内燃機関排ガス浄化触媒。   4. The exhaust gas purification catalyst according to claim 3, wherein the internal combustion engine exhaust gas purification catalyst has a third catalyst provided on the carrier, and the third catalyst has at least Fe, Co, Ni, Pd, Ag as a third catalyst element. An exhaust gas purification catalyst for an internal combustion engine containing any one of Au and Au. 請求項4において、前記排ガス浄化触媒の前記担体として、更にゼオライトを含む内燃機関排ガス浄化触媒。   The exhaust gas purification catalyst for an internal combustion engine according to claim 4, further comprising zeolite as the carrier of the exhaust gas purification catalyst.
JP2016147957A 2016-07-28 2016-07-28 Exhaust gas purification catalyst and exhaust gas purification device using the same Expired - Fee Related JP6674858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016147957A JP6674858B2 (en) 2016-07-28 2016-07-28 Exhaust gas purification catalyst and exhaust gas purification device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016147957A JP6674858B2 (en) 2016-07-28 2016-07-28 Exhaust gas purification catalyst and exhaust gas purification device using the same

Publications (2)

Publication Number Publication Date
JP2018015708A true JP2018015708A (en) 2018-02-01
JP6674858B2 JP6674858B2 (en) 2020-04-01

Family

ID=61075435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016147957A Expired - Fee Related JP6674858B2 (en) 2016-07-28 2016-07-28 Exhaust gas purification catalyst and exhaust gas purification device using the same

Country Status (1)

Country Link
JP (1) JP6674858B2 (en)

Also Published As

Publication number Publication date
JP6674858B2 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
JP5422087B2 (en) Low noble metal supported three way catalyst
CN103752338A (en) Preparation method for oxidation catalyst used for purifying diesel exhaust
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP2012016685A (en) Exhaust gas purifying catalyst, and method for producing same
JPWO2014129634A1 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP5003954B2 (en) Exhaust gas purification oxidation catalyst, production method thereof, and exhaust gas purification method using exhaust gas purification oxidation catalyst
JP3640130B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JP5871257B2 (en) Exhaust purification catalyst, method of using exhaust purification catalyst, and method of manufacturing exhaust purification catalyst
JP4794834B2 (en) Exhaust gas purification catalyst
WO2013132895A1 (en) Oxidation catalyst and exhaust gas purification method using same
CN100560204C (en) Catalyst for purification of nitrogen oxides in the sulfur-bearing oxygen enrichment tail gas
JP2009241057A (en) Exhaust gas cleaning catalyst
JP6674858B2 (en) Exhaust gas purification catalyst and exhaust gas purification device using the same
JP2007330879A (en) Catalyst for cleaning exhaust gas
JP6126858B2 (en) Exhaust gas purification device for internal combustion engine
WO2002055194A1 (en) Catalyst for clarification of nitrogen oxides
JP2009061394A (en) Catalytic reduction removal method of nitrogen oxide in exhaust gas
JPH11244695A (en) Oxidation catalyst
JP2002361090A (en) Catalyst for cleaning exhaust gas
JP2004074139A (en) Exhaust gas purification catalyst and purification method
JP4106762B2 (en) Exhaust gas purification catalyst device and purification method
JP2013027876A (en) Exhaust gas purifying catalyst
JP5324414B2 (en) Exhaust purification catalyst
JP2005279533A (en) Exhaust gas cleaning catalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160729

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200309

R150 Certificate of patent or registration of utility model

Ref document number: 6674858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees