JP2013027876A - Exhaust gas purifying catalyst - Google Patents

Exhaust gas purifying catalyst Download PDF

Info

Publication number
JP2013027876A
JP2013027876A JP2012243496A JP2012243496A JP2013027876A JP 2013027876 A JP2013027876 A JP 2013027876A JP 2012243496 A JP2012243496 A JP 2012243496A JP 2012243496 A JP2012243496 A JP 2012243496A JP 2013027876 A JP2013027876 A JP 2013027876A
Authority
JP
Japan
Prior art keywords
exhaust gas
layer
purifying catalyst
lower layer
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012243496A
Other languages
Japanese (ja)
Inventor
Ichiro Kitamura
一郎 北村
Akimasa Hirai
章雅 平井
Kenichi Taki
健一 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2012243496A priority Critical patent/JP2013027876A/en
Publication of JP2013027876A publication Critical patent/JP2013027876A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve high efficiency of exhaust gas purification.SOLUTION: An exhaust gas purifying catalyst 1 includes: a base material 2; a lower layer 3, which coats the base material 2, which contains an oxygen storage material and a palladium, and which does not contain a rhodium; and an upper layer 4, which contains a support for coating the lower layer 3 and also rhodium along with a support for supporting the rhodium, and which has a lower oxygen storage capacity compared with that of the lower layer 3.

Description

本発明は、酸素貯蔵材料を含んだ排ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purifying catalyst containing an oxygen storage material.

従来から、自動車等の排ガスを処理する排ガス浄化用触媒としては、アルミナなどの無機酸化物からなる耐熱性担体に貴金属を担持させた三元触媒が広く使用されている。この三元触媒では、貴金属は、窒素酸化物(NOx)の還元反応並びに一酸化炭素(CO)及び炭化水素(HC)の酸化反応を促進する役割を担っている。また、耐熱性担体は、貴金属の比表面積を増大させると共に、反応による発熱を消散させて貴金属のシンタリングを抑制する役割を担っている。 Conventionally, a three-way catalyst in which a noble metal is supported on a heat-resistant carrier made of an inorganic oxide such as alumina has been widely used as an exhaust gas purifying catalyst for treating exhaust gas of an automobile or the like. In this three-way catalyst, the noble metal plays a role of promoting the reduction reaction of nitrogen oxide (NO x ) and the oxidation reaction of carbon monoxide (CO) and hydrocarbon (HC). The heat-resistant carrier plays a role of increasing the specific surface area of the noble metal and suppressing the sintering of the noble metal by dissipating heat generated by the reaction.

特許文献1乃至3には、酸化セリウム又はセリウムと他の金属元素とを含有した酸化物を使用した排ガス浄化用触媒が記載されている。これら酸化物は、酸素貯蔵能を有している酸素貯蔵材料である。酸素貯蔵材料を三元触媒で使用すると、先の還元反応及び酸化反応を最適化し得る。しかしながら、以下に説明するように、酸素貯蔵材料を使用した三元触媒であっても、エンジンを始動した直後の状態とエンジンを継続的に稼動した状態との双方において、良好な性能を達成することは難しい。   Patent Documents 1 to 3 describe an exhaust gas purifying catalyst using cerium oxide or an oxide containing cerium and another metal element. These oxides are oxygen storage materials having oxygen storage capacity. When the oxygen storage material is used with a three-way catalyst, the previous reduction and oxidation reactions can be optimized. However, as will be described below, even a three-way catalyst using an oxygen storage material achieves good performance both in the state immediately after starting the engine and in the state where the engine is continuously operated. It ’s difficult.

エンジンを始動した直後の状態では、触媒の温度は低い。低温条件のもとで貴金属が排ガスを浄化する能力は、高温条件のもとで貴金属が排ガスを浄化する能力と比較してより低い。それゆえ、エンジンを始動した直後における性能を考慮した場合、排ガス浄化用触媒の熱容量を小さくすることが有利である。   In the state immediately after starting the engine, the temperature of the catalyst is low. The ability of noble metals to purify exhaust gases under low temperature conditions is lower than the ability of noble metals to purify exhaust gases under high temperature conditions. Therefore, considering the performance immediately after starting the engine, it is advantageous to reduce the heat capacity of the exhaust gas purifying catalyst.

他方、エンジンを継続的に稼動した状態では、触媒の温度は十分に高い。この場合、貴金属が排ガスを浄化する能力は高いため、排ガス浄化用触媒は、排ガス組成の変動に対応すべく、より多くの酸素貯蔵材料を含んでいることが有利である。   On the other hand, when the engine is continuously operated, the temperature of the catalyst is sufficiently high. In this case, since the ability of the noble metal to purify the exhaust gas is high, it is advantageous that the exhaust gas purification catalyst contains more oxygen storage material in order to cope with fluctuations in the exhaust gas composition.

このように、エンジンを始動した直後における性能とエンジンを継続的に稼動した状態における性能とは、二律背反の関係にある。そのため、エンジンを始動した直後の状態とエンジンを継続的に稼動した状態との双方において良好な性能を達成することは難しく、それゆえ、常に高い排ガス浄化効率を達成することは難しい。   As described above, the performance immediately after starting the engine and the performance in a state where the engine is continuously operated are in a trade-off relationship. Therefore, it is difficult to achieve good performance both in the state immediately after starting the engine and the state in which the engine is continuously operated, and therefore it is difficult to always achieve high exhaust gas purification efficiency.

特開平1−281144号公報JP-A-1-281144 特開平9−155192号公報Japanese Patent Laid-Open No. 9-155192 特開平9−221304号公報JP-A-9-221304

本発明の目的は、高い排ガス浄化効率を達成することにある。   An object of the present invention is to achieve high exhaust gas purification efficiency.

本発明の一側面によると、基材と、前記基材を被覆すると共に酸素貯蔵材料とパラジウムとを含み、ロジウムを含んでいない下層と、前記下層を被覆すると共にロジウムとこれを担持した担体と含み、前記下層と比較して酸素貯蔵能がより低い上層とを具備したことを特徴とする排ガス浄化用触媒が提供される。   According to an aspect of the present invention, a base material, a lower layer that covers the base material and includes an oxygen storage material and palladium, does not include rhodium, and covers the lower layer and rhodium and a carrier that carries the same. In addition, an exhaust gas purifying catalyst comprising an upper layer having a lower oxygen storage capacity than the lower layer is provided.

本発明によると、高い排ガス浄化効率を達成することが可能となる。   According to the present invention, it is possible to achieve high exhaust gas purification efficiency.

本発明の一態様に係る排ガス浄化用触媒を概略的に示す斜視図。1 is a perspective view schematically showing an exhaust gas purifying catalyst according to one embodiment of the present invention. 図1に示す排ガス浄化用触媒に採用可能な構造の一例を概略的に示す断面図。FIG. 2 is a cross-sectional view schematically showing an example of a structure that can be employed in the exhaust gas purification catalyst shown in FIG. 1.

以下、本発明の態様について説明する。
図1は、本発明の一態様に係る排ガス浄化用触媒を概略的に示す斜視図である。図2は、図1に示す排ガス浄化用触媒に採用可能な構造の一例を概略的に示す断面図である。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a perspective view schematically showing an exhaust gas purifying catalyst according to one embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing an example of a structure that can be employed in the exhaust gas purifying catalyst shown in FIG.

図1及び図2に示す排ガス浄化用触媒1は、モノリス触媒である。この排ガス浄化用触媒1は、モノリスハニカム基材などの基材2を含んでいる。基材2は、典型的には、コージェライトなどのセラミックス製である。   The exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 is a monolith catalyst. The exhaust gas-purifying catalyst 1 includes a substrate 2 such as a monolith honeycomb substrate. The substrate 2 is typically made of ceramics such as cordierite.

基材2の隔壁上には、下層3が形成されている。下層3は、第1耐熱性担体と第1酸素貯蔵材料とパラジウムとを含んでいる。下層3は、排ガス浄化用触媒1に酸素貯蔵能を与える主要な役割を果たすと共に、排ガス浄化用触媒1にパラジウムによる排ガス浄化能を与える主要な又は補助的な役割を果たす。   A lower layer 3 is formed on the partition wall of the substrate 2. The lower layer 3 includes a first heat-resistant carrier, a first oxygen storage material, and palladium. The lower layer 3 plays a main role of giving the exhaust gas purification catalyst 1 an oxygen storage capability, and also plays a main or auxiliary role of giving the exhaust gas purification catalyst 1 an exhaust gas purification capability of palladium.

下層3は、ロジウムを含んでいない。なお、この明細書及び特許請求の範囲において、「層L1が元素Eを含んでいない」ことを言及した場合、層L1中に不可避量の元素Eが混入していることは排除していない。例えば、層L1は、これと隣接する層L2からの拡散によって混入した元素Eを含み得る。   The lower layer 3 does not contain rhodium. In this specification and claims, when it is mentioned that “the layer L1 does not contain the element E”, it is not excluded that an unavoidable amount of the element E is mixed in the layer L1. For example, the layer L1 may include an element E mixed by diffusion from the layer L2 adjacent thereto.

第1耐熱性担体は、第1酸素貯蔵材料と比較して熱安定に優れている。第1耐熱性担体の材料としては、例えば、アルミナ、ジルコニア、又はチタニアを使用することができる。   The first heat-resistant carrier is excellent in thermal stability as compared with the first oxygen storage material. As a material for the first heat-resistant carrier, for example, alumina, zirconia, or titania can be used.

第1酸素貯蔵材料は、例えば、セリア、セリアと他の金属酸化物との複合酸化物、又はそれらの混合物である。複合酸化物としては、例えば、セリアとジルコニアとの複合酸化物を使用することができる。   The first oxygen storage material is, for example, ceria, a composite oxide of ceria and another metal oxide, or a mixture thereof. As the composite oxide, for example, a composite oxide of ceria and zirconia can be used.

第1酸素貯蔵材料は、白金族元素などの貴金属を担持していてもよい。一般に、酸素貯蔵材料に微量の貴金属を担持させると、酸素貯蔵能が向上する。例えば、第1酸素貯蔵材料として、セリアとジルコニアとの複合酸化物に白金を担持させてなる材料を使用してもよい。   The first oxygen storage material may carry a noble metal such as a platinum group element. Generally, when a trace amount of noble metal is supported on an oxygen storage material, the oxygen storage capacity is improved. For example, a material obtained by supporting platinum on a composite oxide of ceria and zirconia may be used as the first oxygen storage material.

基材2の容積1L当りの下層3のコート量は、例えば20g/L乃至200g/Lの範囲内とする。このコート量が少ない場合、十分な酸素貯蔵能を達成することが難しい。また、このコート量が多い場合、排ガス浄化用触媒1の熱容量が大きくなる。   The coating amount of the lower layer 3 per 1 L of the volume of the base material 2 is, for example, in the range of 20 g / L to 200 g / L. When this coating amount is small, it is difficult to achieve sufficient oxygen storage capacity. Moreover, when this coating amount is large, the heat capacity of the exhaust gas-purifying catalyst 1 increases.

第1酸素貯蔵材料に使用する酸化物の第1耐熱性担体に対する質量比は、例えば10質量%乃至90質量%の範囲内とする。   The mass ratio of the oxide used for the first oxygen storage material to the first heat-resistant carrier is, for example, in the range of 10% by mass to 90% by mass.

第1酸素貯蔵材料として、セリアとジルコニアとの複合酸化物を使用する場合、セリウムのジルコニウムに対する原子比は、例えば3原子%乃至97原子%の範囲内とする。   When a composite oxide of ceria and zirconia is used as the first oxygen storage material, the atomic ratio of cerium to zirconium is, for example, in the range of 3 atomic% to 97 atomic%.

下層3上には、上層4が形成されている。上層4は、第2耐熱性担体とロジウムとを含んでいる。上層4は、排ガス浄化用触媒1にロジウムによる排ガス浄化能を与える主要な役割を果たす。   An upper layer 4 is formed on the lower layer 3. The upper layer 4 contains a second heat resistant carrier and rhodium. The upper layer 4 plays a main role in providing the exhaust gas purification catalyst 1 with an exhaust gas purification ability by rhodium.

第2耐熱性担体は、第1酸素貯蔵材料と比較して耐熱性に優れている。第2耐熱性担体の材料としては、例えば、第1耐熱性担体について例示した材料を使用することができる。   The second heat-resistant carrier is excellent in heat resistance compared to the first oxygen storage material. As the material for the second heat-resistant carrier, for example, the materials exemplified for the first heat-resistant carrier can be used.

基材2の容積1L当りの上層4のコート量は、例えば10g/L乃至200g/Lの範囲内とする。このコート量が少ない場合、上層4の排ガス浄化能が不十分となることがある。また、このコート量が多い場合、排ガス浄化用触媒1の熱容量が大きくなる。   The coating amount of the upper layer 4 per 1 L of the volume of the substrate 2 is, for example, in the range of 10 g / L to 200 g / L. When the coating amount is small, the exhaust gas purification ability of the upper layer 4 may be insufficient. Moreover, when this coating amount is large, the heat capacity of the exhaust gas-purifying catalyst 1 increases.

上層4は、パラジウム及び/又は白金をさらに含んでいてもよい。また、上層4は、第2酸素貯蔵材料をさらに含むことができる。第2酸素貯蔵材料としては、例えば、第1酸素貯蔵材料について例示した材料を使用することができる。   The upper layer 4 may further contain palladium and / or platinum. In addition, the upper layer 4 can further include a second oxygen storage material. As a 2nd oxygen storage material, the material illustrated about the 1st oxygen storage material can be used, for example.

この排ガス浄化用触媒1から下層3を省略した場合、上層4に、NOxの還元反応並びにCO及びHCの酸化反応を促進させる役割と、酸素を貯蔵する役割との双方を担わせなければならない。しかしながら、この場合、排ガス浄化用触媒1の熱容量を小さくすべく上層4のコート量を小さくし、且つ、NOxの還元反応並びにCO及びHCの酸化反応の効率を最大化すべく貴金属の密度を高めると、酸素貯蔵材料の量が減少するのに加え、酸素貯蔵材料の酸素貯蔵能が低下する。 When the lower layer 3 is omitted from the exhaust gas-purifying catalyst 1, the upper layer 4 has to play both the role of promoting the reduction reaction of NO x and the oxidation reaction of CO and HC and the role of storing oxygen. . However, in this case, the coating amount of the upper layer 4 is reduced to reduce the heat capacity of the exhaust gas-purifying catalyst 1, and the density of the noble metal is increased to maximize the efficiency of the NO x reduction reaction and the CO and HC oxidation reaction. In addition, the amount of the oxygen storage material is decreased, and the oxygen storage capacity of the oxygen storage material is decreased.

これに対し、上層4と基材2との間に下層3を介在させた場合、例えば、NOxの還元反応並びにCO及びHCの酸化反応を促進させる役割を、主に上層4に担わせるか、又は、下層3と上層4とに分担させることができる。そして、酸素を貯蔵する役割を、主に下層3に担わせることができる。そのため、下層3に、酸素貯蔵材料の酸素貯蔵能を最大化する設計を採用することができる。それゆえ、下層3のコート量を小さくした場合であっても、十分に大きな酸素貯蔵能を達成することができる。したがって、例えば、上層4のコート量を小さくし且つ上層4におけるパラジウム及びロジウムの密度を高めた場合であっても、この排ガス浄化用触媒1の酸素貯蔵能が不十分となることはない。しかも、下層3は上層4と基材2との間に介在しているので、下層3が上層4と排ガスとの接触を妨げない。 On the other hand, when the lower layer 3 is interposed between the upper layer 4 and the substrate 2, for example, the upper layer 4 is mainly responsible for promoting the NO x reduction reaction and the CO and HC oxidation reaction. Alternatively, the lower layer 3 and the upper layer 4 can be shared. And the role which stores oxygen can mainly be given to the lower layer 3. Therefore, a design that maximizes the oxygen storage capacity of the oxygen storage material can be adopted for the lower layer 3. Therefore, even when the coating amount of the lower layer 3 is reduced, a sufficiently large oxygen storage capacity can be achieved. Therefore, for example, even when the coating amount of the upper layer 4 is reduced and the density of palladium and rhodium in the upper layer 4 is increased, the oxygen storage capacity of the exhaust gas-purifying catalyst 1 does not become insufficient. Moreover, since the lower layer 3 is interposed between the upper layer 4 and the substrate 2, the lower layer 3 does not hinder the contact between the upper layer 4 and the exhaust gas.

また、排ガス浄化性能に優れ且つ低コストの排ガス浄化用触媒を得るには、パラジウム含量をロジウム含量と比較してより多くすることが有利である。しかしながら、パラジウムを上層4のみに含有させた場合、その層のコート量を多くするか又はその層におけるパラジウムの密度を高くする必要がある。コート量を多くすると、排ガス浄化用触媒の熱容量が増加し、パラジウムの密度を過剰に高くすると、その層の酸素貯蔵能が低下する。   Moreover, in order to obtain an exhaust gas purification catalyst having excellent exhaust gas purification performance and low cost, it is advantageous to increase the palladium content as compared with the rhodium content. However, when palladium is contained only in the upper layer 4, it is necessary to increase the coating amount of the layer or increase the density of palladium in the layer. When the coating amount is increased, the heat capacity of the exhaust gas purifying catalyst is increased. When the density of palladium is excessively increased, the oxygen storage capacity of the layer is decreased.

この排ガス浄化用触媒1では、下層3がパラジウムを含有しているのに加え、上層3もパラジウムを含有することができる。それゆえ、下層3及び上層3の双方にパラジウムを含有させれば、コート量を多くすること及びパラジウム密度を過剰に高くすることなしに、パラジウム含量を多くすることができる。そして、パラジウム密度が過剰に高くなければ、酸素貯蔵材料の酸素貯蔵能は、パラジウムの添加により向上する。すなわち、優れた酸素貯蔵能及び排ガス浄化性能と低コストとを達成できる。   In the exhaust gas-purifying catalyst 1, in addition to the lower layer 3 containing palladium, the upper layer 3 can also contain palladium. Therefore, if palladium is contained in both the lower layer 3 and the upper layer 3, the palladium content can be increased without increasing the coating amount and excessively increasing the palladium density. If the palladium density is not excessively high, the oxygen storage capacity of the oxygen storage material is improved by the addition of palladium. That is, excellent oxygen storage capacity, exhaust gas purification performance and low cost can be achieved.

それゆえ、この構造を採用すると、エンジンを始動した直後の状態とエンジンを継続的に稼動した状態との双方において、高い排ガス浄化効率を達成することが可能となると共に、低コストを達成することができる。   Therefore, by adopting this structure, it is possible to achieve high exhaust gas purification efficiency in both the state immediately after starting the engine and the state in which the engine is continuously operated, and to achieve low cost. Can do.

この排ガス浄化用触媒1には、様々な変形が可能である。
例えば、下層3のうち、上層4側の部分は、基材2側の部分と比較してパラジウム含量がより大きくてもよい。この場合、下層3の基材2側の部分は、下層3の上層4側の部分と比較して酸素貯蔵能がより高く(例えばセリウム含量がより大きく)てもよい。このとき、下層3の基材2側の部分は、パラジウムを含んでいなくてもよい。また、下層3の基材2側の部分は、白金をさらに含んでいてもよい。
Various modifications can be made to the exhaust gas-purifying catalyst 1.
For example, the part on the upper layer 4 side in the lower layer 3 may have a higher palladium content than the part on the base material 2 side. In this case, the portion of the lower layer 3 on the substrate 2 side may have a higher oxygen storage capacity (for example, a larger cerium content) than the portion of the lower layer 3 on the upper layer 4 side. At this time, the portion of the lower layer 3 on the base material 2 side may not contain palladium. Moreover, the part by the side of the base material 2 of the lower layer 3 may further contain platinum.

上層4のうち、下層3側の部分は、表面側の部分と比較してロジウム含量がより大きてもよい。この場合、下層3側の部分は、表面側の部分と比較してパラジウム含量がより小さくてもよい。   Of the upper layer 4, the portion on the lower layer 3 side may have a higher rhodium content than the portion on the surface side. In this case, the lower layer 3 side portion may have a smaller palladium content than the surface side portion.

下層3及び/又は上層4は、バリウムなどのアルカリ土類金属の酸化物、ランタン、ネオジム、プラセオジム、及びイットリウムなどの希土類元素の酸化物、又はそれらの混合物をさらに含んでいてもよい。これら酸化物は、セリアなどの他の酸化物と複合酸化物及び/又は固溶体を形成していてもよい。   The lower layer 3 and / or the upper layer 4 may further include an oxide of an alkaline earth metal such as barium, an oxide of a rare earth element such as lanthanum, neodymium, praseodymium, and yttrium, or a mixture thereof. These oxides may form composite oxides and / or solid solutions with other oxides such as ceria.

この排ガス浄化用触媒1は、基材2と下層3との間に介在した炭化水素吸着層をさらに含んでいてもよい。炭化水素吸着層は、ゼオライトなどの炭化水素吸着材料を含んだ層である。この構造を採用すると、図2に示す構造を採用した場合と比較して、HCエミッションを低減することができる。   The exhaust gas-purifying catalyst 1 may further include a hydrocarbon adsorption layer interposed between the base material 2 and the lower layer 3. The hydrocarbon adsorption layer is a layer containing a hydrocarbon adsorption material such as zeolite. When this structure is adopted, HC emission can be reduced as compared with the case where the structure shown in FIG. 2 is adopted.

或いは、下層3がゼオライトなどの炭化水素吸着材料をさらに含んでいてもよい。この構造を採用した場合も、図2に示す構造を採用した場合と比較して、HCエミッションを低減することができる。また、下層3に炭化水素吸着材料をさらに含有させた場合、基材2と下層3との間に炭化水素吸着層を介在させた場合と比較して、排ガス浄化用触媒1の製造を簡略化することができる。   Alternatively, the lower layer 3 may further contain a hydrocarbon adsorbing material such as zeolite. Even when this structure is adopted, HC emission can be reduced as compared with the case where the structure shown in FIG. 2 is adopted. Further, when the lower layer 3 further contains a hydrocarbon adsorbing material, the production of the exhaust gas purification catalyst 1 is simplified as compared with the case where a hydrocarbon adsorbing layer is interposed between the base material 2 and the lower layer 3. can do.

(実施例)
以下、本発明の実施例について説明する。
(Example)
Examples of the present invention will be described below.

<触媒Aの製造>
本例では、図1及び図2に示す排ガス浄化用触媒1を、以下の方法で製造した。なお、本例では、下層3に、第1層と第2層とからなる二層構造を採用した。
<Manufacture of catalyst A>
In this example, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was produced by the following method. In this example, the lower layer 3 has a two-layer structure including a first layer and a second layer.

まず、セリウムとジルコニウムとの原子比が5:4であるセリウムジルコニウム酸化物粉末を準備した。以下、このセリウムジルコニウム酸化物粉末を、酸化物粉末CZ1と呼ぶ。   First, a cerium zirconium oxide powder having an atomic ratio of cerium to zirconium of 5: 4 was prepared. Hereinafter, this cerium zirconium oxide powder is referred to as oxide powder CZ1.

次いで、30gのアルミナ粉末と30gの酸化物粉末CZ1とパラジウムを0.5g含有した硝酸パラジウム水溶液とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS1と呼ぶ。   Next, 30 g of alumina powder, 30 g of oxide powder CZ1, and an aqueous palladium nitrate solution containing 0.5 g of palladium were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S1.

続いて、このスラリーS1の全量を、コージェライトからなるモノリスハニカム基材2にコートした。ここでは、長さが100mmであり、容積が1.0Lであり、1平方インチ当たり900個のセルが設けられたモノリスハニカム基材を使用した。このモノリスハニカム基材2は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、モノリスハニカム基材2上に、下層3の第1層を形成した。   Subsequently, the entire amount of the slurry S1 was coated on the monolith honeycomb substrate 2 made of cordierite. Here, a monolith honeycomb substrate having a length of 100 mm, a volume of 1.0 L, and 900 cells per square inch was used. This monolith honeycomb substrate 2 was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, the first layer of the lower layer 3 was formed on the monolith honeycomb substrate 2.

次に、セリウムとジルコニウムとの原子比が2:7であるセリウムジルコニウム酸化物粉末を準備した。以下、このセリウムジルコニウム酸化物粉末を、酸化物粉末CZ2と呼ぶ。   Next, a cerium zirconium oxide powder having an atomic ratio of cerium and zirconium of 2: 7 was prepared. Hereinafter, this cerium zirconium oxide powder is referred to as oxide powder CZ2.

次いで、30gのアルミナ粉末と30gの酸化物粉末CZ2とパラジウムを1.0g含有した硝酸パラジウム水溶液とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS2と呼ぶ。   Next, 30 g of alumina powder, 30 g of oxide powder CZ2, and an aqueous palladium nitrate solution containing 1.0 g of palladium were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S2.

続いて、このスラリーS2の全量を、先のモノリスハニカム基材2にコートした。このモノリスハニカム基材2は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、第1層上に第2層を形成した。このようにして、第1層と第2層との二層構造からなる下層3を得た。   Subsequently, the monolith honeycomb substrate 2 was coated with the entire amount of the slurry S2. This monolith honeycomb substrate 2 was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, the second layer was formed on the first layer. In this way, a lower layer 3 having a two-layer structure of the first layer and the second layer was obtained.

その後、30gのアルミナ粉末と30gの酸化物粉末CZ2とロジウムを0.5g含有した硝酸ロジウム水溶液とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS3と呼ぶ。   Thereafter, 30 g of alumina powder, 30 g of oxide powder CZ2, and an aqueous rhodium nitrate solution containing 0.5 g of rhodium were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S3.

次に、このスラリーS3の全量を、先のモノリスハニカム基材2にコートした。このモノリスハニカム基材2は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、下層3上に上層4を形成した。   Next, the monolith honeycomb substrate 2 was coated with the whole amount of the slurry S3. This monolith honeycomb substrate 2 was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, the upper layer 4 was formed on the lower layer 3.

以上のようにして、図1及び図2に示す排ガス浄化用触媒1を完成した。以下、この排ガス浄化用触媒1を触媒Aと呼ぶ。   As described above, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was completed. Hereinafter, the exhaust gas-purifying catalyst 1 is referred to as catalyst A.

<触媒Bの製造>
本例では、図1及び図2に示す排ガス浄化用触媒1を、以下の方法で製造した。なお、本例では、下層3に、第1層と第2層とからなる二層構造を採用した。
<Manufacture of catalyst B>
In this example, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was produced by the following method. In this example, the lower layer 3 has a two-layer structure including a first layer and a second layer.

まず、30gのアルミナ粉末と30gの酸化物粉末CZ1とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS4と呼ぶ。   First, 30 g of alumina powder and 30 g of oxide powder CZ1 were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S4.

続いて、このスラリーS4の全量を、触媒Aの製造で使用したのと同様のモノリスハニカム基材2にコートした。このモノリスハニカム基材2は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、モノリスハニカム基材2上に、下層3の第1層を形成した。   Subsequently, the same monolith honeycomb substrate 2 as that used in the manufacture of the catalyst A was coated with the whole amount of the slurry S4. This monolith honeycomb substrate 2 was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, the first layer of the lower layer 3 was formed on the monolith honeycomb substrate 2.

次に、30gのアルミナ粉末と30gの酸化物粉末CZ2とパラジウムを1.5g含有した硝酸パラジウム水溶液とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS5と呼ぶ。   Next, 30 g of alumina powder, 30 g of oxide powder CZ2, and an aqueous palladium nitrate solution containing 1.5 g of palladium were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S5.

続いて、このスラリーS5の全量を、先のモノリスハニカム基材2にコートした。このモノリスハニカム基材2は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、第1層上に第2層を形成した。このようにして、第1層と第2層との二層構造からなる下層3を得た。   Subsequently, the monolith honeycomb substrate 2 was coated with the entire amount of the slurry S5. This monolith honeycomb substrate 2 was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, the second layer was formed on the first layer. In this way, a lower layer 3 having a two-layer structure of the first layer and the second layer was obtained.

その後、触媒Aについて説明したのと同様の方法により、下層3上に上層4を形成した。以上のようにして、図1及び図2に示す排ガス浄化用触媒1を完成した。以下、この排ガス浄化用触媒1を触媒Bと呼ぶ。   Thereafter, the upper layer 4 was formed on the lower layer 3 by the same method as described for the catalyst A. As described above, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was completed. Hereinafter, the exhaust gas-purifying catalyst 1 is referred to as catalyst B.

<触媒Cの製造>
本例では、図1及び図2に示す排ガス浄化用触媒1を、以下の方法で製造した。なお、本例では、下層3に、第1層と第2層とからなる二層構造を採用した。
<Manufacture of catalyst C>
In this example, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was produced by the following method. In this example, the lower layer 3 has a two-layer structure including a first layer and a second layer.

まず、30gのアルミナ粉末と30gの酸化物粉末CZ2とパラジウムを0.5g含有した硝酸パラジウム水溶液とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS6と呼ぶ。   First, 30 g of alumina powder, 30 g of oxide powder CZ2, and an aqueous palladium nitrate solution containing 0.5 g of palladium were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S6.

続いて、このスラリーS6の全量を、触媒Aの製造で使用したのと同様のモノリスハニカム基材2にコートした。このモノリスハニカム基材2は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、モノリスハニカム基材2上に、下層3の第1層を形成した。   Subsequently, the same monolith honeycomb substrate 2 as that used in the manufacture of the catalyst A was coated with the whole amount of the slurry S6. This monolith honeycomb substrate 2 was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, the first layer of the lower layer 3 was formed on the monolith honeycomb substrate 2.

その後、触媒Aについて説明したのと同様の方法により、下層3の第2層と上層4とを順次形成した。
以上のようにして、図1及び図2に示す排ガス浄化用触媒1を完成した。以下、この排ガス浄化用触媒1を触媒Cと呼ぶ。
Thereafter, the second layer of the lower layer 3 and the upper layer 4 were sequentially formed by the same method as described for the catalyst A.
As described above, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was completed. Hereinafter, the exhaust gas-purifying catalyst 1 is referred to as catalyst C.

<触媒Dの製造>
本例では、図1及び図2に示す排ガス浄化用触媒1を、以下の方法で製造した。
まず、触媒Aについて説明したのと同様の方法により、モノリスハニカム基材2上に下層3を形成した。
<Manufacture of catalyst D>
In this example, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was produced by the following method.
First, the lower layer 3 was formed on the monolith honeycomb substrate 2 by the same method as described for the catalyst A.

次に、60gのアルミナ粉末と60gの酸化物粉末CZ2とパラジウムを1.0g含有した硝酸パラジウム水溶液とロジウムを0.5g含有した硝酸ロジウム水溶液とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS7と呼ぶ。   Next, 60 g of alumina powder, 60 g of oxide powder CZ2, a palladium nitrate aqueous solution containing 1.0 g of palladium, and a rhodium nitrate aqueous solution containing 0.5 g of rhodium were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S7.

続いて、このスラリーS7の全量を、先のモノリスハニカム基材2にコートした。このモノリスハニカム基材2は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、下層3上に上層4を形成した。   Subsequently, the monolith honeycomb substrate 2 was coated with the whole amount of the slurry S7. This monolith honeycomb substrate 2 was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, the upper layer 4 was formed on the lower layer 3.

以上のようにして、図1及び図2に示す排ガス浄化用触媒1を完成した。以下、この排ガス浄化用触媒1を触媒Dと呼ぶ。   As described above, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was completed. Hereinafter, the exhaust gas-purifying catalyst 1 is referred to as catalyst D.

<触媒Eの製造>
本例では、図1及び図2に示す排ガス浄化用触媒1を、以下の方法で製造した。なお、本例では、上層4に、第3層と第4層との二層構造を採用した。
<Manufacture of catalyst E>
In this example, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was produced by the following method. In this example, the upper layer 4 has a two-layer structure of a third layer and a fourth layer.

まず、触媒Aについて説明したのと同様の方法により、モノリスハニカム基材2上に第1層を形成した。本例では、この第1層を下層3とした。   First, a first layer was formed on the monolith honeycomb substrate 2 by the same method as described for the catalyst A. In this example, the first layer is the lower layer 3.

次に、触媒Aの上層4について説明したのと同様の方法により、スラリーS3を用いて、下層3上に上層4の第3層を形成した。さらに、触媒Aの第2層について説明したのと同様の方法により、スラリーS2を用いて、第3層上に第4層を形成した。これにより、第3層と第4層との二層構造からなる上層4を得た。   Next, a third layer of the upper layer 4 was formed on the lower layer 3 by using the slurry S3 by the same method as described for the upper layer 4 of the catalyst A. Further, a fourth layer was formed on the third layer by using the slurry S2 by the same method as described for the second layer of the catalyst A. As a result, an upper layer 4 having a two-layer structure of the third layer and the fourth layer was obtained.

以上のようにして、図1及び図2に示す排ガス浄化用触媒1を完成した。以下、この排ガス浄化用触媒1を触媒Eと呼ぶ。   As described above, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was completed. Hereinafter, the exhaust gas-purifying catalyst 1 is referred to as catalyst E.

<触媒Fの製造>
本例では、図1及び図2に示す排ガス浄化用触媒1を、以下の方法で製造した。なお、本例では、下層3に、第1層と第2層との二層構造を採用した。
<Manufacture of catalyst F>
In this example, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was produced by the following method. In this example, the lower layer 3 has a two-layer structure of a first layer and a second layer.

まず、30gのアルミナ粉末と30gの酸化物粉末CZ1と白金を0.5g含有した硝酸白金水溶液とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS8と呼ぶ。   First, 30 g of alumina powder, 30 g of oxide powder CZ1, and a platinum nitrate aqueous solution containing 0.5 g of platinum were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S8.

本例では、下層3の第1層の形成にスラリーS1を使用する代わりにスラリーS8を使用したこと以外は、触媒Aについて説明したのと同様の方法により、図1及び図2に示す排ガス浄化用触媒1を完成した。以下、この排ガス浄化用触媒1を触媒Fと呼ぶ。   In this example, the exhaust gas purification shown in FIGS. 1 and 2 is performed in the same manner as described for the catalyst A except that the slurry S8 is used instead of the slurry S1 for forming the first layer of the lower layer 3. Catalyst 1 for use was completed. Hereinafter, the exhaust gas-purifying catalyst 1 is referred to as catalyst F.

<触媒Gの製造>
本例では、図1及び図2に示す排ガス浄化用触媒1を、以下の方法で製造した。
まず、60gのアルミナ粉末と30gの酸化物粉末CZ1と30gの酸化物粉末CZ2とパラジウムを1.5g含有した硝酸パラジウム水溶液とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS9と呼ぶ。
<Manufacture of catalyst G>
In this example, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was produced by the following method.
First, 60 g of alumina powder, 30 g of oxide powder CZ1, 30 g of oxide powder CZ2, and an aqueous palladium nitrate solution containing 1.5 g of palladium were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S9.

続いて、このスラリーS9の全量を、触媒Aの製造で使用したのと同様のモノリスハニカム基材2にコートした。このモノリスハニカム基材2は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、モノリスハニカム基材2上に、下層3を形成した。   Subsequently, the same monolith honeycomb substrate 2 as that used in the manufacture of the catalyst A was coated with the whole amount of the slurry S9. This monolith honeycomb substrate 2 was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, the lower layer 3 was formed on the monolith honeycomb substrate 2.

その後、触媒Aについて説明したのと同様の方法により、上層4を形成した。
以上のようにして、図1及び図2に示す排ガス浄化用触媒1を完成した。以下、この排ガス浄化用触媒1を触媒Gと呼ぶ。
Thereafter, the upper layer 4 was formed by the same method as described for the catalyst A.
As described above, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was completed. Hereinafter, the exhaust gas-purifying catalyst 1 is referred to as catalyst G.

<触媒Hの製造>
本例では、図1及び図2に示す排ガス浄化用触媒1を、以下の方法で製造した。
まず、30gの酸化物粉末とパラジウムを0.5g含有した硝酸パラジウム水溶液とを混合した。この混合物を250℃で8時間乾燥させ、続いて、500℃で1時間焼成した。以下、これにより得られた粉末を、粉末P1と呼ぶ。
<Manufacture of catalyst H>
In this example, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was produced by the following method.
First, 30 g of oxide powder and a palladium nitrate aqueous solution containing 0.5 g of palladium were mixed. This mixture was dried at 250 ° C. for 8 hours and subsequently calcined at 500 ° C. for 1 hour. Hereinafter, the powder thus obtained is referred to as powder P1.

次に、60gのアルミナ粉末と30.5gの粉末P1と30gの酸化物粉末CZ2とパラジウムを1.0g含有した硝酸パラジウム水溶液とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS10と呼ぶ。   Next, 60 g of alumina powder, 30.5 g of powder P1, 30 g of oxide powder CZ2, and an aqueous palladium nitrate solution containing 1.0 g of palladium were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S10.

続いて、このスラリーS9の全量を、触媒Aの製造で使用したのと同様のモノリスハニカム基材2にコートした。このモノリスハニカム基材2は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、モノリスハニカム基材2上に、下層3を形成した。   Subsequently, the same monolith honeycomb substrate 2 as that used in the manufacture of the catalyst A was coated with the whole amount of the slurry S9. This monolith honeycomb substrate 2 was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, the lower layer 3 was formed on the monolith honeycomb substrate 2.

その後、触媒Aについて説明したのと同様の方法により、上層4を形成した。
以上のようにして、図1及び図2に示す排ガス浄化用触媒1を完成した。以下、この排ガス浄化用触媒1を触媒Hと呼ぶ。
Thereafter, the upper layer 4 was formed by the same method as described for the catalyst A.
As described above, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was completed. Hereinafter, the exhaust gas-purifying catalyst 1 is referred to as catalyst H.

<触媒Iの製造>
本例では、図1及び図2に示す排ガス浄化用触媒1を、以下の方法で製造した。なお、本例では、下層3に、第1層と第2層との二層構造を採用した。
<Manufacture of catalyst I>
In this example, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was produced by the following method. In this example, the lower layer 3 has a two-layer structure of a first layer and a second layer.

まず、30gのアルミナ粉末と30gの酸化物粉末CZ1と6gの硫酸バリウムと3gの炭酸ランタンとパラジウムを0.5g含有した硝酸パラジウム水溶液とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS11と呼ぶ。   First, 30 g of alumina powder, 30 g of oxide powder CZ1, 6 g of barium sulfate, 3 g of lanthanum carbonate, and an aqueous palladium nitrate solution containing 0.5 g of palladium were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S11.

続いて、このスラリーS11の全量を、触媒Aの製造で使用したのと同様のモノリスハニカム基材2にコートした。このモノリスハニカム基材2は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、モノリスハニカム基材2上に、下層3の第1層を形成した。   Subsequently, the same monolith honeycomb substrate 2 as that used in the manufacture of the catalyst A was coated with the whole amount of the slurry S11. This monolith honeycomb substrate 2 was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, the first layer of the lower layer 3 was formed on the monolith honeycomb substrate 2.

次に、30gのアルミナ粉末と30gの酸化物粉末CZ2と6gの硫酸バリウムと3gの炭酸ランタンとパラジウムを1.0g含有した硝酸パラジウム水溶液とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS12と呼ぶ。   Next, 30 g of alumina powder, 30 g of oxide powder CZ2, 6 g of barium sulfate, 3 g of lanthanum carbonate, and an aqueous palladium nitrate solution containing 1.0 g of palladium were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S12.

続いて、このスラリーS12の全量を、先のモノリスハニカム基材2にコートした。このモノリスハニカム基材2は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、第1層上に第2層を形成した。以上のようにして、第1層と第2層との二層構造からなる下層3を得た。   Subsequently, the monolith honeycomb substrate 2 was coated with the entire amount of the slurry S12. This monolith honeycomb substrate 2 was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, the second layer was formed on the first layer. As described above, the lower layer 3 having a two-layer structure of the first layer and the second layer was obtained.

その後、30gのアルミナ粉末と30gの酸化物粉末CZ2と6gの硫酸バリウムと3gの炭酸ランタンとロジウムを0.5g含有した硝酸ロジウム水溶液とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS13と呼ぶ。   Thereafter, 30 g of alumina powder, 30 g of oxide powder CZ2, 6 g of barium sulfate, 3 g of lanthanum carbonate, and an aqueous rhodium nitrate solution containing 0.5 g of rhodium were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S13.

続いて、このスラリーS13の全量を、先のモノリスハニカム基材2にコートした。このモノリスハニカム基材2は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、下層3上に上層4を形成した。   Subsequently, the monolith honeycomb substrate 2 was coated with the entire amount of the slurry S13. This monolith honeycomb substrate 2 was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, the upper layer 4 was formed on the lower layer 3.

以上のようにして、図1及び図2に示す排ガス浄化用触媒1を完成した。以下、この排ガス浄化用触媒1を触媒Iと呼ぶ。   As described above, the exhaust gas-purifying catalyst 1 shown in FIGS. 1 and 2 was completed. Hereinafter, the exhaust gas-purifying catalyst 1 is referred to as catalyst I.

<触媒Jの製造>
本例では、排ガス浄化用触媒を、以下の方法で製造した。
まず、30gのアルミナ粉末と30gの酸化物粉末CZ2とパラジウムを1.5g含有した硝酸パラジウム水溶液とを混合して、スラリーを調製した。以下、このスラリーを、スラリーS14と呼ぶ。
<Manufacture of catalyst J>
In this example, an exhaust gas purifying catalyst was produced by the following method.
First, 30 g of alumina powder, 30 g of oxide powder CZ2, and an aqueous palladium nitrate solution containing 1.5 g of palladium were mixed to prepare a slurry. Hereinafter, this slurry is referred to as slurry S14.

続いて、このスラリーS14の全量を、触媒Aの製造で使用したのと同様のモノリスハニカム基材にコートした。このモノリスハニカム基材は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、モノリスハニカム基材上に、下層を形成した。   Subsequently, the same monolith honeycomb substrate as that used in the manufacture of the catalyst A was coated with the whole amount of the slurry S14. The monolith honeycomb substrate was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, a lower layer was formed on the monolith honeycomb substrate.

次に、スラリーS3の全量を、先のモノリスハニカム基材にコートした。このモノリスハニカム基材2は、250℃で1時間乾燥させ、続いて、500℃で1時間焼成した。これにより、下層上に上層を形成した。   Next, the previous monolith honeycomb substrate was coated with the entire amount of the slurry S3. This monolith honeycomb substrate 2 was dried at 250 ° C. for 1 hour and then fired at 500 ° C. for 1 hour. Thereby, the upper layer was formed on the lower layer.

以上のようにして、排ガス浄化用触媒を完成した。以下、この排ガス浄化用触媒を触媒Jと呼ぶ。   The exhaust gas purification catalyst was completed as described above. Hereinafter, the exhaust gas-purifying catalyst is referred to as catalyst J.

<試験>
触媒A乃至Jの各々を、排気量が0.7Lのエンジンを有する自動車に搭載した。次いで、各自動車に、60000kmの耐久走行距離を走行させた。その後、10・15モード法及び11モード法により、非メタン炭化水素(NMHC)、CO及びNOxの各々について走行距離1km当たりの排出量を測定した。なお、NMHCの排出量は、炭素数等量による容量比で表した値をグラムに換算した値である。また、10・15モード法で得られた測定値には88/100を乗じ、11モード法で得られた測定値には12/100を乗じ、それらの合算値を求めた。その結果を、以下の表に纏める。

Figure 2013027876
<Test>
Each of the catalysts A to J was mounted on an automobile having an engine with a displacement of 0.7 L. Next, each automobile was caused to travel a durable travel distance of 60000 km. Thereafter, the emission amount per 1 km of the travel distance was measured for each of non-methane hydrocarbon (NMHC), CO, and NO x by the 10.15 mode method and the 11 mode method. The amount of NMHC discharged is a value obtained by converting a value represented by a volume ratio based on the carbon number equivalent into grams. Moreover, the measured value obtained by the 10 · 15 mode method was multiplied by 88/100, and the measured value obtained by the 11 mode method was multiplied by 12/100 to obtain a total value thereof. The results are summarized in the following table.
Figure 2013027876

上記表に示すように、触媒A乃至Iを使用した場合、触媒Jを使用した場合と比較してNMHC、CO及びNOx排出量の各々が少なかった。 As shown in the above table, when the catalysts A to I were used, each of the NMHC, CO, and NO x emission amounts was smaller than when the catalyst J was used.

1…排ガス浄化用触媒、2…基材、3…下層、4…上層。   DESCRIPTION OF SYMBOLS 1 ... Exhaust gas purification catalyst, 2 ... Base material, 3 ... Lower layer, 4 ... Upper layer.

上記表に示すように、触媒A乃至Iを使用した場合、触媒Jを使用した場合と比較してNMHC、CO及びNOx排出量の各々が少なかった。
以下に、当初の特許請求の範囲に記載していた発明を付記する。
[1]基材と、前記基材を被覆すると共に酸素貯蔵材料とパラジウムとを含み、ロジウムを含んでいない下層と、前記下層を被覆すると共にロジウムとこれを担持した担体と含み、前記下層と比較して酸素貯蔵能がより低い上層とを具備したことを特徴とする排ガス浄化用触媒。
[2]前記下層のうち、前記上層側の部分は、前記基材側の部分と比較してパラジウム含量がより大きいことを特徴とする項1に記載の排ガス浄化用触媒。
[3]前記基材側の部分は、前記上層側の部分と比較してセリウム含量がより大きいことを特徴とする項2に記載の排ガス浄化用触媒。
[4]前記基材側の部分はパラジウムを含んでいないことを特徴とする項3に記載の排ガス浄化用触媒。
[5]前記基材側の部分は白金をさらに含んでいることを特徴とする項4に記載の排ガス浄化用触媒。
[6]前記下層及び前記上層の少なくとも一方は、アルカリ土類金属及び/又は希土類元素をさらに含んだことを特徴とする項1乃至5の何れか1項に記載の排ガス浄化用触媒。
[7]前記上層はパラジウムをさらに含んだことを特徴とする項1に記載の排ガス浄化用触媒。
[8]前記上層のうち、前記下層側の部分は、表面側の部分と比較してロジウム含量がより大きく且つパラジウム含量がより小さいことを特徴とする項7に記載の排ガス浄化用触媒。
As shown in the above table, when the catalysts A to I were used, each of the NMHC, CO, and NO x emission amounts was smaller than when the catalyst J was used.
The invention described in the original claims is appended below.
[1] A base material, a lower layer that covers the base material and contains an oxygen storage material and palladium, and does not contain rhodium; a lower layer that covers the lower layer and supports rhodium and the carrier; An exhaust gas purifying catalyst characterized by comprising an upper layer having a lower oxygen storage capacity in comparison.
[2] The exhaust gas purifying catalyst according to [1], wherein the upper layer side portion of the lower layer has a higher palladium content than the base material side portion.
[3] The exhaust gas purifying catalyst as described in [2], wherein the substrate side portion has a larger cerium content than the upper layer side portion.
[4] The exhaust gas-purifying catalyst according to [3], wherein the base-side portion does not contain palladium.
[5] The exhaust gas purifying catalyst as set forth in [4], wherein the substrate side portion further contains platinum.
[6] The exhaust gas-purifying catalyst according to any one of items 1 to 5, wherein at least one of the lower layer and the upper layer further contains an alkaline earth metal and / or a rare earth element.
[7] The exhaust gas-purifying catalyst according to item 1, wherein the upper layer further contains palladium.
[8] The exhaust gas purifying catalyst as described in [7], wherein the lower layer portion of the upper layer has a higher rhodium content and a smaller palladium content than the surface portion.

Claims (8)

基材と、
前記基材を被覆すると共に酸素貯蔵材料とパラジウムとを含み、ロジウムを含んでいない下層と、
前記下層を被覆すると共にロジウムとこれを担持した担体と含み、前記下層と比較して酸素貯蔵能がより低い上層とを具備したことを特徴とする排ガス浄化用触媒。
A substrate;
A lower layer that covers the substrate and includes an oxygen storage material and palladium, and does not include rhodium;
An exhaust gas purifying catalyst comprising: an upper layer which covers the lower layer and includes rhodium and a carrier supporting the rhodium and has a lower oxygen storage capacity than the lower layer.
前記下層のうち、前記上層側の部分は、前記基材側の部分と比較してパラジウム含量がより大きいことを特徴とする請求項1に記載の排ガス浄化用触媒。   2. The exhaust gas purifying catalyst according to claim 1, wherein the upper layer side portion of the lower layer has a higher palladium content than the base material side portion. 前記基材側の部分は、前記上層側の部分と比較してセリウム含量がより大きいことを特徴とする請求項2に記載の排ガス浄化用触媒。   The exhaust gas purifying catalyst according to claim 2, wherein the substrate side portion has a larger cerium content than the upper layer side portion. 前記基材側の部分はパラジウムを含んでいないことを特徴とする請求項3に記載の排ガス浄化用触媒。   The exhaust gas purifying catalyst according to claim 3, wherein the substrate side portion does not contain palladium. 前記基材側の部分は白金をさらに含んでいることを特徴とする請求項4に記載の排ガス浄化用触媒。   The exhaust gas purifying catalyst according to claim 4, wherein the portion on the substrate side further contains platinum. 前記下層及び前記上層の少なくとも一方は、アルカリ土類金属及び/又は希土類元素をさらに含んだことを特徴とする請求項1乃至5の何れか1項に記載の排ガス浄化用触媒。   The exhaust gas purifying catalyst according to any one of claims 1 to 5, wherein at least one of the lower layer and the upper layer further contains an alkaline earth metal and / or a rare earth element. 前記上層はパラジウムをさらに含んだことを特徴とする請求項1に記載の排ガス浄化用触媒。   The exhaust gas purifying catalyst according to claim 1, wherein the upper layer further contains palladium. 前記上層のうち、前記下層側の部分は、表面側の部分と比較してロジウム含量がより大きく且つパラジウム含量がより小さいことを特徴とする請求項7に記載の排ガス浄化用触媒。   The exhaust gas purifying catalyst according to claim 7, wherein the lower layer portion of the upper layer has a higher rhodium content and a lower palladium content than the surface portion.
JP2012243496A 2012-11-05 2012-11-05 Exhaust gas purifying catalyst Pending JP2013027876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012243496A JP2013027876A (en) 2012-11-05 2012-11-05 Exhaust gas purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012243496A JP2013027876A (en) 2012-11-05 2012-11-05 Exhaust gas purifying catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007176602A Division JP5173282B2 (en) 2007-07-04 2007-07-04 Exhaust gas purification catalyst

Publications (1)

Publication Number Publication Date
JP2013027876A true JP2013027876A (en) 2013-02-07

Family

ID=47785466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012243496A Pending JP2013027876A (en) 2012-11-05 2012-11-05 Exhaust gas purifying catalyst

Country Status (1)

Country Link
JP (1) JP2013027876A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044201A (en) * 2015-08-28 2017-03-02 三菱自動車工業株式会社 Exhaust emission control system for internal combustion engine and exhaust emission control catalyst
WO2023067744A1 (en) * 2021-10-20 2023-04-27 三井金属鉱業株式会社 Exhaust gas purification catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293376A (en) * 1992-04-15 1993-11-09 Nissan Motor Co Ltd Catalyst for purifying exhaust gas and method therefor
JPH0663403A (en) * 1992-08-24 1994-03-08 Nissan Motor Co Ltd Exhaust gas cleaning catalyst
JPH0760117A (en) * 1993-08-30 1995-03-07 Honda Motor Co Ltd Exhaust gas purifying catalyst
JPH10296085A (en) * 1997-04-30 1998-11-10 Cataler Kogyo Kk Exhaust gas-purifying catalyst
JPH1170332A (en) * 1997-06-20 1999-03-16 Degussa Ag Internal combustion engine exhaust gas purifying catalyst and its manufacture
JP2005000884A (en) * 2003-06-13 2005-01-06 Nissan Motor Co Ltd Catalyst for exhaust gas cleaning
JP2005506900A (en) * 2001-10-26 2005-03-10 エンゲルハード・コーポレーシヨン Layered catalyst composite

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293376A (en) * 1992-04-15 1993-11-09 Nissan Motor Co Ltd Catalyst for purifying exhaust gas and method therefor
JPH0663403A (en) * 1992-08-24 1994-03-08 Nissan Motor Co Ltd Exhaust gas cleaning catalyst
JPH0760117A (en) * 1993-08-30 1995-03-07 Honda Motor Co Ltd Exhaust gas purifying catalyst
JPH10296085A (en) * 1997-04-30 1998-11-10 Cataler Kogyo Kk Exhaust gas-purifying catalyst
JPH1170332A (en) * 1997-06-20 1999-03-16 Degussa Ag Internal combustion engine exhaust gas purifying catalyst and its manufacture
JP2005506900A (en) * 2001-10-26 2005-03-10 エンゲルハード・コーポレーシヨン Layered catalyst composite
JP2005000884A (en) * 2003-06-13 2005-01-06 Nissan Motor Co Ltd Catalyst for exhaust gas cleaning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044201A (en) * 2015-08-28 2017-03-02 三菱自動車工業株式会社 Exhaust emission control system for internal combustion engine and exhaust emission control catalyst
WO2023067744A1 (en) * 2021-10-20 2023-04-27 三井金属鉱業株式会社 Exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
JP5173282B2 (en) Exhaust gas purification catalyst
KR101432330B1 (en) Exhaust gas-purifying catalyst
JP5173180B2 (en) Exhaust gas purification catalyst
KR100781670B1 (en) A catalyst without rh or with the minimum rh for purifying exhaust gases from engine
JP5232401B2 (en) Exhaust gas purification catalyst
JP4648089B2 (en) Exhaust gas purification catalyst
JP5305904B2 (en) Exhaust gas purification catalyst
JPWO2010071205A1 (en) Exhaust gas purification catalyst
US7056859B2 (en) Catalyst for purifying exhaust gases
JP5218092B2 (en) Exhaust gas purification catalyst
JP2006043654A (en) Exhaust gas purifying catalyst and production method therefor
KR20090074047A (en) Exhaust gas-purification catalyst
JP2014117701A (en) Internal combustion engine gas purification catalyst
EP2992955B1 (en) Exhaust-gas purification catalyst
CN113329817A (en) Catalyst for exhaust gas purification
JP2010227799A (en) Exhaust gas purifying catalyst
JP2013027876A (en) Exhaust gas purifying catalyst
JP6266215B2 (en) Gas purification catalyst for internal combustion engine
JP5328133B2 (en) Exhaust gas purification catalyst
JP5428774B2 (en) Exhaust gas purification catalyst
JP2009061437A (en) Catalyst for purifying exhaust gas
JP7228451B2 (en) Exhaust gas purification catalyst for automobiles
JP2009285606A (en) Catalyst for cleaning exhaust gas
JP5051009B2 (en) NOx storage reduction catalyst
JP6571570B2 (en) Automotive exhaust gas purification catalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141021