JP2018014199A - Positive electrode active material for nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2018014199A
JP2018014199A JP2016142137A JP2016142137A JP2018014199A JP 2018014199 A JP2018014199 A JP 2018014199A JP 2016142137 A JP2016142137 A JP 2016142137A JP 2016142137 A JP2016142137 A JP 2016142137A JP 2018014199 A JP2018014199 A JP 2018014199A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016142137A
Other languages
Japanese (ja)
Other versions
JP7052189B2 (en
Inventor
大塚 良広
Yoshihiro Otsuka
良広 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016142137A priority Critical patent/JP7052189B2/en
Publication of JP2018014199A publication Critical patent/JP2018014199A/en
Priority to JP2021207173A priority patent/JP2022034002A/en
Application granted granted Critical
Publication of JP7052189B2 publication Critical patent/JP7052189B2/en
Priority to JP2023172069A priority patent/JP2023168496A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a nonaqueous electrolyte secondary battery, which enables the suppression of the worsening of charge and discharge characteristics owing to exposure to a high-temperature and high-humidity environment.SOLUTION: A positive electrode active material for a nonaqueous electrolyte secondary battery is provided, which comprises: particles of a lithium nickel composite oxide represented by the general formula, LiNiCoAlO(where 0.90≤x≤1.20, 0.01≤y≤0.20, and 0.01≤z≤0.10); and a region disposed on at least part of the surface of each particle of the lithium nickel composite oxide and including one or more elements selected from boron (B), phosphorus (P) and silicon (Si), lithium (Li) and oxygen (O). In the positive electrode active material, the content of carbon is 0.06 mass% or less.SELECTED DRAWING: Figure 1

Description

本発明は、非水系電解質二次電池用正極活物質、および非水系電解質二次電池用正極活物質の製造方法に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.

近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として高出力の二次電池の開発が強く望まれている。   In recent years, with the widespread use of portable electronic devices such as mobile phones and laptop computers, development of small and lightweight non-aqueous electrolyte secondary batteries having high energy density is strongly desired. In addition, development of a high output secondary battery is strongly desired as a battery for electric vehicles including hybrid vehicles.

このような要求を満たす非水系電解質二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、正極、負極、電解液、セパレータを基本要素として構成されたセル構造を有しており、正極および負極には、リチウムを脱離および挿入することができる活物質(正極活物質、負極活物質)が用いられている。   There is a lithium ion secondary battery as a non-aqueous electrolyte secondary battery that satisfies such requirements. A lithium ion secondary battery has a cell structure composed of a positive electrode, a negative electrode, an electrolyte, and a separator as basic elements, and an active material (positive electrode) that can desorb and insert lithium in the positive electrode and the negative electrode. Active material, negative electrode active material).

上記正極に用いられる正極活物質には、通常、リチウムと遷移金属とを含む複合酸化物が用いられており、具体的には、層状系材料としてのコバルト酸リチウム(LiCoO)や、ニッケル酸リチウム(LiNiO)、スピネル系材料としてのマンガン酸リチウム(LiMn)、オリビン系材料としてのリン酸鉄リチウム(LiFePO)等が一般的である。さらに、高エネルギー密度化を目指して、高電圧(5V級)で充放電を行うスピネル系材料としてのリチウムマンガンニッケル酸化物(LiMn3/2Ni1/2等)や、高容量を有する層状系材料としての固溶体系(「過剰系」とも呼ばれる)マンガン含有リチウム複合酸化物(例えば、LiMnO−LiMO[M:Ni、Mn、Co等])等の開発も行われている。 As the positive electrode active material used for the positive electrode, a composite oxide containing lithium and a transition metal is usually used. Specifically, lithium cobaltate (LiCoO 2 ) or nickel acid as a layered material is used. Commonly used are lithium (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ) as a spinel material, lithium iron phosphate (LiFePO 4 ) as an olivine material, and the like. Furthermore, aiming at higher energy density, lithium manganese nickel oxide (LiMn 3/2 Ni 1/2 O 4 or the like) as a spinel material that charges and discharges at a high voltage (5 V class), and has a high capacity Development of a solid solution system (also called “excess system”) manganese-containing lithium composite oxide (for example, Li 2 MnO 3 —LiMO 2 [M: Ni, Mn, Co, etc.]) as a layered material .

上記正極活物質の中でも、コバルト酸リチウムは、4V級の高い電圧が得られ、比較的優れた充放電特性とサイクル特性が得られることから、携帯電子機器を中心に広く普及している。しかし、コバルトが高価で価格変動が大きいことが課題となっており、コバルトよりも安価なニッケルやマンガンを用いたニッケル酸リチウムやマンガン酸リチウムなどが注目されている。   Among the positive electrode active materials, lithium cobaltate is widely used mainly for portable electronic devices because a high voltage of 4V class is obtained and relatively excellent charge / discharge characteristics and cycle characteristics are obtained. However, the problem is that cobalt is expensive and the price fluctuates greatly, and lithium nickelate and lithium manganate using nickel or manganese, which are cheaper than cobalt, have attracted attention.

しかし、マンガン酸リチウムについては、熱安定性ではコバルト酸リチウムに比べて優れているものの、充放電容量が他の正極活物質に比べて小さく、また充放電を繰り返すとマンガンが電解液に溶出してサイクル特性が低下するなどの欠点があり、リチウムイオン二次電池として実用上の課題が多い。   However, lithium manganate is superior to lithium cobaltate in terms of thermal stability, but its charge / discharge capacity is small compared to other positive electrode active materials, and manganese elutes into the electrolyte when charge / discharge is repeated. Thus, there are drawbacks such as deterioration of cycle characteristics, and there are many practical problems as a lithium ion secondary battery.

一方、ニッケル酸リチウムは、コバルト酸リチウムよりも大きな充放電容量が得られるが、熱安定性やサイクル特性がコバルト酸リチウムに劣るという欠点があった。そこで、ニッケル酸リチウムを構成するニッケルの一部を別種の元素で置換し、熱安定性やサイクル特性を向上させたリチウムニッケル複合酸化物が開発されている。具体的には、ニッケルの一部をコバルトとアルミニウムで置換したリチウムニッケルコバルトアルミニウム酸化物(LiNiCoAl、x+y+z=1)、ニッケルの一部をコバルトとマンガンで置換したリチウムニッケルコバルトマンガン酸化物(LiNi1/3Co1/3Mn1/3)等がある。 On the other hand, lithium nickelate has a charge / discharge capacity larger than that of lithium cobaltate, but has a drawback that thermal stability and cycle characteristics are inferior to lithium cobaltate. In view of this, lithium nickel composite oxides have been developed in which a part of nickel constituting lithium nickelate is replaced with another element to improve thermal stability and cycle characteristics. Specifically, lithium nickel cobalt aluminum oxide (LiNi X Co y Al Z O 2 , x + y + z = 1) in which part of nickel is replaced with cobalt and aluminum, and lithium nickel in which part of nickel is replaced with cobalt and manganese There are cobalt manganese oxides (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and the like.

ところで、上述した正極活物質については、例えば高温高湿の環境下に晒した場合に、大気中の水分や二酸化炭素等との反応による劣化を生じ、リチウムイオン二次電池の正極として用いた場合において充放電特性やサイクル特性が低下する問題があった。また、該正極活物質をリチウムイオン二次電池の正極として用いた場合においては電解液との反応や電解液への金属イオン溶出などによる正極活物質の表面の劣化を生じ、充放電特性やサイクル特性が低下してしまう問題がある。   By the way, when the positive electrode active material described above is used as a positive electrode of a lithium ion secondary battery, for example, when exposed to a high-temperature and high-humidity environment, it deteriorates due to reaction with moisture or carbon dioxide in the atmosphere. However, there was a problem that charge / discharge characteristics and cycle characteristics deteriorated. In addition, when the positive electrode active material is used as a positive electrode of a lithium ion secondary battery, the surface of the positive electrode active material is deteriorated due to reaction with the electrolytic solution or elution of metal ions into the electrolytic solution. There is a problem that the characteristics deteriorate.

上記問題を解決するため、正極活物質を表面処理し、大気に含まれる水分や二酸化炭素との接触による劣化を抑制すると共に、リチウムイオン二次電池の正極として用いた場合においては電解液との接触による正極活物質の表面劣化を抑制する方法が試みられている。   In order to solve the above problem, the positive electrode active material is surface-treated to suppress deterioration due to contact with moisture or carbon dioxide contained in the atmosphere, and when used as a positive electrode of a lithium ion secondary battery, Attempts have been made to suppress the surface deterioration of the positive electrode active material due to contact.

例えば特許文献1には、ガス状の金属ハロゲン化物と、リチウム含有複合酸化物とを接触させて、リチウム含有複合酸化物の表面の少なくとも一部を金属ハロゲン化物で被覆する、非水系電解質二次電池用正極活物質の製造方法が開示されている。   For example, Patent Document 1 discloses a non-aqueous electrolyte secondary in which a gaseous metal halide is brought into contact with a lithium-containing composite oxide so that at least a part of the surface of the lithium-containing composite oxide is coated with the metal halide. A method for producing a positive electrode active material for a battery is disclosed.

しかしながら、ガス状の金属ハロゲン化物は腐食性があり、また大気中の水分と反応してフッ酸(HF)や塩酸(HCl)等が生成するため、安全性の面で好ましい被膜形成方法とはいえなかった。   However, gaseous metal halides are corrosive and react with moisture in the atmosphere to generate hydrofluoric acid (HF), hydrochloric acid (HCl), etc. I couldn't say that.

また、特許文献2には、コア粒子であるリチウム−遷移金属元素(TM)からなる複合酸化物を含む水懸濁液に、A原料としてA元素の硫酸塩、硝酸塩、塩酸塩、シュウ酸塩又はA元素のアルコキシドを用いるとともに、中和剤としてフッ素含有の溶液を用いて、リチウム−遷移金属元素(TM)からなる複合酸化物の粒子表面にA元素の金属塩とフッ素との添加比を1:k(A元素の価数≦k≦A元素の価数×2)とする少なくともA元素とフッ素とを含有する表面処理成分を析出させた後、酸素雰囲気の下300〜700℃の温度範囲で加熱処理するリチウム複合化合物粒子粉末の製造方法が開示されている。   Patent Document 2 discloses that an aqueous suspension containing a composite oxide composed of lithium-transition metal element (TM), which is a core particle, is sulfated, nitrate, hydrochloride, and oxalate of element A as a raw material A. Alternatively, using an alkoxide of element A and using a fluorine-containing solution as a neutralizing agent, the addition ratio of the metal salt of element A and fluorine on the particle surface of the composite oxide composed of lithium-transition metal element (TM) 1: after precipitating a surface treatment component containing at least A element and fluorine to satisfy k (valence of A element ≦ k ≦ valence of A element × 2), a temperature of 300 to 700 ° C. in an oxygen atmosphere A method for producing a lithium composite compound particle powder that is heat-treated in a range is disclosed.

しかしながら、コア粒子であるリチウム−遷移金属元素(TM)からなる複合酸化物を含む水懸濁液を調製する際に、リチウム−遷移金属元素(TM)からなる複合酸化物表面のリチウムが水に溶出してしまうことがあり、充放電容量の低下が懸念される。   However, when preparing an aqueous suspension containing a composite oxide composed of lithium-transition metal element (TM), which is a core particle, lithium on the surface of the composite oxide composed of lithium-transition metal element (TM) is converted into water. Elution may occur, and there is concern about a decrease in charge / discharge capacity.

また、上記特許文献1、2に開示された製造方法により非水系電解質二次電池用正極活物質を製造した場合でも、高温高湿環境下に晒すことによる充放電特性の低下の抑制の程度は十分ではなかった。   In addition, even when a positive electrode active material for a non-aqueous electrolyte secondary battery is manufactured by the manufacturing method disclosed in Patent Documents 1 and 2, the degree of suppression of deterioration in charge and discharge characteristics due to exposure to a high temperature and high humidity environment is It was not enough.

特開2008−251480号公報JP 2008-251480 A 特開2013−232438号公報JP 2013-232438 A

そこで上記従来技術が有する問題に鑑み、本発明の一側面では、高温高湿環境下に晒すことによる充放電特性の低下を抑制できる非水系電解質二次電池用正極活物質を提供することを目的とする。   Therefore, in view of the problems of the above-described conventional technology, an object of one aspect of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery that can suppress a decrease in charge / discharge characteristics due to exposure to a high temperature and high humidity environment. And

上記課題を解決するため本発明の一態様によれば、一般式:LiNi1―y―zCoAl(0.90≦x≦1.20、0.01≦y≦0.20、0.01≦z≦0.10)で表されるリチウムニッケル複合酸化物の粒子、及び
前記リチウムニッケル複合酸化物の粒子の少なくとも表面の一部に配置され、ホウ素(B)、リン(P)、及びケイ素(Si)から選択される一種以上の元素と、リチウム(Li)と、酸素(O)とを含有する領域を有し、
炭素含有量が0.06質量%以下である非水系電解質二次電池用正極活物質を提供する。
In order to solve the above problems, according to one embodiment of the present invention, a general formula: Li x Ni 1-yz Co y Al z O 2 (0.90 ≦ x ≦ 1.20, 0.01 ≦ y ≦ 0) .20, 0.01 ≦ z ≦ 0.10), and disposed on at least part of the surface of the lithium nickel composite oxide particles, boron (B), phosphorus (P) and a region containing one or more elements selected from silicon (Si), lithium (Li), and oxygen (O),
Provided is a positive electrode active material for a non-aqueous electrolyte secondary battery having a carbon content of 0.06% by mass or less.

本発明の一態様によれば、高温高湿環境下に晒すことによる充放電特性の低下を抑制できる非水系電解質二次電池用正極活物質を提供することができる。   According to one embodiment of the present invention, it is possible to provide a positive electrode active material for a non-aqueous electrolyte secondary battery that can suppress a decrease in charge / discharge characteristics due to exposure to a high temperature and high humidity environment.

本発明の実施形態における接触工程で用いる反応装置の説明図。Explanatory drawing of the reactor used at the contact process in embodiment of this invention. 実施例、および比較例で用いたリチウムニッケル複合酸化物の粒子のSEM画像。The SEM image of the particle | grains of the lithium nickel complex oxide used by the Example and the comparative example. 実施例1に係る接触工程後のリチウムニッケル複合酸化物の粒子のSEM画像。2 is an SEM image of lithium nickel composite oxide particles after the contact step according to Example 1. FIG. 実施例1に係る加熱処理工程後のリチウムニッケル複合酸化物の粒子のSEM画像。2 is an SEM image of lithium nickel composite oxide particles after the heat treatment step according to Example 1. FIG. ナイキストプロット、及びフィッティング計算に用いた等価回路の説明図。Explanatory drawing of the equivalent circuit used for Nyquist plot and fitting calculation.

以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
[正極活物質]
以下に、本実施形態の非水系電解質二次電池用正極活物質の一構成例について説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the following embodiments are not departed from the scope of the present invention. Various modifications and substitutions can be made.
[Positive electrode active material]
Below, the example of 1 structure of the positive electrode active material for non-aqueous electrolyte secondary batteries of this embodiment is demonstrated.

本実施形態の非水系電解質二次電池用正極活物質は、一般式:LiNi1―y―zCoAl(0.90≦x≦1.20、0.01≦y≦0.20、0.01≦z≦0.10)で表されるリチウムニッケル複合酸化物の粒子、及び該リチウムニッケル複合酸化物の粒子の少なくとも表面の一部に配置され、ホウ素(B)、リン(P)、及びケイ素(Si)から選択される一種以上の元素と、リチウム(Li)と、酸素(O)とを含有する領域を有することができる。そして、本実施形態の非水系電解質二次電池用正極活物質は、炭素含有量を0.06質量%以下とすることができる。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to this embodiment has a general formula: Li x Ni 1-yz Co y Al z O 2 (0.90 ≦ x ≦ 1.20, 0.01 ≦ y ≦ 0.20, 0.01 ≦ z ≦ 0.10), the lithium nickel composite oxide particles, and at least part of the surface of the lithium nickel composite oxide particles, boron (B), A region containing one or more elements selected from phosphorus (P) and silicon (Si), lithium (Li), and oxygen (O) can be included. And the positive electrode active material for nonaqueous electrolyte secondary batteries of this embodiment can make carbon content 0.06 mass% or less.

本実施形態の非水系電解質二次電池用正極活物質(以下、単に「正極活物質」とも記載する)は、上述のように一般式:LiNi1―y―zCoAl(0.90≦x≦1.20、0.01≦y≦0.20、0.01≦z≦0.10)で表されるリチウムニッケル複合酸化物粒子を有することができる。 The positive electrode active material for a non-aqueous electrolyte secondary battery of the present embodiment (hereinafter, also simply referred to as “positive electrode active material”) has the general formula: Li x Ni 1-yz Co y Al z O 2 as described above. Lithium nickel composite oxide particles represented by (0.90 ≦ x ≦ 1.20, 0.01 ≦ y ≦ 0.20, 0.01 ≦ z ≦ 0.10) can be included.

上記一般式において、リチウム(Li)の含有量を示す原子比xの範囲は、0.90≦x≦1.20であることが好ましく、0.95≦x≦1.15であることがより好ましい。これは、原子比xが0.90未満であると二次電池の充放電容量が低下する場合があり、原子比xが1.20を超えると二次電池の熱安定性が低下する場合があるからである。   In the above general formula, the range of the atomic ratio x indicating the lithium (Li) content is preferably 0.90 ≦ x ≦ 1.20, more preferably 0.95 ≦ x ≦ 1.15. preferable. This is because when the atomic ratio x is less than 0.90, the charge / discharge capacity of the secondary battery may decrease, and when the atomic ratio x exceeds 1.20, the thermal stability of the secondary battery may decrease. Because there is.

また、上記一般式中、コバルト(Co)の含有量を示す原子比yの範囲は、0.01≦y≦0.20であることが好ましく、0.03≦y≦0.15であることがより好ましい。これは、原子比yが0.01未満であると二次電池のサイクル特性が十分でない場合があり、原子比yが0.20を超えるとニッケル含有量の減少により二次電池の充放電容量が低下する場合があるからである。   In the above general formula, the range of the atomic ratio y indicating the cobalt (Co) content is preferably 0.01 ≦ y ≦ 0.20, and 0.03 ≦ y ≦ 0.15. Is more preferable. This is because when the atomic ratio y is less than 0.01, the cycle characteristics of the secondary battery may not be sufficient, and when the atomic ratio y exceeds 0.20, the charge / discharge capacity of the secondary battery is reduced due to the decrease in nickel content. This is because there is a case where the value decreases.

さらに、上記一般式中、アルミニウム(Al)の含有量を示す原子比zの範囲は、0.01≦z≦0.10であることが好ましく、0.01≦z≦0.05であることがより好ましい。これは、原子比zが0.01未満であると二次電池の熱安定性が低下する場合があり、原子比zが0.10を超えると正極活物質に固溶せず、異相が生じて二次電池の充放電容量が低下する場合があるからである。   Furthermore, in the above general formula, the range of the atomic ratio z indicating the aluminum (Al) content is preferably 0.01 ≦ z ≦ 0.10, and 0.01 ≦ z ≦ 0.05. Is more preferable. This is because when the atomic ratio z is less than 0.01, the thermal stability of the secondary battery may be lowered, and when the atomic ratio z exceeds 0.10, the positive electrode active material is not dissolved and a different phase is generated. This is because the charge / discharge capacity of the secondary battery may decrease.

そして、上記一般式中、ニッケル(Ni)の含有量を示す原子比1−y−zは、0.70以上0.98以下の範囲内であることが好ましく、0.80以上0.96以下の範囲内であることがより好ましい。これは、1−y−zが0.70未満であると二次電池の充放電容量が低下する場合があり、1−y−zが0.98を超えると二次電池の熱安定性が十分でない場合があるからである。   And in said general formula, it is preferable that atomic ratio 1-yz which shows content of nickel (Ni) is in the range of 0.70 or more and 0.98 or less, and is 0.80 or more and 0.96 or less. It is more preferable to be within the range. This is because when 1-yz is less than 0.70, the charge / discharge capacity of the secondary battery may decrease, and when 1-yz exceeds 0.98, the thermal stability of the secondary battery is reduced. This is because it may not be enough.

本実施形態の正極活物質の炭素含有量は0.06質量%以下とすることができる。正極活物質の炭素含有量を0.06質量%以下とすることで耐候性試験後、すなわち高温高湿環境下、例えば温度80℃以上、湿度60%以上の環境下に晒した後でも充放電容量を高く保つことができる。   The carbon content of the positive electrode active material of the present embodiment can be 0.06% by mass or less. Charge / discharge after the weather resistance test by setting the carbon content of the positive electrode active material to 0.06% by mass or less, that is, after being exposed to a high temperature and high humidity environment, for example, a temperature of 80 ° C. or higher and a humidity of 60% or higher The capacity can be kept high.

本実施形態の正極活物質の炭素含有量を0.06質量%以下とすることで、高温高湿環境下に晒した場合でも、充放電容量を高く保つことができる理由は明らかではないが、本発明の発明者は以下のように推認している。   Although the carbon content of the positive electrode active material of this embodiment is 0.06% by mass or less, the reason why the charge / discharge capacity can be kept high even when exposed to a high temperature and high humidity environment is not clear, The inventor of the present invention presumes as follows.

本実施形態の正極活物質は、上述のようにリチウムニッケル複合酸化物粒子と、リチウムニッケル複合酸化物粒子の少なくとも表面の一部に配置された、ホウ素、リン、及びケイ素から選択される一種以上の元素と、リチウムと、酸素とを含有する領域(以下、「ホウ素等含有領域」とも記載する)とを有することができる。そして、本実施形態の正極活物質の炭素含有量を0.06質量%以下とすることで、該ホウ素等含有領域に含まれる炭素の量、より具体的には有機物の含有量も低減することができ、該ホウ素等含有領域を緻密化できると考えられる。このため、本実施形態の正極活物質を高温高湿の環境下に晒してもリチウムニッケル複合酸化物粒子は表面劣化が起り難く、高い充放電容量が得られ、正極抵抗も低減することができると考えられる。   As described above, the positive electrode active material of the present embodiment is one or more selected from boron, phosphorus, and silicon disposed on at least part of the surface of the lithium nickel composite oxide particles and the lithium nickel composite oxide particles. And a region containing lithium and oxygen (hereinafter also referred to as “boron-containing region”). And by making the carbon content of the positive electrode active material of this embodiment 0.06 mass% or less, the amount of carbon contained in the boron-containing region, more specifically, the content of organic matter is also reduced. It is considered that the boron-containing region can be densified. For this reason, even if the positive electrode active material of this embodiment is exposed to a high-temperature and high-humidity environment, the lithium nickel composite oxide particles hardly undergo surface deterioration, a high charge / discharge capacity can be obtained, and the positive electrode resistance can also be reduced. it is conceivable that.

本実施形態の正極活物質の炭素含有量は0.05質量%以下であることがより好ましい。なお、本実施形態の正極活物質の炭素含有量は少ない方が好ましいことから、その下限値は特に限定されず、例えば0以上とすることができる。ただし、炭素含有量は例えば後述する加熱処理を行うことで低減できるが、炭素含有量低減を目的として長時間加熱処理を行うと、リチウムニッケル複合酸化物の組成が目的組成からずれる恐れがあるので、炭素含有量は過度に低減しないことが好ましい。このため、炭素含有量は、例えば0.02質量%以上とすることが好ましい。   The carbon content of the positive electrode active material of this embodiment is more preferably 0.05% by mass or less. In addition, since the one where the carbon content of the positive electrode active material of this embodiment is low is preferable, the lower limit is not specifically limited, For example, it can be set to 0 or more. However, the carbon content can be reduced, for example, by performing a heat treatment described later. However, if the heat treatment is performed for a long time for the purpose of reducing the carbon content, the composition of the lithium nickel composite oxide may deviate from the target composition. The carbon content is preferably not excessively reduced. For this reason, it is preferable that carbon content shall be 0.02 mass% or more, for example.

本実施形態の正極活物質が含有するリチウムニッケル複合酸化物の粒子は、一次粒子が凝集した二次粒子で構成することができる。そして、リチウムニッケル複合酸化物粒子の二次粒子は、平均粒子径が3μm以上20μm以下の範囲内であることが好ましく、5μm以上15μm以下の範囲内であることがより好ましい。   The lithium nickel composite oxide particles contained in the positive electrode active material of the present embodiment can be composed of secondary particles in which primary particles are aggregated. The secondary particles of the lithium nickel composite oxide particles preferably have an average particle diameter in the range of 3 μm to 20 μm, and more preferably in the range of 5 μm to 15 μm.

これは、リチウムニッケル複合酸化物粒子の二次粒子の平均粒子径が3μm未満であると、正極を形成する時にリチウムニッケル複合酸化物粒子の充填密度が低下し、二次電池の充放電容量が低下してしまうからである。一方、リチウムニッケル複合酸化物粒子の二次粒子の平均粒子径が20μmを超えると、二次電池における正極活物質と電解液の接触面積が減少するため、二次電池の充放電容量が低下してしまうことがあるからである。   This is because when the average particle diameter of the secondary particles of the lithium nickel composite oxide particles is less than 3 μm, the packing density of the lithium nickel composite oxide particles decreases when the positive electrode is formed, and the charge / discharge capacity of the secondary battery is reduced. It is because it falls. On the other hand, when the average particle diameter of the secondary particles of the lithium nickel composite oxide particles exceeds 20 μm, the contact area between the positive electrode active material and the electrolyte in the secondary battery is reduced, so that the charge / discharge capacity of the secondary battery is reduced. It is because it may end up.

なお、ここでの平均粒子径は、レーザー回折・散乱法によって求めた粒度分布における体積積算平均値を意味し、本明細書内で平均粒子径は同様の意味を有する。   Here, the average particle diameter means the volume integrated average value in the particle size distribution obtained by the laser diffraction / scattering method, and the average particle diameter has the same meaning in this specification.

本実施形態の正極活物質は、リチウムニッケル複合酸化物粒子の少なくとも表面の一部に配置され、ホウ素(B)、リン(P)、及びケイ素(Si)から選択される一種以上の元素と、リチウム(Li)と、酸素(O)とを含有する領域(ホウ素等含有領域)を有することができる。なお、既述のようにリチウムニッケル複合酸化物の粒子は、一次粒子が凝集した二次粒子で構成することができ、上記ホウ素等含有領域は、例えばリチウムニッケル複合酸化物の粒子を構成する一次粒子および二次粒子の表面に、配置することができる。   The positive electrode active material of this embodiment is disposed on at least part of the surface of the lithium nickel composite oxide particles, and one or more elements selected from boron (B), phosphorus (P), and silicon (Si), A region containing lithium (Li) and oxygen (O) (a region containing boron or the like) can be included. As described above, the particles of the lithium nickel composite oxide can be composed of secondary particles in which the primary particles are aggregated, and the boron-containing region is, for example, the primary that constitutes the particles of the lithium nickel composite oxide. It can be placed on the surface of the particles and secondary particles.

なお、ホウ素等含有領域は、リチウムニッケル複合酸化物の粒子の少なくとも表面の一部にホウ素、リン、及びケイ素から選択される一種以上の元素と、リチウムと、酸素とを含有する領域として存在していればよく、リチウムニッケル複合酸化物の粒子とホウ素等含有領域との間に明確な界面が存在する必要はない。   The boron-containing region is present as a region containing one or more elements selected from boron, phosphorus, and silicon, lithium, and oxygen in at least part of the surface of the lithium nickel composite oxide particles. There is no need for a clear interface between the lithium nickel composite oxide particles and the boron-containing region.

例えば、ホウ素等含有領域は、リチウムニッケル複合酸化物の粒子の表面の一部を覆う領域として形成、配置することができる。また、ホウ素等含有領域は、リチウムニッケル複合酸化物の粒子の表面に、該表面全体を覆う被膜として形成、配置されていてもよい。なお、ホウ素等含有領域が、リチウムニッケル複合酸化物粒子の表面の一部を覆う領域として形成、配置されている場合、表面全体を覆う被膜として形成、配置されている場合、のいずれの場合でも、リチウムニッケル複合酸化物粒子とホウ素等含有領域との間に明確な界面が存在する必要はない。   For example, the boron-containing region can be formed and arranged as a region covering a part of the surface of the lithium nickel composite oxide particles. Further, the boron-containing region may be formed and arranged as a film covering the entire surface of the lithium nickel composite oxide particles. In the case where the boron-containing region is formed and arranged as a region covering a part of the surface of the lithium nickel composite oxide particles, or formed and arranged as a film covering the entire surface, in any case There is no need for a clear interface between the lithium nickel composite oxide particles and the boron-containing region.

ただし、ホウ素(B)、リン(P)、及びケイ素(Si)から選択される一種以上の元素がリチウムニッケル複合酸化物粒子の粒子内部に完全に固溶し、リチウムニッケル複合酸化物の粒子内部と、その粒子表面とで組成に差異がない場合、高い充放電特性を得る効果は得られず、却って充放電特性が大幅に低下する場合がある。このため、ホウ素(B)、リン(P)、及びケイ素(Si)から選択される一種以上の元素は、リチウムニッケル複合酸化物の粒子表面に偏って存在していることが好ましい。例えば、ホウ素等含有領域が、リチウムニッケル複合酸化物の粒子表面にのみ存在するように構成することもできる。   However, one or more elements selected from boron (B), phosphorus (P), and silicon (Si) are completely dissolved in the inside of the lithium nickel composite oxide particles, and the inside of the lithium nickel composite oxide particles When there is no difference in composition between the particle surfaces, the effect of obtaining high charge / discharge characteristics cannot be obtained, and the charge / discharge characteristics may be significantly reduced. For this reason, it is preferable that one or more elements selected from boron (B), phosphorus (P), and silicon (Si) are present unevenly on the particle surface of the lithium nickel composite oxide. For example, it can also be configured such that the boron-containing region exists only on the surface of the lithium nickel composite oxide particles.

上述したホウ素等含有領域を構成する元素の存在形態は特に限定されない。例えばホウ素等含有領域では、リチウムニッケル複合酸化物の粒子表面に存在するリチウム成分(水酸化リチウム、炭酸リチウムなど)と、ホウ素、リン、及びケイ素から選択された一種以上の元素とが反応して、Li−O−B結合、Li−O−P結合、Li−O−Si結合等を有する形態となっていると考えられる。   The existence form of the elements constituting the boron-containing region is not particularly limited. For example, in a boron-containing region, a lithium component (lithium hydroxide, lithium carbonate, etc.) present on the surface of lithium nickel composite oxide particles reacts with one or more elements selected from boron, phosphorus, and silicon. , Li—O—B bond, Li—O—P bond, Li—O—Si bond, and the like.

本実施形態の正極活物質は、ここまで説明したように、リチウムニッケル複合酸化物の粒子の少なくとも表面の一部に配置され、ホウ素、リン、及びケイ素から選択される一種以上の元素と、リチウムと、酸素とを含有する領域、すなわちホウ素等含有領域を有することができる。従って、本実施形態の正極活物質は、ホウ素、リン、及びケイ素から選択される一種以上の元素を含有することができる。この際、ホウ素、リン、及びケイ素から選択される一種以上の元素の含有量は特に限定されるものではなく、例えば本実施形態の正極活物質の使用する環境や、保存する環境等に応じて任意に選択することができる。   As described above, the positive electrode active material of the present embodiment is disposed on at least a part of the surface of the lithium nickel composite oxide particles, and one or more elements selected from boron, phosphorus, and silicon, and lithium And a region containing oxygen, that is, a region containing boron or the like. Therefore, the positive electrode active material of this embodiment can contain one or more elements selected from boron, phosphorus, and silicon. At this time, the content of one or more elements selected from boron, phosphorus, and silicon is not particularly limited. For example, depending on the environment in which the positive electrode active material of the present embodiment is used, the environment to be stored, and the like. Can be arbitrarily selected.

例えば、本実施形態の正極活物質がホウ素を含有する場合、本実施形態の正極活物質のホウ素(B)の含有量は0.01質量%以上0.10質量%以下であることが好ましい。これは、例えば、本実施形態の正極活物質を非水系電解質二次電池の正極活物質層形成用ペーストに適用した場合に、ホウ素の含有量が上記範囲にある場合、電池特性を損なうことなく正極活物質層形成用ペーストの安定性向上(ゲル化抑制)が可能となり、好ましいからである。   For example, when the positive electrode active material of this embodiment contains boron, the content of boron (B) in the positive electrode active material of this embodiment is preferably 0.01% by mass or more and 0.10% by mass or less. This is because, for example, when the positive electrode active material of the present embodiment is applied to the positive electrode active material layer forming paste of a non-aqueous electrolyte secondary battery and the boron content is in the above range, the battery characteristics are not impaired. This is because it is possible to improve the stability (inhibition of gelation) of the positive electrode active material layer forming paste, which is preferable.

また、本実施形態の正極活物質がリンを含有する場合、本実施形態の正極活物質のリン(P)の含有量は0.01質量%以上0.10質量%以下であることが好ましい。これは、例えば、本実施形態の正極活物質を非水系電解質二次電池の正極活物質層形成用ペーストに適用した場合に、リンの含有量が上記範囲にある場合、電池特性を損なうことなく正極活物質層形成用ペーストの安定性向上(ゲル化抑制)が可能となり、好ましいからである。   Moreover, when the positive electrode active material of this embodiment contains phosphorus, it is preferable that content of phosphorus (P) of the positive electrode active material of this embodiment is 0.01 mass% or more and 0.10 mass% or less. This is because, for example, when the positive electrode active material of this embodiment is applied to the positive electrode active material layer forming paste of a non-aqueous electrolyte secondary battery and the phosphorus content is in the above range, the battery characteristics are not impaired. This is because it is possible to improve the stability (inhibition of gelation) of the positive electrode active material layer forming paste, which is preferable.

また、本実施形態の正極活物質がケイ素を含有する場合、本実施形態の正極活物質のケイ素(Si)の含有量は、0.05質量%以上0.30質量%以下であることが好ましい。これは、例えば、本実施形態の正極活物質を非水系電解質二次電池の正極活物質層形成用ペーストに適用した場合に、ケイ素の含有量が上記範囲にある場合、電池特性を損なうことなく正極活物質層形成用ペーストの安定性向上(ゲル化抑制)が可能となり、好ましいからである。   Moreover, when the positive electrode active material of this embodiment contains silicon, it is preferable that content of the silicon (Si) of the positive electrode active material of this embodiment is 0.05 mass% or more and 0.30 mass% or less. . This is because, for example, when the positive electrode active material of the present embodiment is applied to the positive electrode active material layer forming paste of a non-aqueous electrolyte secondary battery, and the silicon content is in the above range, the battery characteristics are not impaired. This is because it is possible to improve the stability (inhibition of gelation) of the positive electrode active material layer forming paste, which is preferable.

以上に説明した本実施形態の非水系電解質二次電池用正極活物質は、リチウムニッケル複合酸化物の粒子の少なくとも表面の一部に配置され、ホウ素(B)、リン(P)、及びケイ素(Si)から選択される一種以上の元素と、リチウム(Li)と、酸素(O)とを含有する領域を有することができる。また、炭素含有量を0.06質量%以下とすることができる。   The positive electrode active material for a non-aqueous electrolyte secondary battery of the present embodiment described above is disposed on at least a part of the surface of the lithium nickel composite oxide particles, and boron (B), phosphorus (P), and silicon ( A region containing one or more elements selected from Si), lithium (Li), and oxygen (O) can be included. Moreover, carbon content can be 0.06 mass% or less.

このため、本実施形態の非水系電解質二次電池用正極活物質は、高温高湿環境下に晒すことによる充放電特性の低下を抑制できる非水系電解質二次電池用正極活物質とすることができる。すなわち、本実施形態の非水系電解質二次電池用正極活物質を高温高湿環境下に晒した後、該正極活物質を正極の材料として用いた二次電池を形成した場合でも高い充放電特性を発揮することができる。   For this reason, the positive electrode active material for a non-aqueous electrolyte secondary battery according to this embodiment may be a positive electrode active material for a non-aqueous electrolyte secondary battery that can suppress a decrease in charge / discharge characteristics due to exposure to a high temperature and high humidity environment. it can. That is, even when a secondary battery using the positive electrode active material as a positive electrode material is formed after the positive electrode active material for a non-aqueous electrolyte secondary battery of the present embodiment is exposed to a high temperature and high humidity environment, high charge / discharge characteristics Can be demonstrated.

さらに、本実施形態の非水系電解質二次電池用正極活物質は、二次電池の正極として好適に用いることができる。
[非水系電解質二次電池用正極活物質の製造方法]
次に本実施形態の非水系電解質二次電池用正極活物質の製造方法の一構成例について説明する。
Furthermore, the positive electrode active material for a nonaqueous electrolyte secondary battery of the present embodiment can be suitably used as a positive electrode for a secondary battery.
[Method for producing positive electrode active material for non-aqueous electrolyte secondary battery]
Next, a configuration example of the method for producing the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present embodiment will be described.

本実施形態の非水系電解質二次電池用正極活物質の製造方法(以下、単に「正極活物質の製造方法」とも記載する)は、以下の工程を有することができる。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present embodiment (hereinafter also simply referred to as “method for producing a positive electrode active material”) can have the following steps.

一般式:LiNi1―y―zCoAl(0.90≦x≦1.20、0.01≦y≦0.20、0.01≦z≦0.10)で表されるリチウムニッケル複合酸化物の粒子と、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物を含む気体と、を接触させる接触工程。
接触工程の後、得られた物質を、600℃以上800℃以下の温度で加熱処理する加熱工程。
General formula: Li x Ni 1-yz Co y Al z O 2 (0.90 ≦ x ≦ 1.20, 0.01 ≦ y ≦ 0.20, 0.01 ≦ z ≦ 0.10) A contacting step in which particles of the lithium nickel composite oxide are brought into contact with a gas containing one or more compounds selected from a boron compound, a phosphorus compound, and a silicon compound.
The heating process which heat-processes the obtained substance at the temperature of 600 to 800 degreeC after a contact process.

なお、本実施形態の非水系電解質二次電池用正極活物質の製造方法により、既述の非水系電解質二次電池用正極活物質を製造することができる。このため、既に説明した事項については、一部説明を省略する。   In addition, the positive electrode active material for non-aqueous electrolyte secondary batteries described above can be manufactured by the method for manufacturing a positive electrode active material for non-aqueous electrolyte secondary batteries of the present embodiment. For this reason, a part of the description already described will be omitted.

以下、各工程について具体的に説明する。
(a)接触工程
接触工程では、リチウムニッケル複合酸化物の粒子と、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物の蒸気を含む気体とを接触させることができる。接触工程を実施することで、リチウムニッケル複合酸化物の粒子表面にホウ素等含有領域を形成することができる。
Hereinafter, each step will be specifically described.
(A) Contacting step In the contacting step, particles of lithium nickel composite oxide can be brought into contact with a gas containing vapor of one or more compounds selected from a boron compound, a phosphorus compound, and a silicon compound. By carrying out the contact step, a boron-containing region can be formed on the particle surface of the lithium nickel composite oxide.

接触工程でホウ素化合物を用いる場合、該ホウ素化合物としては特に限定されるものではないが、揮発性を有するホウ素化合物であることが好ましく、沸点が300℃以下のホウ素化合物であることがより好ましく、沸点が250℃以下のアルキルホウ酸であることがさらに好ましい。   When using a boron compound in the contacting step, the boron compound is not particularly limited, but is preferably a volatile boron compound, more preferably a boron compound having a boiling point of 300 ° C. or less, More preferred is an alkylboric acid having a boiling point of 250 ° C. or lower.

なお、上記沸点は大気圧(101.325kPa)下での沸点を意味しており、以下、本明細書において特に断らない限り、沸点は大気圧下での沸点を意味する。   In addition, the said boiling point means the boiling point under atmospheric pressure (101.325 kPa), and unless otherwise indicated in this specification, a boiling point means the boiling point under atmospheric pressure hereafter.

接触工程で用いるホウ素化合物としては、例えば、沸点が68℃であるホウ酸トリメチル(トリメトキシボラン)[B(OCH]、及び沸点が120℃のホウ酸トリエチル(トリエトキシボラン)[B(OC]から選択される一種以上を特に好ましく用いることができる。 Examples of the boron compound used in the contacting step include trimethyl borate (trimethoxyborane) [B (OCH 3 ) 3 ] having a boiling point of 68 ° C., and triethyl borate (triethoxyborane) [B] having a boiling point of 120 ° C. One or more selected from (OC 2 H 5 ) 3 ] can be particularly preferably used.

接触工程でリン化合物を用いる場合、該化合物としては特に限定されるものではないが、揮発性を有するリン化合物であることが好ましく、沸点が300℃以下のリン化合物であることがより好ましく、沸点が250℃以下のアルキルリン酸であることがさらに好ましい。   When using a phosphorus compound in the contacting step, the compound is not particularly limited, but is preferably a volatile phosphorus compound, more preferably a phosphorus compound having a boiling point of 300 ° C. or lower, Is more preferably an alkyl phosphoric acid at 250 ° C. or lower.

接触工程で用いるリン化合物としては、例えば、沸点が111℃である亜リン酸トリメチル(トリメトキシフォスフィン)[P(OCH]、沸点が156℃である亜リン酸トリエチル(トリエトキシフォスフィン)[P(OC]、沸点が197℃であるリン酸トリメチル(トリメトキシフォスフィンオキシド)[P(O)(OCH]、沸点が215℃であるリン酸トリエチル(トリエトキシフォスフィンオキシド)[P(O)(OC]、及び沸点が174℃であるリン酸ジメチル(ジメチルフォスフェイト)[P(O)(OH)(OCH]から選択される一種以上を特に好ましく用いることができる。 Examples of the phosphorus compound used in the contacting step include trimethyl phosphite (trimethoxyphosphine) [P (OCH 3 ) 3 ] having a boiling point of 111 ° C. and triethyl phosphite (triethoxy phosphite) having a boiling point of 156 ° C. Fin) [P (OC 2 O 5 ) 3 ], trimethyl phosphate (trimethoxyphosphine oxide) [P (O) (OCH 3 ) 3 ] having a boiling point of 197 ° C., triethyl phosphate having a boiling point of 215 ° C. (Triethoxyphosphine oxide) [P (O) (OC 2 H 5 ) 3 ], and dimethyl phosphate (dimethyl phosphate) having a boiling point of 174 ° C. [P (O) (OH) (OCH 3 ) 2 ] One or more selected from the above can be particularly preferably used.

接触工程でケイ素化合物を用いる場合、該ケイ素化合物としては特に限定されるものではないが、揮発性を有するケイ素化合物であることが好ましく、沸点が300℃以下のケイ素化合物であることがより好ましく、沸点が250℃以下のアルキルケイ酸であることがさらに好ましい。   When using a silicon compound in the contacting step, the silicon compound is not particularly limited, but is preferably a volatile silicon compound, more preferably a silicon compound having a boiling point of 300 ° C. or less, More preferred is an alkylsilicic acid having a boiling point of 250 ° C. or lower.

接触工程で用いるケイ素化合物としては、例えば、沸点が81℃であるジメトキシジメチルシラン[Si(CH(OCH]、沸点が83℃であるトリメトキシシラン[Si(H)(OCH]、沸点が103℃であるトリメトキシメチルシラン[Si(CH)(OCH]、沸点が122℃であるオルトケイ酸テトラメチル(テトラメトキシシラン)[Si(OCH]、沸点が123℃であるビニルトリメトキシシラン[Si(C)(OCH]、沸点が143℃であるトリエトキシメチルシラン[Si(CH)(OC]、沸点が165℃であるオルトケイ酸テトラエチル(テトラエトキシシラン)[Si(OC]、2kPaにおける沸点が92℃である3−アミノプロピルトリメトキシシラン[Si(CNH)(OCH]から選択される一種以上を特に好ましく用いることができる。 Examples of the silicon compound used in the contacting step include dimethoxydimethylsilane [Si (CH 3 ) 2 (OCH 3 ) 2 ] having a boiling point of 81 ° C., and trimethoxysilane [Si (H) (OCH) having a boiling point of 83 ° C. 3 ) 3 ], trimethoxymethylsilane [Si (CH 3 ) (OCH 3 ) 3 ] having a boiling point of 103 ° C., tetramethyl orthosilicate (tetramethoxysilane) [Si (OCH 3 ) 4 having a boiling point of 122 ° C. ], Vinyltrimethoxysilane [Si (C 2 H 3 ) (OCH 3 ) 3 ] having a boiling point of 123 ° C., triethoxymethylsilane [Si (CH 3 ) (OC 2 H 5 ) 3 having a boiling point of 143 ° C. ], a boiling point of 165 ° C. tetraethyl orthosilicate (tetraethoxysilane) [Si (OC 2 H 5 ) 4], the boiling point at 2kPa Is 2 ° C. 3- aminopropyltrimethoxysilane [Si (C 3 H 6 NH 2) (OCH 3) 3] can be particularly preferably used one or more kinds selected from.

接触工程では、例えば図1に示すように、反応容器1内に、リチウムニッケル複合酸化物の粒子を収納する第1収納容器3、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物を収納する第2収納容器5を設置する。そして、それぞれの収納容器内に、リチウムニッケル複合酸化物の粒子2、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4を入れて、雰囲気ガス中でそのまま放置、またはファン6を回転させて実施できる。   In the contacting step, for example, as shown in FIG. 1, one or more types selected from a first storage container 3 storing lithium nickel composite oxide particles, a boron compound, a phosphorus compound, and a silicon compound in a reaction container 1. A second storage container 5 for storing the compound is installed. Then, lithium nickel composite oxide particles 2, one or more compounds 4 selected from boron compounds, phosphorus compounds, and silicon compounds are placed in the respective storage containers and left as they are in the atmospheric gas, or the fans 6. Can be carried out by rotating.

なお、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物として、複数の種類の化合物を用いる場合には、該化合物の種類の数に応じて、複数の第2収納容器5を設置することもできる。また、第2収納容器5の中に複数の種類の化合物を混合して設置することもできる。   In addition, when using several types of compounds as 1 or more types of compounds selected from a boron compound, a phosphorus compound, and a silicon compound, according to the number of the kind of this compound, several 2nd storage containers 5 are used. It can also be installed. In addition, a plurality of types of compounds can be mixed and installed in the second storage container 5.

反応容器1は、雰囲気ガスやホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物の蒸気が外部に漏れないように密閉性の高い容器であることが好ましい。反応容器1の材質はホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物の蒸気と反応しなければよく、特に限定されるものではない。反応容器1の材質としては、例えば、ポリエチレン、ポリプロピレン、テフロン(登録商標)等のプラスチック;アルミナ、石英、ガラス等のセラミック;ステンレス(SUS304、SUS316等)、チタン等の金属等が挙げられる。   The reaction vessel 1 is preferably a highly airtight vessel so that the vapor of one or more compounds selected from atmospheric gas, boron compound, phosphorus compound, and silicon compound does not leak outside. The material of the reaction vessel 1 is not particularly limited as long as it does not react with the vapor of one or more compounds selected from boron compounds, phosphorus compounds, and silicon compounds. Examples of the material of the reaction vessel 1 include plastics such as polyethylene, polypropylene, and Teflon (registered trademark); ceramics such as alumina, quartz, and glass; metals such as stainless steel (SUS304, SUS316, and the like), titanium, and the like.

第1収納容器3、第2収納容器5についても、それぞれリチウムニッケル複合酸化物の粒子2、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4と反応せず、耐久性を有するものであればよく、特に限定されない。例えば、用いるリチウムニッケル複合酸化物の粒子2、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4の種類等に応じて任意に選択することができる。   The first storage container 3 and the second storage container 5 do not react with one or more compounds 4 selected from lithium nickel composite oxide particles 2, boron compounds, phosphorus compounds, and silicon compounds, respectively, and have durability. It has only to have it and is not particularly limited. For example, it can be arbitrarily selected according to the kind of one or more compounds 4 selected from the lithium nickel composite oxide particles 2 to be used, a boron compound, a phosphorus compound, and a silicon compound.

第1収納容器3、第2収納容器5の材質としては、ポリエチレン、ポリプロピレン、テフロン等のプラスチック;アルミナ、石英、ガラス等のセラミック;ステンレス、チタン等の金属等が挙げられる。   Examples of the material of the first storage container 3 and the second storage container 5 include plastics such as polyethylene, polypropylene, and Teflon; ceramics such as alumina, quartz, and glass; metals such as stainless steel and titanium.

反応容器1内の雰囲気ガスについても特に限定されず、用いるリチウムニッケル複合酸化物の粒子2やホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4の種類等に応じて任意に選択することができる。ただし、反応容器1内の雰囲気ガスは、リチウムニッケル複合酸化物の粒子2やホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4と反応しない気体であることが好ましい。反応容器1内の雰囲気ガスとしては、例えば、空気、窒素、アルゴン等が挙げられる。   The atmosphere gas in the reaction vessel 1 is not particularly limited, and is arbitrarily selected according to the type of the lithium nickel composite oxide particles 2 to be used, one or more kinds of compounds 4 selected from boron compounds, phosphorus compounds, and silicon compounds. You can choose. However, the atmosphere gas in the reaction vessel 1 is preferably a gas that does not react with the lithium nickel composite oxide particles 2 or one or more compounds 4 selected from boron compounds, phosphorus compounds, and silicon compounds. Examples of the atmospheric gas in the reaction vessel 1 include air, nitrogen, argon, and the like.

なお、炭酸ガス(CO)や水分(HO)は、一般的にリチウムニッケル複合酸化物の粒子2や、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4と反応し易い。このため、炭酸ガスや、水分の含有量が少ない雰囲気ガスを用いることが好ましい。 Carbon dioxide (CO 2 ) or moisture (H 2 O) reacts with the lithium nickel composite oxide particles 2 and one or more compounds 4 selected from boron compounds, phosphorus compounds, and silicon compounds. Easy to do. For this reason, it is preferable to use carbon dioxide gas or atmospheric gas with a low water content.

そこで、反応容器1内の雰囲気ガスとしては、例えば、乾燥空気、脱炭酸ガス処理した乾燥空気、高純度窒素、高純度アルゴン等から選択された気体であることが好ましい。   Thus, the atmospheric gas in the reaction vessel 1 is preferably a gas selected from, for example, dry air, decarboxylated gas-treated dry air, high-purity nitrogen, and high-purity argon.

なお、乾燥空気は、露点温度が−30℃以下であることが好ましく、−50℃以下であることがより好ましい。   The dry air preferably has a dew point temperature of −30 ° C. or lower, and more preferably −50 ° C. or lower.

また、高純度窒素は、例えば窒素の含有量が99.9995vol.%より高いことが好ましく、99.9998vol.%より高いことがより好ましい。高純度アルゴンは、例えばアルゴンの含有量が99.999vol.%より高いことが好ましく、99.9995vol.%より高いことがより好ましい。   High purity nitrogen has a nitrogen content of 99.9995 vol. %, Preferably 99.998 vol. More preferably, it is higher than%. High-purity argon has, for example, an argon content of 99.999 vol. %, Preferably 99.9995 vol. More preferably, it is higher than%.

ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4の種類によっては、雰囲気ガスとして空気等を用いた場合、雰囲気ガスと、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物の蒸気との混合割合によっては爆発の危険性が生じたり、酸素により酸化劣化する場合がある。このため、このような場合は、雰囲気ガスとして、空気でなく、窒素や、アルゴンを用いることが好ましい。   Depending on the kind of one or more compounds 4 selected from a boron compound, a phosphorus compound, and a silicon compound, when air or the like is used as the atmospheric gas, the atmospheric gas is selected from a boron compound, a phosphorus compound, and a silicon compound. Depending on the mixing ratio of one or more compounds with the vapor, there is a risk of explosion or oxidative degradation due to oxygen. For this reason, in such a case, it is preferable to use nitrogen or argon as the atmospheric gas instead of air.

以上のように反応容器1内の雰囲気ガスは特に限定されず、使用するホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4の種類等に応じて選択することができる。   As described above, the atmospheric gas in the reaction vessel 1 is not particularly limited, and can be selected according to the type of one or more compounds 4 selected from the boron compound, phosphorus compound, and silicon compound to be used.

そして、上述のように反応容器1内の第1収納容器3、第2収納容器5に各原料をセットし、反応容器1内を所定の雰囲気ガスで置換した後、そのまま放置、またはファン6を回転させることで反応容器1内の雰囲気を均一にして接触工程を行うことができる。   Then, as described above, the respective raw materials are set in the first storage container 3 and the second storage container 5 in the reaction container 1, and the reaction container 1 is replaced with a predetermined atmospheric gas, and then left as it is, or the fan 6 is installed. By rotating, the atmosphere in the reaction vessel 1 can be made uniform to perform the contact step.

反応容器1内では、そのまま放置、またはファン6を回転させると、第2収納容器5から、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4の蒸気が雰囲気ガス中に拡散する。そして、雰囲気ガス中に拡散したホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4の蒸気は、第1収納容器3内のリチウムニッケル複合酸化物の粒子2の粒子の表面に接触し、消費される。このため、反応時間の経過と共に、第1収納容器3内に、当初は第2収納容器5内に収納した、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4が物質移動する。   When the reaction vessel 1 is left as it is or when the fan 6 is rotated, the vapor of one or more compounds 4 selected from the boron compound, the phosphorus compound, and the silicon compound diffuses from the second storage vessel 5 into the atmospheric gas. To do. And the vapor | steam of the 1 or more types of compound 4 selected from the boron compound, phosphorus compound, and silicon compound which diffused in atmospheric gas is on the surface of the particle | grains 2 of the lithium nickel complex oxide particle 2 in the 1st storage container 3. In contact and consumed. Therefore, as the reaction time elapses, one or more compounds 4 selected from boron compounds, phosphorus compounds, and silicon compounds initially stored in the first storage container 3 and in the second storage container 5 are transferred. To do.

リチウムニッケル複合酸化物の粒子の少なくとも表面の一部に含有するホウ素、リン、及びケイ素から選択された一種以上の元素の量や、ホウ素等含有領域の厚さの制御方法は特に限定されない。例えば、以下の方法により制御することができる。   The method for controlling the amount of one or more elements selected from boron, phosphorus and silicon contained in at least part of the surface of the lithium nickel composite oxide particles and the thickness of the boron-containing region is not particularly limited. For example, it can be controlled by the following method.

1つの制御方法としては、反応容器1の各収納容器に収納する原料の量により制御する方法が挙げられる。まず、反応容器1内の第1収納容器3、第2収納容器5の中に、それぞれ所定量のリチウムニッケル複合酸化物の粒子2、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4を入れる。ただし、この際、各収納容器に入れるリチウムニッケル複合酸化物の粒子2と、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4との量が、製造するリチウムニッケル複合酸化物の粒子が含有するホウ素、リン、及びケイ素から選択された一種以上の元素の量や、ホウ素等含有領域の厚さ等に応じた量となるように調整しておく。そして、反応容器1内を雰囲気ガスで置換し、そのまま放置、またはファン6を回転させて第2収納容器5内のホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4が完全に消失したところで反応を終了させることで制御することができる。   One control method includes a method of controlling by the amount of raw material stored in each storage container of the reaction container 1. First, in the first storage container 3 and the second storage container 5 in the reaction container 1, one or more kinds selected from a predetermined amount of lithium nickel composite oxide particles 2, a boron compound, a phosphorus compound, and a silicon compound, respectively. Compound 4 is added. However, at this time, the amount of the lithium nickel composite oxide particles 2 to be put in each storage container and one or more compounds 4 selected from a boron compound, a phosphorus compound, and a silicon compound is produced. These particles are adjusted so as to have an amount corresponding to the amount of one or more elements selected from boron, phosphorus, and silicon, the thickness of the boron-containing region, and the like. Then, the inside of the reaction vessel 1 is replaced with atmospheric gas and left as it is, or the fan 6 is rotated to complete one or more compounds 4 selected from the boron compound, phosphorus compound, and silicon compound in the second storage vessel 5. It can be controlled by terminating the reaction when it disappears.

他の制御方法として、反応容器1内での反応時間により制御する方法が挙げられる。この場合でもまず、反応容器1内の第1収納容器3、第2収納容器5の中に、それぞれ所定量のリチウムニッケル複合酸化物の粒子2、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4を入れる。ただし、この際、第2収納容器5に入れるホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4の量が、製造するリチウムニッケル複合酸化物の粒子が含有するホウ素、リン、及びケイ素から選択された一種以上の元素の量や、ホウ素等含有領域の厚さ等に応じた量と比較して過剰となるように収納する。そして、反応容器1内を雰囲気ガスで置換した後、そのまま放置、またはファン6を回転させて所定時間経過したところで、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4が一部残留したまま、第2収納容器5を反応容器1内から取り出して、反応を終了させることで制御することもできる。   As another control method, a method of controlling by the reaction time in the reaction vessel 1 can be mentioned. Even in this case, first, the first storage container 3 and the second storage container 5 in the reaction container 1 are each selected from a predetermined amount of lithium nickel composite oxide particles 2, a boron compound, a phosphorus compound, and a silicon compound. One or more compounds 4 are added. However, in this case, the amount of one or more compounds 4 selected from the boron compound, the phosphorus compound, and the silicon compound to be put into the second storage container 5 is boron, phosphorus, And an amount of one or more elements selected from silicon, or an amount corresponding to the thickness of the boron-containing region, etc. Then, after the inside of the reaction vessel 1 is replaced with the atmospheric gas, it is left as it is or when the fan 6 is rotated and when a predetermined time has elapsed, one or more compounds 4 selected from a boron compound, a phosphorus compound, and a silicon compound are produced. It is also possible to control by removing the second storage container 5 from the reaction container 1 with the remaining portion, and terminating the reaction.

なお、ここまで図1に示した反応装置を用いた例により接触工程を説明したが、接触工程で用いる反応装置は、図1に示した例に限定されるものではない。リチウムニッケル複合酸化物の粒子と、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物の蒸気とを接触させることができる反応装置であれば、各種反応装置を用いることができる。
(b)加熱工程
加熱工程では、接触工程により得られた物質、すなわちホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物と接触させたリチウムニッケル複合酸化物の粒子を、雰囲気炉内に入れて加熱することができる。
In addition, although the contact process was demonstrated by the example using the reaction apparatus shown in FIG. 1 so far, the reaction apparatus used in a contact process is not limited to the example shown in FIG. Various reaction apparatuses can be used as long as they are capable of bringing lithium nickel composite oxide particles into contact with vapors of one or more compounds selected from a boron compound, a phosphorus compound, and a silicon compound.
(B) Heating step In the heating step, particles of the lithium nickel composite oxide brought into contact with the substance obtained in the contact step, that is, one or more compounds selected from a boron compound, a phosphorus compound, and a silicon compound are added to an atmosphere furnace. It can be heated inside.

加熱工程を実施することで、接触工程でリチウムニッケル複合酸化物の粒子の表面に接触させたホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物等に含まれている有機成分や微量水分を除去できる。また、リチウムニッケル複合酸化物の粒子の少なくとも表面の一部に配置される、ホウ素、リン、及びケイ素から選択される一種以上の元素と、リチウムと、酸素とを含有する領域(ホウ素等含有領域)の結晶性や緻密性を高めることができる。   By carrying out the heating step, an organic component contained in one or more compounds selected from boron compounds, phosphorus compounds, and silicon compounds brought into contact with the surfaces of the lithium nickel composite oxide particles in the contact step, Traces of moisture can be removed. In addition, a region containing one or more elements selected from boron, phosphorus, and silicon, lithium, and oxygen, which are disposed on at least part of the surface of the lithium nickel composite oxide particles (a boron-containing region) ) Can be improved in crystallinity and denseness.

加熱工程を実施する際に用いる炉、例えば電気炉は、特に限定されるものではないが、例えば加熱処理時の雰囲気を制御できる炉であることが好ましい。例えば、雰囲気炉、管状炉、プッシャー炉、ローラーハース炉等が挙げられる。   The furnace used when performing the heating step, for example, an electric furnace is not particularly limited, but is preferably a furnace capable of controlling the atmosphere during the heat treatment, for example. For example, an atmosphere furnace, a tubular furnace, a pusher furnace, a roller hearth furnace, etc. are mentioned.

加熱工程での加熱温度は、600℃以上800℃以下であることが好ましく、650℃以上750℃以下であることがより好ましい。   The heating temperature in the heating step is preferably 600 ° C. or higher and 800 ° C. or lower, and more preferably 650 ° C. or higher and 750 ° C. or lower.

これは加熱温度が600℃未満であると、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物等に含まれていた有機成分や微量水分を十分に低減、除去できない恐れがあるからである。また、加熱温度が800℃より高いとリチウムニッケル複合酸化物の粒子の焼結が進行して比表面積が低下し、二次電池として用いた場合に電解液との接触面積が減少するため充放電容量が低下してしまう恐れがあるからである。   If the heating temperature is less than 600 ° C., organic components and trace moisture contained in one or more compounds selected from boron compounds, phosphorus compounds, and silicon compounds may not be sufficiently reduced or removed. Because. In addition, when the heating temperature is higher than 800 ° C., the sintering of the lithium nickel composite oxide particles proceeds and the specific surface area decreases, and the contact area with the electrolytic solution decreases when used as a secondary battery. This is because the capacity may decrease.

加熱工程で用いる雰囲気については特に限定されない。例えば、真空雰囲気、あるいは用いるリチウムニッケル複合酸化物やリチウムニッケル酸化物の粒子の表面に配置したホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物等と反応しない気体を好ましく用いることができる。加熱工程で用いる雰囲気ガスとしては、酸素濃度が60容量%以上であり、炭酸ガス(CO)分圧が10Pa以下であることより好ましい。これは、酸素濃度が60%未満であると、リチウムニッケル複合酸化物中のニッケル(Ni)が還元され、二次電池とした場合に充放電容量が低下する場合があり、また、炭酸ガス分圧が10Paより高いとリチウムニッケル複合酸化物中のリチウムと反応して二次電池とした場合に充放電容量が低下する場合があるからである。 There is no particular limitation on the atmosphere used in the heating step. For example, it is preferable to use a gas that does not react with a vacuum atmosphere or one or more compounds selected from the group consisting of a boron compound, a phosphorus compound, and a silicon compound disposed on the surface of lithium nickel composite oxide or lithium nickel oxide particles to be used. Can do. The atmospheric gas used in the heating step is more preferably an oxygen concentration of 60% by volume or more and a carbon dioxide (CO 2 ) partial pressure of 10 Pa or less. This is because when the oxygen concentration is less than 60%, nickel (Ni) in the lithium nickel composite oxide is reduced, and the charge / discharge capacity may be reduced when a secondary battery is formed. This is because if the pressure is higher than 10 Pa, the charge / discharge capacity may be reduced when the secondary battery is reacted with lithium in the lithium nickel composite oxide.

本実施形態の非水系電解質二次電池用正極活物質の製造方法は、上述の接触工程、及び加熱工程以外にも任意の工程を有することができる。   The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries of this embodiment can have arbitrary processes other than the above-mentioned contact process and a heating process.

例えば、接触工程に供するリチウムニッケル複合酸化物の粒子を製造するリチウムニッケル複合酸化物製造工程を有することができる。リチウムニッケル複合酸化物製造工程の具体的な工程(ステップ)は特に限定されるものではなく、リチウムニッケル複合酸化物の粒子を製造できる工程であればよい。リチウムニッケル複合酸化物製造工程は例えば以下のステップを有することができる。   For example, it can have a lithium nickel composite oxide manufacturing process which manufactures the particles of lithium nickel composite oxide to be subjected to the contact process. The specific process (step) of a lithium nickel composite oxide manufacturing process is not specifically limited, What is necessary is just the process which can manufacture the particle | grains of lithium nickel composite oxide. The lithium nickel composite oxide manufacturing process can include, for example, the following steps.

反応槽内に水を入れて撹拌しつつ、槽内のpH値を11以上13以下に制御しながら、硫酸ニッケル、硫酸コバルト、硫酸アルミニウムの混合水溶液、水酸化ナトリウム水溶液、アンモニア水を同時に加えてニッケル複合水酸化物粒子を得る晶析ステップ。
ニッケル複合水酸化物粒子を500℃以上700以下の温度で焙焼してニッケル複合酸化物を得る焙焼ステップ。
ニッケル複合酸化物と水酸化リチウム一水和物とを混合し、混合物を650℃以上850以下の温度で焼成してリチウムニッケル複合酸化物を得る焼成ステップ。
リチウムニッケル複合酸化物を解砕する解砕ステップ。
While stirring and putting water in the reaction tank, a mixed aqueous solution of nickel sulfate, cobalt sulfate and aluminum sulfate, aqueous sodium hydroxide and aqueous ammonia were added simultaneously while controlling the pH value in the tank to 11 or more and 13 or less. Crystallization step to obtain nickel composite hydroxide particles.
A roasting step in which the nickel composite hydroxide particles are roasted at a temperature of 500 ° C. or higher and 700 or lower to obtain a nickel composite oxide.
A firing step of mixing a nickel composite oxide and lithium hydroxide monohydrate and firing the mixture at a temperature of 650 ° C. or higher and 850 or lower to obtain a lithium nickel composite oxide.
A crushing step for crushing the lithium nickel composite oxide.

なお、ここでは、リチウムニッケル複合酸化物製造工程を例に任意の工程について説明したが、上記工程の例に限定されず、本実施形態の正極活物質の製造方法は、必要に応じて各種任意の工程を有することができる。   In addition, although arbitrary processes were demonstrated to the example for the lithium nickel complex oxide manufacturing process here, it is not limited to the example of the said process, The manufacturing method of the positive electrode active material of this embodiment is various arbitrary as needed. It can have the process of.

以上に説明した本実施形態の非水系電解質二次電池用正極活物質の製造方法により得られる非水系電解質二次電池用正極活物質は、リチウムニッケル複合酸化物の粒子の少なくとも表面の一部に配置され、ホウ素(B)、リン(P)、及びケイ素(Si)から選択される一種以上の元素と、リチウム(Li)と、酸素(O)とを含有する領域を有することができる。また、炭素含有量を0.06質量%以下とすることができる。   The positive electrode active material for a non-aqueous electrolyte secondary battery obtained by the method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present embodiment described above is formed on at least a part of the surface of the lithium nickel composite oxide particles. The region may be disposed and contain one or more elements selected from boron (B), phosphorus (P), and silicon (Si), lithium (Li), and oxygen (O). Moreover, carbon content can be 0.06 mass% or less.

このため、本実施形態の非水系電解質二次電池用正極活物質の製造方法により得られる非水系電解質二次電池用正極活物質は、高温高湿環境下に晒すことによる充放電特性の低下を抑制できる非水系電解質二次電池用正極活物質とすることができる。すなわち、係る非水系電解質二次電池用正極活物質を高温高湿環境下に晒した後、該正極活物質を正極の材料として用いた二次電池を形成した場合でも高い充放電特性を発揮することができる。   For this reason, the positive electrode active material for a nonaqueous electrolyte secondary battery obtained by the method for manufacturing a positive electrode active material for a nonaqueous electrolyte secondary battery according to the present embodiment exhibits a decrease in charge / discharge characteristics due to exposure to a high temperature and high humidity environment. It can be set as the positive electrode active material for non-aqueous electrolyte secondary batteries which can be suppressed. That is, after exposing the positive electrode active material for a non-aqueous electrolyte secondary battery to a high-temperature and high-humidity environment, high charge / discharge characteristics are exhibited even when a secondary battery using the positive electrode active material as a positive electrode material is formed. be able to.

さらに、本実施形態の非水系電解質二次電池用正極活物質の製造方法により得られた非水系電解質二次電池用正極活物質は、二次電池の正極として好適に用いることができる。   Furthermore, the positive electrode active material for a nonaqueous electrolyte secondary battery obtained by the method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery according to this embodiment can be suitably used as a positive electrode for a secondary battery.

また、本実施形態の非水系電解質二次電池用正極活物質の製造方法は、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物を含む雰囲気ガスをリチウムニッケル複合酸化物の粒子の表面に接触させ、加熱する簡便な製造方法を用いている。このため、低コストで高温高湿の環境に対する耐性を備えた非水系電解質二次電池用正極活物質を製造することができ、工業的に有用である。   In addition, the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present embodiment is characterized in that an atmosphere gas containing at least one compound selected from a boron compound, a phosphorus compound, and a silicon compound is used as lithium nickel composite oxide particles. A simple manufacturing method in which the surface is brought into contact with and heated. For this reason, the positive electrode active material for nonaqueous electrolyte secondary batteries provided with low-cost, high-temperature, high-humidity resistance can be produced, which is industrially useful.

以下、実施例を参照しながら本発明をより具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

以下に各実施例、比較例での試料の作製条件、及び評価結果について説明する。
[実施例1]
以下の手順により、非水系電解質二次電池用正極活物質を製造し、評価を行った。
(1)非水系電解質二次電池用正極活物質の製造方法について
(リチウムニッケル複合酸化物製造工程)
まず、反応槽内に水を入れて撹拌しながら、槽内温度を50℃に設定し、そこへ、硫酸ニッケル、硫酸コバルト、硫酸アルミニウムの混合水溶液(金属元素モル比でNi:Co:Al=82:15:3)と、25質量%水酸化ナトリウム水溶液と、25質量%アンモニア水を同時に加え、反応槽内のpH値を液温25℃基準で11.5に制御しながら11時間晶析を行い、ニッケル複合水酸化物粒子を製造した(晶析ステップ)。
Hereinafter, sample preparation conditions and evaluation results in each example and comparative example will be described.
[Example 1]
A positive electrode active material for a non-aqueous electrolyte secondary battery was manufactured and evaluated by the following procedure.
(1) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery (lithium nickel composite oxide production process)
First, the temperature in the tank is set to 50 ° C. while stirring by putting water in the reaction tank, and a mixed aqueous solution of nickel sulfate, cobalt sulfate, and aluminum sulfate (Ni: Co: Al = in terms of metal element molar ratio). 82: 15: 3), 25% by mass aqueous sodium hydroxide solution and 25% by mass ammonia water were added simultaneously, and the crystallization was carried out for 11 hours while controlling the pH value in the reaction vessel to 11.5 based on the liquid temperature of 25 ° C. To produce nickel composite hydroxide particles (crystallization step).

晶析ステップの終了後、生成物を大気雰囲気中600℃で焙焼し、ニッケル複合酸化物粒子を得た(焙焼ステップ)。   After completion of the crystallization step, the product was roasted at 600 ° C. in an air atmosphere to obtain nickel composite oxide particles (roasting step).

焙焼ステップで得られたニッケル複合酸化物粒子と、水酸化リチウム一水和物とを混合し、得られた混合物を酸素雰囲気中500℃で3時間仮焼成した後、750℃で20時間本焼成した(焼成ステップ)。なお、混合物を調製する際、ニッケル複合酸化物粒子と、水酸化リチウム一水和物とは、金属元素モル比でLi/(Ni+Co+Al)=1.02となるように秤量、混合した。   The nickel composite oxide particles obtained in the roasting step and lithium hydroxide monohydrate are mixed, and the resulting mixture is calcined at 500 ° C. for 3 hours in an oxygen atmosphere, and then at 750 ° C. for 20 hours. Firing (firing step). When preparing the mixture, the nickel composite oxide particles and the lithium hydroxide monohydrate were weighed and mixed so that the metal element molar ratio was Li / (Ni + Co + Al) = 1.02.

焼成ステップで得られた生成物を解砕して、リチウムニッケル複合酸化物粒子(Li1.02Ni0.82Co0.15Al0.03)を得た(解砕ステップ)。 The product obtained in the firing step was crushed to obtain lithium nickel composite oxide particles (Li 1.02 Ni 0.82 Co 0.15 Al 0.03 O 2 ) (crushing step).

得られたリチウムニッケル複合酸化物粒子を走査型電子顕微鏡(SEM)(日本電子社製、型番:JSM−7100F)により粒子形状の観察を行った。撮影した写真を図2に示す。得られたリチウムニッケル複合酸化物粒子は一次粒子が凝集して構成された二次粒子からなっていることが確認された。   The obtained lithium nickel composite oxide particles were observed for particle shape with a scanning electron microscope (SEM) (manufactured by JEOL Ltd., model number: JSM-7100F). The photograph taken is shown in FIG. It was confirmed that the obtained lithium nickel composite oxide particles consisted of secondary particles formed by aggregation of primary particles.

また、レーザー回折散乱法により、得られたリチウムニッケル複合酸化物の粒子(二次粒子)の平均粒子径を評価したところ、12.0μmであった。   The average particle diameter of the obtained lithium nickel composite oxide particles (secondary particles) was evaluated by a laser diffraction scattering method to be 12.0 μm.

なお、以下の他の実施例、比較例においても同じリチウムニッケル複合酸化物粒子を用いている。
(接触工程)
図1に示した反応装置を用いて、接触工程を実施した。
The same lithium nickel composite oxide particles are used in the following other examples and comparative examples.
(Contact process)
The contact process was performed using the reaction apparatus shown in FIG.

第1収納容器3に、リチウムニッケル複合酸化物の粒子2として、リチウムニッケル複合酸化物製造工程で得られたリチウムニッケル複合酸化物の粒子204.0gを入れた。また、第2収納容器5に、ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4としてホウ酸トリメチル(トリメトキシボラン)[B(OCH]2.4gを入れた。そして、原料を収納した各収納容器を、反応容器1内に設置し、反応容器1を密閉した。 In the first storage container 3, 204.0 g of lithium nickel composite oxide particles obtained in the lithium nickel composite oxide production process were placed as lithium nickel composite oxide particles 2. In addition, 2.4 g of trimethyl borate (trimethoxyborane) [B (OCH 3 ) 3 ] as one or more compounds 4 selected from a boron compound, a phosphorus compound, and a silicon compound was placed in the second storage container 5. . And each storage container which accommodated the raw material was installed in the reaction container 1, and the reaction container 1 was sealed.

なお、反応容器1、第1収納容器3、第2収納容器5はいずれもステンレス製のものを用いた。   The reaction container 1, the first storage container 3, and the second storage container 5 were all made of stainless steel.

反応容器1内を雰囲気ガスである窒素の含有量が99.9995vol.%より高い窒素ガス(露点温度:−50℃以下)で置換、充填した後、ファン6を回転させて雰囲気ガスを反応容器1内で循環させながら、室温(25℃)で放置した。これにより、リチウムニッケル複合酸化物の粒子2の表面にホウ酸トリメチルの蒸気を含有する雰囲気ガスを接触させた。   The content of nitrogen, which is an atmospheric gas, in the reaction vessel 1 is 99.9995 vol. After replacement and filling with nitrogen gas higher than% (dew point temperature: −50 ° C. or lower), the fan 6 was rotated and the atmosphere gas was circulated in the reaction vessel 1, and left at room temperature (25 ° C.). Thereby, the atmosphere gas containing the vapor | steam of trimethyl borate was made to contact the surface of the particle | grains 2 of lithium nickel complex oxide.

上記接触工程を実施した後のリチウムニッケル複合酸化物の粒子をICP発光分析法で分析したところ、ホウ酸トリメチル成分であるホウ素(B)が0.05質量%含まれていることが確認できた。   When the particles of the lithium nickel composite oxide after the above contact step were analyzed by ICP emission spectrometry, it was confirmed that 0.05% by mass of boron (B) as a trimethyl borate component was contained. .

また、リチウムニッケル複合酸化物の表面形状を走査型電子顕微鏡(SEM)で観察したところ、図3に示すようにホウ素と、リチウムと、酸素とを含有する領域が、リチウムニッケル複合酸化物の粒子の表面に均一に形成されていることが確認された。すなわち、リチウムニッケル複合酸化物の粒子の表面に、ホウ素と、リチウムと、酸素とを含有する領域が、該リチウムニッケル複合酸化物の粒子を覆う被膜として形成されていることが確認された。
(加熱工程)
次に、上記接触工程を実施したリチウムニッケル複合酸化物を、酸素気流中700℃で1時間加熱した後、室温まで冷却して実施例1に係る非水系電解質二次電池用正極活物質を得た。なお、酸素ガスとしては、酸素の含有量が約100容量%であり、炭酸ガス分圧が10Pa以下のものを用いており、以下の実施例2、比較例4でも同様である。
Further, when the surface shape of the lithium nickel composite oxide was observed with a scanning electron microscope (SEM), as shown in FIG. 3, the region containing boron, lithium, and oxygen was particles of the lithium nickel composite oxide. It was confirmed that the surface was uniformly formed. That is, it was confirmed that a region containing boron, lithium, and oxygen was formed as a coating covering the lithium nickel composite oxide particles on the surface of the lithium nickel composite oxide particles.
(Heating process)
Next, the lithium nickel composite oxide subjected to the above contact step is heated in an oxygen stream at 700 ° C. for 1 hour and then cooled to room temperature to obtain a positive electrode active material for a non-aqueous electrolyte secondary battery according to Example 1. It was. As the oxygen gas, one having an oxygen content of about 100% by volume and a carbon dioxide partial pressure of 10 Pa or less is used, and the same applies to Example 2 and Comparative Example 4 below.

得られた非水系電解質二次電池用正極活物質の表面形状を走査型電子顕微鏡(SEM)で観察したところ、図4に示すように一次粒子同士の焼結もなく、加熱工程前の表面形状を保持していることが確認された。従って、加熱工程前と同様に、リチウムニッケル複合酸化物の粒子の表面に、ホウ素と、リチウムと、酸素とを含有する領域が、該リチウムニッケル複合酸化物の粒子を覆う被膜として形成されていることが確認された。   When the surface shape of the obtained positive electrode active material for a non-aqueous electrolyte secondary battery was observed with a scanning electron microscope (SEM), there was no sintering of primary particles as shown in FIG. It was confirmed that Therefore, as in the case before the heating step, a region containing boron, lithium, and oxygen is formed on the surface of the lithium nickel composite oxide particles as a film covering the lithium nickel composite oxide particles. It was confirmed.

得られた非水系電解質二次電池用正極活物質に含まれる炭素量を炭素分析装置(LECO社製、型番:CS−600)を用いて高周波燃焼赤外吸収法により測定したところ0.03質量%であった。   The amount of carbon contained in the obtained positive electrode active material for a non-aqueous electrolyte secondary battery was measured by a high-frequency combustion infrared absorption method using a carbon analyzer (manufactured by LECO, model number: CS-600) to be 0.03 mass. %Met.

また、非水系電解質二次電池用正極活物質についてもICP発光分析法で分析したところ、ホウ素の含有量は0.05質量%であることが確認できた。また、ケイ素の含有量は検出限界未満、すなわち0.02質量%未満であることが確認できた。
(2)評価結果について
上記手順により製造した非水系電解質二次電池用正極活物質を正極として用いたコインセル(正極/セパレータと電解液/負極)を作製し、充放電特性を評価した。Cレートを0.05Cとして、カットオフ電圧4.3Vまで充電した後、カットオフ電圧3.0Vまで放電させて評価を行ったところ、充電容量が217mAh/g、放電容量が199mAh/gであることが確認できた。
また、作製したコインセルを用いて正極抵抗を測定した。コインセルを充電電位4.1Vで充電して、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製、1255B)を使用して交流インピーダンス法により図5(a)に示すようなナイキストプロットを得た後、図5(b)に示す等価回路を用いてフィッティング計算を行い、正極抵抗の値を算出したところ2.4Ωであった。
Moreover, when the positive electrode active material for non-aqueous electrolyte secondary batteries was also analyzed by ICP emission analysis, it was confirmed that the boron content was 0.05% by mass. Moreover, it has confirmed that content of silicon was less than a detection limit, ie, less than 0.02 mass%.
(2) Evaluation Results Coin cells (positive electrode / separator and electrolyte / negative electrode) using the positive electrode active material for a non-aqueous electrolyte secondary battery produced by the above procedure as a positive electrode were prepared, and charge / discharge characteristics were evaluated. When the C rate was set to 0.05 C and the battery was charged to a cut-off voltage of 4.3 V and then discharged to a cut-off voltage of 3.0 V, the charge capacity was 217 mAh / g, and the discharge capacity was 199 mAh / g. I was able to confirm.
Moreover, positive electrode resistance was measured using the produced coin cell. After charging the coin cell at a charging potential of 4.1 V and using a frequency response analyzer and a potentiogalvanostat (manufactured by Solartron, 1255B), a Nyquist plot as shown in FIG. Fitting calculation was performed using the equivalent circuit shown in FIG. 5B, and the value of the positive electrode resistance was calculated to be 2.4Ω.

次に、上記非水系電解質二次電池用正極活物質を、テフロン容器に入れて温度80℃、湿度60%に設定した恒温恒湿槽内に24時間放置し、耐候性試験を実施した。そして、耐候性試験後の非水系電解質二次電池用正極活物質を正極として用いたコインセル(正極/セパレータと電解液/負極)を作製し、上記と同様にして充放電特性を評価したところ、充電容量が210mAh/g、放電容量が194mAh/gであることが確認できた。   Next, the positive electrode active material for a non-aqueous electrolyte secondary battery was put in a Teflon container and left in a constant temperature and humidity chamber set at a temperature of 80 ° C. and a humidity of 60% for a weather resistance test. Then, a coin cell (positive electrode / separator and electrolyte / negative electrode) using the positive electrode active material for a non-aqueous electrolyte secondary battery after the weather resistance test as a positive electrode was prepared, and the charge / discharge characteristics were evaluated in the same manner as described above. It was confirmed that the charge capacity was 210 mAh / g and the discharge capacity was 194 mAh / g.

また、作製したコインセルを用いて上記と同様にして正極抵抗の値を算出したところ3.2Ωであることが確認できた。   Moreover, when the value of positive electrode resistance was computed like the above using the produced coin cell, it was confirmed that it was 3.2Ω.

製造条件、及び評価結果を表1、表2にまとめて示す。
[実施例2]
接触工程、及び加熱工程の条件を以下のように変更した点以外は、実施例1の場合と同様にして、非水系電解質二次電池用正極活物質を製造し、評価を行った。
(1)非水系電解質二次電池用正極活物質の製造方法について
(接触工程)
第1収納容器3に入れるリチウムニッケル複合酸化物の粒子2の量を201.7gとし、第2収納容器5に入れるホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物4としてオルトケイ酸テトラエチル(テトラエトキシシラン)[Si(OC]4.0gを用いた点以外は実施例1と同様にして接触工程を実施した。
Production conditions and evaluation results are summarized in Tables 1 and 2.
[Example 2]
A positive electrode active material for a non-aqueous electrolyte secondary battery was produced and evaluated in the same manner as in Example 1 except that the conditions for the contact step and the heating step were changed as follows.
(1) About the manufacturing method of the positive electrode active material for non-aqueous electrolyte secondary batteries (contact process)
The amount of the lithium nickel composite oxide particles 2 in the first storage container 3 is set to 201.7 g, and the orthoke as one or more compounds 4 selected from a boron compound, a phosphorus compound, and a silicon compound to be stored in the second storage container 5. The contact step was carried out in the same manner as in Example 1 except that 4.0 g of acid tetraethyl (tetraethoxysilane) [Si (OC 2 H 5 ) 4 ] was used.

上記接触工程を実施したリチウムニッケル複合酸化物をICP発光分析法で分析したところ、オルトケイ酸テトラエチル成分であるケイ素(Si)が0.07質量%含まれていることが確認できた。   When the lithium nickel composite oxide subjected to the above contact step was analyzed by ICP emission analysis, it was confirmed that 0.07% by mass of silicon (Si), which is a tetraethyl orthosilicate component, was contained.

また、リチウムニッケル複合酸化物の表面形状を走査型電子顕微鏡(SEM)で観察したところ、ケイ素と、リチウムと、酸素とを含有する領域が、リチウムニッケル複合酸化物の粒子の表面に均一に形成されていることが確認された。すなわち、リチウムニッケル複合酸化物の粒子の表面に、ケイ素と、リチウムと、酸素とを含有する領域が、該リチウムニッケル複合酸化物の粒子を覆う被膜として形成されていることが確認された。
(加熱工程)
次に、上記接触工程を実施したリチウムニッケル複合酸化物を、酸素気流中700℃で1時間加熱した後、室温まで冷却して非水系電解質二次電池用正極活物質を得た。
Moreover, when the surface shape of the lithium nickel composite oxide was observed with a scanning electron microscope (SEM), a region containing silicon, lithium, and oxygen was uniformly formed on the surface of the lithium nickel composite oxide particles. It has been confirmed. That is, it was confirmed that a region containing silicon, lithium, and oxygen was formed as a coating covering the lithium nickel composite oxide particles on the surface of the lithium nickel composite oxide particles.
(Heating process)
Next, the lithium nickel composite oxide subjected to the above contact step was heated in an oxygen stream at 700 ° C. for 1 hour, and then cooled to room temperature to obtain a positive electrode active material for a non-aqueous electrolyte secondary battery.

得られた非水系電解質二次電池用正極活物質に含まれる炭素量を炭素分析装置(LECO社製、型番:CS−600)を用いて高周波燃焼赤外吸収法により測定したところ0.05質量%であった。   The amount of carbon contained in the obtained positive electrode active material for a non-aqueous electrolyte secondary battery was measured by a high-frequency combustion infrared absorption method using a carbon analyzer (manufactured by LECO, model number: CS-600) to be 0.05 mass. %Met.

得られた非水系電解質二次電池用正極活物質についてもICP発光分析法で分析したところ、ホウ素の含有量は検出限界未満、すなわち0.01質量%未満であることが確認できた。また、ケイ素の含有量は0.07質量%であることが確認できた。   When the obtained positive electrode active material for a non-aqueous electrolyte secondary battery was also analyzed by ICP emission analysis, it was confirmed that the boron content was less than the detection limit, that is, less than 0.01% by mass. Moreover, it has confirmed that content of silicon was 0.07 mass%.

得られた非水系電解質二次電池用正極活物質の表面形状を走査型電子顕微鏡(SEM)で観察したところ、ケイ素と、リチウムと、酸素とを含有する領域が、リチウムニッケル複合酸化物の粒子の表面に均一に形成されていることが確認された。すなわち、リチウムニッケル複合酸化物の粒子の表面に、ケイ素と、リチウムと、酸素とを含有する領域が、該リチウムニッケル複合酸化物の粒子を覆う被膜として形成されていることが確認された。
(2)評価結果について
得られた非水系電解質二次電池用正極活物質を正極として用いたコインセル(正極/セパレータと電解液/負極)を作製し、充放電特性を評価した。Cレートを0.05Cとして、カットオフ電圧4.3Vまで充電した後、カットオフ電圧3.0Vまで放電させて評価を行ったところ、充電容量が218mAh/g、放電容量が195mAh/gであることが確認できた。
When the surface shape of the obtained positive electrode active material for a non-aqueous electrolyte secondary battery was observed with a scanning electron microscope (SEM), the region containing silicon, lithium, and oxygen was a particle of lithium nickel composite oxide. It was confirmed that the surface was uniformly formed. That is, it was confirmed that a region containing silicon, lithium, and oxygen was formed as a coating covering the lithium nickel composite oxide particles on the surface of the lithium nickel composite oxide particles.
(2) Evaluation Results Coin cells (positive electrode / separator and electrolyte / negative electrode) using the obtained positive electrode active material for a nonaqueous electrolyte secondary battery as a positive electrode were prepared, and charge / discharge characteristics were evaluated. When the C rate was set to 0.05 C and the battery was charged to a cutoff voltage of 4.3 V and then discharged to a cutoff voltage of 3.0 V, the charge capacity was 218 mAh / g, and the discharge capacity was 195 mAh / g. I was able to confirm.

また、作製したコインセルを用いて上記と同様にして正極抵抗の値を算出したところ2.5Ωであることが確認できた。   Moreover, when the value of positive electrode resistance was computed like the above using the produced coin cell, it was confirmed that it was 2.5Ω.

次に、上記非水系電解質二次電池用正極活物質を、テフロン容器に入れて温度80℃、湿度60%に設定した恒温恒湿槽内に24時間放置し、これを正極として用いたコインセル(正極/セパレータと電解液/負極)を作製し、上記と同様にして充放電特性を評価したところ、充電容量が211mAh/g、放電容量が192mAh/gであることが確認できた。   Next, the positive electrode active material for a non-aqueous electrolyte secondary battery is put in a Teflon container and left in a constant temperature and humidity chamber set at a temperature of 80 ° C. and a humidity of 60% for 24 hours, and a coin cell ( (Positive electrode / separator and electrolyte / negative electrode) were prepared and the charge / discharge characteristics were evaluated in the same manner as described above, and it was confirmed that the charge capacity was 211 mAh / g and the discharge capacity was 192 mAh / g.

また、作製したコインセルを用いて上記と同様にして正極抵抗の値を算出したところ3.4Ωであることが確認できた。   Moreover, when the value of positive electrode resistance was computed like the above using the produced coin cell, it was confirmed that it was 3.4Ω.

製造条件、及び評価結果を表1、表2にまとめて示す。
[比較例1]
(1)非水系電解質二次電池用正極活物質の製造方法について
接触工程、および加熱工程を実施せず、リチウムニッケル複合酸化物製造工程のみを実施した点以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を製造した。
Production conditions and evaluation results are summarized in Tables 1 and 2.
[Comparative Example 1]
(1) About the manufacturing method of the positive electrode active material for non-aqueous electrolyte secondary batteries In the same manner as in Example 1 except that the contact step and the heating step were not performed, and only the lithium nickel composite oxide manufacturing step was performed. A positive electrode active material for a non-aqueous electrolyte secondary battery was produced.

従って、得られた非水系電解質二次電池用正極活物質は、リチウムニッケル複合酸化物の粒子の表面に被膜形成処理が行われておらず、表面に被膜が形成されていない。   Therefore, the obtained positive electrode active material for a non-aqueous electrolyte secondary battery is not formed with a film on the surface of the lithium nickel composite oxide particles, and no film is formed on the surface.

得られた非水系電解質二次電池用正極活物質に含まれる炭素量を炭素分析装置(LECO社製、型番:CS−600)を用いて高周波燃焼赤外吸収法により測定したところ0.09質量%であった。   The amount of carbon contained in the obtained positive electrode active material for a non-aqueous electrolyte secondary battery was measured by a high-frequency combustion infrared absorption method using a carbon analyzer (manufactured by LECO, model number: CS-600) to be 0.09 mass. %Met.

また、非水系電解質二次電池用正極活物質についてもICP発光分析法で分析したところ、ホウ素の含有量は検出限界未満、すなわち0.01質量%未満であることが確認できた。また、ケイ素の含有量についても検出限界未満、すなわち0.02質量%未満であることが確認できた。
(2)評価結果について
得られた非水系電解質二次電池用正極活物質を正極として用いたコインセル(正極/セパレータと電解液/負極)を作製し、充放電特性を評価した。Cレートを0.05Cとして、カットオフ電圧4.3Vまで充電した後、カットオフ電圧3.0Vまで放電させて評価を行ったところ、充電容量が217mAh/g、放電容量が197mAh/gであることを確認できた。
Moreover, when the positive electrode active material for non-aqueous electrolyte secondary batteries was also analyzed by ICP emission analysis, it was confirmed that the boron content was less than the detection limit, that is, less than 0.01% by mass. It was also confirmed that the silicon content was less than the detection limit, that is, less than 0.02% by mass.
(2) Evaluation Results Coin cells (positive electrode / separator and electrolyte / negative electrode) using the obtained positive electrode active material for a nonaqueous electrolyte secondary battery as a positive electrode were prepared, and charge / discharge characteristics were evaluated. When the C rate was set to 0.05 C and the battery was charged to a cutoff voltage of 4.3 V and then discharged to a cutoff voltage of 3.0 V, the charge capacity was 217 mAh / g and the discharge capacity was 197 mAh / g. I was able to confirm that.

また、作製したコインセルを用いて上記と同様にして正極抵抗の値を算出したところ1.8Ωであることを確認できた。   Moreover, when the value of positive electrode resistance was computed like the above using the produced coin cell, it was confirmed that it was 1.8Ω.

次に、上記非水系電解質二次電池用正極活物質を、テフロン容器に入れて温度80℃、湿度60%に設定した恒温恒湿槽内に24時間放置し、これを正極として用いたコインセル(正極/セパレータと電解液/負極)を作製し、上記と同様にして充放電特性を評価したところ、充電容量が191mAh/g、放電容量が175mAh/gであることを確認できた。   Next, the positive electrode active material for a non-aqueous electrolyte secondary battery is put in a Teflon container and left in a constant temperature and humidity chamber set at a temperature of 80 ° C. and a humidity of 60% for 24 hours, and a coin cell ( (Positive electrode / separator and electrolyte / negative electrode) were prepared and the charge / discharge characteristics were evaluated in the same manner as described above, and it was confirmed that the charge capacity was 191 mAh / g and the discharge capacity was 175 mAh / g.

また、作製したコインセルを用いて上記と同様にして正極抵抗の値を算出したところ3.4Ωであることを確認できた。   Moreover, when the value of positive electrode resistance was computed like the above using the produced coin cell, it was confirmed that it was 3.4Ω.

製造条件、及び評価結果を表1、表2にまとめて示す。
[比較例2]
(1)非水系電解質二次電池用正極活物質の製造方法について
加熱工程を実施せず、リチウムニッケル複合酸化物製造工程と、接触工程のみを実施した点以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を製造した。
Production conditions and evaluation results are summarized in Tables 1 and 2.
[Comparative Example 2]
(1) About the manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries It does not carry out a heating process, It carries out similarly to Example 1 except having implemented only the lithium nickel complex oxide manufacturing process and the contact process, A positive electrode active material for a non-aqueous electrolyte secondary battery was produced.

従って、リチウムニッケル複合酸化物の粒子の表面に、ホウ素と、リチウムと、酸素とを含有する領域が、該リチウムニッケル複合酸化物の粒子を覆う被膜として形成された非水系電解質二次電池用正極活物質を製造した。   Accordingly, the positive electrode for a non-aqueous electrolyte secondary battery in which a region containing boron, lithium, and oxygen is formed on the surface of the lithium nickel composite oxide particles as a coating covering the lithium nickel composite oxide particles. An active material was produced.

得られた非水系電解質二次電池用正極活物質に含まれる炭素量を炭素分析装置(LECO社製、型番:CS−600)を用いて高周波燃焼赤外吸収法により測定したところ0.11質量%であった。   The amount of carbon contained in the obtained positive electrode active material for a non-aqueous electrolyte secondary battery was measured by a high-frequency combustion infrared absorption method using a carbon analyzer (manufactured by LECO, model number: CS-600) to find 0.11 mass. %Met.

また、非水系電解質二次電池用正極活物質についてもICP発光分析法で分析したところ、ホウ素の含有量は0.05質量%であることが確認できた。また、ケイ素の含有量については検出限界未満、すなわち0.02質量%未満であることが確認できた。
(2)評価結果について
上記非水系電解質二次電池用正極活物質を正極として用いたコインセル(正極/セパレータと電解液/負極)を作製し、充放電特性を評価した。Cレートを0.05Cとして、カットオフ電圧4.3Vまで充電した後、カットオフ電圧3.0Vまで放電させて評価を行ったところ、充電容量が220mAh/g、放電容量が192mAh/gであることが確認できた。
Moreover, when the positive electrode active material for non-aqueous electrolyte secondary batteries was also analyzed by ICP emission analysis, it was confirmed that the boron content was 0.05% by mass. Moreover, about silicon content, it has confirmed that it was less than a detection limit, ie, less than 0.02 mass%.
(2) Evaluation Results Coin cells (positive electrode / separator and electrolyte / negative electrode) using the positive electrode active material for a non-aqueous electrolyte secondary battery as a positive electrode were prepared, and charge / discharge characteristics were evaluated. When the C rate was set to 0.05 C and the battery was charged to a cut-off voltage of 4.3 V and then discharged to a cut-off voltage of 3.0 V, the charge capacity was 220 mAh / g and the discharge capacity was 192 mAh / g. I was able to confirm.

また、作製したコインセルを用いて上記と同様にして正極抵抗の値を算出したところ2.3Ωであることが確認できた。   Moreover, when the value of positive electrode resistance was computed like the above using the produced coin cell, it was confirmed that it was 2.3Ω.

次に、上記非水系電解質二次電池用正極活物質を、テフロン容器に入れて温度80℃、湿度60%に設定した恒温恒湿槽内に24時間放置し、これを正極として用いたコインセル(正極/セパレータと電解液/負極)を作製し、上記と同様にして充放電特性を評価したところ、充電容量が197mAh/g、放電容量が172mAh/gであることが確認できた。   Next, the positive electrode active material for a non-aqueous electrolyte secondary battery is put in a Teflon container and left in a constant temperature and humidity chamber set at a temperature of 80 ° C. and a humidity of 60% for 24 hours, and a coin cell ( (Positive electrode / separator and electrolyte / negative electrode) were prepared and the charge / discharge characteristics were evaluated in the same manner as described above, and it was confirmed that the charge capacity was 197 mAh / g and the discharge capacity was 172 mAh / g.

また、作製したコインセルを用いて上記と同様にして正極抵抗の値を算出したところ4.7Ωであることが確認できた。   Moreover, when the value of positive electrode resistance was computed like the above using the produced coin cell, it was confirmed that it was 4.7Ω.

製造条件、及び評価結果を表1、表2にまとめて示す。
[比較例3]
(1)非水系電解質二次電池用正極活物質の製造方法について
加熱工程を実施せず、リチウムニッケル複合酸化物製造工程と、接触工程のみを実施した点以外は実施例2と同様にして、非水系電解質二次電池用正極活物質を製造した。
Production conditions and evaluation results are summarized in Tables 1 and 2.
[Comparative Example 3]
(1) About the manufacturing method of the positive electrode active material for non-aqueous electrolyte secondary batteries It is the same as that of Example 2 except not performing the heating process but performing only the lithium nickel composite oxide manufacturing process and the contact process. A positive electrode active material for a non-aqueous electrolyte secondary battery was produced.

従って、リチウムニッケル複合酸化物の粒子の表面に、ケイ素と、リチウムと、酸素とを含有する領域が、該リチウムニッケル複合酸化物の粒子を覆う被膜として形成された非水系電解質二次電池用正極活物質を製造した。   Accordingly, a positive electrode for a non-aqueous electrolyte secondary battery in which a region containing silicon, lithium, and oxygen is formed as a coating covering the lithium nickel composite oxide particles on the surface of the lithium nickel composite oxide particles. An active material was produced.

得られた非水系電解質二次電池用正極活物質に含まれる炭素量を炭素分析装置(LECO社製、型番:CS−600)を用いて高周波燃焼赤外吸収法により測定したところ0.16質量%であった。   The amount of carbon contained in the obtained positive electrode active material for a non-aqueous electrolyte secondary battery was measured by a high-frequency combustion infrared absorption method using a carbon analyzer (manufactured by LECO, model number: CS-600) to find 0.16 mass. %Met.

また、非水系電解質二次電池用正極活物質についてもICP発光分析法で分析したところ、ホウ素の含有量は検出限界未満、すなわち0.01質量%未満であることが確認できた。また、ケイ素の含有量は0.07質量%であることが確認できた。
(2)評価結果について
上記非水系電解質二次電池用正極活物質を正極として用いたコインセル(正極/セパレータと電解液/負極)を作製し、充放電特性を評価した。Cレートを0.05Cとして、カットオフ電圧4.3Vまで充電した後、カットオフ電圧3.0Vまで放電させて評価を行ったところ、充電容量が221mAh/g、放電容量が193mAh/gであることが確認できた。
Moreover, when the positive electrode active material for non-aqueous electrolyte secondary batteries was also analyzed by ICP emission analysis, it was confirmed that the boron content was less than the detection limit, that is, less than 0.01% by mass. Moreover, it has confirmed that content of silicon was 0.07 mass%.
(2) Evaluation Results Coin cells (positive electrode / separator and electrolyte / negative electrode) using the positive electrode active material for a non-aqueous electrolyte secondary battery as a positive electrode were prepared, and charge / discharge characteristics were evaluated. When the C rate was set to 0.05 C and the battery was charged to a cutoff voltage of 4.3 V and then discharged to a cutoff voltage of 3.0 V, the charge capacity was 221 mAh / g, and the discharge capacity was 193 mAh / g. I was able to confirm.

また、作製したコインセルを用いて上記と同様にして正極抵抗の値を算出したところ2.2Ωであることが確認できた。   Moreover, when the value of positive electrode resistance was computed like the above using the produced coin cell, it was confirmed that it was 2.2 (ohm).

次に、上記非水系電解質二次電池用正極活物質を、テフロン容器に入れて温度80℃、湿度60%に設定した恒温恒湿槽内に24時間放置し、これを正極として用いたコインセル(正極/セパレータと電解液/負極)を作製し、上記と同様にして充放電特性を評価したところ、充電容量が210mAh/g、放電容量が185mAh/gであることが確認できた。   Next, the positive electrode active material for a non-aqueous electrolyte secondary battery is put in a Teflon container and left in a constant temperature and humidity chamber set at a temperature of 80 ° C. and a humidity of 60% for 24 hours, and a coin cell ( (Positive electrode / separator and electrolyte / negative electrode) were prepared and the charge / discharge characteristics were evaluated in the same manner as described above, and it was confirmed that the charge capacity was 210 mAh / g and the discharge capacity was 185 mAh / g.

また、作製したコインセルを用いて上記と同様にして正極抵抗の値を算出したところ3.7Ωであることが確認できた。   Moreover, when the value of positive electrode resistance was computed like the above using the produced coin cell, it was confirmed that it was 3.7Ω.

製造条件、及び評価結果を表1、表2にまとめて示す。
[比較例4]
(1)非水系電解質二次電池用正極活物質の製造方法について
加熱工程において、酸素気流中、500℃で1時間加熱した点以外は実施例2と同様にして非水系電解質二次電池用正極活物質を製造した。
Production conditions and evaluation results are summarized in Tables 1 and 2.
[Comparative Example 4]
(1) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Positive electrode for non-aqueous electrolyte secondary battery in the same manner as in Example 2 except that the heating step was performed in an oxygen stream at 500 ° C. for 1 hour. An active material was produced.

従って、リチウムニッケル複合酸化物の粒子の表面に、ケイ素と、リチウムと、酸素とを含有する領域が、該リチウムニッケル複合酸化物の粒子を覆う被膜として形成された非水系電解質二次電池用正極活物質を製造した。   Accordingly, a positive electrode for a non-aqueous electrolyte secondary battery in which a region containing silicon, lithium, and oxygen is formed as a coating covering the lithium nickel composite oxide particles on the surface of the lithium nickel composite oxide particles. An active material was produced.

得られた非水系電解質二次電池用正極活物質に含まれる炭素量を炭素分析装置(LECO社製、型番:CS−600)を用いて高周波燃焼赤外吸収法により測定したところ0.07質量%であった。   The amount of carbon contained in the obtained positive electrode active material for a non-aqueous electrolyte secondary battery was measured by a high-frequency combustion infrared absorption method using a carbon analyzer (manufactured by LECO, model number: CS-600) to be 0.07 mass. %Met.

また、非水系電解質二次電池用正極活物質についてもICP発光分析法で分析したところ、ホウ素の含有量は検出限界未満、すなわち0.01質量%未満であることが確認できた。また、ケイ素の含有量は0.07質量%であることが確認できた。
(2)評価結果について
上記非水系電解質二次電池用正極活物質を正極として用いたコインセル(正極/セパレータと電解液/負極)を作製し、充放電特性を評価した。Cレートを0.05Cとして、カットオフ電圧4.3Vまで充電した後、カットオフ電圧3.0Vまで放電させて評価を行ったところ、充電容量が220mAh/g、放電容量が192mAh/gであることが確認できた。
Moreover, when the positive electrode active material for non-aqueous electrolyte secondary batteries was also analyzed by ICP emission analysis, it was confirmed that the boron content was less than the detection limit, that is, less than 0.01% by mass. Moreover, it has confirmed that content of silicon was 0.07 mass%.
(2) Evaluation Results Coin cells (positive electrode / separator and electrolyte / negative electrode) using the positive electrode active material for a non-aqueous electrolyte secondary battery as a positive electrode were prepared, and charge / discharge characteristics were evaluated. When the C rate was set to 0.05 C and the battery was charged to a cutoff voltage of 4.3 V and then discharged to a cutoff voltage of 3.0 V, the charge capacity was 220 mAh / g and the discharge capacity was 192 mAh / g. I was able to confirm.

また、作製したコインセルを用いて上記と同様にして正極抵抗の値を算出したところ2.4Ωであることが確認できた。   Moreover, when the value of positive electrode resistance was computed like the above using the produced coin cell, it was confirmed that it was 2.4Ω.

次に、上記非水系電解質二次電池用正極活物質を、テフロン容器に入れて温度80℃、湿度60%に設定した恒温恒湿槽内に24時間放置し、これを正極として用いたコインセル(正極/セパレータと電解液/負極)を作製し、上記と同様にして充放電特性を評価したところ、充電容量が210mAh/g、放電容量が187mAh/gであることが確認できた。   Next, the positive electrode active material for a non-aqueous electrolyte secondary battery is put in a Teflon container and left in a constant temperature and humidity chamber set at a temperature of 80 ° C. and a humidity of 60% for 24 hours, and a coin cell ( (Positive electrode / separator and electrolyte / negative electrode) were prepared and the charge / discharge characteristics were evaluated in the same manner as described above, and it was confirmed that the charge capacity was 210 mAh / g and the discharge capacity was 187 mAh / g.

また、作製したコインセルを用いて上記と同様にして正極抵抗の値を算出したところ3.6Ωであることが確認できた。   Moreover, when the value of positive electrode resistance was computed like the above using the produced coin cell, it was confirmed that it was 3.6Ω.

製造条件、及び評価結果を表1、表2にまとめて示す。   Production conditions and evaluation results are summarized in Tables 1 and 2.

実施例1、2で製造した非水系電解質二次電池用正極活物質を正極に用いたコインセルは、比較例1の非水系電解質二次電池用正極活物質を正極に用いたコインセルよりも、耐候性試験後において高い充電容量と放電容量が得られていることが確認できる。すなわち、リチウムニッケル複合酸化物の粒子、及びホウ素等含有領域を有し、炭素含有量が0.06質量%以下である正極活物質とすることで、該正極活物質の耐候性が向上する、すなわち高温高湿環境下に晒すことによる充放電特性の低下を抑制できることを確認できた。 The coin cell using the positive electrode active material for non-aqueous electrolyte secondary battery produced in Examples 1 and 2 as the positive electrode had a weather resistance higher than that of the coin cell using the positive electrode active material for non-aqueous electrolyte secondary battery of Comparative Example 1 as the positive electrode. It can be confirmed that a high charge capacity and discharge capacity are obtained after the property test. That is, the weather resistance of the positive electrode active material is improved by having a lithium nickel composite oxide particle and a positive electrode active material having a boron-containing region and a carbon content of 0.06% by mass or less. That is, it was confirmed that the deterioration of charge / discharge characteristics due to exposure to a high temperature and high humidity environment could be suppressed.

また、加熱処理の有無のみが異なる、対応する実施例と比較例、具体的には実施例1と比較例2、実施例2と比較例3をそれぞれ比較すると、実施例1、2の正極活物質は炭素量が0.06質量%以下であるのに対して、比較例2、3の正極活物質は炭素量が0.06質量%を超えていることが確認できる。そして、炭素量が0.06質量%以下である実施例1、2の正極活物質を正極に用いたコインセルについては、炭素量が0.06質量%を超える比較例2、3の正極活物質を正極に用いたコインセルと比較して、耐候性試験後においても高い充電容量と放電容量が得られていることが確認できた。さらに、接触工程を実施することで、正極活物質の炭素量を低減できることも確認できた。   Further, when the corresponding examples and comparative examples, specifically, Example 1 and Comparative Example 2, and Example 2 and Comparative Example 3 are compared with each other only in the presence or absence of heat treatment, the positive electrode actives of Examples 1 and 2 are compared. While the substance has a carbon content of 0.06% by mass or less, it can be confirmed that the positive electrode active materials of Comparative Examples 2 and 3 have a carbon content exceeding 0.06% by mass. And about the coin cell which used the positive electrode active material of Example 1, 2 whose carbon amount is 0.06 mass% or less for a positive electrode, the positive electrode active material of the comparative examples 2 and 3 whose carbon amount exceeds 0.06 mass% It was confirmed that a high charge capacity and a high discharge capacity were obtained even after the weather resistance test, as compared with the coin cell using as the positive electrode. Furthermore, it has also been confirmed that the carbon content of the positive electrode active material can be reduced by carrying out the contact step.

2 リチウムニッケル複合酸化物の粒子
4 ホウ素化合物、リン化合物、及びケイ素化合物から選択される一種以上の化合物
2 Particles of lithium nickel composite oxide 4 One or more compounds selected from boron compounds, phosphorus compounds, and silicon compounds

Claims (7)

一般式:LiNi1―y―zCoAl(0.90≦x≦1.20、0.01≦y≦0.20、0.01≦z≦0.10)で表されるリチウムニッケル複合酸化物の粒子、及び
前記リチウムニッケル複合酸化物の粒子の少なくとも表面の一部に配置され、ホウ素(B)、リン(P)、及びケイ素(Si)から選択される一種以上の元素と、リチウム(Li)と、酸素(O)とを含有する領域を有し、
炭素含有量が0.06質量%以下である非水系電解質二次電池用正極活物質。
General formula: Li x Ni 1-yz Co y Al z O 2 (0.90 ≦ x ≦ 1.20, 0.01 ≦ y ≦ 0.20, 0.01 ≦ z ≦ 0.10) One or more selected from boron (B), phosphorus (P), and silicon (Si) disposed on at least part of the surface of the lithium nickel composite oxide particles And a region containing lithium (Li) and oxygen (O),
A positive electrode active material for a non-aqueous electrolyte secondary battery having a carbon content of 0.06% by mass or less.
前記リチウムニッケル複合酸化物の粒子が、一次粒子が凝集した二次粒子で構成され、二次粒子の平均粒子径が3μm以上20μm以下である請求項1に記載の非水系電解質二次電池用正極活物質。   2. The positive electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the particles of the lithium nickel composite oxide are composed of secondary particles in which primary particles are aggregated, and the average particle diameter of the secondary particles is 3 μm or more and 20 μm or less. Active material. ホウ素(B)の含有量が0.01質量%以上0.10質量%以下である請求項1または2に記載に非水系電解質二次電池用正極活物質。   The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the content of boron (B) is 0.01 mass% or more and 0.10 mass% or less. リン(P)の含有量が0.01質量%以上0.10質量%以下である請求項1乃至3のいずれか一項に記載の非水系電解質二次電池用正極活物質。   The positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the content of phosphorus (P) is 0.01 mass% or more and 0.10 mass% or less. ケイ素(Si)の含有量が0.05質量%以上0.30質量%以下である請求項1乃至4のいずれか一項に記載の非水系電解質二次電池用正極活物質。   The positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the content of silicon (Si) is 0.05% by mass or more and 0.30% by mass or less. 一般式:LiNi1―y―zCoAl(0.90≦x≦1.20、0.01≦y≦0.20、0.01≦z≦0.10)で表されるリチウムニッケル複合酸化物の粒子と、ホウ素化合物、リン化合物、及びケイ素化合物から選択されるいずれか一種以上の化合物を含む気体と、を接触させる接触工程と、
前記接触工程の後、得られた物質を、600℃以上800℃以下の温度で加熱処理する加熱工程と、を有する非水系電解質二次電池用正極活物質の製造方法。
General formula: Li x Ni 1-yz Co y Al z O 2 (0.90 ≦ x ≦ 1.20, 0.01 ≦ y ≦ 0.20, 0.01 ≦ z ≦ 0.10) A contact step in which particles of the lithium nickel composite oxide to be contacted with a gas containing at least one compound selected from a boron compound, a phosphorus compound, and a silicon compound;
The manufacturing method of the positive electrode active material for non-aqueous electrolyte secondary batteries which has a heating process which heat-processes the obtained substance at the temperature of 600 to 800 degreeC after the said contact process.
前記ホウ素化合物が、ホウ酸トリメチル、及びホウ酸トリエチルから選択される一種以上であり、
前記リン化合物が、亜リン酸トリメチル、亜リン酸トリエチル、リン酸トリメチル、リン酸トリエチル、及びリン酸ジメチルから選択される一種以上であり、
前記ケイ素化合物が、ジメトキシジメチルシラン、トリメトキシシラン、トリメトキシメチルシラン、オルトケイ酸テトラメチル、ビニルトリメトキシシラン、トリエトキシメチルシラン、オルトケイ酸テトラエチル、3−アミノプロピルトリメトキシシランから選択させる一種以上である、請求項6に記載の非水系電解質二次電池用正極活物質の製造方法。
The boron compound is one or more selected from trimethyl borate and triethyl borate;
The phosphorus compound is at least one selected from trimethyl phosphite, triethyl phosphite, trimethyl phosphate, triethyl phosphate, and dimethyl phosphate;
The silicon compound is one or more selected from dimethoxydimethylsilane, trimethoxysilane, trimethoxymethylsilane, tetramethyl orthosilicate, vinyltrimethoxysilane, triethoxymethylsilane, tetraethyl orthosilicate, and 3-aminopropyltrimethoxysilane. The manufacturing method of the positive electrode active material for non-aqueous electrolyte secondary batteries of Claim 6 which exists.
JP2016142137A 2016-07-20 2016-07-20 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery Active JP7052189B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016142137A JP7052189B2 (en) 2016-07-20 2016-07-20 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP2021207173A JP2022034002A (en) 2016-07-20 2021-12-21 Positive electrode active material for non-aqueous electrolyte secondary battery
JP2023172069A JP2023168496A (en) 2016-07-20 2023-10-03 Positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016142137A JP7052189B2 (en) 2016-07-20 2016-07-20 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021207173A Division JP2022034002A (en) 2016-07-20 2021-12-21 Positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2018014199A true JP2018014199A (en) 2018-01-25
JP7052189B2 JP7052189B2 (en) 2022-04-12

Family

ID=61021294

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016142137A Active JP7052189B2 (en) 2016-07-20 2016-07-20 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP2021207173A Pending JP2022034002A (en) 2016-07-20 2021-12-21 Positive electrode active material for non-aqueous electrolyte secondary battery
JP2023172069A Pending JP2023168496A (en) 2016-07-20 2023-10-03 Positive electrode active material for non-aqueous electrolyte secondary battery

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021207173A Pending JP2022034002A (en) 2016-07-20 2021-12-21 Positive electrode active material for non-aqueous electrolyte secondary battery
JP2023172069A Pending JP2023168496A (en) 2016-07-20 2023-10-03 Positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (3) JP7052189B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170763A1 (en) * 2019-02-19 2020-08-27 Jfeスチール株式会社 Positive electrode active material for lithium-ion secondary cell, and lithium-ion secondary cell
JP2021508154A (en) * 2018-02-28 2021-02-25 エルジー・ケム・リミテッド Positive electrode active material for secondary batteries, manufacturing method thereof, and lithium secondary batteries containing them
WO2024095977A1 (en) * 2022-10-31 2024-05-10 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2024095976A1 (en) * 2022-10-31 2024-05-10 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251434A (en) * 2007-03-30 2008-10-16 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte battery
JP2011049180A (en) * 1999-07-07 2011-03-10 Showa Denko Kk Method for producing positive electrode active material for lithium ion secondary battery
JP2012084547A (en) * 2003-12-05 2012-04-26 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery and battery using the same
JP2013026199A (en) * 2011-07-26 2013-02-04 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery comprising the same
JP2014040363A (en) * 2012-07-24 2014-03-06 Tanaka Chemical Corp Compound oxide, complex transition metal compound, production method of compound oxide, cathode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2014061399A1 (en) * 2012-10-15 2014-04-24 日本碍子株式会社 Positive active material for lithium secondary battery, and positive electrode obtained using same
WO2014118834A1 (en) * 2013-01-31 2014-08-07 三洋電機株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2014238957A (en) * 2013-06-07 2014-12-18 Dowaホールディングス株式会社 Positive electrode active material powder, and manufacturing method thereof
JP2015018803A (en) * 2013-07-08 2015-01-29 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Cathode active material, method of producing the same, and cathode and lithium secondary battery employing the same
CN104393266A (en) * 2014-12-08 2015-03-04 北京化工大学 Silicon-carbon composite electrode material of core-shell structure and preparation method thereof
WO2015072359A1 (en) * 2013-11-15 2015-05-21 住友金属鉱山株式会社 Method for producing surface-treated oxide particles, and oxide particles produced by said production method
CN105098163A (en) * 2014-05-16 2015-11-25 微宏动力系统(湖州)有限公司 Preparation method of coated electrode material
JP2016023118A (en) * 2014-07-23 2016-02-08 住友金属鉱山株式会社 Method for producing surface-treated oxide particles and oxide particles obtained using the production method
JP2016072071A (en) * 2014-09-30 2016-05-09 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, fluid dispersion used in producing the same, and production method thereof
WO2016084966A1 (en) * 2014-11-28 2016-06-02 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049180A (en) * 1999-07-07 2011-03-10 Showa Denko Kk Method for producing positive electrode active material for lithium ion secondary battery
JP2012084547A (en) * 2003-12-05 2012-04-26 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery and battery using the same
JP2008251434A (en) * 2007-03-30 2008-10-16 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte battery
JP2013026199A (en) * 2011-07-26 2013-02-04 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery comprising the same
JP2014040363A (en) * 2012-07-24 2014-03-06 Tanaka Chemical Corp Compound oxide, complex transition metal compound, production method of compound oxide, cathode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2014061399A1 (en) * 2012-10-15 2014-04-24 日本碍子株式会社 Positive active material for lithium secondary battery, and positive electrode obtained using same
WO2014118834A1 (en) * 2013-01-31 2014-08-07 三洋電機株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2014238957A (en) * 2013-06-07 2014-12-18 Dowaホールディングス株式会社 Positive electrode active material powder, and manufacturing method thereof
JP2015018803A (en) * 2013-07-08 2015-01-29 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Cathode active material, method of producing the same, and cathode and lithium secondary battery employing the same
WO2015072359A1 (en) * 2013-11-15 2015-05-21 住友金属鉱山株式会社 Method for producing surface-treated oxide particles, and oxide particles produced by said production method
CN105098163A (en) * 2014-05-16 2015-11-25 微宏动力系统(湖州)有限公司 Preparation method of coated electrode material
JP2016023118A (en) * 2014-07-23 2016-02-08 住友金属鉱山株式会社 Method for producing surface-treated oxide particles and oxide particles obtained using the production method
JP2016072071A (en) * 2014-09-30 2016-05-09 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, fluid dispersion used in producing the same, and production method thereof
WO2016084966A1 (en) * 2014-11-28 2016-06-02 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell
CN104393266A (en) * 2014-12-08 2015-03-04 北京化工大学 Silicon-carbon composite electrode material of core-shell structure and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508154A (en) * 2018-02-28 2021-02-25 エルジー・ケム・リミテッド Positive electrode active material for secondary batteries, manufacturing method thereof, and lithium secondary batteries containing them
JP7139007B2 (en) 2018-02-28 2022-09-20 エルジー・ケム・リミテッド Positive electrode active material for secondary battery, manufacturing method thereof, and lithium secondary battery including the same
WO2020170763A1 (en) * 2019-02-19 2020-08-27 Jfeスチール株式会社 Positive electrode active material for lithium-ion secondary cell, and lithium-ion secondary cell
JPWO2020170763A1 (en) * 2019-02-19 2021-03-11 Jfeスチール株式会社 Positive electrode active material for lithium ion secondary batteries and lithium ion secondary batteries
WO2024095977A1 (en) * 2022-10-31 2024-05-10 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2024095976A1 (en) * 2022-10-31 2024-05-10 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2022034002A (en) 2022-03-02
JP7052189B2 (en) 2022-04-12
JP2023168496A (en) 2023-11-24

Similar Documents

Publication Publication Date Title
JP6997216B2 (en) Solid electrolyte
JP5971109B2 (en) Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
Wu et al. Improved electrochemical performance of spinel LiMn 1.5 Ni 0.5 O 4 through MgF 2 nano-coating
JP4998753B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP2023168496A (en) Positive electrode active material for non-aqueous electrolyte secondary battery
WO2015072359A1 (en) Method for producing surface-treated oxide particles, and oxide particles produced by said production method
CN111226332B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery and method for producing same
CN107078294B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
WO2012131881A1 (en) Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2011155523A1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP2022166095A (en) Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
EP2937917A1 (en) Positive electrode material for lithium secondary batteries
JP6742599B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JPWO2018074175A1 (en) Silicon oxide based negative electrode material and method for manufacturing the same
WO2016171051A1 (en) Positive-electrode active material for nonaqueous-electrolyte secondary cell, method for manufacturing said material, and nonaqueous-electrolyte secondary cell in which positive-electrode active material is used
JP2012204322A (en) Method for producing active material for nonaqueous electrolyte secondary battery
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
JP2023103440A (en) Method for manufacturing positive electrode active material for lithium ion secondary battery
JP7135433B2 (en) Method for producing lithium-nickel composite oxide
JP2019192513A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2019220361A (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing the same and lithium ion secondary battery
JP7099033B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery
JP5640778B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4305613B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7225854B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211221

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220104

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7052189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150