JP2018013468A - Device for detecting condition using standing wave radar - Google Patents
Device for detecting condition using standing wave radar Download PDFInfo
- Publication number
- JP2018013468A JP2018013468A JP2016221851A JP2016221851A JP2018013468A JP 2018013468 A JP2018013468 A JP 2018013468A JP 2016221851 A JP2016221851 A JP 2016221851A JP 2016221851 A JP2016221851 A JP 2016221851A JP 2018013468 A JP2018013468 A JP 2018013468A
- Authority
- JP
- Japan
- Prior art keywords
- distance
- distance spectrum
- wave
- change
- standing wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Air Conditioning Control Device (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
本発明は、測定対象との間の距離を測定できると共に、測定対象の人の汗を検知して空調状体を制御することができる定在波レーダーによる状態検知装置に関する。 The present invention relates to a state detection apparatus using a standing wave radar capable of measuring a distance to a measurement object and controlling an air-conditioning body by detecting sweat of a measurement object person.
従来、介護施設等において、ベッド上に寝ている被介護者がおむつの中に排尿してしまったことを、その時点で検知する手段は存在しなかった。よって、介護者は、被介護者の不快感を解消し、清潔に保つには、定期的に被介護者のおむつを点検又は交換するしか、方法がなかった。また、従来、洗濯物の乾燥の度合いを測るには、洗濯後の乾燥中の衣類にさわってみて、触感で検知するしか方法がなかった。従って、連続的に水分の変化を測定し、対象物の水分に関する状態の変化を、遠隔場所にて、経時的に検知することはできなかった。 Conventionally, in a care facility or the like, there has been no means for detecting that a cared person sleeping on a bed has urinated in a diaper at that time. Therefore, the caregiver has only a method of periodically checking or replacing the diaper of the cared person in order to eliminate the careless person's discomfort and keep it clean. Conventionally, the only way to measure the degree of drying of the laundry is to touch the clothes that are being dried after washing and detect them by touch. Therefore, it was impossible to continuously measure the change in moisture and detect the change in the state of moisture of the object over time at a remote place.
特許文献1には、電波センサから舗装路面に向けて電波を送信し、反射面からの反射波を前記電波センサで受信し、電波を送信してから受信するまでの時間を使用して、電波センサから反射面までの距離を算出すると共に、反射波の反射強度を算出し、前記反射面までの距離から、反射面の高さを求め、反射強度から、舗装路面の状態が湿潤、完遂、凍結のいずれであるかを判定するシステムが開示されている。
In
また、特許文献2には、定在波レーダーを使用して、人体の危険を検知する技術が開示されている。この特許文献2においては、送信波及び受信波の合成波である定在波を検知し、その周波数分布から、距離成分を抽出して測定対象者までの距離を求め、位相成分から、測定対象者の呼吸数及び脈拍を求める。
しかしながら、この特許文献1の技術は、マイクロ波のパルス信号を使用しているので、電波を送信してから受信するまでの時間を基に、反射面までの距離を求めているので、上述のように、マイクロ波の速度を考慮すると、道路の上方の高い位置(例えば、10m)に電波センサを設置しないと、反射波を受信することができず、結局、屋外のように、そのような高い位置に電波センサを設置できる空間的余裕が必要になるという問題点がある。また、屋上又はベランダに多数の洗濯物が吊り下げられている場合に、それらの洗濯物について、個別に水分を検知することは困難であった。
However, since the technique of
また、特許文献2の技術は、人体の呼吸数及び脈拍は検知することができるものの、測定対象物の水分変化については、検知することができなかった。
Moreover, although the technique of
本発明はかかる問題点に鑑みてなされたものであって、屋内のように狭い空間においても、測定対象の距離を測定できると共に、この測定対象の水分等の経時的変化を測定することができ、更に、測定対象が近接して複数存在する場合も、距離及び水分等を測定して、人の汗の変化を検知し、空調状態を汗の状態に基づいて適切に調整することができる定在波レーダーによる状態検知装置を提供することを目的とする。 The present invention has been made in view of such problems, and can measure the distance of a measurement object even in a narrow space such as indoors, and can measure a change over time of moisture or the like of the measurement object. Furthermore, even when there are multiple objects to be measured close to each other, it is possible to measure the distance, moisture, etc., detect changes in human sweat, and adjust the air conditioning state appropriately based on the state of sweat. An object of the present invention is to provide a state detection device using a standing wave radar.
本願第1発明に係る定在波レーダーによる状態検知装置は、
周波数掃引された電波を外部に送信し、外部の測定対象にて反射した反射波を送信波長に基づく一定距離だけ離隔した2点にて検出し、送信波及び受信波から合成される定在波を検知する定在波検知部と、
前記定在波検知部が検知した合成波の周波数の強度分布から、その直流成分を除去し、フーリエ変換して、距離スペクトルを求める距離スペクトル演算部と、
前記距離スペクトルから、基準時の距離スペクトルを減算して、距離スペクトルの差分を演算し、この差分距離スペクトルを経時的に求める差分検出部と、
前記差分距離スペクトルの距離成分により測定対象までの距離を求める距離演算部と、
前記差分距離スペクトルの振幅が、前記測定対象の誘電率の変化に基づいて変化する経緯を監視し、その振幅の変化に基づいて、測定対象としての人の汗の変化を検知する検知部と、
前記検知部が検知した汗の変化に基づいて、前記人の周囲の空調状態を制御する制御部と、
を有することを特徴とする。
The state detection device by the standing wave radar according to the first invention of the present application,
A standing wave that is transmitted from the transmitted wave and the received wave after the frequency-swept radio wave is transmitted to the outside and the reflected wave reflected by the external measurement target is detected at two points separated by a certain distance based on the transmission wavelength. A standing wave detector for detecting
From the intensity distribution of the frequency of the synthesized wave detected by the standing wave detection unit, the DC component is removed, Fourier transform, a distance spectrum calculation unit for obtaining a distance spectrum,
Subtracting the distance spectrum at the reference time from the distance spectrum, calculating the difference of the distance spectrum, and obtaining a difference distance spectrum over time,
A distance calculation unit for obtaining a distance to a measurement object by a distance component of the difference distance spectrum;
A detector that monitors the change in the amplitude of the differential distance spectrum based on a change in the dielectric constant of the measurement target, and detects a change in human sweat as the measurement target based on the change in the amplitude;
Based on the change in sweat detected by the detection unit, a control unit for controlling the air conditioning state around the person,
It is characterized by having.
本願第2発明に係る定在波レーダーによる状態検知装置は、
周波数掃引された電波を外部に送信し、外部の測定対象にて反射した反射波を送信波長に基づく一定距離だけ離隔した2点にて検出し、送信波及び受信波から合成される定在波を検知する定在波検知部と、
前記定在波検知部が検知した合成波の周波数の強度分布から、その直流成分を除去し、フーリエ変換して、距離スペクトルを一定のサンプリング時間毎に求める距離スペクトル演算部と、
前記距離スペクトルから、前回又は所定回前のサンプリング時の距離スペクトルを減算して、距離スペクトルの差分を演算し、この差分距離スペクトルを経時的に求める差分検出部と、
前記差分距離スペクトルの距離成分により測定対象までの距離を求める距離演算部と、
前記差分距離スペクトルの振幅が、前記測定対象の誘電率の変化に基づいて変化する経緯を監視し、その振幅の変化に基づいて、測定対象としての人の汗の変化を検知する検知部と、
前記検知部が検知した汗の変化に基づいて、前記人の周囲の空調状態を制御する制御部と、
を有することを特徴とする。
The state detection device by the standing wave radar according to the second invention of the present application,
A standing wave that is transmitted from the transmitted wave and the received wave after the frequency-swept radio wave is transmitted to the outside and the reflected wave reflected by the external measurement target is detected at two points separated by a certain distance based on the transmission wavelength. A standing wave detector for detecting
From the intensity distribution of the frequency of the synthesized wave detected by the standing wave detection unit, the DC component is removed, and Fourier transform is performed, and a distance spectrum calculation unit that obtains a distance spectrum at a certain sampling time;
Subtracting the distance spectrum at the time of previous or predetermined sampling from the distance spectrum, calculating the difference of the distance spectrum, a difference detection unit for obtaining this difference distance spectrum over time,
A distance calculation unit for obtaining a distance to a measurement object by a distance component of the difference distance spectrum;
A detector that monitors the change in the amplitude of the differential distance spectrum based on a change in the dielectric constant of the measurement target, and detects a change in human sweat as the measurement target based on the change in the amplitude;
Based on the change in sweat detected by the detection unit, a control unit for controlling the air conditioning state around the person,
It is characterized by having.
これらの定在波レーダーによる状態検知装置において、
前記距離演算部は、更に、前記距離スペクトルの位相の変化分から測定対象の微小変位を求めるように構成することができる。また、前記差分検出部の前記差分距離スペクトルからその複数のピーク位置に対応する中心周波数をもつ複数の信号を抽出して、前記距離演算部に差分距離スペクトルとして出力する帯域通過フィルタを有することもできる。
In the state detection device by these standing wave radars,
The distance calculation unit can be further configured to obtain a minute displacement of the measurement object from a change in the phase of the distance spectrum. In addition, a band pass filter may be provided that extracts a plurality of signals having center frequencies corresponding to the plurality of peak positions from the difference distance spectrum of the difference detection unit and outputs the signals to the distance calculation unit as a difference distance spectrum. it can.
本発明によれば、測定対象との間の距離と共に、測定対象の人の汗の状態を検知することができるので、空調機の送風方向を汗をかいている人に向けたり、汗の量により空調の強弱を制御したりすることができる。 According to the present invention, since the state of sweat of the person to be measured can be detected along with the distance to the object to be measured, the air blowing direction of the air conditioner is directed to the person who is sweating, the amount of sweat It is possible to control the strength of air conditioning.
以下、本発明の実施の形態について、添付の図面を参照して具体的に説明する。図1は、本実施形態の定在波レーダーによる水分検出装置のブロック図である。定在波検知部2は、定在波レーダーモジュールとして構成され、この定在波レーダーモジュールには、24GHz高周波送受信部4が設けられている。この24GHz高周波送受信部4は、24GHz帯VCO(電圧制御発振器)と平面アンテナ3とが一体化されたモジュールである。そして、この送受信部4は、VCOにより平面アンテナ3から電波1を発信し、測定対象としての被反射体からの反射波がアンテナ3に検出される。送受信部4には2個の検波器5a、5bが内蔵されており、検波器5a、5bは送信波及び受信波を検波する。
Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a block diagram of a moisture detection apparatus using a standing wave radar according to the present embodiment. The standing
アンテナ3から電波1を送信すると、反射物体がある場合は、アンテナ3に反射波が戻ってきて、周波数が同じで進行方向が異なる波が重なり、合成波である定在波が発生する。VCOとアンテナ3とを接続する線路上及びアンテナ給電部には、送信信号(進行波)と受信信号(反射波)が混在し、それらの合成で定在波が発生する。この場合に、VCOに供給するスイープ電圧を、少なくとも発信電波が被反射体に反射して戻ってくるまでの時間は一定に保持する必要があるため、前記スイープ電圧は、ステップ状に変化させる必要がある。そして、VCOを制御して周波数を順次切り替えることにより、複数の周波数に対する混合波の信号レベルが検波器5a、5bにより検出される。検波器5a、5bでは、送信波の電力と、反射波の電力と、定在波によって生じた成分とが検出される。得られた検波信号は、オペアンプ6a、6bで400kHz以下の必要な帯域が増幅されて、信号処理部8に入力される。
When the
レーダー制御モジュール基板として構成された信号処理部8は、変調信号生成部10にてFM変調された周波数制御電圧を生成する。この周波数制御電圧はDA変換部9にてアナログ信号に変換され、更に、この周波数制御信号がオペアンプ7を介して増幅された後、24GHz高周波モジュール4のVCOの制御入力に入力される。この周波数制御信号により、VCOは発信電波の周波数をスイープさせる。
The
信号処理部8においては、オペアンプ6a、6bで増幅された検波信号がAD変換部11に入力された後、距離スペクトル演算部12に入力される。この距離スペクトル演算部12は、定在波検知部2が検知した合成波の周波数の強度分布から、その直流成分を除去し、フーリエ変換して、距離スペクトルを求める。この距離スペクトルは、差分検出部13に入力される。差分検出部13は、前記距離スペクトルから、基準時の距離スペクトルを減算して、距離スペクトルの差分を演算し、この差分距離スペクトルを経時的に求める。この差分距離スペクトルは、距離演算部14に入力される。そして、距離演算部14は、前記差分距離スペクトルの距離成分により測定対象までの距離を求める。そして、判定部15は、差分距離スペクトルの振幅が、測定対象の誘電率の変化に基づいて変化する経緯を監視し、その振幅の変化に基づいて、測定対象における人の汗の変化を検知する検知部と、この検知部が検知した汗の変化に基づいて、人の周囲の空調状態を制御する制御部とを備えている。
In the
信号処理部8においては、検波信号が、AD変換部11によりデジタル信号に変換された後、距離スペクトル演算部12に入力される。距離スペクトル演算部12においては、入力される信号は周期関数で、その周期は被反射体からの距離に逆比例しているので、これをフーリエ変換することにより、周期の逆数である周波数を求めることによって、この周波数から被反射体までの距離を求めることができる。また、得られた波形の位相を基に、被反射体の微小変位情報を検出することができる。例えば、24GHzの場合は、微小変位は光速を4πfで除算した値となり、約±3.125mmの範囲の変位を検出することができる。このように、検波器5a、5bから検出された信号を信号処理することにより、被反射体からの距離、被反射体の速度及び変位を演算し、その経時変化を計測することにより、被反射体の状態を検出することができる。
In the
判定部15では、測定対象の人の汗の変化を検知し、この汗の変化に基づいて人の周囲の空調状態を制御する。この制御信号は、有線又は無線で、外部に出力される。
The
次に、信号処理部8の構成について更に詳細に説明する。定在波は、図3に示すように,信号源であるVCOから生成した送信波VTと、各ターゲットからの反射波VR1,VR2,VR3、・・・VRnとの干渉によって生じる。定在波レーダーは、この定在波を利用することによって、測定対象の人の汗の変化を検知すると共に、各測定対象までの距離d1,d2,d3・・・dnを測定する。
Next, the configuration of the
送信波(進行波)は、信号源の振幅をA、周波数をf(t)、光速をc(3×108m/s)とすると、下記数式1で表される。但し、周波数f(t)は、図4に示すように、f0とfdで表される。
The transmission wave (traveling wave) is expressed by the following
k番目のターゲットの距離をdk、x軸上の任意の点における送信波に対する反射波の大きさの比をγk(反射係数の大きさ)、位相差をφk(反射係数の位相)とすれば、そのターゲットからの反射波は下記数式2にて表すことができる。
If the distance of the kth target is dk, the ratio of the magnitude of the reflected wave to the transmitted wave at an arbitrary point on the x axis is γk (the magnitude of the reflection coefficient), and the phase difference is φk (the phase of the reflection coefficient). The reflected wave from the target can be expressed by
アンテナから検出される検波出力は、合成波になるので、振幅Vcは下記数式3で表され、パワーは振幅の2乗であるので、合成波のパワーは、下記数式4で表される。
Since the detection output detected from the antenna is a composite wave, the amplitude Vc is expressed by the following mathematical formula 3, and the power is the square of the amplitude. Therefore, the power of the composite wave is expressed by the following
送信波の大きさは、反射波の大きさより桁違いに大きいので、γkは1より極めて小さい。そこで、数式4に数式1及び数式2を代入して近似値をとると、下記数式5が得られる。
Since the magnitude of the transmitted wave is orders of magnitude larger than the magnitude of the reflected wave, γk is extremely smaller than 1. Therefore, substituting
この数式5において、{}内の第1項は、送信波のパワーを示し、第2項は、反射波のパワーを示し、第3項は、定在波によるパワーの変化分を示す。従来のレーダーは、第2項の反射波を受信して、信号処理を行うが、本発明においては、第3項の信号を信号処理する。このため、第1項目と第2項目を削除するため、合成波パワーp(fd、xs)をfdで微分して、この第1項目及び第2項目を除去する。 In Equation 5, the first term in {} indicates the power of the transmission wave, the second term indicates the power of the reflected wave, and the third term indicates the change in power due to the standing wave. The conventional radar receives the reflected wave of the second term and performs signal processing. In the present invention, the signal of the third term is processed. Therefore, in order to delete the first item and the second item, the synthesized wave power p (fd, xs) is differentiated by fd, and the first item and the second item are removed.
ここで、ターゲット(被反射体)の数が1であるとすると、n=1を数式5に代入して、下記数式6が得られる。この数式6をグラフ化すると、図5のようになる。即ち、合成波のパワーは、固定値1+γ2と、周期関数との和となる。この図5において、周期関数の周波数(周期の逆数)はc/2dとなり、距離dの成分が入る。このため、周期から周波数を求めれば、距離dが求まることになる。数式6から、直流成分1+γ2を除去して、フーリエ変換すると、図6に示すように、距離スペクトルP(x)が求まる。
Here, assuming that the number of targets (reflectors) is 1, n = 1 is substituted into Equation 5, and the following Equation 6 is obtained. The formula 6 is graphed as shown in FIG. That is, the power of the composite wave is the sum of the fixed
先ず、下記数式7に示すフーリエ変換公式に対し、変数の置き換えをし、更に、観測位置を原点として、フーリエ変換すると、下記数式8に示す距離スペクトルが得られる。但し、Sa(z)=sin(z)/zとする。なお、数式8では、直流分がカットされていない。周期のある関数をフーリエ展開すると、その関数に含まれる直流成分と、振動成分(sin、cos)に分解されてしまう。距離スペクトルは、その公式上、下記数式8のように表示される。
First, variables are replaced with respect to the Fourier transform formula shown in the following
なお、数式8のA2fw(1+Σγk 2)Sa(2πfw/c)x)は、直流成分であるが、この直流成分は、実際の回路において、コンデンサにより除去される。 Incidentally, A 2 f w Equation 8 (1 + Σγ k 2) Sa (2πf w / c) x) is the DC component, the DC component, in the actual circuit, is removed by the capacitor.
この数式8の最後の式で表される距離スペクトルP(x)をグラフ図でみると、図7に示すようになる。そして、数式8の{}内の第1項目の直流分を除去し、第3項目をcos成分を複素正弦波(解析信号)に変換して除去し、定在波成分である第2項目の成分を抽出することができる。しかし、図7に破線にて示すように、数式8の{}内の第2項目の成分には、虚数側の信号が漏れ込んでしまう。つまり、この部分の定在波成分には、虚数側の信号が漏れ込んだ値になってしまう。
When the distance spectrum P (x) represented by the last expression of
このような問題点を解消するためには、例えば、図8に示すように、送信波とその反射波を合成した信号を検出する際に、送信波の波長をλとして、λ/8だけ離隔した2点にて、信号レベルを検出するように構成することができる。つまり、レーダーの進行方向をx軸にとった場合に、被反射体であるn個(nは自然数、図示は2個のみ)のターゲットからの反射波をアンテナが受信し、これを送信波と共に、x軸方向にλ/8だけ離隔した2個のパワーディテクタで検出し、これを信号処理する。このとき、この2個のディテクタが検出したパワーレベルをp(fd,x1)、p(fd,x2)とすると、x1=0の位置に置かれたディテクタの出力は、検出パワーを示す数式5に、x1=xs=0を代入して、下記数式9に示すp(fd、0)として求まり、x1=−λ/8の位置に置かれたディテクタの出力は、検出パワーを示す数式5に、x2=xs=−λ/8を代入して、下記数式9に示すp(fd、−λ/8)として求まる。この数式9に示すように、λ/8だけ離隔した2点で定在波を検出することにより、各位置(0,−λ/8)に置かれたディテクタの出力の定在波成分に、cosとsinの直交成分が得られ、これにより、虚像信号を消去することができ、虚像側から漏れ込む信号の影響を解消することができる。即ち、cosとsinの直交成分(X軸成分とY軸成分)から合成されるベクトルが求める解析信号である。通常、虚軸側の信号は測定できないのであるが、−λ/8の位置に、虚軸側の信号が計測できることになり、ベクトル合成信号を形成できる。このベクトルの回転速度が周波数になるので、本実施形態では、この周波数と位相を解析することになる。
In order to solve such a problem, for example, as shown in FIG. 8, when detecting a signal obtained by synthesizing a transmission wave and its reflection wave, the wavelength of the transmission wave is λ, and is separated by λ / 8. The signal level can be detected at the two points. In other words, when the traveling direction of the radar is taken on the x-axis, the antenna receives reflected waves from n targets (n is a natural number, only two in the figure) that are reflected bodies, and this is transmitted along with the transmitted waves. , Detected by two power detectors separated by λ / 8 in the x-axis direction, and this is signal-processed. At this time, assuming that the power levels detected by the two detectors are p (f d , x 1 ) and p (f d , x 2 ), the output of the detector placed at the position of x 1 = 0 is detected. Substituting x 1 = x s = 0 into Formula 5 indicating power, it is obtained as p (f d , 0) shown in
この数式9におけるxs=0の位置のディテクタの出力のうちの定在波成分をa、xs=−λ/8の位置のディテクタの出力のうちの定在波成分をbとすると、a、bは下記数式10にて表される。そして、数式8の3項からなる最後の式を下記数式11に基づいて置き換えをすると、下記数式12及び数式13が得られる。即ち、数式10が求めるX軸、Y軸(実信号、虚軸信号)を実信号に変換された形に置き換えることが可能になる。数式13は、まさに、時間方向の信号と、回転軸での信号を表現しているが、結局、この数式13により、回転する解析信号を計算できることがわかる。
In
数式12の右辺のPDCは直流成分であり、m(fd)cos(θ(fd)−4π(f0+fd)/c・xs)は周期的に変化する定在波成分である。この定在波成分は、前述のごとく、xs=0の位置の成分aと、xs=−λ/8の位置の成分bとの合成成分a+jbは、sinとcosとの直交成分となり、aとbとから解析信号を合成することにより、不要の信号(図7に示す虚数側から漏れ込んだ信号)による影響が除去される。よって、この値(数式13の信号)を解析することにより、図9に示す目的の成分pa(fd,0)が得られる。
P DC on the right side of
而して、数式13の解析信号において、反射係数γkの大きさに依存して、検出される信号強度が変化する。換言すれば、解析信号の信号強度の時間的推移を測定すれば、強度の変化が生じた場合に、その要因の一つとして、反射係数γkの変化があったことを挙げることができる。即ち、周波数分布の各周波数のγk(反射係数の大きさ)が変化することで生じる信号強度の変化が、測定対象の状態の変化を示している。
Thus, in the analytic signal of
誘電率が異なる2物質の境界面での反射係数γは、その誘電率を、ε1、ε2とすると、下記数式14にて表される。
The reflection coefficient γ at the boundary surface between two substances having different dielectric constants is expressed by the following
このように、境界面での反射強度は、境界面を形成している各媒体が有する固有の比誘電率の差によって決定され、反射波形の極性も比誘電率の大小関係により決まる。よって、電波の反射強度は、反射係数γの大きさにより異なり、反射係数γは、誘電率により異なるため、反射面の物質の変化により、反射強度が変化する。例えば、水は誘電率が高く、電波の反射強度が大であるため、皮膚からの反射との識別が可能であり、また反射強度の変化により水膜の形成状況が分かるため、薄く濡れた状態と厚い水膜が形成された状態の区別が可能である。 As described above, the reflection intensity at the boundary surface is determined by the difference in specific dielectric constant of each medium forming the boundary surface, and the polarity of the reflected waveform is also determined by the relative relationship of the relative dielectric constant. Therefore, the reflection intensity of the radio wave varies depending on the magnitude of the reflection coefficient γ, and the reflection coefficient γ varies depending on the dielectric constant. Therefore, the reflection intensity varies due to a change in the material of the reflection surface. For example, since water has a high dielectric constant and high radio wave reflection intensity, it can be distinguished from reflection from the skin, and the water film formation status can be determined by the change in reflection intensity, so it is thinly wet. And a thick water film can be distinguished.
誘電率(比誘電率)は、例えば、水が4.2、絹が1.3〜2、空気が1.00、塩が3.0〜15.0、水が80、木綿が3〜7.5、雪が3.3、ガラスが3.7〜10.0である。水は誘電率が高く、電波の反射強度が大であるため、水分を含むアスファルト又はコンクリートと、乾燥状態のアスファルト又はコンクリートとの判別が可能であり、また反射強度の変化により水膜の形成状況が判別できるため、薄く濡れた状態と厚い水膜が形成された状態の区別が可能である。従って、道路上の雨の観測の場合には、その反射強度の変化を監視することにより、路面状態について、「乾燥」、「湿潤」、「冠水」のいずれであるかを判定することが可能である。そして、計測箇所が濡れ始めた状態(浸水前、雨の降り始め)で、リセットして、その後監視記録することが可能であり、しかも濡れはじめの状態で零点調整(オフセット調整)を自動的に行えば、定期的な調整の必要がなくなる。 The dielectric constant (dielectric constant) is, for example, 4.2 for water, 1.3-2 for silk, 1.00 for air, 3.0-15.0 for salt, 80 for water, 3-7 for cotton. .5, snow is 3.3, and glass is 3.7 to 10.0. Since water has a high dielectric constant and high radio wave reflection strength, it is possible to distinguish water-containing asphalt or concrete from dry asphalt or concrete, and the formation of a water film due to changes in reflection intensity Therefore, it is possible to distinguish between a thinly wet state and a thick water film. Therefore, in the case of rain observation on the road, it is possible to determine whether the road surface condition is "dry", "wet", or "flooding" by monitoring the change in reflection intensity. It is. It is possible to reset the measurement location when it begins to get wet (before flooding, when it starts to rain), and then monitor and record, and zero adjustment (offset adjustment) is automatically performed when the measurement location starts to get wet. Doing so eliminates the need for regular adjustments.
なお、電波センサは微弱電波を使用しているため、無線局の申請は不要である。また、定在波レーダーの場合は、衣服及び布団を通して、衣服に包まれた人体にて直接反射するので、人体の表面の湿潤の状況を、布団がかけられていても、人体の湿潤の状況を検知することができる。 In addition, since the radio wave sensor uses weak radio waves, it is not necessary to apply for a radio station. In the case of standing wave radar, since it is reflected directly by the human body wrapped in clothes through the clothes and the futon, the surface of the human body is wet even if the futon is applied. Can be detected.
上述のごとく、距離スペクトル演算部12が求めた距離スペクトルの振幅の強度の変化により、測定対象の湿潤の状況の変化を検知することができるが、この距離スペクトルには、水分変化がない物体からの反射波に起因する定在波の距離スペクトルが含まれている。そこで、差分検出部13は、測定された距離スペクトルから、基準時の距離スペクトルを削除して、差分距離スペクトルを演算する。図10(a)は、距離スペクトル演算部12が求めた距離スペクトルP(x)を示す。この測定結果には、水分を含む測定対象は存在せず、環境からの反射波に起因するものが求められている。そこで、特定の基準時に得られた距離スペクトルをP0(x)として、以後の各サンプリング時点に得られた距離スペクトルP(x)から、基準時の距離スペクトルP0(x)を減算する。即ち、各サンプリング時点で得られた距離スペクトルP(x)に対し、図10(b)に示す−P0(x)を加算する。このため、差分検出部13からは、水分を含む測定対象がない場合は、図10(c)に示すように、0信号が得られる。そこで、あるサンプリング時点で、測定対象に水分が含まれた場合には、図10(d)に示すように、その水分の距離スペクトルの振幅が現れる。このサンプリング時点の距離スペクトルに対しても、図10(b)の基準スペクトル−P0(x)を加算すると、図10(e)に示すように、P(x)−P0(x)の距離スペクトルが得られ、この距離スペクトルには、水分に起因するピーク強度の振幅のみが現れる。このようにして、差分検出部13にて、距離スペクトルの差分をとることにより、測定対象の環境からの反射の影響を低減して、水分の変化に起因する距離スペクトルの振幅の強度を求めることができる。
As described above, a change in the wet condition of the measurement target can be detected based on a change in the amplitude intensity of the distance spectrum obtained by the distance
なお、測定対象が2個の場合の距離スペクトルは、図11に示すように、xs=0のパワーp(fd、0)とxs=−λ/8のパワーp(fd,−λ/8)との合成波から直流分を除去して、フーリエ変換することにより、距離に対応する周波数が得られ、距離d1,d2が求まる。 The distance spectrum when measured is two, as shown in FIG. 11, the power p of x s = 0 (f d, 0) and x s = -λ / 8 power p (f d of - A frequency corresponding to the distance is obtained by removing a direct current component from the combined wave with λ / 8) and performing Fourier transform, and the distances d 1 and d 2 are obtained.
図12は合成波の真数のスペクトルと、虚数のスペクトルを示す図である。電波の速度cは、約30万km/秒である。発信波の周波数のスイープを、75MHz幅(fw)で行った場合、この75MHzの波長は、c/fw=4mである。しかし、波形を標本化するためのスイープは、往復で4mのため、行きはその半分の2mとなる。この2mを1周期と呼ぶ。そこで、スイープ幅75MHzで20mを計測した場合、10周期を計測することになる。スイープ時間が256μsであるとすると、観測する波形の周波数は、10/256μs=39kHzとなる。同様に、200mを計測した場合、100周期であるので、100/256μs=390kHzとなる。そして、図12に示す検出されたスペクトルの周波数のレベルは反射の強さを示し、周波数は距離に置き換えられる。よって、図11に示すように、フーリエ変換して39kHzのところにピークが現れると、それは、距離d1=10mの位置からの反射波であることがわかり、390kHzのところにピークが現れると、それは、距離d2=100mの位置からの反射波であることがわかる。このようにして、ディテクタの合成波の検出パワーpa(fd)を微分して直流成分を除去し、フーリエ変換すると、測定対象までの距離を求めることができる。 FIG. 12 is a diagram illustrating a true spectrum and an imaginary spectrum of a composite wave. The speed c of the radio wave is about 300,000 km / second. When the frequency of the transmitted wave is swept with a 75 MHz width (fw), the wavelength of 75 MHz is c / fw = 4 m. However, since the sweep for sampling the waveform is 4 m in the round trip, the distance is 2 m, which is half of that. This 2m is called one period. Therefore, when 20 m is measured with a sweep width of 75 MHz, 10 cycles are measured. Assuming that the sweep time is 256 μs, the frequency of the observed waveform is 10/256 μs = 39 kHz. Similarly, when 200 m is measured, since 100 cycles, 100/256 μs = 390 kHz. The frequency level of the detected spectrum shown in FIG. 12 indicates the intensity of reflection, and the frequency is replaced with distance. Therefore, as shown in FIG. 11, when a peak appears at 39 kHz after Fourier transform, it is understood that this is a reflected wave from a position of distance d 1 = 10 m, and when a peak appears at 390 kHz, It can be seen that this is a reflected wave from a position at a distance d 2 = 100 m. In this way, when the detected power pa (fd) of the combined wave of the detector is differentiated to remove the direct current component and Fourier transform is performed, the distance to the measurement object can be obtained.
スイープ幅が200MHzの場合、1周期が0.75mになるので、10mの計測は10/0.75=13.3周期を観測することになり、スイープ時間が256μsである場合は、13.3/256=51.9kHzとなる。つまり、スイープ幅が200MHzの場合は、51.9kHzにピークが現れた場合に、被反射体までの距離が10mと観測される。従って、スイープ幅を調整し、スイープ時間を調整することにより、検波出力の周波数を調整することができ、電波法の規制により帯域幅が制限されているので、一般的には、スイープ時間を可変とすることにより、被反射体までの距離を測定する。 When the sweep width is 200 MHz, one cycle is 0.75 m, and therefore, measurement of 10 m observes 10 / 0.75 = 13.3 cycles, and when the sweep time is 256 μs, 13.3 /256=51.9 kHz. That is, when the sweep width is 200 MHz, when the peak appears at 51.9 kHz, the distance to the object to be reflected is observed as 10 m. Therefore, by adjusting the sweep width and adjusting the sweep time, the frequency of the detection output can be adjusted, and the bandwidth is limited by the Radio Law, so the sweep time is generally variable. Thus, the distance to the object to be reflected is measured.
次に、微小変位計測について説明する。数式8において、位相に着目すると、k番目のターゲットに対する位相Ψkは、下記数式15の第1式のsinの角度として求まり、φkは初期位相であるから変化分では消えるので、距離dkの変化分をΔdk、位相の変化分をΔΨkとすると、数式14の第2式が得られ、これを変形して、下記数式16が得られる。
Next, minute displacement measurement will be described. Focusing on the phase in
この数式16から、距離dの微小変位が求まる。周波数が24GHzの場合は、±3.125mmの変位を検知することが可能となる。
From this
以上のように、被反射体からの反射波を送信波に合成した定在波の分析により、被反射体の距離及び微小変位を計測することができる。この計測結果を経時的に把握すれば、被反射体の距離、速度及び変位を計測することができ、結局、被反射体の動きを計測できる。従来のレーダーであると、1〜2m以下は距離の測定が困難であったのに対し、本発明により、0mに近い至近距離から、200mの遠距離迄、距離の測定が可能である。また、本発明の場合は、微小変位の検知が可能であり、相対変位分解能は0.01mmにも及ぶ。しかも、定在波レーダーの場合は、衣服及びカーテン等を通して、測定対象の水分を検知することができ、測定対象との間の距離の微小な変動を検知することができる。 As described above, the distance and minute displacement of the reflected body can be measured by analyzing the standing wave obtained by combining the reflected wave from the reflected body with the transmission wave. If this measurement result is grasped over time, the distance, speed, and displacement of the reflector can be measured, and eventually the movement of the reflector can be measured. In the case of a conventional radar, it is difficult to measure a distance of 1 to 2 m or less, but according to the present invention, a distance can be measured from a close distance close to 0 m to a long distance of 200 m. Further, in the case of the present invention, a minute displacement can be detected, and the relative displacement resolution reaches 0.01 mm. In addition, in the case of standing wave radar, moisture of the measurement target can be detected through clothes, curtains, and the like, and minute fluctuations in the distance to the measurement target can be detected.
なお、前述の如く、本発明は、数式13で示す距離スペクトルのピーク強度が、反射係数γkの大きさに依存して変化し、測定対象にて水分が増大すると、水分の誘電率εが高いため、数式14で示す反射係数γkが上昇し、距離スペクトルのピーク強度が上昇することにより、水分を検知することを測定原理とする。このように、ピーク強度を見ているので、測定対象が複数ある場合でも、水分の検知は容易である。しかし、この測定対象が多数となり、しかも、各測定対象の相互間の間隔が短いと、例えば,図11に示す複数個(図示例は2個)の距離スペクトルが相互に重なりあい、各距離スペクトルを分離できなくなる可能性がある。この場合、各測定対象について、上述の微小変位の測定に必要な位相差を求めることができなくなる。このような場合は、2個の距離スペクトルに対し、帯域通過フィルタをかけて、分離することができる。
As described above, according to the present invention, when the peak intensity of the distance spectrum expressed by
図2は、この場合の実施形態を示すブロック図である。差分検出部13から出力された差分距離スペクトルは、この帯域通過フィルタ16に入力される。この帯域通過フィルタ16は、差分検出部13の差分距離スペクトルからその複数のピーク位置に対応する中心周波数の中間の周波数にて最小ゲインとなる信号を出力するノッチ型の帯域通過フィルタである。この帯域通過フィルタ16から出力された差分距離スペクトルは、ピーク位置間で分離された複数個の差分距離スペクトルとなる。これら各差分距離スペクトルは、距離演算部14に入力され、位相差から、微小変位を求めることが可能となる。
FIG. 2 is a block diagram showing an embodiment in this case. The difference distance spectrum output from the
上述の如く構成されたセンサは、LED照明器具内に内蔵することができる。図13は、定在波レーダー内蔵型のLED照明器具の外観図及び内部分解図である。LED照明器具のケースは、既存のソケットに装着可能な口金21と、ABS等の樹脂素材又はアルミニウム材等で形成され、放熱機能をもつケース本体22と、透明若しくは半透明のABS若しくはポリカーボネート等の透光性樹脂素材又はガラス等からなる透光性カバー23とから構成されている。透光性カバー23は、光を拡散させ、又は光ビームを絞り込むレンズ形状を有する。LED照明器具としては、多数のものが存在するが、本発明は、いずれのLED照明器具にも適用することができる。LED照明器具は、口金21と、ケース本体22と、カバー23とから構成されたケースの内部に、表面実装型LED26と、定在波レーダーモジュール28(定在波検知部2)と、LED制御ユニット30とが格納されている。口金21の下半部はソケットにねじ込まれる部分であり、導電性の材料で形成されており、この口金21の上半部は、絶縁性の支持体となっている。そして、口金21の絶縁性支持体の上端部には、その内周縁部に周方向に沿って延びるねじ部21aが設けられており、ケース本体22の下端部にも、その外周縁部に周方向に沿って延びるねじ部22aが設けられていて、ねじ部21aをねじ部22aに螺合させることにより、口金21とケース本体22とが連結されるようになっている。また、ケース本体22の上端部にねじ部22bが形成され、カバー23の下端部にねじ部23aが形成されていて、ねじ部23aをねじ部22bに螺合させることにより、カバー23とケース本体22とが連結されるようになっている。
The sensor configured as described above can be incorporated in the LED lighting apparatus. FIG. 13 is an external view and an internal exploded view of a standing-wave radar built-in LED lighting fixture. The case of the LED lighting fixture is formed of a base 21 that can be attached to an existing socket, a resin material such as ABS, or an aluminum material, a case
ケース本体22内には、絶縁性の基板固定用ガイドフレーム32が設置されており、このガイドフレーム32に、LED制御ユニット30の基板31が固定されている。この基板31はその面を上下方向にして、即ち、その面を照明器具の中心軸に平行にして、ガイドフレーム32に固定されている。LED制御ユニット30は、この基板31上に搭載されており、ケース本体22及び口金21に囲まれた空間内に配置されている。この基板31には、口金21内で、外部から給電された100Vの交流電源が供給され、この電源は、基板21上に搭載された変換器でAC−DC変換された後、LED制御ユニット30に供給される。
An insulating substrate fixing
ケース本体22の上端部には、放熱性が優れたアルミニウム基板25がその面を水平にして配置されている。このアルミニウム基板25はケース本体22の上端部の縁部に支持されているが、基板31はこのアルミニウム基板25を挿通して、カバー23内に進出している。そして、この基板31の上端部に、レーダー制御モジュール基板27がその面を水平にして支持されており、このレーダー制御モジュール基板27の上に定在波レーダーモジュール28が搭載されている。アルミニウム基板25には、複数個(図示例は7個)のLED26が、照明器具の中心軸の周りに等配の位置に、即ち、円周上の等間隔の位置に、配置されている。アルミニウム基板25の電源線には、基板31の配線が接続されていて、基板31上の配線を介して、LED制御ユニット30からアルミニウム基板25上に搭載されたLED26に給電され、LED26が発光するようになっている。また、レーダー制御モジュール基板27上に搭載された定在波レーダーモジュール28には、基板31上の配線を介して、給電され、定在波レーダーモジュール28はマイクロ波等の電波を送受信し、レーダー制御モジュール基板27は、検出信号を、無線で外部の中継機器に送信する。この定在波レーダーモジュール28の上面には、アンテナ3が設置されており、電波はこのアンテナ8aを介して送受信される。なお、この定在波レーダーモジュール28はレーダー制御モジュール基板27に対して、傾斜可能になっており、この定在波レーダーモジュール28を傾斜させることにより、アンテナ3の指向方向を調節できるようになっている。
At the upper end of the
次に、本発明の実施形態に係る定在波レーダーによる状態検知装置の動作について、利用例と共に説明する。先ず、本発明の定在波レーダーによる状態検知装置を組み込んだセンサを、測定対象に向けて設置する。そうすると、定在波検知部2により、送信波と受信波との合成波である定在波が検知される。この定在波の検出信号は、AD変換部11を介して、距離スペクトル演算部12に入力され、距離スペクトルが演算される。そして、この距離スペクトルから、差分検出部13にて、差分距離スペクトルが求められる。距離演算部14は、この差分距離スペクトルから、前述の如くして、センサと測定対象との間の距離を演算する。その結果、この差分距離スペクトルのピーク位置は、図10(d)に示すように、センサと、測定対象との間の距離(例えば、2.5m)であることがわかる。そして、判定部15は、この2.5mの位置にピーク位置をもつ差分距離スペクトルについて、そのピーク強度の経時変化を監視する。そうすると、判定部15は、このピーク強度が上昇した場合は、測定対象の水分量変化により、誘電率が変化し、反射強度が増大したことに起因するものであることを検知することができ、このピーク強度が増大した時点を、水分量が増大した時点であると判定することができる。なお、レーダーによる反射波と送信波との定在波により、水分を検出するので、レーダーは衣服を透過するため、衣服に包まれた身体上の水分及び身体内の異物も検知することができる。
Next, the operation of the state detection apparatus using the standing wave radar according to the embodiment of the present invention will be described together with a usage example. First, a sensor incorporating a state detection device using a standing wave radar according to the present invention is installed toward a measurement object. Then, the standing
また、測定対象が距離d1及び距離d2にある場合、これらの測定対象に対し、センサからレーダー波が照射され、センサにて、測定対象(d1,d2)からの反射波が検出される。そして、差分検出部13は、距離d1の距離スペクトルに対し、ある特定の時点の距離スペクトルを基準時の距離スペクトルとし、一定のサンプリング時点毎に、得られた距離スペクトル(図10(a))から、基準時の距離スペクトル(図10(b))を減算し、差分距離スペクトル(図10(c))を演算する。その結果、基準時の距離スペクトルP0(x)からの変化がなければ、各サンプリング時点毎に得られた差分距離スペクトルは、図10(c)に示すように、0となる。そして、図10(d)に示すように、測定対象に水分が存在する場合は、その水分に起因するスペクトルを含む距離スペクトルP(x)が得られる。その結果、図10(e)に示すように、差分距離スペクトルP(x)−P0(x)には、水分に起因する距離スペクトルのみが出現する。従って、判定部15は、この差分距離スペクトルを監視し、差分距離スペクトルが0になった時点を乾燥完了時点と判断することができる。このようにして、測定対象の水分の状態を、個別に検知することができる。
When the measurement objects are at the distance d1 and the distance d2, radar waves are emitted from the sensors to the measurement objects, and the reflected waves from the measurement objects (d1, d2) are detected by the sensors. And the
誘電率は、衣類の繊維を構成するポリエチレンが2.3、木綿が3.0、水が80と、衣類は水との誘電率差が大きいので、距離スペクトルのピーク強度が各衣類の湿潤状態で異なるため、測定対象の水分状態を検知することができる。そして、本実施形態においては、定在波により距離計測が可能であるため、距離が異なる複数の測定対象の水分状態を夫々個別に計測することが可能である。 Dielectric constant is 2.3 for polyethylene that constitutes the fiber of clothing, 3.0 for cotton, 80 for water, clothing has a large difference in dielectric constant from water, and the peak intensity of the distance spectrum shows the wet state of each clothing Therefore, the moisture state of the measurement target can be detected. And in this embodiment, since distance measurement is possible by a standing wave, it is possible to measure individually the water | moisture-content state of several measurement object from which distance differs.
次に、本発明を適用して誘電率を検知する例について説明する。先ず、参考例として、定在波レーダーによる状態検知装置を食品素材の鮮度を維持するために使用した例について説明する。本参考例においては、測定対象としての食品素材の凍結状態(温度を含む)を制御する制御部が、センサ内に設けられている。そして、本実施形態の判定部は、前記食品素材の水分の割合の減少に基づいて凍結の直前の状態を検知する。図14は、本参考例において、食品素材を冷却したときの食品素材の誘電率及び温度の経時変化を示す模式図である。食品素材を冷却すると、次第に、その食品素材中の水分の凍結が生じ、やがて、水分が全て凍結してしまう。前述の如く、水分量と誘電率との間には相関関係が存在し、水の誘電率は約80、氷の誘電率は約4.2であるから、食品素材を冷却し続けると凍結が進行し、図14に1点鎖線にて示すように、凍結が生じている期間は、誘電率が低下し、凍結前は誘電率が高値に安定し、凍結後は誘電率が低値に安定する。そこで、本発明においては、図14に実線にて示すように、本発明の定在波レーダーによる状態検知装置により、誘電率の低下が開始したことが検知された時(時刻t0)に、水分の凍結がそれ以上進まず、例えば、食品素材の温度が一定になるように、食品素材の温度を制御する。これにより、食品素材の誘電率の低下が阻止され、食品素材中の水分量が高値に維持される。 Next, an example in which the present invention is applied to detect the dielectric constant will be described. First, as a reference example, an example in which a state detection device using a standing wave radar is used to maintain the freshness of a food material will be described. In this reference example, a control unit for controlling the frozen state (including temperature) of the food material as the measurement target is provided in the sensor. And the determination part of this embodiment detects the state just before freezing based on the reduction | decrease of the ratio of the water | moisture content of the said foodstuff material. FIG. 14 is a schematic diagram showing the change over time in the dielectric constant and temperature of the food material when the food material is cooled in this reference example. When the food material is cooled, the water in the food material is gradually frozen and eventually all the water is frozen. As described above, there is a correlation between the amount of water and the dielectric constant. The dielectric constant of water is about 80, and the dielectric constant of ice is about 4.2. As shown by the one-dot chain line in FIG. 14, the dielectric constant decreases during the freezing period, the dielectric constant stabilizes at a high value before freezing, and the dielectric constant stabilizes at a low value after freezing. To do. Therefore, in the present invention, as shown by the solid line in FIG. 14, when the state detection device using the standing wave radar of the present invention detects that the decrease in the dielectric constant has started (time t 0 ), For example, the temperature of the food material is controlled so that the temperature of the food material becomes constant without further freezing of moisture. Thereby, the fall of the dielectric constant of a food material is prevented, and the moisture content in a food material is maintained at a high value.
このようにして、食品素材中の水分の凍結を防止し、食品素材が水分を十分に保持するようにしてこれを保存することにより、食品素材の鮮度を高く保持することができる。この場合に、食品素材を過冷却の状態に保持することにより、又は過冷却の後に急速凍結させることにより、更に、食品素材中の水分量を確保することができる。 In this way, the freshness of the food material can be kept high by preventing the water in the food material from freezing and storing the food material so that the water content is sufficiently retained. In this case, the water content in the food material can be further ensured by maintaining the food material in a supercooled state or by rapidly freezing after the supercooling.
食品の品質変化の要因としては、(イ)微生物による腐敗・発酵作用、(ロ)食品中の酵素による分解作用、(ハ)酸化などの化学作用、(ニ)乾燥などの物理作用、(ホ)果実・野菜に関する呼吸・蒸散などの食品自体の生理活性作用がある。そして、時間とともに、エネルギー及び水分が消耗されていくため、栄養価は低下して外観もしなびてくる。一般に、微生物は温度が下がるほど増殖しにくくなり、比較的低温に強い細菌であっても、−10℃以下では、ほとんど増殖しなくなる。食品中の水分が凍結されて氷となった場合も、微生物が利用できる水分が減るので、微生物の活動はより低下する。一方、酵素は低温に強く、一部の酵素は−30℃でも作用するため、完全に酵素の作用を停止させるには、−35〜−40℃にする必要がある。食品の品質低下をもたらす酸化などによる化学作用、及び乾燥などの物理作用も温度が高いほど進行が早く、温度が低いほど遅くなり、呼吸又は蒸散など食品自体の生理活性作用も温度が低くなるほど低下し、細胞が凍ってしまえば活動を停止する。そこで、従来は、生命活動がすべて停止する−20℃程度の低温に食品素材を保持して、長期保存を行っている。 Factors that change the quality of food include (a) spoilage and fermentation by microorganisms, (b) degradation by enzymes in food, (c) chemical action such as oxidation, (d) physical action such as drying, (e ) It has physiological activity of food itself such as respiration and transpiration for fruits and vegetables. And as energy and moisture are consumed over time, the nutritional value decreases and the appearance also grows. In general, microorganisms become difficult to grow as the temperature decreases, and even bacteria that are relatively resistant to low temperatures hardly grow at temperatures below -10 ° C. Even when the water in the food is frozen to become ice, the water that can be used by the microorganism is reduced, so that the activity of the microorganism is further reduced. On the other hand, since enzymes are resistant to low temperatures and some enzymes also operate at −30 ° C., it is necessary to set the temperature to −35 to −40 ° C. to completely stop the action of the enzymes. The higher the temperature, the faster the chemical action due to oxidation, etc., which causes the food quality to deteriorate, and the physical action such as drying, the slower the lower the temperature, and the slower the temperature, the lower the physiological activity of the food itself, such as respiration or transpiration If the cells freeze, the activity stops. Therefore, conventionally, food materials are kept at a low temperature of about −20 ° C. where all life activities are stopped, and long-term storage is performed.
しかし、食品素材を冷凍で保存する場合には、凍結によって生じる氷が食品素材に悪影響を及ぼしてしまう。食肉・魚介では、その7〜8割、青果ではその8〜9割を水分が占める。そして、食品素材を冷却していくと、この水分が固体である氷に変化し、水が氷に変態すると、体積が膨張する。食品の細胞中に大きな氷の結晶が生成すると、細胞が破壊され、その状態のまま凍結されてしまう。そして、凍結食品素材を解凍すると、壊れた細胞から出た水分が流れ出し、水分とともに味覚成分及び栄養も食品素材から失われ、食品自体の歯ざわりも悪くなる。 However, when the food material is stored frozen, the ice produced by freezing has an adverse effect on the food material. In meat and seafood, water accounts for 70 to 80%, and in fruits and vegetables, 80 to 90%. When the food material is cooled, the moisture changes to solid ice, and when the water transforms into ice, the volume expands. When large ice crystals are formed in food cells, the cells are destroyed and frozen in that state. When the frozen food material is thawed, the moisture from the broken cells flows out, and the taste components and nutrients are lost from the food material together with the moisture, and the texture of the food itself becomes worse.
但し、氷の結晶が小さければ、この細胞破壊に起因する食品素材の品質劣化は小さくなる。この細胞を壊さないで冷却する方法として、過冷却を利用する方法がある。水が氷の結晶に変わる温度は氷結点といわれ、氷結点は純粋な水であれば0℃であるが、溶液のように水中に溶質を含有する場合は、この溶質の濃度が高いほど、氷結点は低くなる。食品素材中の水分には、アミノ酸及びミネラル等が溶け込んでいて、氷結点は低く、食品素材の氷結点は食品ごとに異なるものの、約−1〜−5℃である。そして、食品素材は夫々固有の氷結点で凍り始めるが、0℃から氷結点までの未凍結の温度領域(氷温域)において、生体は自身が凍らないように、不凍物質を生産し、例えば、糖類、グルタミン酸、アミノ酸等の旨み成分が生産される。これらの旨み成分は、食品素材を氷温域に一定時間さらす状態にすることで、食品の旨味を増し、鮮度保持時間を長くできるという利点がある。一方、氷結点から水分の80%が氷になるまでの温度範囲は「最大氷結晶生成帯」といわれ、この最大氷結晶生成帯を長い時間をかけて通過(温度降下)するほど、氷結晶は大きくなる。そして、このような「緩慢凍結」よりも、最大氷結晶生成帯を短時間で通過させて、生成する氷の結晶を小さく留める「急速凍結」のほうが、冷凍した食品としての品質は良好となる。 However, if the ice crystals are small, the quality deterioration of the food material due to this cell destruction will be small. As a method for cooling without breaking the cells, there is a method using supercooling. The temperature at which water turns into ice crystals is called the freezing point. If the freezing point is 0 ° C if it is pure water, the higher the concentration of this solute, the higher the concentration of this solute, Freezing point is lowered. Amino acids, minerals, and the like are dissolved in the moisture in the food material, and the freezing point is low. The freezing point of the food material varies depending on the food, but is about -1 to -5 ° C. Each food material begins to freeze at its own freezing point, but in the unfrozen temperature range (ice temperature range) from 0 ° C to the freezing point, the living body produces antifreeze substances so that it does not freeze itself, For example, umami components such as sugars, glutamic acid and amino acids are produced. These umami components have the advantage that the umami of the food can be increased and the freshness retention time can be increased by exposing the food material to an ice temperature region for a certain period of time. On the other hand, the temperature range from the freezing point to 80% of the water becomes ice is called the “maximum ice crystal formation zone”, and the ice crystal grows as it passes through this maximum ice crystal formation zone over a long time (temperature drop). Will grow. And the quality as a frozen food is better in “rapid freezing” in which the maximum ice crystal formation zone is passed in a short time and the generated ice crystals are kept smaller than such “slow freezing”. .
一方、過冷却とは、物質が液体から固体に変わる温度(凝固点)以下の温度でも液体のままでいる状態をいう。この過冷却の水に衝撃を与えたり氷のかけらを入れたりすると、一瞬にして小さな氷に変わり、細胞膜を破壊せずにすむ。このため、食品素材を過冷却の状態に保持して、食品素材全体を均一な温度状態にし、その後、急速凍結することにより、食品素材の細胞膜を破壊することなく凍結することができ、旨み成分を食品素材に保持した状態で、食品素材を解凍することができる。換言すれば、食品素材をおいしく凍らせるためには、食品素材の全体を均一に凍らせること、及び氷の結晶が成長しないように短時間で凍らせることが重要である。 On the other hand, supercooling refers to a state in which a substance remains liquid even at a temperature equal to or lower than a temperature at which a substance changes from a liquid to a solid (freezing point). When this supercooled water is shocked or a piece of ice is added, it turns into small ice in an instant, and the cell membrane is not destroyed. For this reason, it is possible to freeze the food material without destroying the cell membrane of the food material by keeping the food material in a supercooled state, bringing the whole food material to a uniform temperature state, and then rapidly freezing it. The food material can be thawed in a state where the food material is held in the food material. In other words, in order to freeze the food material deliciously, it is important to freeze the whole food material uniformly and to freeze it in a short time so that ice crystals do not grow.
本参考例においては、状態検知装置により、測定対象の誘電率の変化を検出して、測定対象の水分の変化を検出することにより、水分量の低下の起点t0を氷結点として求め、その後、食品素材に電磁波を照射して、食品素材の細胞中の水分子を振動させることにより、食品素材の水分を過冷却状態に保持する。その後、食品素材を瞬時に凍結させる(急速凍結)させることにより、細胞膜の破壊を防止しつつ、旨み成分を食品素材に閉じ込めたまま、これを凍結する。この電磁波は、本発明においては、定在波検知部が電波を送信する機能を有するものであるから、この電波の送信部を使用して、食品素材に電磁波を照射することができる。これにより、過冷却状態を容易に作り出すことができる。この定在波検知部が送信する電波を食品素材に照射して食品素材を誘導加熱することにより、食品素材の凍結状態を制御するが、このとき、食品素材の温度は、過冷却の温度範囲にある。そして、電磁波加熱は食品素材の微妙な状態の制御に即効性があるが、電子レンジのようにKWオーダーのパワーを与えて水分子を激しく揺するのではなく、mWオーダーのパワーで水分子が凝集しない程度に緩やかに水分子を揺することが好ましい。なお、−3℃程度の氷温及び−20℃程度の凍結温度では、細菌の活動はほぼ停止している。 In this reference example, the state detection device detects the change in the dielectric constant of the measurement target, and detects the change in the moisture of the measurement target, thereby obtaining the starting point t 0 of the decrease in the amount of water as the freezing point. The water of the food material is kept in a supercooled state by irradiating the food material with electromagnetic waves and vibrating the water molecules in the cells of the food material. Thereafter, the food material is instantly frozen (rapid freezing), thereby preventing the cell membrane from being destroyed and freezing the umami component in the food material. In the present invention, this electromagnetic wave has a function of transmitting a radio wave by the standing wave detection unit. Therefore, the electromagnetic wave can be applied to the food material using the radio wave transmission unit. Thereby, a supercooled state can be created easily. The frozen state of the food material is controlled by irradiating the food material with the radio wave transmitted by this standing wave detector to inductively heat the food material. At this time, the temperature of the food material is within the supercooling temperature range. It is in. Electromagnetic heating is effective in controlling the delicate state of food materials, but does not give KW-order power and shake water molecules vigorously like a microwave oven, but water molecules aggregate with mW-order power. It is preferable to gently shake the water molecules to such an extent that it does not occur. In addition, at the ice temperature of about -3 degreeC and the freezing temperature of about -20 degreeC, the activity of bacteria has stopped substantially.
食品素材の凍結点は、前述の如く、食品素材毎に異なり、含有水分中の溶質(含有物質)濃度によっても異なる。しかし、本参考例においては、状態検知装置により、誘電率の変化から測定対象の実際の凍結点を測定対象毎に検知することができる。そして、最大氷結晶生成帯(約−1℃〜約−5℃)を、できる限り速く通過させることによって、微小氷結晶を均質に生成させ、氷結晶の肥大化を防止して、細胞膜の破壊を防止することができる。なお、本実施形態では、定在波検知部の電磁波送信手段を使用して、水分子を振動させることにより、過冷却状態を作り出しているが、これに限らず、氷結点を検知した後、食品素材を加熱して氷結点の直上の温度に維持制御することができる。 As described above, the freezing point of the food material differs depending on the food material, and also varies depending on the concentration of the solute (containing substance) in the contained water. However, in this reference example, the actual freezing point of the measurement target can be detected for each measurement target from the change in the dielectric constant by the state detection device. Then, by passing through the maximum ice crystal formation zone (about -1 ° C to about -5 ° C) as fast as possible, micro ice crystals are uniformly generated, and the ice crystals are prevented from being enlarged and the cell membrane is destroyed. Can be prevented. In this embodiment, the electromagnetic wave transmitting means of the standing wave detection unit is used to create a supercooled state by vibrating water molecules, but not limited to this, after detecting an icing point, The food material can be heated and maintained at a temperature just above the freezing point.
従来の冷蔵・冷凍による食品素材の保存方法では、微生物による分解・腐敗を抑制することが主な目標であった。一般に、食品素材である肉が腐敗する段階において、肉のタンパク質が時間と共に分解されてアミノ酸になる。このアミノ酸の中に、うまみ成分といわれるグルタミン酸等が多く含まれている。しかし、腐敗過程では、雑菌又はバクテリアが発生してしまい、全く食べられない状態になってしまうのが常であった。凍結寸前の温度域では、バクテリア又は菌等の活動は著しく低下するが、酵素の活動は続くため、本実施形態のように、レーダーによる誘電率の計測で、殆どの水分が凍っていない凍結寸前の状態に制御することにより、肉は、熟成が進み、柔らかさ及び滑らかさがあり、とろける食感となり、ジューシーさが広がり、きれの良さを味わうことができる良質な熟成肉となる。 In the conventional method for preserving food materials by refrigeration and freezing, the main goal was to suppress the decomposition and decay by microorganisms. In general, at the stage where meat, which is a food material, rots, the protein of the meat is broken down with time into amino acids. This amino acid contains a large amount of glutamic acid or the like, which is called an umami component. However, in the process of spoilage, various germs or bacteria are usually generated, and it is in a state where it cannot be eaten at all. In the temperature range just before freezing, the activity of bacteria or fungi decreases significantly, but the activity of the enzyme continues. Therefore, as in this embodiment, the dielectric constant is measured by the radar, and almost no water is frozen. By controlling to this state, the meat is matured, has softness and smoothness, has a melting texture, spreads juiciness, and becomes a high-quality aged meat that can be tasted with good quality.
次に、本発明の他の参考例について説明する。本参考例においては、誘電率による状態検知装置を食肉の脂身成分の多少の検出に使用したものである。皮膚、筋肉、肝臓等の含水率が高い組織では、比誘電率は40〜2000、導電率は0.5〜10(S/m)となり、 含水率が比較的低い脂肪及び骨髄等では、比誘電率は5〜20、導電率は10〜500(mS/m)となっている。誘電率は組織毎に広い範囲で分布するものの、おおむね、水分含有率が高い組織と、水分含有率が低い組織とに分類することができる。水は誘電率が実部及び虚部共に大きいため、これを多く含む筋肉等の組織は誘電率が大きい。一方、水分が少ない骨及び脂肪は、誘電率が小さい。人体は、これらの臓器が複雑に配置されているが、電波による照射と反射レベル強度を計測することにより、筋肉が多い肉か又は脂肪が多い肉かを識別することができる。このように、誘電率の違いを電波で検出することにより、食品を非接触で計測することが可能である。 Next, another reference example of the present invention will be described. In this reference example, a state detection device based on dielectric constant is used to detect some of the fat components of meat. For tissues with high water content such as skin, muscle, liver, etc., the relative dielectric constant is 40 to 2000, and the conductivity is 0.5 to 10 (S / m). For fat and bone marrow with relatively low water content, The dielectric constant is 5 to 20, and the conductivity is 10 to 500 (mS / m). Although the dielectric constant is distributed over a wide range for each tissue, it can be roughly classified into a tissue having a high water content and a tissue having a low water content. Since water has a large dielectric constant for both the real part and the imaginary part, tissues such as muscles that contain a lot of this have a large dielectric constant. On the other hand, bones and fats with low moisture have a low dielectric constant. Although these organs are arranged in a complex manner in the human body, it is possible to identify whether the meat has a lot of muscle or the meat has a lot of fat by measuring the irradiation with radio waves and the intensity of the reflection level. In this manner, food can be measured in a non-contact manner by detecting the difference in dielectric constant with radio waves.
次に、本発明の他の参考例について説明する。本参考例は、誘電率の差の検出による状態検知装置を、医療分野に使用したものである。一般に、超音波診断及びX線の診断では、臓器等の形状は分かるが、塊の物質(異物)の材質又は異常部位の性質が何であるのかはわからないという問題点がある。この塊が血液の塊か、肉の塊か、腫瘍なのか、癌なのかは、開腹して試料を採取してみないとわからないのが現状であった。電波を使用した計測装置は、パルス方式で開発が進められているが、至近距離のため、該当部分の距離は計測できない。乳房は乳腺と脂肪組織から構成され,外側を皮膚組織に覆われた胸壁から突出した臓器である。マイクロ波を乳房に照射すると、多くは皮膚によって反射されるが、一部のマイクロ波は皮膚内部に侵入する。乳腺は脂肪組織より誘電率及び導電率が高いので反射が起こるが、乳腺の形は不規則なため、複雑な反射・散乱が発生する。乳房中の塊は、乳腺及び脂肪より誘電率及び導電率が高いので、乳房に照射した送信波が反射した反射波は、検出可能な受信波として、受信される。例えば、誘電率は、脂肪層が6.9、乳腺組織が49、癌が56、皮膚が37、筋肉が58であり、反射係数の違いを検出することにより、乳房の内部の状態を推察することができる。また、フィルタを使い、例えば、癌の誘電率56を抽出することにより、その電波の照射部分に、癌の病変があるか、又は無いかの識別をすることができる。また、超音波診断等の他の手段により、何らかの塊が体内に認められた場合、本参考例の状態検知装置によれば、それが癌の病変であるのか、血の塊であるのか、骨であるのかを、反射係数の相違により判定することができる。 Next, another reference example of the present invention will be described. In this reference example, a state detection device that detects a difference in dielectric constant is used in the medical field. In general, in ultrasonic diagnosis and X-ray diagnosis, the shape of an organ or the like is known, but there is a problem that it is not known what the material of the mass (foreign matter) or the nature of the abnormal part is. Whether this mass is a blood mass, a meat mass, a tumor, or a cancer is not known unless a sample is taken after laparotomy. Measurement devices using radio waves are being developed using the pulse method, but because the distance is very close, the distance of that part cannot be measured. The breast is composed of the mammary gland and adipose tissue, and is an organ that protrudes from the chest wall covered with skin tissue on the outside. When microwaves are applied to the breast, many are reflected by the skin, but some microwaves penetrate the skin. The mammary gland has a higher dielectric constant and conductivity than adipose tissue, so reflection occurs. However, since the mammary gland has an irregular shape, complicated reflection / scattering occurs. Since the mass in the breast has a dielectric constant and conductivity higher than those of the mammary gland and fat, the reflected wave reflected by the transmitted wave applied to the breast is received as a detectable received wave. For example, the dielectric constant is 6.9 for the fat layer, 49 for the mammary gland tissue, 56 for the cancer, 37 for the skin, 58 for the muscle, and infers the internal state of the breast by detecting the difference in the reflection coefficient be able to. Further, for example, by extracting the dielectric constant 56 of cancer using a filter, it is possible to identify whether or not there is a cancer lesion in the radio wave irradiation portion. In addition, when some mass is recognized in the body by other means such as ultrasonic diagnosis, according to the state detection device of this reference example, whether it is a cancer lesion, a blood mass, a bone Can be determined by the difference in reflection coefficient.
従来、空中にあるアンテナから乳房にマイクロ波を照射しても、皮膚は水分を含んでいるため、ほとんどのエネルギーは皮膚で反射されてしまう。これは空気と乳房組織の電気インピーダンスが大きく異なり、境界面での反射係数が高いためである。このため、アンテナと乳房を乳房組織に類似した誘電率及び導電率を持つ整合溶液(ジアセチンなどの油脂)で満たしたタンクに入れて撮像し、反射を小さくして計測を行っていた。 Conventionally, even when microwaves are applied to the breast from an antenna in the air, most of the energy is reflected by the skin because the skin contains moisture. This is because the electrical impedance of air and breast tissue are greatly different and the reflection coefficient at the interface is high. For this reason, the antenna and the breast were taken in a tank filled with a matching solution (oil and fat such as diacetin) having a dielectric constant and conductivity similar to that of the breast tissue, and the measurement was performed with a small reflection.
しかし、皮膚はその構成の殆どが水分であることに注目すると、この部分を凍結寸前の過冷却状態に冷却した場合に、誘電率は水が80であり、氷が3であるので、水から氷に誘電率が激減することにより、電波を透過するようになる。この状態で、ペンシル状にビームを絞った電波を水平方向及び垂直方向にスイープすると、反射データが得られる。これにより、体内の対象物の物性(癌か否か)及びその対象物までの距離を検知することができる。 However, focusing on the fact that most of the structure of the skin is moisture, when this part is cooled to a supercooled state just before freezing, the dielectric constant is 80 for water and 3 for ice. Due to the drastic decrease in the dielectric constant of ice, radio waves can be transmitted. In this state, reflection data can be obtained by sweeping a radio wave having a beam narrowed in a pencil shape in the horizontal direction and the vertical direction. Thereby, the physical property (whether it is cancer) of the target object in a body and the distance to the target object are detectable.
次に、本発明の状態検知装置を使用した他の参考例について説明する。本参考例は、状態検知装置を植物の活動状況の検出に使用した例である。即ち、生物活動は、水分を計測することにより、生育状態及び内部の活動状況を知ることができるので、植物の幹を流れる水分の変化を、本参考例の状態検知装置により検知することにより、植物の活動状況を検出することができる。従来、木材は、打撃音によって含水率を推定したり、電気抵抗値又は電気容量を測定して水分に置き換えたり、光の吸収度合いを調べて植物の水分量を推定していた。しかし、打撃音では官能的な検査しかできず、電気抵抗式の測定器は、測定物に電気を流し、その抵抗値を水分値に置き換えて表示する水分計であるため、植物に針を刺す必要があり、植物を痛めてしまう。また、光による方法は、植物の表面部分しか計測できない。 Next, another reference example using the state detection device of the present invention will be described. This reference example is an example in which the state detection device is used to detect the activity state of a plant. In other words, biological activity can be measured by measuring the moisture, it is possible to know the growth state and the internal activity status, so by detecting the change of moisture flowing through the trunk of the plant by the state detection device of this reference example, Plant activity status can be detected. Conventionally, wood has been estimated by estimating the moisture content by the impact sound, measuring the electrical resistance value or capacitance, and replacing it with moisture, or examining the degree of light absorption to estimate the moisture content of the plant. However, only the sensual inspection can be performed with the impact sound, and the electrical resistance type measuring instrument is a moisture meter that sends electricity to the measured object and replaces the resistance value with the moisture value. Need to hurt the plant. In addition, the light method can measure only the surface portion of the plant.
これに対し、本参考例の状態検知装置を使用すると、植物の生育状態及び内部の活動状況を、非接触で常時検出することができる。図15は、本参考例の状態検知装置を樹木100の内部の活動状況の検出に適用した実施形態を示す図である。図15(a)に示すように、樹木100に対して、センサ101を向け、樹木100の内部を上方に向かって流れる水103の量を検出する。センサ101からレーダ送信波を樹木100に向けて送信し、反射波を検出して定在波を検知し、その振幅強度P(x)を求める。前述の如く、誘電率は水が80であり、木の誘電率とは相違するので、水からの反射波を検知でき、図10に示すように、水量を、振幅強度から求めることができる。即ち、水分の量は振幅強度P(x)の大小により検知できる。この場合に、樹木の幹を流れる水分103は、樹木100の葉102にも供給され、この水分が枯渇したときは、葉102が樹木100から落ちるので、従来、葉の落下数から、樹木の活動状況を認識することもあった。しかし、本発明の状態検知装置を使用すれば、常時、樹木の幹の内部を通流する水分量を遠隔地で検出することができる。通常、カエデの幹の水分量は、図15(b)に示すように、昼と夜とで変化しており、昼の方が水分量が多い。そして、これを通年でみると、図15(c)に示すように、1日あたりの水分量の平均値は、春及び夏には多く、夏から秋にかけて減少し、秋及び冬には少なくなる。このとき、サトウカエデは、水分量が減少するときに、糖分が増大し、メープルシロップの原料となる糖分量が高い樹液を出す。そこで、樹木の水分量を遠隔監視し、水分量の減少を検知したときに、樹液の採取を開始すれば、効率的に糖分量が高い樹液を算出することができる。
On the other hand, if the state detection apparatus of this reference example is used, the growth state and internal activity state of a plant can always be detected without contact. FIG. 15 is a diagram illustrating an embodiment in which the state detection device of this reference example is applied to detection of an activity state inside the tree 100. As shown in FIG. 15A, the
次に、本発明の実施形態について説明する。本実施形態は、本発明の状態検知装置により人の汗を検知して人の周囲の空調を制御するものである。本実施形態においては、検知部が、差分距離スペクトルの振幅を監視することにより、測定対象の反射波の強度が汗の量により変化することに基づいて、測定対象としての人の汗の変化を検知する。本実施形態においては、測定対象としての人の汗の変化に基づいて、人の周囲の空調状態を制御する制御部が、センサ101内に設けられており、このセンサ101は空調機内に設置されている。図16に示すように、センサ101は人を測定対象としてレーダー波を送信し、人の汗110からの反射波を検出して、定在波を求め、その振幅強度P(x)を演算する。このとき、図16(a)に示すように、汗110の量が少ないときは、反射波の強度が低く、得られた定在波の振幅強度P(x)も低い。そして、図16(b)及び図16(c)に示すように、汗110の量が多くなるにつれて、定在波の振幅強度P(x)が大きくなっていく。このため、定在波の振幅強度P(x)の変化から、汗の量の変化及び汗の有無を検知することができる。
Next, an embodiment of the present invention will be described. In the present embodiment, the state detection device of the present invention detects human sweat and controls the air conditioning around the person. In the present embodiment, the detection unit monitors the amplitude of the difference distance spectrum, so that based on the fact that the intensity of the reflected wave of the measurement object changes depending on the amount of sweat, the change in human sweat as the measurement object is detected. Detect. In the present embodiment, a control unit that controls the air conditioning state around a person based on a change in the person's sweat as a measurement target is provided in the
そこで、例えば、室内の温度を、扇風機又はエアコン(エアコンディショナ)が調整しているとすると、これらの空調機(扇風機及びエアコン等を含む)内に、前記制御部を含むセンサ101を設置し、センサ101により汗の量を検知する。そして、空調機をオンにすると、制御部は、先ず、空調機の送風方向及びレーダー照射方向を、部屋全体に振る(スキャンする)。これにより、センサ101は、部屋の中に存在する人の位置及びこの人の水分量(汗の量)を検知する。そして、制御部は、汗の量が多い場合は、送風量を多くしたり、送風温度を低下させたり(エアコンの場合)、又は、送風方向をこの人に向けて集中させて、送風方向のスキャンを停止する。制御部は、これらの1又は複数の方法により、強力に汗をかいている人を冷却し、迅速に汗をひかせるように制御する。一方,人の汗が減少した場合には、送風方向のスキャンを再開したり、送風温度を上昇させたり、送風量を低下させたりして、人に対する冷却の程度を軽減する。人の汗が殆ど解消した場合、又は、空調機がオンになっても、汗をかいている人が室内に存在しない場合は、制御部は、弱めの送風量で送風方向をスキャンさせて、室内の空気の循環のみを行う。
Therefore, for example, assuming that the temperature of the room is adjusted by a fan or an air conditioner (air conditioner), the
この場合に、本実施形態の状態検知装置は、人の位置を検知するので、室内で人が移動した場合には、送風方向を移動した人に合わせて移動させる。即ち、人を追いかけて、送風方向を決定する。このため、部屋が広く、室内に存在する人の数が少ない場合でも、効率的にこの人の冷却を実施することができる。なお、従来、人感センサにより人を感知し、送風方向をこの人の存在位置に合わせて移動させるエアコンも開発されているが、この場合、送風量及び送風温度は、一定であり、対象の人が汗をかいていないにも拘わらず、汗をかいている人の場合と同様に冷却してしまう。しかし、本発明においては、対象の人の汗の量を検知し、汗の量に応じて、送風量及び送風温度を調整するので、送風方向を人の移動に合わせて移動させても、この人を冷却しすぎてしまうことがない。なお、汗の有無及び量の検出は、顔又は腕のように、人の露出している部分の汗に限らない。本発明においては、定在波レーダーで反射波(定在波)の強度から汗の量を検出するので、このレーダーによる水分検出によれば、レーダーが衣服を透過するため、衣服の内部の下着の水分又は皮膚上の水分からの反射波で水分量(汗の量)を検出することができる。このため、汗の検出は、顔及び腕等に限らず,身体の全体から汗の存在及び量を検知することができる。 In this case, since the state detection device of the present embodiment detects the position of the person, when the person moves indoors, the air blowing direction is moved in accordance with the moved person. In other words, the direction of the air is determined following the person. For this reason, even when the room is large and the number of people present in the room is small, this person can be efficiently cooled. Conventionally, an air conditioner that detects a person with a human sensor and moves the blowing direction according to the position of the person has been developed, but in this case, the blowing amount and the blowing temperature are constant, Even though the person is not sweating, it cools in the same way as the person who is sweating. However, in the present invention, the amount of sweat of the target person is detected, and the air volume and air temperature are adjusted according to the amount of sweat, so even if the air flow direction is moved according to the movement of the person, this Don't overcool people. Note that the detection of the presence and amount of sweat is not limited to sweat on the exposed part of a person, such as a face or an arm. In the present invention, since the amount of sweat is detected from the intensity of the reflected wave (standing wave) by the standing wave radar, according to the moisture detection by this radar, the radar passes through the clothes, so The amount of moisture (amount of sweat) can be detected by reflected waves from the moisture of the skin or moisture on the skin. For this reason, the detection of sweat is not limited to the face and arms, and the presence and amount of sweat can be detected from the entire body.
なお、室内の空調機制御に本発明を適用する場合に限らず、例えば、車内の空調制御に適用することもできる。また、室内とは、家庭の部屋に限らず、施設の廊下又は広間、電車・バス等の交通機関の車内等、種々の空調機の制御に本発明を適用することができる。 Note that the present invention is not limited to the indoor air conditioner control, and can be applied to the air conditioning control in the vehicle, for example. The term “indoor” is not limited to a room in a home, but the present invention can be applied to control of various air conditioners such as a hallway or hall of a facility, and the inside of a transportation facility such as a train / bus.
本発明によれば、定在波レーダーにより、測定対象の人の汗の変化を検知し、これにより、人の周囲の空調状態を制御することができるため、人の生活状態の改善若しくは向上又は医療技術の進歩に多大の貢献をなす。 According to the present invention, the standing wave radar can detect a change in the sweat of the person to be measured and thereby control the air conditioning state around the person. Contributes greatly to advances in medical technology.
7:定在波レーダーモジュール基板
8:定在波レーダーモジュール
10:LED制御ユニット
11:基板
12:フレーム
31:演算部
35:24GHz高周波モジュール
42:信号処理部
101:センサ
7: standing wave radar module substrate 8: standing wave radar module 10: LED control unit 11: substrate 12: frame 31: arithmetic unit 35: 24 GHz high frequency module 42: signal processing unit 101: sensor
本願第1発明に係る定在波レーダーによる状態検知装置は、
周波数掃引された電波を測定対象の人体に向けて送信し、前記人体の身体の表面にて反射した反射波を送信波長に基づく一定距離だけ離隔した2点にて検出し、送信波及び受信波から合成される定在波を検知する定在波検知部と、
前記定在波検知部が検知した合成波の周波数の強度分布から、その直流成分を除去し、フーリエ変換して、距離スペクトルを求める距離スペクトル演算部と、
前記距離スペクトルから、基準時の距離スペクトルを減算して、距離スペクトルの差分を演算し、この差分距離スペクトルを経時的に求める差分検出部と、
前記差分距離スペクトルの距離成分により測定対象までの距離を求める距離演算部と、
前記差分距離スペクトルの振幅が、前記測定対象の誘電率の変化に基づいて変化する経緯を監視し、その振幅の変化に基づいて、測定対象としての人の汗の変化を検知する検知部と、
前記検知部が検知した汗の変化に基づいて、前記人の周囲の空調状態を制御する制御部と、
を有することを特徴とする。
The state detection device by the standing wave radar according to the first invention of the present application,
The frequency-swept radio wave is transmitted toward the human body to be measured, and the reflected wave reflected on the surface of the human body is detected at two points separated by a certain distance based on the transmission wavelength, and the transmitted wave and the received wave A standing wave detector for detecting a standing wave synthesized from
From the intensity distribution of the frequency of the synthesized wave detected by the standing wave detection unit, the DC component is removed, Fourier transform, a distance spectrum calculation unit for obtaining a distance spectrum,
Subtracting the distance spectrum at the reference time from the distance spectrum, calculating the difference of the distance spectrum, and obtaining a difference distance spectrum over time,
A distance calculation unit for obtaining a distance to a measurement object by a distance component of the difference distance spectrum;
A detector that monitors the change in the amplitude of the differential distance spectrum based on a change in the dielectric constant of the measurement target, and detects a change in human sweat as the measurement target based on the change in the amplitude;
Based on the change in sweat detected by the detection unit, a control unit for controlling the air conditioning state around the person,
It is characterized by having.
本願第2発明に係る定在波レーダー検知装置は,
周波数掃引された電波を測定対象の人体に向けて送信し、前記人体の身体の表面にて反射した反射波を送信波長に基づく一定距離だけ離隔した2点にて検出し、送信波及び受信波から合成される定在波を検知する定在波検知部と、
前記定在波検知部が検知した合成波の周波数の強度分布から、その直流成分を除去し、フーリエ変換して、距離スペクトルを一定のサンプリング時間毎に求める距離スペクトル演算部と、
前記距離スペクトルから、前回又は所定回前のサンプリング時の距離スペクトルを減算して、距離スペクトルの差分を演算し、この差分距離スペクトルを経時的に求める差分検出部と、
前記差分距離スペクトルの距離成分により測定対象までの距離を求める距離演算部と、
前記差分距離スペクトルの振幅が、前記測定対象の誘電率の変化に基づいて変化する経緯を監視し、その振幅の変化に基づいて、測定対象としての人の汗の変化を検知する検知部と、
前記検知部が検知した汗の変化に基づいて、前記人の周囲の空調状態を制御する制御部と、
を有することを特徴とする。
The standing wave radar detector according to the second invention of this application is:
The frequency-swept radio wave is transmitted toward the human body to be measured, and the reflected wave reflected on the surface of the human body is detected at two points separated by a certain distance based on the transmission wavelength, and the transmitted wave and the received wave A standing wave detector for detecting a standing wave synthesized from
From the intensity distribution of the frequency of the synthesized wave detected by the standing wave detection unit, the DC component is removed, and Fourier transform is performed, and a distance spectrum calculation unit that obtains a distance spectrum at a certain sampling time;
Subtracting the distance spectrum at the time of previous or predetermined sampling from the distance spectrum, calculating the difference of the distance spectrum, a difference detection unit for obtaining this difference distance spectrum over time,
A distance calculation unit for obtaining a distance to a measurement object by a distance component of the difference distance spectrum;
A detector that monitors the change in the amplitude of the differential distance spectrum based on a change in the dielectric constant of the measurement target, and detects a change in human sweat as the measurement target based on the change in the amplitude;
Based on the change in sweat detected by the detection unit, a control unit for controlling the air conditioning state around the person,
It is characterized by having.
Claims (4)
前記定在波検知部が検知した合成波の周波数の強度分布から、その直流成分を除去し、フーリエ変換して、距離スペクトルを求める距離スペクトル演算部と、
前記距離スペクトルから、基準時の距離スペクトルを減算して、距離スペクトルの差分を演算し、この差分距離スペクトルを経時的に求める差分検出部と、
前記差分距離スペクトルの距離成分により測定対象までの距離を求める距離演算部と、
前記差分距離スペクトルの振幅が、前記測定対象の誘電率の変化に基づいて変化する経緯を監視し、その振幅の変化に基づいて、測定対象としての人の汗の変化を検知する検知部と、
前記検知部が検知した汗の変化に基づいて、前記人の周囲の空調状態を制御する制御部と、
を有することを特徴とする定在波レーダーによる状態検知装置。 A standing wave that is transmitted from the transmitted wave and the received wave after the frequency-swept radio wave is transmitted to the outside and the reflected wave reflected by the external measurement target is detected at two points separated by a certain distance based on the transmission wavelength. A standing wave detector for detecting
From the intensity distribution of the frequency of the synthesized wave detected by the standing wave detection unit, the DC component is removed, Fourier transform, a distance spectrum calculation unit for obtaining a distance spectrum,
Subtracting the distance spectrum at the reference time from the distance spectrum, calculating the difference of the distance spectrum, and obtaining a difference distance spectrum over time,
A distance calculation unit for obtaining a distance to a measurement object by a distance component of the difference distance spectrum;
A detector that monitors the change in the amplitude of the differential distance spectrum based on a change in the dielectric constant of the measurement target, and detects a change in human sweat as the measurement target based on the change in the amplitude;
Based on the change in sweat detected by the detection unit, a control unit for controlling the air conditioning state around the person,
A state detection apparatus using a standing wave radar.
前記定在波検知部が検知した合成波の周波数の強度分布から、その直流成分を除去し、フーリエ変換して、距離スペクトルを一定のサンプリング時間毎に求める距離スペクトル演算部と、
前記距離スペクトルから、前回又は所定回前のサンプリング時の距離スペクトルを減算して、距離スペクトルの差分を演算し、この差分距離スペクトルを経時的に求める差分検出部と、
前記差分距離スペクトルの距離成分により測定対象までの距離を求める距離演算部と、
前記差分距離スペクトルの振幅が、前記測定対象の誘電率の変化に基づいて変化する経緯を監視し、その振幅の変化に基づいて、測定対象としての人の汗の変化を検知する検知部と、
前記検知部が検知した汗の変化に基づいて、前記人の周囲の空調状態を制御する制御部と、
を有することを特徴とする定在波レーダーによる状態検知装置。 A standing wave that is transmitted from the transmitted wave and the received wave after the frequency-swept radio wave is transmitted to the outside and the reflected wave reflected by the external measurement target is detected at two points separated by a certain distance based on the transmission wavelength. A standing wave detector for detecting
From the intensity distribution of the frequency of the synthesized wave detected by the standing wave detection unit, the DC component is removed, and Fourier transform is performed, and a distance spectrum calculation unit that obtains a distance spectrum at a certain sampling time;
Subtracting the distance spectrum at the time of previous or predetermined sampling from the distance spectrum, calculating the difference of the distance spectrum, a difference detection unit for obtaining this difference distance spectrum over time,
A distance calculation unit for obtaining a distance to a measurement object by a distance component of the difference distance spectrum;
A detector that monitors the change in the amplitude of the differential distance spectrum based on a change in the dielectric constant of the measurement target, and detects a change in human sweat as the measurement target based on the change in the amplitude;
Based on the change in sweat detected by the detection unit, a control unit for controlling the air conditioning state around the person,
A state detection apparatus using a standing wave radar.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016221851A JP6124231B1 (en) | 2016-11-14 | 2016-11-14 | Status detector using standing wave radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016221851A JP6124231B1 (en) | 2016-11-14 | 2016-11-14 | Status detector using standing wave radar |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016143727A Division JP6083057B1 (en) | 2016-07-21 | 2016-07-21 | Status detector using standing wave radar |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6124231B1 JP6124231B1 (en) | 2017-05-10 |
JP2018013468A true JP2018013468A (en) | 2018-01-25 |
Family
ID=58704665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016221851A Active JP6124231B1 (en) | 2016-11-14 | 2016-11-14 | Status detector using standing wave radar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6124231B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109631245A (en) * | 2019-01-10 | 2019-04-16 | 珠海格力电器股份有限公司 | Air conditioner control method and device, storage medium and processor |
CN110779167A (en) * | 2019-11-14 | 2020-02-11 | 宁波奥克斯电气股份有限公司 | Method for controlling air conditioner based on motion state, detection control device, air conditioner, controller and storage medium |
JP2021130417A (en) * | 2020-02-20 | 2021-09-09 | スズキ株式会社 | Vehicular air conditioner |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2018311770A1 (en) * | 2017-07-31 | 2020-03-05 | Daikin Industries, Ltd. | Sensor unit and air conditioner |
CN108534227B (en) * | 2018-04-02 | 2021-03-19 | 广东美的制冷设备有限公司 | Air conditioner |
CN110332657B (en) * | 2019-05-21 | 2020-11-27 | 珠海格力电器股份有限公司 | Security robot based on air conditioner and air conditioner comprising same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004318565A (en) * | 2003-04-17 | 2004-11-11 | Nec Corp | Health management system |
JP5861179B1 (en) * | 2015-06-04 | 2016-02-16 | 株式会社Cq−Sネット | Status detector using standing wave radar |
-
2016
- 2016-11-14 JP JP2016221851A patent/JP6124231B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004318565A (en) * | 2003-04-17 | 2004-11-11 | Nec Corp | Health management system |
JP5861179B1 (en) * | 2015-06-04 | 2016-02-16 | 株式会社Cq−Sネット | Status detector using standing wave radar |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109631245A (en) * | 2019-01-10 | 2019-04-16 | 珠海格力电器股份有限公司 | Air conditioner control method and device, storage medium and processor |
CN110779167A (en) * | 2019-11-14 | 2020-02-11 | 宁波奥克斯电气股份有限公司 | Method for controlling air conditioner based on motion state, detection control device, air conditioner, controller and storage medium |
JP2021130417A (en) * | 2020-02-20 | 2021-09-09 | スズキ株式会社 | Vehicular air conditioner |
JP7552031B2 (en) | 2020-02-20 | 2024-09-18 | スズキ株式会社 | Vehicle air conditioning system |
Also Published As
Publication number | Publication date |
---|---|
JP6124231B1 (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016195113A1 (en) | Device that detects states by standing-wave radar | |
JP6083057B1 (en) | Status detector using standing wave radar | |
JP6124231B1 (en) | Status detector using standing wave radar | |
US5752519A (en) | Device and method for detection, localization, and characterization of inhomogeneities in turbid media | |
Xie et al. | Nondestructive measurements of freezing parameters of frozen porcine meat by NIR hyperspectral imaging | |
Huang et al. | Effect of three drying methods on the drying characteristics and quality of okra | |
Jha et al. | Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods—A review | |
Dinani et al. | Influence of the electrohydrodynamic process on the properties of dried button mushroom slices: A differential scanning calorimetry (DSC) study | |
Sun et al. | Pulse-spouted microwave freeze drying of raspberry: Control of moisture using ANN model aided by LF-NMR | |
Cheng et al. | Recent developments of drying techniques for aquatic products: With emphasis on drying process monitoring with innovative methods | |
EP3661416A1 (en) | Method and system for estimating fractional fat content of an object | |
WO2018194093A1 (en) | Biological information estimation device | |
Ambrosanio et al. | A multi-channel ultrasound system for non-contact heart rate monitoring | |
Castro-Giráldez et al. | Thermodynamic approach of meat freezing process | |
Cuibus et al. | Application of infrared thermography and dielectric spectroscopy for controlling freezing process of raw potato | |
JP6124230B1 (en) | Status detector using standing wave radar | |
JP6187998B1 (en) | Status detector using standing wave radar | |
Vidaček et al. | Bioelectrical impedance analysis of frozen sea bass (Dicentrarchus labrax) | |
JP2018031640A (en) | Position detector by standing wave radar | |
CN112782656A (en) | Standing wave radar state detection device | |
JP2018121761A (en) | State detection device by standing wave radar | |
Ottestad et al. | Prediction of ice fraction and fat content in super-chilled salmon by non-contact interactance near infrared imaging | |
Hawkins et al. | Post-mortem chemical changes in poultry breast meat monitored with visible-near infrared spectroscopy. | |
Shtoda et al. | Possibilities of microwave imaging in medicine | |
US20210063356A1 (en) | Method and system for determining at least one parameter of interest of a material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170321 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170327 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6124231 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |